parse: ensure that option group/category hold 64-bit
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60
61static pthread_t helper_thread;
62static pthread_mutex_t helper_lock;
63pthread_cond_t helper_cond;
64int helper_do_stat = 0;
65
66static struct fio_mutex *startup_mutex;
67static struct flist_head *cgroup_list;
68static char *cgroup_mnt;
69static int exit_value;
70static volatile int fio_abort;
71static unsigned int nr_process = 0;
72static unsigned int nr_thread = 0;
73
74struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76int groupid = 0;
77unsigned int thread_number = 0;
78unsigned int stat_number = 0;
79int shm_id = 0;
80int temp_stall_ts;
81unsigned long done_secs = 0;
82volatile int helper_exit = 0;
83
84#define PAGE_ALIGN(buf) \
85 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87#define JOB_START_TIMEOUT (5 * 1000)
88
89static void sig_int(int sig)
90{
91 if (threads) {
92 if (is_backend)
93 fio_server_got_signal(sig);
94 else {
95 log_info("\nfio: terminating on signal %d\n", sig);
96 log_info_flush();
97 exit_value = 128;
98 }
99
100 fio_terminate_threads(TERMINATE_ALL);
101 }
102}
103
104void sig_show_status(int sig)
105{
106 show_running_run_stats();
107}
108
109static void set_sig_handlers(void)
110{
111 struct sigaction act;
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGINT, &act, NULL);
117
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGTERM, &act, NULL);
122
123/* Windows uses SIGBREAK as a quit signal from other applications */
124#ifdef WIN32
125 memset(&act, 0, sizeof(act));
126 act.sa_handler = sig_int;
127 act.sa_flags = SA_RESTART;
128 sigaction(SIGBREAK, &act, NULL);
129#endif
130
131 memset(&act, 0, sizeof(act));
132 act.sa_handler = sig_show_status;
133 act.sa_flags = SA_RESTART;
134 sigaction(SIGUSR1, &act, NULL);
135
136 if (is_backend) {
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_int;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGPIPE, &act, NULL);
141 }
142}
143
144/*
145 * Check if we are above the minimum rate given.
146 */
147static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148 enum fio_ddir ddir)
149{
150 unsigned long long bytes = 0;
151 unsigned long iops = 0;
152 unsigned long spent;
153 unsigned long rate;
154 unsigned int ratemin = 0;
155 unsigned int rate_iops = 0;
156 unsigned int rate_iops_min = 0;
157
158 assert(ddir_rw(ddir));
159
160 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161 return false;
162
163 /*
164 * allow a 2 second settle period in the beginning
165 */
166 if (mtime_since(&td->start, now) < 2000)
167 return false;
168
169 iops += td->this_io_blocks[ddir];
170 bytes += td->this_io_bytes[ddir];
171 ratemin += td->o.ratemin[ddir];
172 rate_iops += td->o.rate_iops[ddir];
173 rate_iops_min += td->o.rate_iops_min[ddir];
174
175 /*
176 * if rate blocks is set, sample is running
177 */
178 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179 spent = mtime_since(&td->lastrate[ddir], now);
180 if (spent < td->o.ratecycle)
181 return false;
182
183 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184 /*
185 * check bandwidth specified rate
186 */
187 if (bytes < td->rate_bytes[ddir]) {
188 log_err("%s: min rate %u not met\n", td->o.name,
189 ratemin);
190 return true;
191 } else {
192 if (spent)
193 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194 else
195 rate = 0;
196
197 if (rate < ratemin ||
198 bytes < td->rate_bytes[ddir]) {
199 log_err("%s: min rate %u not met, got"
200 " %luKB/sec\n", td->o.name,
201 ratemin, rate);
202 return true;
203 }
204 }
205 } else {
206 /*
207 * checks iops specified rate
208 */
209 if (iops < rate_iops) {
210 log_err("%s: min iops rate %u not met\n",
211 td->o.name, rate_iops);
212 return true;
213 } else {
214 if (spent)
215 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216 else
217 rate = 0;
218
219 if (rate < rate_iops_min ||
220 iops < td->rate_blocks[ddir]) {
221 log_err("%s: min iops rate %u not met,"
222 " got %lu\n", td->o.name,
223 rate_iops_min, rate);
224 return true;
225 }
226 }
227 }
228 }
229
230 td->rate_bytes[ddir] = bytes;
231 td->rate_blocks[ddir] = iops;
232 memcpy(&td->lastrate[ddir], now, sizeof(*now));
233 return false;
234}
235
236static bool check_min_rate(struct thread_data *td, struct timeval *now)
237{
238 bool ret = false;
239
240 if (td->bytes_done[DDIR_READ])
241 ret |= __check_min_rate(td, now, DDIR_READ);
242 if (td->bytes_done[DDIR_WRITE])
243 ret |= __check_min_rate(td, now, DDIR_WRITE);
244 if (td->bytes_done[DDIR_TRIM])
245 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247 return ret;
248}
249
250/*
251 * When job exits, we can cancel the in-flight IO if we are using async
252 * io. Attempt to do so.
253 */
254static void cleanup_pending_aio(struct thread_data *td)
255{
256 int r;
257
258 /*
259 * get immediately available events, if any
260 */
261 r = io_u_queued_complete(td, 0);
262 if (r < 0)
263 return;
264
265 /*
266 * now cancel remaining active events
267 */
268 if (td->io_ops->cancel) {
269 struct io_u *io_u;
270 int i;
271
272 io_u_qiter(&td->io_u_all, io_u, i) {
273 if (io_u->flags & IO_U_F_FLIGHT) {
274 r = td->io_ops->cancel(td, io_u);
275 if (!r)
276 put_io_u(td, io_u);
277 }
278 }
279 }
280
281 if (td->cur_depth)
282 r = io_u_queued_complete(td, td->cur_depth);
283}
284
285/*
286 * Helper to handle the final sync of a file. Works just like the normal
287 * io path, just does everything sync.
288 */
289static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290{
291 struct io_u *io_u = __get_io_u(td);
292 int ret;
293
294 if (!io_u)
295 return true;
296
297 io_u->ddir = DDIR_SYNC;
298 io_u->file = f;
299
300 if (td_io_prep(td, io_u)) {
301 put_io_u(td, io_u);
302 return true;
303 }
304
305requeue:
306 ret = td_io_queue(td, io_u);
307 if (ret < 0) {
308 td_verror(td, io_u->error, "td_io_queue");
309 put_io_u(td, io_u);
310 return true;
311 } else if (ret == FIO_Q_QUEUED) {
312 if (io_u_queued_complete(td, 1) < 0)
313 return true;
314 } else if (ret == FIO_Q_COMPLETED) {
315 if (io_u->error) {
316 td_verror(td, io_u->error, "td_io_queue");
317 return true;
318 }
319
320 if (io_u_sync_complete(td, io_u) < 0)
321 return true;
322 } else if (ret == FIO_Q_BUSY) {
323 if (td_io_commit(td))
324 return true;
325 goto requeue;
326 }
327
328 return false;
329}
330
331static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332{
333 int ret;
334
335 if (fio_file_open(f))
336 return fio_io_sync(td, f);
337
338 if (td_io_open_file(td, f))
339 return 1;
340
341 ret = fio_io_sync(td, f);
342 td_io_close_file(td, f);
343 return ret;
344}
345
346static inline void __update_tv_cache(struct thread_data *td)
347{
348 fio_gettime(&td->tv_cache, NULL);
349}
350
351static inline void update_tv_cache(struct thread_data *td)
352{
353 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354 __update_tv_cache(td);
355}
356
357static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
358{
359 if (in_ramp_time(td))
360 return false;
361 if (!td->o.timeout)
362 return false;
363 if (utime_since(&td->epoch, t) >= td->o.timeout)
364 return true;
365
366 return false;
367}
368
369/*
370 * We need to update the runtime consistently in ms, but keep a running
371 * tally of the current elapsed time in microseconds for sub millisecond
372 * updates.
373 */
374static inline void update_runtime(struct thread_data *td,
375 unsigned long long *elapsed_us,
376 const enum fio_ddir ddir)
377{
378 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379 return;
380
381 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382 elapsed_us[ddir] += utime_since_now(&td->start);
383 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384}
385
386static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387 int *retptr)
388{
389 int ret = *retptr;
390
391 if (ret < 0 || td->error) {
392 int err = td->error;
393 enum error_type_bit eb;
394
395 if (ret < 0)
396 err = -ret;
397
398 eb = td_error_type(ddir, err);
399 if (!(td->o.continue_on_error & (1 << eb)))
400 return true;
401
402 if (td_non_fatal_error(td, eb, err)) {
403 /*
404 * Continue with the I/Os in case of
405 * a non fatal error.
406 */
407 update_error_count(td, err);
408 td_clear_error(td);
409 *retptr = 0;
410 return false;
411 } else if (td->o.fill_device && err == ENOSPC) {
412 /*
413 * We expect to hit this error if
414 * fill_device option is set.
415 */
416 td_clear_error(td);
417 fio_mark_td_terminate(td);
418 return true;
419 } else {
420 /*
421 * Stop the I/O in case of a fatal
422 * error.
423 */
424 update_error_count(td, err);
425 return true;
426 }
427 }
428
429 return false;
430}
431
432static void check_update_rusage(struct thread_data *td)
433{
434 if (td->update_rusage) {
435 td->update_rusage = 0;
436 update_rusage_stat(td);
437 fio_mutex_up(td->rusage_sem);
438 }
439}
440
441static int wait_for_completions(struct thread_data *td, struct timeval *time)
442{
443 const int full = queue_full(td);
444 int min_evts = 0;
445 int ret;
446
447 /*
448 * if the queue is full, we MUST reap at least 1 event
449 */
450 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452 min_evts = 1;
453
454 if (time && (__should_check_rate(td, DDIR_READ) ||
455 __should_check_rate(td, DDIR_WRITE) ||
456 __should_check_rate(td, DDIR_TRIM)))
457 fio_gettime(time, NULL);
458
459 do {
460 ret = io_u_queued_complete(td, min_evts);
461 if (ret < 0)
462 break;
463 } while (full && (td->cur_depth > td->o.iodepth_low));
464
465 return ret;
466}
467
468int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470 struct timeval *comp_time)
471{
472 int ret2;
473
474 switch (*ret) {
475 case FIO_Q_COMPLETED:
476 if (io_u->error) {
477 *ret = -io_u->error;
478 clear_io_u(td, io_u);
479 } else if (io_u->resid) {
480 int bytes = io_u->xfer_buflen - io_u->resid;
481 struct fio_file *f = io_u->file;
482
483 if (bytes_issued)
484 *bytes_issued += bytes;
485
486 if (!from_verify)
487 trim_io_piece(td, io_u);
488
489 /*
490 * zero read, fail
491 */
492 if (!bytes) {
493 if (!from_verify)
494 unlog_io_piece(td, io_u);
495 td_verror(td, EIO, "full resid");
496 put_io_u(td, io_u);
497 break;
498 }
499
500 io_u->xfer_buflen = io_u->resid;
501 io_u->xfer_buf += bytes;
502 io_u->offset += bytes;
503
504 if (ddir_rw(io_u->ddir))
505 td->ts.short_io_u[io_u->ddir]++;
506
507 f = io_u->file;
508 if (io_u->offset == f->real_file_size)
509 goto sync_done;
510
511 requeue_io_u(td, &io_u);
512 } else {
513sync_done:
514 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515 __should_check_rate(td, DDIR_WRITE) ||
516 __should_check_rate(td, DDIR_TRIM)))
517 fio_gettime(comp_time, NULL);
518
519 *ret = io_u_sync_complete(td, io_u);
520 if (*ret < 0)
521 break;
522 }
523 return 0;
524 case FIO_Q_QUEUED:
525 /*
526 * if the engine doesn't have a commit hook,
527 * the io_u is really queued. if it does have such
528 * a hook, it has to call io_u_queued() itself.
529 */
530 if (td->io_ops->commit == NULL)
531 io_u_queued(td, io_u);
532 if (bytes_issued)
533 *bytes_issued += io_u->xfer_buflen;
534 break;
535 case FIO_Q_BUSY:
536 if (!from_verify)
537 unlog_io_piece(td, io_u);
538 requeue_io_u(td, &io_u);
539 ret2 = td_io_commit(td);
540 if (ret2 < 0)
541 *ret = ret2;
542 break;
543 default:
544 assert(*ret < 0);
545 td_verror(td, -(*ret), "td_io_queue");
546 break;
547 }
548
549 if (break_on_this_error(td, ddir, ret))
550 return 1;
551
552 return 0;
553}
554
555static inline bool io_in_polling(struct thread_data *td)
556{
557 return !td->o.iodepth_batch_complete_min &&
558 !td->o.iodepth_batch_complete_max;
559}
560
561/*
562 * The main verify engine. Runs over the writes we previously submitted,
563 * reads the blocks back in, and checks the crc/md5 of the data.
564 */
565static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566{
567 struct fio_file *f;
568 struct io_u *io_u;
569 int ret, min_events;
570 unsigned int i;
571
572 dprint(FD_VERIFY, "starting loop\n");
573
574 /*
575 * sync io first and invalidate cache, to make sure we really
576 * read from disk.
577 */
578 for_each_file(td, f, i) {
579 if (!fio_file_open(f))
580 continue;
581 if (fio_io_sync(td, f))
582 break;
583 if (file_invalidate_cache(td, f))
584 break;
585 }
586
587 check_update_rusage(td);
588
589 if (td->error)
590 return;
591
592 td_set_runstate(td, TD_VERIFYING);
593
594 io_u = NULL;
595 while (!td->terminate) {
596 enum fio_ddir ddir;
597 int full;
598
599 update_tv_cache(td);
600 check_update_rusage(td);
601
602 if (runtime_exceeded(td, &td->tv_cache)) {
603 __update_tv_cache(td);
604 if (runtime_exceeded(td, &td->tv_cache)) {
605 fio_mark_td_terminate(td);
606 break;
607 }
608 }
609
610 if (flow_threshold_exceeded(td))
611 continue;
612
613 if (!td->o.experimental_verify) {
614 io_u = __get_io_u(td);
615 if (!io_u)
616 break;
617
618 if (get_next_verify(td, io_u)) {
619 put_io_u(td, io_u);
620 break;
621 }
622
623 if (td_io_prep(td, io_u)) {
624 put_io_u(td, io_u);
625 break;
626 }
627 } else {
628 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629 break;
630
631 while ((io_u = get_io_u(td)) != NULL) {
632 if (IS_ERR(io_u)) {
633 io_u = NULL;
634 ret = FIO_Q_BUSY;
635 goto reap;
636 }
637
638 /*
639 * We are only interested in the places where
640 * we wrote or trimmed IOs. Turn those into
641 * reads for verification purposes.
642 */
643 if (io_u->ddir == DDIR_READ) {
644 /*
645 * Pretend we issued it for rwmix
646 * accounting
647 */
648 td->io_issues[DDIR_READ]++;
649 put_io_u(td, io_u);
650 continue;
651 } else if (io_u->ddir == DDIR_TRIM) {
652 io_u->ddir = DDIR_READ;
653 io_u_set(io_u, IO_U_F_TRIMMED);
654 break;
655 } else if (io_u->ddir == DDIR_WRITE) {
656 io_u->ddir = DDIR_READ;
657 break;
658 } else {
659 put_io_u(td, io_u);
660 continue;
661 }
662 }
663
664 if (!io_u)
665 break;
666 }
667
668 if (verify_state_should_stop(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672
673 if (td->o.verify_async)
674 io_u->end_io = verify_io_u_async;
675 else
676 io_u->end_io = verify_io_u;
677
678 ddir = io_u->ddir;
679 if (!td->o.disable_slat)
680 fio_gettime(&io_u->start_time, NULL);
681
682 ret = td_io_queue(td, io_u);
683
684 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685 break;
686
687 /*
688 * if we can queue more, do so. but check if there are
689 * completed io_u's first. Note that we can get BUSY even
690 * without IO queued, if the system is resource starved.
691 */
692reap:
693 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694 if (full || io_in_polling(td))
695 ret = wait_for_completions(td, NULL);
696
697 if (ret < 0)
698 break;
699 }
700
701 check_update_rusage(td);
702
703 if (!td->error) {
704 min_events = td->cur_depth;
705
706 if (min_events)
707 ret = io_u_queued_complete(td, min_events);
708 } else
709 cleanup_pending_aio(td);
710
711 td_set_runstate(td, TD_RUNNING);
712
713 dprint(FD_VERIFY, "exiting loop\n");
714}
715
716static bool exceeds_number_ios(struct thread_data *td)
717{
718 unsigned long long number_ios;
719
720 if (!td->o.number_ios)
721 return false;
722
723 number_ios = ddir_rw_sum(td->io_blocks);
724 number_ios += td->io_u_queued + td->io_u_in_flight;
725
726 return number_ios >= (td->o.number_ios * td->loops);
727}
728
729static bool io_issue_bytes_exceeded(struct thread_data *td)
730{
731 unsigned long long bytes, limit;
732
733 if (td_rw(td))
734 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735 else if (td_write(td))
736 bytes = td->io_issue_bytes[DDIR_WRITE];
737 else if (td_read(td))
738 bytes = td->io_issue_bytes[DDIR_READ];
739 else
740 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742 if (td->o.io_limit)
743 limit = td->o.io_limit;
744 else
745 limit = td->o.size;
746
747 limit *= td->loops;
748 return bytes >= limit || exceeds_number_ios(td);
749}
750
751static bool io_complete_bytes_exceeded(struct thread_data *td)
752{
753 unsigned long long bytes, limit;
754
755 if (td_rw(td))
756 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757 else if (td_write(td))
758 bytes = td->this_io_bytes[DDIR_WRITE];
759 else if (td_read(td))
760 bytes = td->this_io_bytes[DDIR_READ];
761 else
762 bytes = td->this_io_bytes[DDIR_TRIM];
763
764 if (td->o.io_limit)
765 limit = td->o.io_limit;
766 else
767 limit = td->o.size;
768
769 limit *= td->loops;
770 return bytes >= limit || exceeds_number_ios(td);
771}
772
773/*
774 * used to calculate the next io time for rate control
775 *
776 */
777static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778{
779 uint64_t secs, remainder, bps, bytes, iops;
780
781 assert(!(td->flags & TD_F_CHILD));
782 bytes = td->rate_io_issue_bytes[ddir];
783 bps = td->rate_bps[ddir];
784
785 if (td->o.rate_process == RATE_PROCESS_POISSON) {
786 uint64_t val;
787 iops = bps / td->o.bs[ddir];
788 val = (int64_t) (1000000 / iops) *
789 -logf(__rand_0_1(&td->poisson_state));
790 if (val) {
791 dprint(FD_RATE, "poisson rate iops=%llu\n",
792 (unsigned long long) 1000000 / val);
793 }
794 td->last_usec += val;
795 return td->last_usec;
796 } else if (bps) {
797 secs = bytes / bps;
798 remainder = bytes % bps;
799 return remainder * 1000000 / bps + secs * 1000000;
800 }
801
802 return 0;
803}
804
805/*
806 * Main IO worker function. It retrieves io_u's to process and queues
807 * and reaps them, checking for rate and errors along the way.
808 *
809 * Returns number of bytes written and trimmed.
810 */
811static void do_io(struct thread_data *td, uint64_t *bytes_done)
812{
813 unsigned int i;
814 int ret = 0;
815 uint64_t total_bytes, bytes_issued = 0;
816
817 for (i = 0; i < DDIR_RWDIR_CNT; i++)
818 bytes_done[i] = td->bytes_done[i];
819
820 if (in_ramp_time(td))
821 td_set_runstate(td, TD_RAMP);
822 else
823 td_set_runstate(td, TD_RUNNING);
824
825 lat_target_init(td);
826
827 total_bytes = td->o.size;
828 /*
829 * Allow random overwrite workloads to write up to io_limit
830 * before starting verification phase as 'size' doesn't apply.
831 */
832 if (td_write(td) && td_random(td) && td->o.norandommap)
833 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
834 /*
835 * If verify_backlog is enabled, we'll run the verify in this
836 * handler as well. For that case, we may need up to twice the
837 * amount of bytes.
838 */
839 if (td->o.verify != VERIFY_NONE &&
840 (td_write(td) && td->o.verify_backlog))
841 total_bytes += td->o.size;
842
843 /* In trimwrite mode, each byte is trimmed and then written, so
844 * allow total_bytes to be twice as big */
845 if (td_trimwrite(td))
846 total_bytes += td->total_io_size;
847
848 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
849 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
850 td->o.time_based) {
851 struct timeval comp_time;
852 struct io_u *io_u;
853 int full;
854 enum fio_ddir ddir;
855
856 check_update_rusage(td);
857
858 if (td->terminate || td->done)
859 break;
860
861 update_tv_cache(td);
862
863 if (runtime_exceeded(td, &td->tv_cache)) {
864 __update_tv_cache(td);
865 if (runtime_exceeded(td, &td->tv_cache)) {
866 fio_mark_td_terminate(td);
867 break;
868 }
869 }
870
871 if (flow_threshold_exceeded(td))
872 continue;
873
874 if (!td->o.time_based && bytes_issued >= total_bytes)
875 break;
876
877 io_u = get_io_u(td);
878 if (IS_ERR_OR_NULL(io_u)) {
879 int err = PTR_ERR(io_u);
880
881 io_u = NULL;
882 if (err == -EBUSY) {
883 ret = FIO_Q_BUSY;
884 goto reap;
885 }
886 if (td->o.latency_target)
887 goto reap;
888 break;
889 }
890
891 ddir = io_u->ddir;
892
893 /*
894 * Add verification end_io handler if:
895 * - Asked to verify (!td_rw(td))
896 * - Or the io_u is from our verify list (mixed write/ver)
897 */
898 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
899 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
900
901 if (!td->o.verify_pattern_bytes) {
902 io_u->rand_seed = __rand(&td->verify_state);
903 if (sizeof(int) != sizeof(long *))
904 io_u->rand_seed *= __rand(&td->verify_state);
905 }
906
907 if (verify_state_should_stop(td, io_u)) {
908 put_io_u(td, io_u);
909 break;
910 }
911
912 if (td->o.verify_async)
913 io_u->end_io = verify_io_u_async;
914 else
915 io_u->end_io = verify_io_u;
916 td_set_runstate(td, TD_VERIFYING);
917 } else if (in_ramp_time(td))
918 td_set_runstate(td, TD_RAMP);
919 else
920 td_set_runstate(td, TD_RUNNING);
921
922 /*
923 * Always log IO before it's issued, so we know the specific
924 * order of it. The logged unit will track when the IO has
925 * completed.
926 */
927 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
928 td->o.do_verify &&
929 td->o.verify != VERIFY_NONE &&
930 !td->o.experimental_verify)
931 log_io_piece(td, io_u);
932
933 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
934 const unsigned long blen = io_u->xfer_buflen;
935 const enum fio_ddir ddir = acct_ddir(io_u);
936
937 if (td->error)
938 break;
939
940 workqueue_enqueue(&td->io_wq, &io_u->work);
941 ret = FIO_Q_QUEUED;
942
943 if (ddir_rw(ddir)) {
944 td->io_issues[ddir]++;
945 td->io_issue_bytes[ddir] += blen;
946 td->rate_io_issue_bytes[ddir] += blen;
947 }
948
949 if (should_check_rate(td))
950 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
951
952 } else {
953 ret = td_io_queue(td, io_u);
954
955 if (should_check_rate(td))
956 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
957
958 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
959 break;
960
961 /*
962 * See if we need to complete some commands. Note that
963 * we can get BUSY even without IO queued, if the
964 * system is resource starved.
965 */
966reap:
967 full = queue_full(td) ||
968 (ret == FIO_Q_BUSY && td->cur_depth);
969 if (full || io_in_polling(td))
970 ret = wait_for_completions(td, &comp_time);
971 }
972 if (ret < 0)
973 break;
974 if (!ddir_rw_sum(td->bytes_done) &&
975 !(td->io_ops->flags & FIO_NOIO))
976 continue;
977
978 if (!in_ramp_time(td) && should_check_rate(td)) {
979 if (check_min_rate(td, &comp_time)) {
980 if (exitall_on_terminate || td->o.exitall_error)
981 fio_terminate_threads(td->groupid);
982 td_verror(td, EIO, "check_min_rate");
983 break;
984 }
985 }
986 if (!in_ramp_time(td) && td->o.latency_target)
987 lat_target_check(td);
988
989 if (td->o.thinktime) {
990 unsigned long long b;
991
992 b = ddir_rw_sum(td->io_blocks);
993 if (!(b % td->o.thinktime_blocks)) {
994 int left;
995
996 io_u_quiesce(td);
997
998 if (td->o.thinktime_spin)
999 usec_spin(td->o.thinktime_spin);
1000
1001 left = td->o.thinktime - td->o.thinktime_spin;
1002 if (left)
1003 usec_sleep(td, left);
1004 }
1005 }
1006 }
1007
1008 check_update_rusage(td);
1009
1010 if (td->trim_entries)
1011 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1012
1013 if (td->o.fill_device && td->error == ENOSPC) {
1014 td->error = 0;
1015 fio_mark_td_terminate(td);
1016 }
1017 if (!td->error) {
1018 struct fio_file *f;
1019
1020 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1021 workqueue_flush(&td->io_wq);
1022 i = 0;
1023 } else
1024 i = td->cur_depth;
1025
1026 if (i) {
1027 ret = io_u_queued_complete(td, i);
1028 if (td->o.fill_device && td->error == ENOSPC)
1029 td->error = 0;
1030 }
1031
1032 if (should_fsync(td) && td->o.end_fsync) {
1033 td_set_runstate(td, TD_FSYNCING);
1034
1035 for_each_file(td, f, i) {
1036 if (!fio_file_fsync(td, f))
1037 continue;
1038
1039 log_err("fio: end_fsync failed for file %s\n",
1040 f->file_name);
1041 }
1042 }
1043 } else
1044 cleanup_pending_aio(td);
1045
1046 /*
1047 * stop job if we failed doing any IO
1048 */
1049 if (!ddir_rw_sum(td->this_io_bytes))
1050 td->done = 1;
1051
1052 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1053 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1054}
1055
1056static void cleanup_io_u(struct thread_data *td)
1057{
1058 struct io_u *io_u;
1059
1060 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1061
1062 if (td->io_ops->io_u_free)
1063 td->io_ops->io_u_free(td, io_u);
1064
1065 fio_memfree(io_u, sizeof(*io_u));
1066 }
1067
1068 free_io_mem(td);
1069
1070 io_u_rexit(&td->io_u_requeues);
1071 io_u_qexit(&td->io_u_freelist);
1072 io_u_qexit(&td->io_u_all);
1073
1074 if (td->last_write_comp)
1075 sfree(td->last_write_comp);
1076}
1077
1078static int init_io_u(struct thread_data *td)
1079{
1080 struct io_u *io_u;
1081 unsigned int max_bs, min_write;
1082 int cl_align, i, max_units;
1083 int data_xfer = 1, err;
1084 char *p;
1085
1086 max_units = td->o.iodepth;
1087 max_bs = td_max_bs(td);
1088 min_write = td->o.min_bs[DDIR_WRITE];
1089 td->orig_buffer_size = (unsigned long long) max_bs
1090 * (unsigned long long) max_units;
1091
1092 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1093 data_xfer = 0;
1094
1095 err = 0;
1096 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1097 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1098 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1099
1100 if (err) {
1101 log_err("fio: failed setting up IO queues\n");
1102 return 1;
1103 }
1104
1105 /*
1106 * if we may later need to do address alignment, then add any
1107 * possible adjustment here so that we don't cause a buffer
1108 * overflow later. this adjustment may be too much if we get
1109 * lucky and the allocator gives us an aligned address.
1110 */
1111 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1112 (td->io_ops->flags & FIO_RAWIO))
1113 td->orig_buffer_size += page_mask + td->o.mem_align;
1114
1115 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1116 unsigned long bs;
1117
1118 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1119 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1120 }
1121
1122 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1123 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1124 return 1;
1125 }
1126
1127 if (data_xfer && allocate_io_mem(td))
1128 return 1;
1129
1130 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1131 (td->io_ops->flags & FIO_RAWIO))
1132 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1133 else
1134 p = td->orig_buffer;
1135
1136 cl_align = os_cache_line_size();
1137
1138 for (i = 0; i < max_units; i++) {
1139 void *ptr;
1140
1141 if (td->terminate)
1142 return 1;
1143
1144 ptr = fio_memalign(cl_align, sizeof(*io_u));
1145 if (!ptr) {
1146 log_err("fio: unable to allocate aligned memory\n");
1147 break;
1148 }
1149
1150 io_u = ptr;
1151 memset(io_u, 0, sizeof(*io_u));
1152 INIT_FLIST_HEAD(&io_u->verify_list);
1153 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1154
1155 if (data_xfer) {
1156 io_u->buf = p;
1157 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1158
1159 if (td_write(td))
1160 io_u_fill_buffer(td, io_u, min_write, max_bs);
1161 if (td_write(td) && td->o.verify_pattern_bytes) {
1162 /*
1163 * Fill the buffer with the pattern if we are
1164 * going to be doing writes.
1165 */
1166 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1167 }
1168 }
1169
1170 io_u->index = i;
1171 io_u->flags = IO_U_F_FREE;
1172 io_u_qpush(&td->io_u_freelist, io_u);
1173
1174 /*
1175 * io_u never leaves this stack, used for iteration of all
1176 * io_u buffers.
1177 */
1178 io_u_qpush(&td->io_u_all, io_u);
1179
1180 if (td->io_ops->io_u_init) {
1181 int ret = td->io_ops->io_u_init(td, io_u);
1182
1183 if (ret) {
1184 log_err("fio: failed to init engine data: %d\n", ret);
1185 return 1;
1186 }
1187 }
1188
1189 p += max_bs;
1190 }
1191
1192 if (td->o.verify != VERIFY_NONE) {
1193 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1194 if (!td->last_write_comp) {
1195 log_err("fio: failed to alloc write comp data\n");
1196 return 1;
1197 }
1198 }
1199
1200 return 0;
1201}
1202
1203static int switch_ioscheduler(struct thread_data *td)
1204{
1205 char tmp[256], tmp2[128];
1206 FILE *f;
1207 int ret;
1208
1209 if (td->io_ops->flags & FIO_DISKLESSIO)
1210 return 0;
1211
1212 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1213
1214 f = fopen(tmp, "r+");
1215 if (!f) {
1216 if (errno == ENOENT) {
1217 log_err("fio: os or kernel doesn't support IO scheduler"
1218 " switching\n");
1219 return 0;
1220 }
1221 td_verror(td, errno, "fopen iosched");
1222 return 1;
1223 }
1224
1225 /*
1226 * Set io scheduler.
1227 */
1228 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1229 if (ferror(f) || ret != 1) {
1230 td_verror(td, errno, "fwrite");
1231 fclose(f);
1232 return 1;
1233 }
1234
1235 rewind(f);
1236
1237 /*
1238 * Read back and check that the selected scheduler is now the default.
1239 */
1240 memset(tmp, 0, sizeof(tmp));
1241 ret = fread(tmp, sizeof(tmp), 1, f);
1242 if (ferror(f) || ret < 0) {
1243 td_verror(td, errno, "fread");
1244 fclose(f);
1245 return 1;
1246 }
1247 /*
1248 * either a list of io schedulers or "none\n" is expected.
1249 */
1250 tmp[strlen(tmp) - 1] = '\0';
1251
1252
1253 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1254 if (!strstr(tmp, tmp2)) {
1255 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1256 td_verror(td, EINVAL, "iosched_switch");
1257 fclose(f);
1258 return 1;
1259 }
1260
1261 fclose(f);
1262 return 0;
1263}
1264
1265static bool keep_running(struct thread_data *td)
1266{
1267 unsigned long long limit;
1268
1269 if (td->done)
1270 return false;
1271 if (td->o.time_based)
1272 return true;
1273 if (td->o.loops) {
1274 td->o.loops--;
1275 return true;
1276 }
1277 if (exceeds_number_ios(td))
1278 return false;
1279
1280 if (td->o.io_limit)
1281 limit = td->o.io_limit;
1282 else
1283 limit = td->o.size;
1284
1285 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1286 uint64_t diff;
1287
1288 /*
1289 * If the difference is less than the minimum IO size, we
1290 * are done.
1291 */
1292 diff = limit - ddir_rw_sum(td->io_bytes);
1293 if (diff < td_max_bs(td))
1294 return false;
1295
1296 if (fio_files_done(td))
1297 return false;
1298
1299 return true;
1300 }
1301
1302 return false;
1303}
1304
1305static int exec_string(struct thread_options *o, const char *string, const char *mode)
1306{
1307 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1308 int ret;
1309 char *str;
1310
1311 str = malloc(newlen);
1312 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1313
1314 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1315 ret = system(str);
1316 if (ret == -1)
1317 log_err("fio: exec of cmd <%s> failed\n", str);
1318
1319 free(str);
1320 return ret;
1321}
1322
1323/*
1324 * Dry run to compute correct state of numberio for verification.
1325 */
1326static uint64_t do_dry_run(struct thread_data *td)
1327{
1328 td_set_runstate(td, TD_RUNNING);
1329
1330 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1331 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1332 struct io_u *io_u;
1333 int ret;
1334
1335 if (td->terminate || td->done)
1336 break;
1337
1338 io_u = get_io_u(td);
1339 if (!io_u)
1340 break;
1341
1342 io_u_set(io_u, IO_U_F_FLIGHT);
1343 io_u->error = 0;
1344 io_u->resid = 0;
1345 if (ddir_rw(acct_ddir(io_u)))
1346 td->io_issues[acct_ddir(io_u)]++;
1347 if (ddir_rw(io_u->ddir)) {
1348 io_u_mark_depth(td, 1);
1349 td->ts.total_io_u[io_u->ddir]++;
1350 }
1351
1352 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1353 td->o.do_verify &&
1354 td->o.verify != VERIFY_NONE &&
1355 !td->o.experimental_verify)
1356 log_io_piece(td, io_u);
1357
1358 ret = io_u_sync_complete(td, io_u);
1359 (void) ret;
1360 }
1361
1362 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1363}
1364
1365struct fork_data {
1366 struct thread_data *td;
1367 struct sk_out *sk_out;
1368};
1369
1370/*
1371 * Entry point for the thread based jobs. The process based jobs end up
1372 * here as well, after a little setup.
1373 */
1374static void *thread_main(void *data)
1375{
1376 struct fork_data *fd = data;
1377 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1378 struct thread_data *td = fd->td;
1379 struct thread_options *o = &td->o;
1380 struct sk_out *sk_out = fd->sk_out;
1381 pthread_condattr_t attr;
1382 int clear_state;
1383 int ret;
1384
1385 sk_out_assign(sk_out);
1386 free(fd);
1387
1388 if (!o->use_thread) {
1389 setsid();
1390 td->pid = getpid();
1391 } else
1392 td->pid = gettid();
1393
1394 fio_local_clock_init(o->use_thread);
1395
1396 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1397
1398 if (is_backend)
1399 fio_server_send_start(td);
1400
1401 INIT_FLIST_HEAD(&td->io_log_list);
1402 INIT_FLIST_HEAD(&td->io_hist_list);
1403 INIT_FLIST_HEAD(&td->verify_list);
1404 INIT_FLIST_HEAD(&td->trim_list);
1405 INIT_FLIST_HEAD(&td->next_rand_list);
1406 pthread_mutex_init(&td->io_u_lock, NULL);
1407 td->io_hist_tree = RB_ROOT;
1408
1409 pthread_condattr_init(&attr);
1410 pthread_cond_init(&td->verify_cond, &attr);
1411 pthread_cond_init(&td->free_cond, &attr);
1412
1413 td_set_runstate(td, TD_INITIALIZED);
1414 dprint(FD_MUTEX, "up startup_mutex\n");
1415 fio_mutex_up(startup_mutex);
1416 dprint(FD_MUTEX, "wait on td->mutex\n");
1417 fio_mutex_down(td->mutex);
1418 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1419
1420 /*
1421 * A new gid requires privilege, so we need to do this before setting
1422 * the uid.
1423 */
1424 if (o->gid != -1U && setgid(o->gid)) {
1425 td_verror(td, errno, "setgid");
1426 goto err;
1427 }
1428 if (o->uid != -1U && setuid(o->uid)) {
1429 td_verror(td, errno, "setuid");
1430 goto err;
1431 }
1432
1433 /*
1434 * If we have a gettimeofday() thread, make sure we exclude that
1435 * thread from this job
1436 */
1437 if (o->gtod_cpu)
1438 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1439
1440 /*
1441 * Set affinity first, in case it has an impact on the memory
1442 * allocations.
1443 */
1444 if (fio_option_is_set(o, cpumask)) {
1445 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1446 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1447 if (!ret) {
1448 log_err("fio: no CPUs set\n");
1449 log_err("fio: Try increasing number of available CPUs\n");
1450 td_verror(td, EINVAL, "cpus_split");
1451 goto err;
1452 }
1453 }
1454 ret = fio_setaffinity(td->pid, o->cpumask);
1455 if (ret == -1) {
1456 td_verror(td, errno, "cpu_set_affinity");
1457 goto err;
1458 }
1459 }
1460
1461#ifdef CONFIG_LIBNUMA
1462 /* numa node setup */
1463 if (fio_option_is_set(o, numa_cpunodes) ||
1464 fio_option_is_set(o, numa_memnodes)) {
1465 struct bitmask *mask;
1466
1467 if (numa_available() < 0) {
1468 td_verror(td, errno, "Does not support NUMA API\n");
1469 goto err;
1470 }
1471
1472 if (fio_option_is_set(o, numa_cpunodes)) {
1473 mask = numa_parse_nodestring(o->numa_cpunodes);
1474 ret = numa_run_on_node_mask(mask);
1475 numa_free_nodemask(mask);
1476 if (ret == -1) {
1477 td_verror(td, errno, \
1478 "numa_run_on_node_mask failed\n");
1479 goto err;
1480 }
1481 }
1482
1483 if (fio_option_is_set(o, numa_memnodes)) {
1484 mask = NULL;
1485 if (o->numa_memnodes)
1486 mask = numa_parse_nodestring(o->numa_memnodes);
1487
1488 switch (o->numa_mem_mode) {
1489 case MPOL_INTERLEAVE:
1490 numa_set_interleave_mask(mask);
1491 break;
1492 case MPOL_BIND:
1493 numa_set_membind(mask);
1494 break;
1495 case MPOL_LOCAL:
1496 numa_set_localalloc();
1497 break;
1498 case MPOL_PREFERRED:
1499 numa_set_preferred(o->numa_mem_prefer_node);
1500 break;
1501 case MPOL_DEFAULT:
1502 default:
1503 break;
1504 }
1505
1506 if (mask)
1507 numa_free_nodemask(mask);
1508
1509 }
1510 }
1511#endif
1512
1513 if (fio_pin_memory(td))
1514 goto err;
1515
1516 /*
1517 * May alter parameters that init_io_u() will use, so we need to
1518 * do this first.
1519 */
1520 if (init_iolog(td))
1521 goto err;
1522
1523 if (init_io_u(td))
1524 goto err;
1525
1526 if (o->verify_async && verify_async_init(td))
1527 goto err;
1528
1529 if (fio_option_is_set(o, ioprio) ||
1530 fio_option_is_set(o, ioprio_class)) {
1531 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1532 if (ret == -1) {
1533 td_verror(td, errno, "ioprio_set");
1534 goto err;
1535 }
1536 }
1537
1538 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1539 goto err;
1540
1541 errno = 0;
1542 if (nice(o->nice) == -1 && errno != 0) {
1543 td_verror(td, errno, "nice");
1544 goto err;
1545 }
1546
1547 if (o->ioscheduler && switch_ioscheduler(td))
1548 goto err;
1549
1550 if (!o->create_serialize && setup_files(td))
1551 goto err;
1552
1553 if (td_io_init(td))
1554 goto err;
1555
1556 if (init_random_map(td))
1557 goto err;
1558
1559 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1560 goto err;
1561
1562 if (o->pre_read) {
1563 if (pre_read_files(td) < 0)
1564 goto err;
1565 }
1566
1567 if (iolog_compress_init(td, sk_out))
1568 goto err;
1569
1570 fio_verify_init(td);
1571
1572 if (rate_submit_init(td, sk_out))
1573 goto err;
1574
1575 fio_gettime(&td->epoch, NULL);
1576 fio_getrusage(&td->ru_start);
1577 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1578 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1579
1580 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1581 o->ratemin[DDIR_TRIM]) {
1582 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1583 sizeof(td->bw_sample_time));
1584 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1585 sizeof(td->bw_sample_time));
1586 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1587 sizeof(td->bw_sample_time));
1588 }
1589
1590 clear_state = 0;
1591 while (keep_running(td)) {
1592 uint64_t verify_bytes;
1593
1594 fio_gettime(&td->start, NULL);
1595 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1596
1597 if (clear_state)
1598 clear_io_state(td, 0);
1599
1600 prune_io_piece_log(td);
1601
1602 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1603 verify_bytes = do_dry_run(td);
1604 else {
1605 uint64_t bytes_done[DDIR_RWDIR_CNT];
1606
1607 do_io(td, bytes_done);
1608
1609 if (!ddir_rw_sum(bytes_done)) {
1610 fio_mark_td_terminate(td);
1611 verify_bytes = 0;
1612 } else {
1613 verify_bytes = bytes_done[DDIR_WRITE] +
1614 bytes_done[DDIR_TRIM];
1615 }
1616 }
1617
1618 clear_state = 1;
1619
1620 /*
1621 * Make sure we've successfully updated the rusage stats
1622 * before waiting on the stat mutex. Otherwise we could have
1623 * the stat thread holding stat mutex and waiting for
1624 * the rusage_sem, which would never get upped because
1625 * this thread is waiting for the stat mutex.
1626 */
1627 check_update_rusage(td);
1628
1629 fio_mutex_down(stat_mutex);
1630 if (td_read(td) && td->io_bytes[DDIR_READ])
1631 update_runtime(td, elapsed_us, DDIR_READ);
1632 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1633 update_runtime(td, elapsed_us, DDIR_WRITE);
1634 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1635 update_runtime(td, elapsed_us, DDIR_TRIM);
1636 fio_gettime(&td->start, NULL);
1637 fio_mutex_up(stat_mutex);
1638
1639 if (td->error || td->terminate)
1640 break;
1641
1642 if (!o->do_verify ||
1643 o->verify == VERIFY_NONE ||
1644 (td->io_ops->flags & FIO_UNIDIR))
1645 continue;
1646
1647 clear_io_state(td, 0);
1648
1649 fio_gettime(&td->start, NULL);
1650
1651 do_verify(td, verify_bytes);
1652
1653 /*
1654 * See comment further up for why this is done here.
1655 */
1656 check_update_rusage(td);
1657
1658 fio_mutex_down(stat_mutex);
1659 update_runtime(td, elapsed_us, DDIR_READ);
1660 fio_gettime(&td->start, NULL);
1661 fio_mutex_up(stat_mutex);
1662
1663 if (td->error || td->terminate)
1664 break;
1665 }
1666
1667 update_rusage_stat(td);
1668 td->ts.total_run_time = mtime_since_now(&td->epoch);
1669 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1670 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1671 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1672
1673 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1674 (td->o.verify != VERIFY_NONE && td_write(td)))
1675 verify_save_state(td->thread_number);
1676
1677 fio_unpin_memory(td);
1678
1679 fio_writeout_logs(td);
1680
1681 iolog_compress_exit(td);
1682 rate_submit_exit(td);
1683
1684 if (o->exec_postrun)
1685 exec_string(o, o->exec_postrun, (const char *)"postrun");
1686
1687 if (exitall_on_terminate || (o->exitall_error && td->error))
1688 fio_terminate_threads(td->groupid);
1689
1690err:
1691 if (td->error)
1692 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1693 td->verror);
1694
1695 if (o->verify_async)
1696 verify_async_exit(td);
1697
1698 close_and_free_files(td);
1699 cleanup_io_u(td);
1700 close_ioengine(td);
1701 cgroup_shutdown(td, &cgroup_mnt);
1702 verify_free_state(td);
1703
1704 if (fio_option_is_set(o, cpumask)) {
1705 ret = fio_cpuset_exit(&o->cpumask);
1706 if (ret)
1707 td_verror(td, ret, "fio_cpuset_exit");
1708 }
1709
1710 /*
1711 * do this very late, it will log file closing as well
1712 */
1713 if (o->write_iolog_file)
1714 write_iolog_close(td);
1715
1716 fio_mutex_remove(td->mutex);
1717 td->mutex = NULL;
1718
1719 td_set_runstate(td, TD_EXITED);
1720
1721 /*
1722 * Do this last after setting our runstate to exited, so we
1723 * know that the stat thread is signaled.
1724 */
1725 check_update_rusage(td);
1726
1727 sk_out_drop();
1728 return (void *) (uintptr_t) td->error;
1729}
1730
1731
1732/*
1733 * We cannot pass the td data into a forked process, so attach the td and
1734 * pass it to the thread worker.
1735 */
1736static int fork_main(struct sk_out *sk_out, int shmid, int offset)
1737{
1738 struct fork_data *fd;
1739 void *data, *ret;
1740
1741#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1742 data = shmat(shmid, NULL, 0);
1743 if (data == (void *) -1) {
1744 int __err = errno;
1745
1746 perror("shmat");
1747 return __err;
1748 }
1749#else
1750 /*
1751 * HP-UX inherits shm mappings?
1752 */
1753 data = threads;
1754#endif
1755
1756 fd = calloc(1, sizeof(*fd));
1757 fd->td = data + offset * sizeof(struct thread_data);
1758 fd->sk_out = sk_out;
1759 ret = thread_main(fd);
1760 shmdt(data);
1761 return (int) (uintptr_t) ret;
1762}
1763
1764static void dump_td_info(struct thread_data *td)
1765{
1766 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1767 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1768 (unsigned long) time_since_now(&td->terminate_time));
1769}
1770
1771/*
1772 * Run over the job map and reap the threads that have exited, if any.
1773 */
1774static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1775 unsigned int *m_rate)
1776{
1777 struct thread_data *td;
1778 unsigned int cputhreads, realthreads, pending;
1779 int i, status, ret;
1780
1781 /*
1782 * reap exited threads (TD_EXITED -> TD_REAPED)
1783 */
1784 realthreads = pending = cputhreads = 0;
1785 for_each_td(td, i) {
1786 int flags = 0;
1787
1788 /*
1789 * ->io_ops is NULL for a thread that has closed its
1790 * io engine
1791 */
1792 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1793 cputhreads++;
1794 else
1795 realthreads++;
1796
1797 if (!td->pid) {
1798 pending++;
1799 continue;
1800 }
1801 if (td->runstate == TD_REAPED)
1802 continue;
1803 if (td->o.use_thread) {
1804 if (td->runstate == TD_EXITED) {
1805 td_set_runstate(td, TD_REAPED);
1806 goto reaped;
1807 }
1808 continue;
1809 }
1810
1811 flags = WNOHANG;
1812 if (td->runstate == TD_EXITED)
1813 flags = 0;
1814
1815 /*
1816 * check if someone quit or got killed in an unusual way
1817 */
1818 ret = waitpid(td->pid, &status, flags);
1819 if (ret < 0) {
1820 if (errno == ECHILD) {
1821 log_err("fio: pid=%d disappeared %d\n",
1822 (int) td->pid, td->runstate);
1823 td->sig = ECHILD;
1824 td_set_runstate(td, TD_REAPED);
1825 goto reaped;
1826 }
1827 perror("waitpid");
1828 } else if (ret == td->pid) {
1829 if (WIFSIGNALED(status)) {
1830 int sig = WTERMSIG(status);
1831
1832 if (sig != SIGTERM && sig != SIGUSR2)
1833 log_err("fio: pid=%d, got signal=%d\n",
1834 (int) td->pid, sig);
1835 td->sig = sig;
1836 td_set_runstate(td, TD_REAPED);
1837 goto reaped;
1838 }
1839 if (WIFEXITED(status)) {
1840 if (WEXITSTATUS(status) && !td->error)
1841 td->error = WEXITSTATUS(status);
1842
1843 td_set_runstate(td, TD_REAPED);
1844 goto reaped;
1845 }
1846 }
1847
1848 /*
1849 * If the job is stuck, do a forceful timeout of it and
1850 * move on.
1851 */
1852 if (td->terminate &&
1853 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1854 dump_td_info(td);
1855 td_set_runstate(td, TD_REAPED);
1856 goto reaped;
1857 }
1858
1859 /*
1860 * thread is not dead, continue
1861 */
1862 pending++;
1863 continue;
1864reaped:
1865 (*nr_running)--;
1866 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1867 (*t_rate) -= ddir_rw_sum(td->o.rate);
1868 if (!td->pid)
1869 pending--;
1870
1871 if (td->error)
1872 exit_value++;
1873
1874 done_secs += mtime_since_now(&td->epoch) / 1000;
1875 profile_td_exit(td);
1876 }
1877
1878 if (*nr_running == cputhreads && !pending && realthreads)
1879 fio_terminate_threads(TERMINATE_ALL);
1880}
1881
1882static bool __check_trigger_file(void)
1883{
1884 struct stat sb;
1885
1886 if (!trigger_file)
1887 return false;
1888
1889 if (stat(trigger_file, &sb))
1890 return false;
1891
1892 if (unlink(trigger_file) < 0)
1893 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1894 strerror(errno));
1895
1896 return true;
1897}
1898
1899static bool trigger_timedout(void)
1900{
1901 if (trigger_timeout)
1902 return time_since_genesis() >= trigger_timeout;
1903
1904 return false;
1905}
1906
1907void exec_trigger(const char *cmd)
1908{
1909 int ret;
1910
1911 if (!cmd)
1912 return;
1913
1914 ret = system(cmd);
1915 if (ret == -1)
1916 log_err("fio: failed executing %s trigger\n", cmd);
1917}
1918
1919void check_trigger_file(void)
1920{
1921 if (__check_trigger_file() || trigger_timedout()) {
1922 if (nr_clients)
1923 fio_clients_send_trigger(trigger_remote_cmd);
1924 else {
1925 verify_save_state(IO_LIST_ALL);
1926 fio_terminate_threads(TERMINATE_ALL);
1927 exec_trigger(trigger_cmd);
1928 }
1929 }
1930}
1931
1932static int fio_verify_load_state(struct thread_data *td)
1933{
1934 int ret;
1935
1936 if (!td->o.verify_state)
1937 return 0;
1938
1939 if (is_backend) {
1940 void *data;
1941 int ver;
1942
1943 ret = fio_server_get_verify_state(td->o.name,
1944 td->thread_number - 1, &data, &ver);
1945 if (!ret)
1946 verify_convert_assign_state(td, data, ver);
1947 } else
1948 ret = verify_load_state(td, "local");
1949
1950 return ret;
1951}
1952
1953static void do_usleep(unsigned int usecs)
1954{
1955 check_for_running_stats();
1956 check_trigger_file();
1957 usleep(usecs);
1958}
1959
1960static bool check_mount_writes(struct thread_data *td)
1961{
1962 struct fio_file *f;
1963 unsigned int i;
1964
1965 if (!td_write(td) || td->o.allow_mounted_write)
1966 return false;
1967
1968 for_each_file(td, f, i) {
1969 if (f->filetype != FIO_TYPE_BD)
1970 continue;
1971 if (device_is_mounted(f->file_name))
1972 goto mounted;
1973 }
1974
1975 return false;
1976mounted:
1977 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1978 return true;
1979}
1980
1981/*
1982 * Main function for kicking off and reaping jobs, as needed.
1983 */
1984static void run_threads(struct sk_out *sk_out)
1985{
1986 struct thread_data *td;
1987 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1988 uint64_t spent;
1989
1990 if (fio_gtod_offload && fio_start_gtod_thread())
1991 return;
1992
1993 fio_idle_prof_init();
1994
1995 set_sig_handlers();
1996
1997 nr_thread = nr_process = 0;
1998 for_each_td(td, i) {
1999 if (check_mount_writes(td))
2000 return;
2001 if (td->o.use_thread)
2002 nr_thread++;
2003 else
2004 nr_process++;
2005 }
2006
2007 if (output_format & FIO_OUTPUT_NORMAL) {
2008 log_info("Starting ");
2009 if (nr_thread)
2010 log_info("%d thread%s", nr_thread,
2011 nr_thread > 1 ? "s" : "");
2012 if (nr_process) {
2013 if (nr_thread)
2014 log_info(" and ");
2015 log_info("%d process%s", nr_process,
2016 nr_process > 1 ? "es" : "");
2017 }
2018 log_info("\n");
2019 log_info_flush();
2020 }
2021
2022 todo = thread_number;
2023 nr_running = 0;
2024 nr_started = 0;
2025 m_rate = t_rate = 0;
2026
2027 for_each_td(td, i) {
2028 print_status_init(td->thread_number - 1);
2029
2030 if (!td->o.create_serialize)
2031 continue;
2032
2033 if (fio_verify_load_state(td))
2034 goto reap;
2035
2036 /*
2037 * do file setup here so it happens sequentially,
2038 * we don't want X number of threads getting their
2039 * client data interspersed on disk
2040 */
2041 if (setup_files(td)) {
2042reap:
2043 exit_value++;
2044 if (td->error)
2045 log_err("fio: pid=%d, err=%d/%s\n",
2046 (int) td->pid, td->error, td->verror);
2047 td_set_runstate(td, TD_REAPED);
2048 todo--;
2049 } else {
2050 struct fio_file *f;
2051 unsigned int j;
2052
2053 /*
2054 * for sharing to work, each job must always open
2055 * its own files. so close them, if we opened them
2056 * for creation
2057 */
2058 for_each_file(td, f, j) {
2059 if (fio_file_open(f))
2060 td_io_close_file(td, f);
2061 }
2062 }
2063 }
2064
2065 /* start idle threads before io threads start to run */
2066 fio_idle_prof_start();
2067
2068 set_genesis_time();
2069
2070 while (todo) {
2071 struct thread_data *map[REAL_MAX_JOBS];
2072 struct timeval this_start;
2073 int this_jobs = 0, left;
2074
2075 /*
2076 * create threads (TD_NOT_CREATED -> TD_CREATED)
2077 */
2078 for_each_td(td, i) {
2079 if (td->runstate != TD_NOT_CREATED)
2080 continue;
2081
2082 /*
2083 * never got a chance to start, killed by other
2084 * thread for some reason
2085 */
2086 if (td->terminate) {
2087 todo--;
2088 continue;
2089 }
2090
2091 if (td->o.start_delay) {
2092 spent = utime_since_genesis();
2093
2094 if (td->o.start_delay > spent)
2095 continue;
2096 }
2097
2098 if (td->o.stonewall && (nr_started || nr_running)) {
2099 dprint(FD_PROCESS, "%s: stonewall wait\n",
2100 td->o.name);
2101 break;
2102 }
2103
2104 init_disk_util(td);
2105
2106 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2107 td->update_rusage = 0;
2108
2109 /*
2110 * Set state to created. Thread will transition
2111 * to TD_INITIALIZED when it's done setting up.
2112 */
2113 td_set_runstate(td, TD_CREATED);
2114 map[this_jobs++] = td;
2115 nr_started++;
2116
2117 if (td->o.use_thread) {
2118 struct fork_data *fd;
2119 int ret;
2120
2121 fd = calloc(1, sizeof(*fd));
2122 fd->td = td;
2123 fd->sk_out = sk_out;
2124
2125 dprint(FD_PROCESS, "will pthread_create\n");
2126 ret = pthread_create(&td->thread, NULL,
2127 thread_main, fd);
2128 if (ret) {
2129 log_err("pthread_create: %s\n",
2130 strerror(ret));
2131 free(fd);
2132 nr_started--;
2133 break;
2134 }
2135 ret = pthread_detach(td->thread);
2136 if (ret)
2137 log_err("pthread_detach: %s",
2138 strerror(ret));
2139 } else {
2140 pid_t pid;
2141 dprint(FD_PROCESS, "will fork\n");
2142 pid = fork();
2143 if (!pid) {
2144 int ret = fork_main(sk_out, shm_id, i);
2145
2146 _exit(ret);
2147 } else if (i == fio_debug_jobno)
2148 *fio_debug_jobp = pid;
2149 }
2150 dprint(FD_MUTEX, "wait on startup_mutex\n");
2151 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2152 log_err("fio: job startup hung? exiting.\n");
2153 fio_terminate_threads(TERMINATE_ALL);
2154 fio_abort = 1;
2155 nr_started--;
2156 break;
2157 }
2158 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2159 }
2160
2161 /*
2162 * Wait for the started threads to transition to
2163 * TD_INITIALIZED.
2164 */
2165 fio_gettime(&this_start, NULL);
2166 left = this_jobs;
2167 while (left && !fio_abort) {
2168 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2169 break;
2170
2171 do_usleep(100000);
2172
2173 for (i = 0; i < this_jobs; i++) {
2174 td = map[i];
2175 if (!td)
2176 continue;
2177 if (td->runstate == TD_INITIALIZED) {
2178 map[i] = NULL;
2179 left--;
2180 } else if (td->runstate >= TD_EXITED) {
2181 map[i] = NULL;
2182 left--;
2183 todo--;
2184 nr_running++; /* work-around... */
2185 }
2186 }
2187 }
2188
2189 if (left) {
2190 log_err("fio: %d job%s failed to start\n", left,
2191 left > 1 ? "s" : "");
2192 for (i = 0; i < this_jobs; i++) {
2193 td = map[i];
2194 if (!td)
2195 continue;
2196 kill(td->pid, SIGTERM);
2197 }
2198 break;
2199 }
2200
2201 /*
2202 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2203 */
2204 for_each_td(td, i) {
2205 if (td->runstate != TD_INITIALIZED)
2206 continue;
2207
2208 if (in_ramp_time(td))
2209 td_set_runstate(td, TD_RAMP);
2210 else
2211 td_set_runstate(td, TD_RUNNING);
2212 nr_running++;
2213 nr_started--;
2214 m_rate += ddir_rw_sum(td->o.ratemin);
2215 t_rate += ddir_rw_sum(td->o.rate);
2216 todo--;
2217 fio_mutex_up(td->mutex);
2218 }
2219
2220 reap_threads(&nr_running, &t_rate, &m_rate);
2221
2222 if (todo)
2223 do_usleep(100000);
2224 }
2225
2226 while (nr_running) {
2227 reap_threads(&nr_running, &t_rate, &m_rate);
2228 do_usleep(10000);
2229 }
2230
2231 fio_idle_prof_stop();
2232
2233 update_io_ticks();
2234}
2235
2236static void wait_for_helper_thread_exit(void)
2237{
2238 void *ret;
2239
2240 helper_exit = 1;
2241 pthread_cond_signal(&helper_cond);
2242 pthread_join(helper_thread, &ret);
2243}
2244
2245static void free_disk_util(void)
2246{
2247 disk_util_prune_entries();
2248
2249 pthread_cond_destroy(&helper_cond);
2250}
2251
2252static void *helper_thread_main(void *data)
2253{
2254 struct sk_out *sk_out = data;
2255 int ret = 0;
2256
2257 sk_out_assign(sk_out);
2258
2259 fio_mutex_up(startup_mutex);
2260
2261 while (!ret) {
2262 uint64_t sec = DISK_UTIL_MSEC / 1000;
2263 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2264 struct timespec ts;
2265 struct timeval tv;
2266
2267 gettimeofday(&tv, NULL);
2268 ts.tv_sec = tv.tv_sec + sec;
2269 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2270
2271 if (ts.tv_nsec >= 1000000000ULL) {
2272 ts.tv_nsec -= 1000000000ULL;
2273 ts.tv_sec++;
2274 }
2275
2276 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2277
2278 ret = update_io_ticks();
2279
2280 if (helper_do_stat) {
2281 helper_do_stat = 0;
2282 __show_running_run_stats();
2283 }
2284
2285 if (!is_backend)
2286 print_thread_status();
2287 }
2288
2289 sk_out_drop();
2290 return NULL;
2291}
2292
2293static int create_helper_thread(struct sk_out *sk_out)
2294{
2295 int ret;
2296
2297 setup_disk_util();
2298
2299 pthread_cond_init(&helper_cond, NULL);
2300 pthread_mutex_init(&helper_lock, NULL);
2301
2302 ret = pthread_create(&helper_thread, NULL, helper_thread_main, sk_out);
2303 if (ret) {
2304 log_err("Can't create helper thread: %s\n", strerror(ret));
2305 return 1;
2306 }
2307
2308 dprint(FD_MUTEX, "wait on startup_mutex\n");
2309 fio_mutex_down(startup_mutex);
2310 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2311 return 0;
2312}
2313
2314int fio_backend(struct sk_out *sk_out)
2315{
2316 struct thread_data *td;
2317 int i;
2318
2319 if (exec_profile) {
2320 if (load_profile(exec_profile))
2321 return 1;
2322 free(exec_profile);
2323 exec_profile = NULL;
2324 }
2325 if (!thread_number)
2326 return 0;
2327
2328 if (write_bw_log) {
2329 struct log_params p = {
2330 .log_type = IO_LOG_TYPE_BW,
2331 };
2332
2333 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2334 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2335 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2336 }
2337
2338 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2339 if (startup_mutex == NULL)
2340 return 1;
2341
2342 set_genesis_time();
2343 stat_init();
2344 create_helper_thread(sk_out);
2345
2346 cgroup_list = smalloc(sizeof(*cgroup_list));
2347 INIT_FLIST_HEAD(cgroup_list);
2348
2349 run_threads(sk_out);
2350
2351 wait_for_helper_thread_exit();
2352
2353 if (!fio_abort) {
2354 __show_run_stats();
2355 if (write_bw_log) {
2356 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2357 struct io_log *log = agg_io_log[i];
2358
2359 flush_log(log, 0);
2360 free_log(log);
2361 }
2362 }
2363 }
2364
2365 for_each_td(td, i) {
2366 fio_options_free(td);
2367 if (td->rusage_sem) {
2368 fio_mutex_remove(td->rusage_sem);
2369 td->rusage_sem = NULL;
2370 }
2371 }
2372
2373 free_disk_util();
2374 cgroup_kill(cgroup_list);
2375 sfree(cgroup_list);
2376 sfree(cgroup_mnt);
2377
2378 fio_mutex_remove(startup_mutex);
2379 stat_exit();
2380 return exit_value;
2381}