fio: Fix (unsigned) integer overflow issues
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define PAGE_ALIGN(buf) \
80 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82#define JOB_START_TIMEOUT (5 * 1000)
83
84static void sig_int(int sig)
85{
86 if (threads) {
87 if (is_backend)
88 fio_server_got_signal(sig);
89 else {
90 log_info("\nfio: terminating on signal %d\n", sig);
91 log_info_flush();
92 exit_value = 128;
93 }
94
95 fio_terminate_threads(TERMINATE_ALL);
96 }
97}
98
99void sig_show_status(int sig)
100{
101 show_running_run_stats();
102}
103
104static void set_sig_handlers(void)
105{
106 struct sigaction act;
107
108 memset(&act, 0, sizeof(act));
109 act.sa_handler = sig_int;
110 act.sa_flags = SA_RESTART;
111 sigaction(SIGINT, &act, NULL);
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGTERM, &act, NULL);
117
118/* Windows uses SIGBREAK as a quit signal from other applications */
119#ifdef WIN32
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_int;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGBREAK, &act, NULL);
124#endif
125
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_show_status;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGUSR1, &act, NULL);
130
131 if (is_backend) {
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_int;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGPIPE, &act, NULL);
136 }
137}
138
139/*
140 * Check if we are above the minimum rate given.
141 */
142static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143 enum fio_ddir ddir)
144{
145 unsigned long long bytes = 0;
146 unsigned long iops = 0;
147 unsigned long spent;
148 unsigned long rate;
149 unsigned int ratemin = 0;
150 unsigned int rate_iops = 0;
151 unsigned int rate_iops_min = 0;
152
153 assert(ddir_rw(ddir));
154
155 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156 return false;
157
158 /*
159 * allow a 2 second settle period in the beginning
160 */
161 if (mtime_since(&td->start, now) < 2000)
162 return false;
163
164 iops += td->this_io_blocks[ddir];
165 bytes += td->this_io_bytes[ddir];
166 ratemin += td->o.ratemin[ddir];
167 rate_iops += td->o.rate_iops[ddir];
168 rate_iops_min += td->o.rate_iops_min[ddir];
169
170 /*
171 * if rate blocks is set, sample is running
172 */
173 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174 spent = mtime_since(&td->lastrate[ddir], now);
175 if (spent < td->o.ratecycle)
176 return false;
177
178 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179 /*
180 * check bandwidth specified rate
181 */
182 if (bytes < td->rate_bytes[ddir]) {
183 log_err("%s: min rate %u not met\n", td->o.name,
184 ratemin);
185 return true;
186 } else {
187 if (spent)
188 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189 else
190 rate = 0;
191
192 if (rate < ratemin ||
193 bytes < td->rate_bytes[ddir]) {
194 log_err("%s: min rate %u not met, got"
195 " %luKB/sec\n", td->o.name,
196 ratemin, rate);
197 return true;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, rate_iops);
207 return true;
208 } else {
209 if (spent)
210 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211 else
212 rate = 0;
213
214 if (rate < rate_iops_min ||
215 iops < td->rate_blocks[ddir]) {
216 log_err("%s: min iops rate %u not met,"
217 " got %lu\n", td->o.name,
218 rate_iops_min, rate);
219 return true;
220 }
221 }
222 }
223 }
224
225 td->rate_bytes[ddir] = bytes;
226 td->rate_blocks[ddir] = iops;
227 memcpy(&td->lastrate[ddir], now, sizeof(*now));
228 return false;
229}
230
231static bool check_min_rate(struct thread_data *td, struct timeval *now)
232{
233 bool ret = false;
234
235 if (td->bytes_done[DDIR_READ])
236 ret |= __check_min_rate(td, now, DDIR_READ);
237 if (td->bytes_done[DDIR_WRITE])
238 ret |= __check_min_rate(td, now, DDIR_WRITE);
239 if (td->bytes_done[DDIR_TRIM])
240 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242 return ret;
243}
244
245/*
246 * When job exits, we can cancel the in-flight IO if we are using async
247 * io. Attempt to do so.
248 */
249static void cleanup_pending_aio(struct thread_data *td)
250{
251 int r;
252
253 /*
254 * get immediately available events, if any
255 */
256 r = io_u_queued_complete(td, 0);
257 if (r < 0)
258 return;
259
260 /*
261 * now cancel remaining active events
262 */
263 if (td->io_ops->cancel) {
264 struct io_u *io_u;
265 int i;
266
267 io_u_qiter(&td->io_u_all, io_u, i) {
268 if (io_u->flags & IO_U_F_FLIGHT) {
269 r = td->io_ops->cancel(td, io_u);
270 if (!r)
271 put_io_u(td, io_u);
272 }
273 }
274 }
275
276 if (td->cur_depth)
277 r = io_u_queued_complete(td, td->cur_depth);
278}
279
280/*
281 * Helper to handle the final sync of a file. Works just like the normal
282 * io path, just does everything sync.
283 */
284static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285{
286 struct io_u *io_u = __get_io_u(td);
287 int ret;
288
289 if (!io_u)
290 return true;
291
292 io_u->ddir = DDIR_SYNC;
293 io_u->file = f;
294
295 if (td_io_prep(td, io_u)) {
296 put_io_u(td, io_u);
297 return true;
298 }
299
300requeue:
301 ret = td_io_queue(td, io_u);
302 if (ret < 0) {
303 td_verror(td, io_u->error, "td_io_queue");
304 put_io_u(td, io_u);
305 return true;
306 } else if (ret == FIO_Q_QUEUED) {
307 if (td_io_commit(td))
308 return true;
309 if (io_u_queued_complete(td, 1) < 0)
310 return true;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return true;
315 }
316
317 if (io_u_sync_complete(td, io_u) < 0)
318 return true;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return true;
322 goto requeue;
323 }
324
325 return false;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return false;
358 if (!td->o.timeout)
359 return false;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return true;
362
363 return false;
364}
365
366/*
367 * We need to update the runtime consistently in ms, but keep a running
368 * tally of the current elapsed time in microseconds for sub millisecond
369 * updates.
370 */
371static inline void update_runtime(struct thread_data *td,
372 unsigned long long *elapsed_us,
373 const enum fio_ddir ddir)
374{
375 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376 return;
377
378 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379 elapsed_us[ddir] += utime_since_now(&td->start);
380 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381}
382
383static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384 int *retptr)
385{
386 int ret = *retptr;
387
388 if (ret < 0 || td->error) {
389 int err = td->error;
390 enum error_type_bit eb;
391
392 if (ret < 0)
393 err = -ret;
394
395 eb = td_error_type(ddir, err);
396 if (!(td->o.continue_on_error & (1 << eb)))
397 return true;
398
399 if (td_non_fatal_error(td, eb, err)) {
400 /*
401 * Continue with the I/Os in case of
402 * a non fatal error.
403 */
404 update_error_count(td, err);
405 td_clear_error(td);
406 *retptr = 0;
407 return false;
408 } else if (td->o.fill_device && err == ENOSPC) {
409 /*
410 * We expect to hit this error if
411 * fill_device option is set.
412 */
413 td_clear_error(td);
414 fio_mark_td_terminate(td);
415 return true;
416 } else {
417 /*
418 * Stop the I/O in case of a fatal
419 * error.
420 */
421 update_error_count(td, err);
422 return true;
423 }
424 }
425
426 return false;
427}
428
429static void check_update_rusage(struct thread_data *td)
430{
431 if (td->update_rusage) {
432 td->update_rusage = 0;
433 update_rusage_stat(td);
434 fio_mutex_up(td->rusage_sem);
435 }
436}
437
438static int wait_for_completions(struct thread_data *td, struct timeval *time)
439{
440 const int full = queue_full(td);
441 int min_evts = 0;
442 int ret;
443
444 if (td->flags & TD_F_REGROW_LOGS) {
445 ret = io_u_quiesce(td);
446 regrow_logs(td);
447 return ret;
448 }
449
450 /*
451 * if the queue is full, we MUST reap at least 1 event
452 */
453 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
454 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
455 min_evts = 1;
456
457 if (time && (__should_check_rate(td, DDIR_READ) ||
458 __should_check_rate(td, DDIR_WRITE) ||
459 __should_check_rate(td, DDIR_TRIM)))
460 fio_gettime(time, NULL);
461
462 do {
463 ret = io_u_queued_complete(td, min_evts);
464 if (ret < 0)
465 break;
466 } while (full && (td->cur_depth > td->o.iodepth_low));
467
468 return ret;
469}
470
471int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
472 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
473 struct timeval *comp_time)
474{
475 int ret2;
476
477 switch (*ret) {
478 case FIO_Q_COMPLETED:
479 if (io_u->error) {
480 *ret = -io_u->error;
481 clear_io_u(td, io_u);
482 } else if (io_u->resid) {
483 int bytes = io_u->xfer_buflen - io_u->resid;
484 struct fio_file *f = io_u->file;
485
486 if (bytes_issued)
487 *bytes_issued += bytes;
488
489 if (!from_verify)
490 trim_io_piece(td, io_u);
491
492 /*
493 * zero read, fail
494 */
495 if (!bytes) {
496 if (!from_verify)
497 unlog_io_piece(td, io_u);
498 td_verror(td, EIO, "full resid");
499 put_io_u(td, io_u);
500 break;
501 }
502
503 io_u->xfer_buflen = io_u->resid;
504 io_u->xfer_buf += bytes;
505 io_u->offset += bytes;
506
507 if (ddir_rw(io_u->ddir))
508 td->ts.short_io_u[io_u->ddir]++;
509
510 f = io_u->file;
511 if (io_u->offset == f->real_file_size)
512 goto sync_done;
513
514 requeue_io_u(td, &io_u);
515 } else {
516sync_done:
517 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
518 __should_check_rate(td, DDIR_WRITE) ||
519 __should_check_rate(td, DDIR_TRIM)))
520 fio_gettime(comp_time, NULL);
521
522 *ret = io_u_sync_complete(td, io_u);
523 if (*ret < 0)
524 break;
525 }
526
527 if (td->flags & TD_F_REGROW_LOGS)
528 regrow_logs(td);
529
530 /*
531 * when doing I/O (not when verifying),
532 * check for any errors that are to be ignored
533 */
534 if (!from_verify)
535 break;
536
537 return 0;
538 case FIO_Q_QUEUED:
539 /*
540 * if the engine doesn't have a commit hook,
541 * the io_u is really queued. if it does have such
542 * a hook, it has to call io_u_queued() itself.
543 */
544 if (td->io_ops->commit == NULL)
545 io_u_queued(td, io_u);
546 if (bytes_issued)
547 *bytes_issued += io_u->xfer_buflen;
548 break;
549 case FIO_Q_BUSY:
550 if (!from_verify)
551 unlog_io_piece(td, io_u);
552 requeue_io_u(td, &io_u);
553 ret2 = td_io_commit(td);
554 if (ret2 < 0)
555 *ret = ret2;
556 break;
557 default:
558 assert(*ret < 0);
559 td_verror(td, -(*ret), "td_io_queue");
560 break;
561 }
562
563 if (break_on_this_error(td, ddir, ret))
564 return 1;
565
566 return 0;
567}
568
569static inline bool io_in_polling(struct thread_data *td)
570{
571 return !td->o.iodepth_batch_complete_min &&
572 !td->o.iodepth_batch_complete_max;
573}
574/*
575 * Unlinks files from thread data fio_file structure
576 */
577static int unlink_all_files(struct thread_data *td)
578{
579 struct fio_file *f;
580 unsigned int i;
581 int ret = 0;
582
583 for_each_file(td, f, i) {
584 if (f->filetype != FIO_TYPE_FILE)
585 continue;
586 ret = td_io_unlink_file(td, f);
587 if (ret)
588 break;
589 }
590
591 if (ret)
592 td_verror(td, ret, "unlink_all_files");
593
594 return ret;
595}
596
597/*
598 * The main verify engine. Runs over the writes we previously submitted,
599 * reads the blocks back in, and checks the crc/md5 of the data.
600 */
601static void do_verify(struct thread_data *td, uint64_t verify_bytes)
602{
603 struct fio_file *f;
604 struct io_u *io_u;
605 int ret, min_events;
606 unsigned int i;
607
608 dprint(FD_VERIFY, "starting loop\n");
609
610 /*
611 * sync io first and invalidate cache, to make sure we really
612 * read from disk.
613 */
614 for_each_file(td, f, i) {
615 if (!fio_file_open(f))
616 continue;
617 if (fio_io_sync(td, f))
618 break;
619 if (file_invalidate_cache(td, f))
620 break;
621 }
622
623 check_update_rusage(td);
624
625 if (td->error)
626 return;
627
628 /*
629 * verify_state needs to be reset before verification
630 * proceeds so that expected random seeds match actual
631 * random seeds in headers. The main loop will reset
632 * all random number generators if randrepeat is set.
633 */
634 if (!td->o.rand_repeatable)
635 td_fill_verify_state_seed(td);
636
637 td_set_runstate(td, TD_VERIFYING);
638
639 io_u = NULL;
640 while (!td->terminate) {
641 enum fio_ddir ddir;
642 int full;
643
644 update_tv_cache(td);
645 check_update_rusage(td);
646
647 if (runtime_exceeded(td, &td->tv_cache)) {
648 __update_tv_cache(td);
649 if (runtime_exceeded(td, &td->tv_cache)) {
650 fio_mark_td_terminate(td);
651 break;
652 }
653 }
654
655 if (flow_threshold_exceeded(td))
656 continue;
657
658 if (!td->o.experimental_verify) {
659 io_u = __get_io_u(td);
660 if (!io_u)
661 break;
662
663 if (get_next_verify(td, io_u)) {
664 put_io_u(td, io_u);
665 break;
666 }
667
668 if (td_io_prep(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672 } else {
673 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
674 break;
675
676 while ((io_u = get_io_u(td)) != NULL) {
677 if (IS_ERR_OR_NULL(io_u)) {
678 io_u = NULL;
679 ret = FIO_Q_BUSY;
680 goto reap;
681 }
682
683 /*
684 * We are only interested in the places where
685 * we wrote or trimmed IOs. Turn those into
686 * reads for verification purposes.
687 */
688 if (io_u->ddir == DDIR_READ) {
689 /*
690 * Pretend we issued it for rwmix
691 * accounting
692 */
693 td->io_issues[DDIR_READ]++;
694 put_io_u(td, io_u);
695 continue;
696 } else if (io_u->ddir == DDIR_TRIM) {
697 io_u->ddir = DDIR_READ;
698 io_u_set(td, io_u, IO_U_F_TRIMMED);
699 break;
700 } else if (io_u->ddir == DDIR_WRITE) {
701 io_u->ddir = DDIR_READ;
702 break;
703 } else {
704 put_io_u(td, io_u);
705 continue;
706 }
707 }
708
709 if (!io_u)
710 break;
711 }
712
713 if (verify_state_should_stop(td, io_u)) {
714 put_io_u(td, io_u);
715 break;
716 }
717
718 if (td->o.verify_async)
719 io_u->end_io = verify_io_u_async;
720 else
721 io_u->end_io = verify_io_u;
722
723 ddir = io_u->ddir;
724 if (!td->o.disable_slat)
725 fio_gettime(&io_u->start_time, NULL);
726
727 ret = td_io_queue(td, io_u);
728
729 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
730 break;
731
732 /*
733 * if we can queue more, do so. but check if there are
734 * completed io_u's first. Note that we can get BUSY even
735 * without IO queued, if the system is resource starved.
736 */
737reap:
738 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
739 if (full || io_in_polling(td))
740 ret = wait_for_completions(td, NULL);
741
742 if (ret < 0)
743 break;
744 }
745
746 check_update_rusage(td);
747
748 if (!td->error) {
749 min_events = td->cur_depth;
750
751 if (min_events)
752 ret = io_u_queued_complete(td, min_events);
753 } else
754 cleanup_pending_aio(td);
755
756 td_set_runstate(td, TD_RUNNING);
757
758 dprint(FD_VERIFY, "exiting loop\n");
759}
760
761static bool exceeds_number_ios(struct thread_data *td)
762{
763 unsigned long long number_ios;
764
765 if (!td->o.number_ios)
766 return false;
767
768 number_ios = ddir_rw_sum(td->io_blocks);
769 number_ios += td->io_u_queued + td->io_u_in_flight;
770
771 return number_ios >= (td->o.number_ios * td->loops);
772}
773
774static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
775{
776 unsigned long long bytes, limit;
777
778 if (td_rw(td))
779 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
780 else if (td_write(td))
781 bytes = this_bytes[DDIR_WRITE];
782 else if (td_read(td))
783 bytes = this_bytes[DDIR_READ];
784 else
785 bytes = this_bytes[DDIR_TRIM];
786
787 if (td->o.io_limit)
788 limit = td->o.io_limit;
789 else
790 limit = td->o.size;
791
792 limit *= td->loops;
793 return bytes >= limit || exceeds_number_ios(td);
794}
795
796static bool io_issue_bytes_exceeded(struct thread_data *td)
797{
798 return io_bytes_exceeded(td, td->io_issue_bytes);
799}
800
801static bool io_complete_bytes_exceeded(struct thread_data *td)
802{
803 return io_bytes_exceeded(td, td->this_io_bytes);
804}
805
806/*
807 * used to calculate the next io time for rate control
808 *
809 */
810static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
811{
812 uint64_t secs, remainder, bps, bytes, iops;
813
814 assert(!(td->flags & TD_F_CHILD));
815 bytes = td->rate_io_issue_bytes[ddir];
816 bps = td->rate_bps[ddir];
817
818 if (td->o.rate_process == RATE_PROCESS_POISSON) {
819 uint64_t val;
820 iops = bps / td->o.bs[ddir];
821 val = (int64_t) (1000000 / iops) *
822 -logf(__rand_0_1(&td->poisson_state));
823 if (val) {
824 dprint(FD_RATE, "poisson rate iops=%llu\n",
825 (unsigned long long) 1000000 / val);
826 }
827 td->last_usec += val;
828 return td->last_usec;
829 } else if (bps) {
830 secs = bytes / bps;
831 remainder = bytes % bps;
832 return remainder * 1000000 / bps + secs * 1000000;
833 }
834
835 return 0;
836}
837
838/*
839 * Main IO worker function. It retrieves io_u's to process and queues
840 * and reaps them, checking for rate and errors along the way.
841 *
842 * Returns number of bytes written and trimmed.
843 */
844static void do_io(struct thread_data *td, uint64_t *bytes_done)
845{
846 unsigned int i;
847 int ret = 0;
848 uint64_t total_bytes, bytes_issued = 0;
849
850 for (i = 0; i < DDIR_RWDIR_CNT; i++)
851 bytes_done[i] = td->bytes_done[i];
852
853 if (in_ramp_time(td))
854 td_set_runstate(td, TD_RAMP);
855 else
856 td_set_runstate(td, TD_RUNNING);
857
858 lat_target_init(td);
859
860 total_bytes = td->o.size;
861 /*
862 * Allow random overwrite workloads to write up to io_limit
863 * before starting verification phase as 'size' doesn't apply.
864 */
865 if (td_write(td) && td_random(td) && td->o.norandommap)
866 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
867 /*
868 * If verify_backlog is enabled, we'll run the verify in this
869 * handler as well. For that case, we may need up to twice the
870 * amount of bytes.
871 */
872 if (td->o.verify != VERIFY_NONE &&
873 (td_write(td) && td->o.verify_backlog))
874 total_bytes += td->o.size;
875
876 /* In trimwrite mode, each byte is trimmed and then written, so
877 * allow total_bytes to be twice as big */
878 if (td_trimwrite(td))
879 total_bytes += td->total_io_size;
880
881 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
882 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
883 td->o.time_based) {
884 struct timeval comp_time;
885 struct io_u *io_u;
886 int full;
887 enum fio_ddir ddir;
888
889 check_update_rusage(td);
890
891 if (td->terminate || td->done)
892 break;
893
894 update_tv_cache(td);
895
896 if (runtime_exceeded(td, &td->tv_cache)) {
897 __update_tv_cache(td);
898 if (runtime_exceeded(td, &td->tv_cache)) {
899 fio_mark_td_terminate(td);
900 break;
901 }
902 }
903
904 if (flow_threshold_exceeded(td))
905 continue;
906
907 /*
908 * Break if we exceeded the bytes. The exception is time
909 * based runs, but we still need to break out of the loop
910 * for those to run verification, if enabled.
911 */
912 if (bytes_issued >= total_bytes &&
913 (!td->o.time_based ||
914 (td->o.time_based && td->o.verify != VERIFY_NONE)))
915 break;
916
917 io_u = get_io_u(td);
918 if (IS_ERR_OR_NULL(io_u)) {
919 int err = PTR_ERR(io_u);
920
921 io_u = NULL;
922 if (err == -EBUSY) {
923 ret = FIO_Q_BUSY;
924 goto reap;
925 }
926 if (td->o.latency_target)
927 goto reap;
928 break;
929 }
930
931 ddir = io_u->ddir;
932
933 /*
934 * Add verification end_io handler if:
935 * - Asked to verify (!td_rw(td))
936 * - Or the io_u is from our verify list (mixed write/ver)
937 */
938 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
939 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
940
941 if (!td->o.verify_pattern_bytes) {
942 io_u->rand_seed = __rand(&td->verify_state);
943 if (sizeof(int) != sizeof(long *))
944 io_u->rand_seed *= __rand(&td->verify_state);
945 }
946
947 if (verify_state_should_stop(td, io_u)) {
948 put_io_u(td, io_u);
949 break;
950 }
951
952 if (td->o.verify_async)
953 io_u->end_io = verify_io_u_async;
954 else
955 io_u->end_io = verify_io_u;
956 td_set_runstate(td, TD_VERIFYING);
957 } else if (in_ramp_time(td))
958 td_set_runstate(td, TD_RAMP);
959 else
960 td_set_runstate(td, TD_RUNNING);
961
962 /*
963 * Always log IO before it's issued, so we know the specific
964 * order of it. The logged unit will track when the IO has
965 * completed.
966 */
967 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
968 td->o.do_verify &&
969 td->o.verify != VERIFY_NONE &&
970 !td->o.experimental_verify)
971 log_io_piece(td, io_u);
972
973 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
974 const unsigned long blen = io_u->xfer_buflen;
975 const enum fio_ddir ddir = acct_ddir(io_u);
976
977 if (td->error)
978 break;
979
980 workqueue_enqueue(&td->io_wq, &io_u->work);
981 ret = FIO_Q_QUEUED;
982
983 if (ddir_rw(ddir)) {
984 td->io_issues[ddir]++;
985 td->io_issue_bytes[ddir] += blen;
986 td->rate_io_issue_bytes[ddir] += blen;
987 }
988
989 if (should_check_rate(td))
990 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
991
992 } else {
993 ret = td_io_queue(td, io_u);
994
995 if (should_check_rate(td))
996 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
997
998 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
999 break;
1000
1001 /*
1002 * See if we need to complete some commands. Note that
1003 * we can get BUSY even without IO queued, if the
1004 * system is resource starved.
1005 */
1006reap:
1007 full = queue_full(td) ||
1008 (ret == FIO_Q_BUSY && td->cur_depth);
1009 if (full || io_in_polling(td))
1010 ret = wait_for_completions(td, &comp_time);
1011 }
1012 if (ret < 0)
1013 break;
1014 if (!ddir_rw_sum(td->bytes_done) &&
1015 !td_ioengine_flagged(td, FIO_NOIO))
1016 continue;
1017
1018 if (!in_ramp_time(td) && should_check_rate(td)) {
1019 if (check_min_rate(td, &comp_time)) {
1020 if (exitall_on_terminate || td->o.exitall_error)
1021 fio_terminate_threads(td->groupid);
1022 td_verror(td, EIO, "check_min_rate");
1023 break;
1024 }
1025 }
1026 if (!in_ramp_time(td) && td->o.latency_target)
1027 lat_target_check(td);
1028
1029 if (td->o.thinktime) {
1030 unsigned long long b;
1031
1032 b = ddir_rw_sum(td->io_blocks);
1033 if (!(b % td->o.thinktime_blocks)) {
1034 int left;
1035
1036 io_u_quiesce(td);
1037
1038 if (td->o.thinktime_spin)
1039 usec_spin(td->o.thinktime_spin);
1040
1041 left = td->o.thinktime - td->o.thinktime_spin;
1042 if (left)
1043 usec_sleep(td, left);
1044 }
1045 }
1046 }
1047
1048 check_update_rusage(td);
1049
1050 if (td->trim_entries)
1051 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1052
1053 if (td->o.fill_device && td->error == ENOSPC) {
1054 td->error = 0;
1055 fio_mark_td_terminate(td);
1056 }
1057 if (!td->error) {
1058 struct fio_file *f;
1059
1060 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1061 workqueue_flush(&td->io_wq);
1062 i = 0;
1063 } else
1064 i = td->cur_depth;
1065
1066 if (i) {
1067 ret = io_u_queued_complete(td, i);
1068 if (td->o.fill_device && td->error == ENOSPC)
1069 td->error = 0;
1070 }
1071
1072 if (should_fsync(td) && td->o.end_fsync) {
1073 td_set_runstate(td, TD_FSYNCING);
1074
1075 for_each_file(td, f, i) {
1076 if (!fio_file_fsync(td, f))
1077 continue;
1078
1079 log_err("fio: end_fsync failed for file %s\n",
1080 f->file_name);
1081 }
1082 }
1083 } else
1084 cleanup_pending_aio(td);
1085
1086 /*
1087 * stop job if we failed doing any IO
1088 */
1089 if (!ddir_rw_sum(td->this_io_bytes))
1090 td->done = 1;
1091
1092 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1093 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1094}
1095
1096static void free_file_completion_logging(struct thread_data *td)
1097{
1098 struct fio_file *f;
1099 unsigned int i;
1100
1101 for_each_file(td, f, i) {
1102 if (!f->last_write_comp)
1103 break;
1104 sfree(f->last_write_comp);
1105 }
1106}
1107
1108static int init_file_completion_logging(struct thread_data *td,
1109 unsigned int depth)
1110{
1111 struct fio_file *f;
1112 unsigned int i;
1113
1114 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1115 return 0;
1116
1117 for_each_file(td, f, i) {
1118 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1119 if (!f->last_write_comp)
1120 goto cleanup;
1121 }
1122
1123 return 0;
1124
1125cleanup:
1126 free_file_completion_logging(td);
1127 log_err("fio: failed to alloc write comp data\n");
1128 return 1;
1129}
1130
1131static void cleanup_io_u(struct thread_data *td)
1132{
1133 struct io_u *io_u;
1134
1135 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1136
1137 if (td->io_ops->io_u_free)
1138 td->io_ops->io_u_free(td, io_u);
1139
1140 fio_memfree(io_u, sizeof(*io_u));
1141 }
1142
1143 free_io_mem(td);
1144
1145 io_u_rexit(&td->io_u_requeues);
1146 io_u_qexit(&td->io_u_freelist);
1147 io_u_qexit(&td->io_u_all);
1148
1149 free_file_completion_logging(td);
1150}
1151
1152static int init_io_u(struct thread_data *td)
1153{
1154 struct io_u *io_u;
1155 unsigned int max_bs, min_write;
1156 int cl_align, i, max_units;
1157 int data_xfer = 1, err;
1158 char *p;
1159
1160 max_units = td->o.iodepth;
1161 max_bs = td_max_bs(td);
1162 min_write = td->o.min_bs[DDIR_WRITE];
1163 td->orig_buffer_size = (unsigned long long) max_bs
1164 * (unsigned long long) max_units;
1165
1166 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1167 data_xfer = 0;
1168
1169 err = 0;
1170 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1171 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1172 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1173
1174 if (err) {
1175 log_err("fio: failed setting up IO queues\n");
1176 return 1;
1177 }
1178
1179 /*
1180 * if we may later need to do address alignment, then add any
1181 * possible adjustment here so that we don't cause a buffer
1182 * overflow later. this adjustment may be too much if we get
1183 * lucky and the allocator gives us an aligned address.
1184 */
1185 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1186 td_ioengine_flagged(td, FIO_RAWIO))
1187 td->orig_buffer_size += page_mask + td->o.mem_align;
1188
1189 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1190 unsigned long bs;
1191
1192 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1193 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1194 }
1195
1196 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1197 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1198 return 1;
1199 }
1200
1201 if (data_xfer && allocate_io_mem(td))
1202 return 1;
1203
1204 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1205 td_ioengine_flagged(td, FIO_RAWIO))
1206 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1207 else
1208 p = td->orig_buffer;
1209
1210 cl_align = os_cache_line_size();
1211
1212 for (i = 0; i < max_units; i++) {
1213 void *ptr;
1214
1215 if (td->terminate)
1216 return 1;
1217
1218 ptr = fio_memalign(cl_align, sizeof(*io_u));
1219 if (!ptr) {
1220 log_err("fio: unable to allocate aligned memory\n");
1221 break;
1222 }
1223
1224 io_u = ptr;
1225 memset(io_u, 0, sizeof(*io_u));
1226 INIT_FLIST_HEAD(&io_u->verify_list);
1227 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1228
1229 if (data_xfer) {
1230 io_u->buf = p;
1231 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1232
1233 if (td_write(td))
1234 io_u_fill_buffer(td, io_u, min_write, max_bs);
1235 if (td_write(td) && td->o.verify_pattern_bytes) {
1236 /*
1237 * Fill the buffer with the pattern if we are
1238 * going to be doing writes.
1239 */
1240 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1241 }
1242 }
1243
1244 io_u->index = i;
1245 io_u->flags = IO_U_F_FREE;
1246 io_u_qpush(&td->io_u_freelist, io_u);
1247
1248 /*
1249 * io_u never leaves this stack, used for iteration of all
1250 * io_u buffers.
1251 */
1252 io_u_qpush(&td->io_u_all, io_u);
1253
1254 if (td->io_ops->io_u_init) {
1255 int ret = td->io_ops->io_u_init(td, io_u);
1256
1257 if (ret) {
1258 log_err("fio: failed to init engine data: %d\n", ret);
1259 return 1;
1260 }
1261 }
1262
1263 p += max_bs;
1264 }
1265
1266 if (init_file_completion_logging(td, max_units))
1267 return 1;
1268
1269 return 0;
1270}
1271
1272static int switch_ioscheduler(struct thread_data *td)
1273{
1274#ifdef FIO_HAVE_IOSCHED_SWITCH
1275 char tmp[256], tmp2[128];
1276 FILE *f;
1277 int ret;
1278
1279 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1280 return 0;
1281
1282 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1283
1284 f = fopen(tmp, "r+");
1285 if (!f) {
1286 if (errno == ENOENT) {
1287 log_err("fio: os or kernel doesn't support IO scheduler"
1288 " switching\n");
1289 return 0;
1290 }
1291 td_verror(td, errno, "fopen iosched");
1292 return 1;
1293 }
1294
1295 /*
1296 * Set io scheduler.
1297 */
1298 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1299 if (ferror(f) || ret != 1) {
1300 td_verror(td, errno, "fwrite");
1301 fclose(f);
1302 return 1;
1303 }
1304
1305 rewind(f);
1306
1307 /*
1308 * Read back and check that the selected scheduler is now the default.
1309 */
1310 memset(tmp, 0, sizeof(tmp));
1311 ret = fread(tmp, sizeof(tmp), 1, f);
1312 if (ferror(f) || ret < 0) {
1313 td_verror(td, errno, "fread");
1314 fclose(f);
1315 return 1;
1316 }
1317 /*
1318 * either a list of io schedulers or "none\n" is expected.
1319 */
1320 tmp[strlen(tmp) - 1] = '\0';
1321
1322 /*
1323 * Write to "none" entry doesn't fail, so check the result here.
1324 */
1325 if (!strcmp(tmp, "none")) {
1326 log_err("fio: io scheduler is not tunable\n");
1327 fclose(f);
1328 return 0;
1329 }
1330
1331 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1332 if (!strstr(tmp, tmp2)) {
1333 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1334 td_verror(td, EINVAL, "iosched_switch");
1335 fclose(f);
1336 return 1;
1337 }
1338
1339 fclose(f);
1340 return 0;
1341#else
1342 return 0;
1343#endif
1344}
1345
1346static bool keep_running(struct thread_data *td)
1347{
1348 unsigned long long limit;
1349
1350 if (td->done)
1351 return false;
1352 if (td->o.time_based)
1353 return true;
1354 if (td->o.loops) {
1355 td->o.loops--;
1356 return true;
1357 }
1358 if (exceeds_number_ios(td))
1359 return false;
1360
1361 if (td->o.io_limit)
1362 limit = td->o.io_limit;
1363 else
1364 limit = td->o.size;
1365
1366 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1367 uint64_t diff;
1368
1369 /*
1370 * If the difference is less than the minimum IO size, we
1371 * are done.
1372 */
1373 diff = limit - ddir_rw_sum(td->io_bytes);
1374 if (diff < td_max_bs(td))
1375 return false;
1376
1377 if (fio_files_done(td) && !td->o.io_limit)
1378 return false;
1379
1380 return true;
1381 }
1382
1383 return false;
1384}
1385
1386static int exec_string(struct thread_options *o, const char *string, const char *mode)
1387{
1388 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1389 int ret;
1390 char *str;
1391
1392 str = malloc(newlen);
1393 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1394
1395 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1396 ret = system(str);
1397 if (ret == -1)
1398 log_err("fio: exec of cmd <%s> failed\n", str);
1399
1400 free(str);
1401 return ret;
1402}
1403
1404/*
1405 * Dry run to compute correct state of numberio for verification.
1406 */
1407static uint64_t do_dry_run(struct thread_data *td)
1408{
1409 td_set_runstate(td, TD_RUNNING);
1410
1411 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1412 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1413 struct io_u *io_u;
1414 int ret;
1415
1416 if (td->terminate || td->done)
1417 break;
1418
1419 io_u = get_io_u(td);
1420 if (IS_ERR_OR_NULL(io_u))
1421 break;
1422
1423 io_u_set(td, io_u, IO_U_F_FLIGHT);
1424 io_u->error = 0;
1425 io_u->resid = 0;
1426 if (ddir_rw(acct_ddir(io_u)))
1427 td->io_issues[acct_ddir(io_u)]++;
1428 if (ddir_rw(io_u->ddir)) {
1429 io_u_mark_depth(td, 1);
1430 td->ts.total_io_u[io_u->ddir]++;
1431 }
1432
1433 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1434 td->o.do_verify &&
1435 td->o.verify != VERIFY_NONE &&
1436 !td->o.experimental_verify)
1437 log_io_piece(td, io_u);
1438
1439 ret = io_u_sync_complete(td, io_u);
1440 (void) ret;
1441 }
1442
1443 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1444}
1445
1446struct fork_data {
1447 struct thread_data *td;
1448 struct sk_out *sk_out;
1449};
1450
1451/*
1452 * Entry point for the thread based jobs. The process based jobs end up
1453 * here as well, after a little setup.
1454 */
1455static void *thread_main(void *data)
1456{
1457 struct fork_data *fd = data;
1458 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1459 struct thread_data *td = fd->td;
1460 struct thread_options *o = &td->o;
1461 struct sk_out *sk_out = fd->sk_out;
1462 int deadlock_loop_cnt;
1463 int clear_state;
1464 int ret;
1465
1466 sk_out_assign(sk_out);
1467 free(fd);
1468
1469 if (!o->use_thread) {
1470 setsid();
1471 td->pid = getpid();
1472 } else
1473 td->pid = gettid();
1474
1475 fio_local_clock_init(o->use_thread);
1476
1477 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1478
1479 if (is_backend)
1480 fio_server_send_start(td);
1481
1482 INIT_FLIST_HEAD(&td->io_log_list);
1483 INIT_FLIST_HEAD(&td->io_hist_list);
1484 INIT_FLIST_HEAD(&td->verify_list);
1485 INIT_FLIST_HEAD(&td->trim_list);
1486 INIT_FLIST_HEAD(&td->next_rand_list);
1487 td->io_hist_tree = RB_ROOT;
1488
1489 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1490 if (ret) {
1491 td_verror(td, ret, "mutex_cond_init_pshared");
1492 goto err;
1493 }
1494 ret = cond_init_pshared(&td->verify_cond);
1495 if (ret) {
1496 td_verror(td, ret, "mutex_cond_pshared");
1497 goto err;
1498 }
1499
1500 td_set_runstate(td, TD_INITIALIZED);
1501 dprint(FD_MUTEX, "up startup_mutex\n");
1502 fio_mutex_up(startup_mutex);
1503 dprint(FD_MUTEX, "wait on td->mutex\n");
1504 fio_mutex_down(td->mutex);
1505 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1506
1507 /*
1508 * A new gid requires privilege, so we need to do this before setting
1509 * the uid.
1510 */
1511 if (o->gid != -1U && setgid(o->gid)) {
1512 td_verror(td, errno, "setgid");
1513 goto err;
1514 }
1515 if (o->uid != -1U && setuid(o->uid)) {
1516 td_verror(td, errno, "setuid");
1517 goto err;
1518 }
1519
1520 /*
1521 * Do this early, we don't want the compress threads to be limited
1522 * to the same CPUs as the IO workers. So do this before we set
1523 * any potential CPU affinity
1524 */
1525 if (iolog_compress_init(td, sk_out))
1526 goto err;
1527
1528 /*
1529 * If we have a gettimeofday() thread, make sure we exclude that
1530 * thread from this job
1531 */
1532 if (o->gtod_cpu)
1533 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1534
1535 /*
1536 * Set affinity first, in case it has an impact on the memory
1537 * allocations.
1538 */
1539 if (fio_option_is_set(o, cpumask)) {
1540 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1541 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1542 if (!ret) {
1543 log_err("fio: no CPUs set\n");
1544 log_err("fio: Try increasing number of available CPUs\n");
1545 td_verror(td, EINVAL, "cpus_split");
1546 goto err;
1547 }
1548 }
1549 ret = fio_setaffinity(td->pid, o->cpumask);
1550 if (ret == -1) {
1551 td_verror(td, errno, "cpu_set_affinity");
1552 goto err;
1553 }
1554 }
1555
1556#ifdef CONFIG_LIBNUMA
1557 /* numa node setup */
1558 if (fio_option_is_set(o, numa_cpunodes) ||
1559 fio_option_is_set(o, numa_memnodes)) {
1560 struct bitmask *mask;
1561
1562 if (numa_available() < 0) {
1563 td_verror(td, errno, "Does not support NUMA API\n");
1564 goto err;
1565 }
1566
1567 if (fio_option_is_set(o, numa_cpunodes)) {
1568 mask = numa_parse_nodestring(o->numa_cpunodes);
1569 ret = numa_run_on_node_mask(mask);
1570 numa_free_nodemask(mask);
1571 if (ret == -1) {
1572 td_verror(td, errno, \
1573 "numa_run_on_node_mask failed\n");
1574 goto err;
1575 }
1576 }
1577
1578 if (fio_option_is_set(o, numa_memnodes)) {
1579 mask = NULL;
1580 if (o->numa_memnodes)
1581 mask = numa_parse_nodestring(o->numa_memnodes);
1582
1583 switch (o->numa_mem_mode) {
1584 case MPOL_INTERLEAVE:
1585 numa_set_interleave_mask(mask);
1586 break;
1587 case MPOL_BIND:
1588 numa_set_membind(mask);
1589 break;
1590 case MPOL_LOCAL:
1591 numa_set_localalloc();
1592 break;
1593 case MPOL_PREFERRED:
1594 numa_set_preferred(o->numa_mem_prefer_node);
1595 break;
1596 case MPOL_DEFAULT:
1597 default:
1598 break;
1599 }
1600
1601 if (mask)
1602 numa_free_nodemask(mask);
1603
1604 }
1605 }
1606#endif
1607
1608 if (fio_pin_memory(td))
1609 goto err;
1610
1611 /*
1612 * May alter parameters that init_io_u() will use, so we need to
1613 * do this first.
1614 */
1615 if (init_iolog(td))
1616 goto err;
1617
1618 if (init_io_u(td))
1619 goto err;
1620
1621 if (o->verify_async && verify_async_init(td))
1622 goto err;
1623
1624 if (fio_option_is_set(o, ioprio) ||
1625 fio_option_is_set(o, ioprio_class)) {
1626 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1627 if (ret == -1) {
1628 td_verror(td, errno, "ioprio_set");
1629 goto err;
1630 }
1631 }
1632
1633 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1634 goto err;
1635
1636 errno = 0;
1637 if (nice(o->nice) == -1 && errno != 0) {
1638 td_verror(td, errno, "nice");
1639 goto err;
1640 }
1641
1642 if (o->ioscheduler && switch_ioscheduler(td))
1643 goto err;
1644
1645 if (!o->create_serialize && setup_files(td))
1646 goto err;
1647
1648 if (td_io_init(td))
1649 goto err;
1650
1651 if (init_random_map(td))
1652 goto err;
1653
1654 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1655 goto err;
1656
1657 if (o->pre_read) {
1658 if (pre_read_files(td) < 0)
1659 goto err;
1660 }
1661
1662 fio_verify_init(td);
1663
1664 if (rate_submit_init(td, sk_out))
1665 goto err;
1666
1667 set_epoch_time(td, o->log_unix_epoch);
1668 fio_getrusage(&td->ru_start);
1669 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1670 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1671
1672 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1673 o->ratemin[DDIR_TRIM]) {
1674 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1675 sizeof(td->bw_sample_time));
1676 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1677 sizeof(td->bw_sample_time));
1678 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1679 sizeof(td->bw_sample_time));
1680 }
1681
1682 clear_state = 0;
1683 while (keep_running(td)) {
1684 uint64_t verify_bytes;
1685
1686 fio_gettime(&td->start, NULL);
1687 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1688
1689 if (clear_state) {
1690 clear_io_state(td, 0);
1691
1692 if (o->unlink_each_loop && unlink_all_files(td))
1693 break;
1694 }
1695
1696 prune_io_piece_log(td);
1697
1698 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1699 verify_bytes = do_dry_run(td);
1700 else {
1701 uint64_t bytes_done[DDIR_RWDIR_CNT];
1702
1703 do_io(td, bytes_done);
1704
1705 if (!ddir_rw_sum(bytes_done)) {
1706 fio_mark_td_terminate(td);
1707 verify_bytes = 0;
1708 } else {
1709 verify_bytes = bytes_done[DDIR_WRITE] +
1710 bytes_done[DDIR_TRIM];
1711 }
1712 }
1713
1714 /*
1715 * If we took too long to shut down, the main thread could
1716 * already consider us reaped/exited. If that happens, break
1717 * out and clean up.
1718 */
1719 if (td->runstate >= TD_EXITED)
1720 break;
1721
1722 clear_state = 1;
1723
1724 /*
1725 * Make sure we've successfully updated the rusage stats
1726 * before waiting on the stat mutex. Otherwise we could have
1727 * the stat thread holding stat mutex and waiting for
1728 * the rusage_sem, which would never get upped because
1729 * this thread is waiting for the stat mutex.
1730 */
1731 deadlock_loop_cnt = 0;
1732 do {
1733 check_update_rusage(td);
1734 if (!fio_mutex_down_trylock(stat_mutex))
1735 break;
1736 usleep(1000);
1737 if (deadlock_loop_cnt++ > 5000) {
1738 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1739 td->error = EDEADLK;
1740 goto err;
1741 }
1742 } while (1);
1743
1744 if (td_read(td) && td->io_bytes[DDIR_READ])
1745 update_runtime(td, elapsed_us, DDIR_READ);
1746 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1747 update_runtime(td, elapsed_us, DDIR_WRITE);
1748 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1749 update_runtime(td, elapsed_us, DDIR_TRIM);
1750 fio_gettime(&td->start, NULL);
1751 fio_mutex_up(stat_mutex);
1752
1753 if (td->error || td->terminate)
1754 break;
1755
1756 if (!o->do_verify ||
1757 o->verify == VERIFY_NONE ||
1758 td_ioengine_flagged(td, FIO_UNIDIR))
1759 continue;
1760
1761 clear_io_state(td, 0);
1762
1763 fio_gettime(&td->start, NULL);
1764
1765 do_verify(td, verify_bytes);
1766
1767 /*
1768 * See comment further up for why this is done here.
1769 */
1770 check_update_rusage(td);
1771
1772 fio_mutex_down(stat_mutex);
1773 update_runtime(td, elapsed_us, DDIR_READ);
1774 fio_gettime(&td->start, NULL);
1775 fio_mutex_up(stat_mutex);
1776
1777 if (td->error || td->terminate)
1778 break;
1779 }
1780
1781 td_set_runstate(td, TD_FINISHING);
1782
1783 update_rusage_stat(td);
1784 td->ts.total_run_time = mtime_since_now(&td->epoch);
1785 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1786 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1787 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1788
1789 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1790 (td->o.verify != VERIFY_NONE && td_write(td)))
1791 verify_save_state(td->thread_number);
1792
1793 fio_unpin_memory(td);
1794
1795 td_writeout_logs(td, true);
1796
1797 iolog_compress_exit(td);
1798 rate_submit_exit(td);
1799
1800 if (o->exec_postrun)
1801 exec_string(o, o->exec_postrun, (const char *)"postrun");
1802
1803 if (exitall_on_terminate || (o->exitall_error && td->error))
1804 fio_terminate_threads(td->groupid);
1805
1806err:
1807 if (td->error)
1808 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1809 td->verror);
1810
1811 if (o->verify_async)
1812 verify_async_exit(td);
1813
1814 close_and_free_files(td);
1815 cleanup_io_u(td);
1816 close_ioengine(td);
1817 cgroup_shutdown(td, &cgroup_mnt);
1818 verify_free_state(td);
1819
1820 if (td->zone_state_index) {
1821 int i;
1822
1823 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1824 free(td->zone_state_index[i]);
1825 free(td->zone_state_index);
1826 td->zone_state_index = NULL;
1827 }
1828
1829 if (fio_option_is_set(o, cpumask)) {
1830 ret = fio_cpuset_exit(&o->cpumask);
1831 if (ret)
1832 td_verror(td, ret, "fio_cpuset_exit");
1833 }
1834
1835 /*
1836 * do this very late, it will log file closing as well
1837 */
1838 if (o->write_iolog_file)
1839 write_iolog_close(td);
1840
1841 fio_mutex_remove(td->mutex);
1842 td->mutex = NULL;
1843
1844 td_set_runstate(td, TD_EXITED);
1845
1846 /*
1847 * Do this last after setting our runstate to exited, so we
1848 * know that the stat thread is signaled.
1849 */
1850 check_update_rusage(td);
1851
1852 sk_out_drop();
1853 return (void *) (uintptr_t) td->error;
1854}
1855
1856static void dump_td_info(struct thread_data *td)
1857{
1858 log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1859 "appears to be stuck. Doing forceful exit of this job.\n",
1860 td->o.name, td->runstate,
1861 (unsigned long) time_since_now(&td->terminate_time));
1862}
1863
1864/*
1865 * Run over the job map and reap the threads that have exited, if any.
1866 */
1867static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1868 uint64_t *m_rate)
1869{
1870 struct thread_data *td;
1871 unsigned int cputhreads, realthreads, pending;
1872 int i, status, ret;
1873
1874 /*
1875 * reap exited threads (TD_EXITED -> TD_REAPED)
1876 */
1877 realthreads = pending = cputhreads = 0;
1878 for_each_td(td, i) {
1879 int flags = 0;
1880
1881 /*
1882 * ->io_ops is NULL for a thread that has closed its
1883 * io engine
1884 */
1885 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1886 cputhreads++;
1887 else
1888 realthreads++;
1889
1890 if (!td->pid) {
1891 pending++;
1892 continue;
1893 }
1894 if (td->runstate == TD_REAPED)
1895 continue;
1896 if (td->o.use_thread) {
1897 if (td->runstate == TD_EXITED) {
1898 td_set_runstate(td, TD_REAPED);
1899 goto reaped;
1900 }
1901 continue;
1902 }
1903
1904 flags = WNOHANG;
1905 if (td->runstate == TD_EXITED)
1906 flags = 0;
1907
1908 /*
1909 * check if someone quit or got killed in an unusual way
1910 */
1911 ret = waitpid(td->pid, &status, flags);
1912 if (ret < 0) {
1913 if (errno == ECHILD) {
1914 log_err("fio: pid=%d disappeared %d\n",
1915 (int) td->pid, td->runstate);
1916 td->sig = ECHILD;
1917 td_set_runstate(td, TD_REAPED);
1918 goto reaped;
1919 }
1920 perror("waitpid");
1921 } else if (ret == td->pid) {
1922 if (WIFSIGNALED(status)) {
1923 int sig = WTERMSIG(status);
1924
1925 if (sig != SIGTERM && sig != SIGUSR2)
1926 log_err("fio: pid=%d, got signal=%d\n",
1927 (int) td->pid, sig);
1928 td->sig = sig;
1929 td_set_runstate(td, TD_REAPED);
1930 goto reaped;
1931 }
1932 if (WIFEXITED(status)) {
1933 if (WEXITSTATUS(status) && !td->error)
1934 td->error = WEXITSTATUS(status);
1935
1936 td_set_runstate(td, TD_REAPED);
1937 goto reaped;
1938 }
1939 }
1940
1941 /*
1942 * If the job is stuck, do a forceful timeout of it and
1943 * move on.
1944 */
1945 if (td->terminate &&
1946 td->runstate < TD_FSYNCING &&
1947 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1948 dump_td_info(td);
1949 td_set_runstate(td, TD_REAPED);
1950 goto reaped;
1951 }
1952
1953 /*
1954 * thread is not dead, continue
1955 */
1956 pending++;
1957 continue;
1958reaped:
1959 (*nr_running)--;
1960 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1961 (*t_rate) -= ddir_rw_sum(td->o.rate);
1962 if (!td->pid)
1963 pending--;
1964
1965 if (td->error)
1966 exit_value++;
1967
1968 done_secs += mtime_since_now(&td->epoch) / 1000;
1969 profile_td_exit(td);
1970 }
1971
1972 if (*nr_running == cputhreads && !pending && realthreads)
1973 fio_terminate_threads(TERMINATE_ALL);
1974}
1975
1976static bool __check_trigger_file(void)
1977{
1978 struct stat sb;
1979
1980 if (!trigger_file)
1981 return false;
1982
1983 if (stat(trigger_file, &sb))
1984 return false;
1985
1986 if (unlink(trigger_file) < 0)
1987 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1988 strerror(errno));
1989
1990 return true;
1991}
1992
1993static bool trigger_timedout(void)
1994{
1995 if (trigger_timeout)
1996 return time_since_genesis() >= trigger_timeout;
1997
1998 return false;
1999}
2000
2001void exec_trigger(const char *cmd)
2002{
2003 int ret;
2004
2005 if (!cmd)
2006 return;
2007
2008 ret = system(cmd);
2009 if (ret == -1)
2010 log_err("fio: failed executing %s trigger\n", cmd);
2011}
2012
2013void check_trigger_file(void)
2014{
2015 if (__check_trigger_file() || trigger_timedout()) {
2016 if (nr_clients)
2017 fio_clients_send_trigger(trigger_remote_cmd);
2018 else {
2019 verify_save_state(IO_LIST_ALL);
2020 fio_terminate_threads(TERMINATE_ALL);
2021 exec_trigger(trigger_cmd);
2022 }
2023 }
2024}
2025
2026static int fio_verify_load_state(struct thread_data *td)
2027{
2028 int ret;
2029
2030 if (!td->o.verify_state)
2031 return 0;
2032
2033 if (is_backend) {
2034 void *data;
2035
2036 ret = fio_server_get_verify_state(td->o.name,
2037 td->thread_number - 1, &data);
2038 if (!ret)
2039 verify_assign_state(td, data);
2040 } else
2041 ret = verify_load_state(td, "local");
2042
2043 return ret;
2044}
2045
2046static void do_usleep(unsigned int usecs)
2047{
2048 check_for_running_stats();
2049 check_trigger_file();
2050 usleep(usecs);
2051}
2052
2053static bool check_mount_writes(struct thread_data *td)
2054{
2055 struct fio_file *f;
2056 unsigned int i;
2057
2058 if (!td_write(td) || td->o.allow_mounted_write)
2059 return false;
2060
2061 for_each_file(td, f, i) {
2062 if (f->filetype != FIO_TYPE_BD)
2063 continue;
2064 if (device_is_mounted(f->file_name))
2065 goto mounted;
2066 }
2067
2068 return false;
2069mounted:
2070 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2071 return true;
2072}
2073
2074static bool waitee_running(struct thread_data *me)
2075{
2076 const char *waitee = me->o.wait_for;
2077 const char *self = me->o.name;
2078 struct thread_data *td;
2079 int i;
2080
2081 if (!waitee)
2082 return false;
2083
2084 for_each_td(td, i) {
2085 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2086 continue;
2087
2088 if (td->runstate < TD_EXITED) {
2089 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2090 self, td->o.name,
2091 runstate_to_name(td->runstate));
2092 return true;
2093 }
2094 }
2095
2096 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2097 return false;
2098}
2099
2100/*
2101 * Main function for kicking off and reaping jobs, as needed.
2102 */
2103static void run_threads(struct sk_out *sk_out)
2104{
2105 struct thread_data *td;
2106 unsigned int i, todo, nr_running, nr_started;
2107 uint64_t m_rate, t_rate;
2108 uint64_t spent;
2109
2110 if (fio_gtod_offload && fio_start_gtod_thread())
2111 return;
2112
2113 fio_idle_prof_init();
2114
2115 set_sig_handlers();
2116
2117 nr_thread = nr_process = 0;
2118 for_each_td(td, i) {
2119 if (check_mount_writes(td))
2120 return;
2121 if (td->o.use_thread)
2122 nr_thread++;
2123 else
2124 nr_process++;
2125 }
2126
2127 if (output_format & FIO_OUTPUT_NORMAL) {
2128 log_info("Starting ");
2129 if (nr_thread)
2130 log_info("%d thread%s", nr_thread,
2131 nr_thread > 1 ? "s" : "");
2132 if (nr_process) {
2133 if (nr_thread)
2134 log_info(" and ");
2135 log_info("%d process%s", nr_process,
2136 nr_process > 1 ? "es" : "");
2137 }
2138 log_info("\n");
2139 log_info_flush();
2140 }
2141
2142 todo = thread_number;
2143 nr_running = 0;
2144 nr_started = 0;
2145 m_rate = t_rate = 0;
2146
2147 for_each_td(td, i) {
2148 print_status_init(td->thread_number - 1);
2149
2150 if (!td->o.create_serialize)
2151 continue;
2152
2153 if (fio_verify_load_state(td))
2154 goto reap;
2155
2156 /*
2157 * do file setup here so it happens sequentially,
2158 * we don't want X number of threads getting their
2159 * client data interspersed on disk
2160 */
2161 if (setup_files(td)) {
2162reap:
2163 exit_value++;
2164 if (td->error)
2165 log_err("fio: pid=%d, err=%d/%s\n",
2166 (int) td->pid, td->error, td->verror);
2167 td_set_runstate(td, TD_REAPED);
2168 todo--;
2169 } else {
2170 struct fio_file *f;
2171 unsigned int j;
2172
2173 /*
2174 * for sharing to work, each job must always open
2175 * its own files. so close them, if we opened them
2176 * for creation
2177 */
2178 for_each_file(td, f, j) {
2179 if (fio_file_open(f))
2180 td_io_close_file(td, f);
2181 }
2182 }
2183 }
2184
2185 /* start idle threads before io threads start to run */
2186 fio_idle_prof_start();
2187
2188 set_genesis_time();
2189
2190 while (todo) {
2191 struct thread_data *map[REAL_MAX_JOBS];
2192 struct timeval this_start;
2193 int this_jobs = 0, left;
2194 struct fork_data *fd;
2195
2196 /*
2197 * create threads (TD_NOT_CREATED -> TD_CREATED)
2198 */
2199 for_each_td(td, i) {
2200 if (td->runstate != TD_NOT_CREATED)
2201 continue;
2202
2203 /*
2204 * never got a chance to start, killed by other
2205 * thread for some reason
2206 */
2207 if (td->terminate) {
2208 todo--;
2209 continue;
2210 }
2211
2212 if (td->o.start_delay) {
2213 spent = utime_since_genesis();
2214
2215 if (td->o.start_delay > spent)
2216 continue;
2217 }
2218
2219 if (td->o.stonewall && (nr_started || nr_running)) {
2220 dprint(FD_PROCESS, "%s: stonewall wait\n",
2221 td->o.name);
2222 break;
2223 }
2224
2225 if (waitee_running(td)) {
2226 dprint(FD_PROCESS, "%s: waiting for %s\n",
2227 td->o.name, td->o.wait_for);
2228 continue;
2229 }
2230
2231 init_disk_util(td);
2232
2233 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2234 td->update_rusage = 0;
2235
2236 /*
2237 * Set state to created. Thread will transition
2238 * to TD_INITIALIZED when it's done setting up.
2239 */
2240 td_set_runstate(td, TD_CREATED);
2241 map[this_jobs++] = td;
2242 nr_started++;
2243
2244 fd = calloc(1, sizeof(*fd));
2245 fd->td = td;
2246 fd->sk_out = sk_out;
2247
2248 if (td->o.use_thread) {
2249 int ret;
2250
2251 dprint(FD_PROCESS, "will pthread_create\n");
2252 ret = pthread_create(&td->thread, NULL,
2253 thread_main, fd);
2254 if (ret) {
2255 log_err("pthread_create: %s\n",
2256 strerror(ret));
2257 free(fd);
2258 nr_started--;
2259 break;
2260 }
2261 ret = pthread_detach(td->thread);
2262 if (ret)
2263 log_err("pthread_detach: %s",
2264 strerror(ret));
2265 } else {
2266 pid_t pid;
2267 dprint(FD_PROCESS, "will fork\n");
2268 pid = fork();
2269 if (!pid) {
2270 int ret;
2271
2272 ret = (int)(uintptr_t)thread_main(fd);
2273 _exit(ret);
2274 } else if (i == fio_debug_jobno)
2275 *fio_debug_jobp = pid;
2276 }
2277 dprint(FD_MUTEX, "wait on startup_mutex\n");
2278 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2279 log_err("fio: job startup hung? exiting.\n");
2280 fio_terminate_threads(TERMINATE_ALL);
2281 fio_abort = 1;
2282 nr_started--;
2283 break;
2284 }
2285 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2286 }
2287
2288 /*
2289 * Wait for the started threads to transition to
2290 * TD_INITIALIZED.
2291 */
2292 fio_gettime(&this_start, NULL);
2293 left = this_jobs;
2294 while (left && !fio_abort) {
2295 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2296 break;
2297
2298 do_usleep(100000);
2299
2300 for (i = 0; i < this_jobs; i++) {
2301 td = map[i];
2302 if (!td)
2303 continue;
2304 if (td->runstate == TD_INITIALIZED) {
2305 map[i] = NULL;
2306 left--;
2307 } else if (td->runstate >= TD_EXITED) {
2308 map[i] = NULL;
2309 left--;
2310 todo--;
2311 nr_running++; /* work-around... */
2312 }
2313 }
2314 }
2315
2316 if (left) {
2317 log_err("fio: %d job%s failed to start\n", left,
2318 left > 1 ? "s" : "");
2319 for (i = 0; i < this_jobs; i++) {
2320 td = map[i];
2321 if (!td)
2322 continue;
2323 kill(td->pid, SIGTERM);
2324 }
2325 break;
2326 }
2327
2328 /*
2329 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2330 */
2331 for_each_td(td, i) {
2332 if (td->runstate != TD_INITIALIZED)
2333 continue;
2334
2335 if (in_ramp_time(td))
2336 td_set_runstate(td, TD_RAMP);
2337 else
2338 td_set_runstate(td, TD_RUNNING);
2339 nr_running++;
2340 nr_started--;
2341 m_rate += ddir_rw_sum(td->o.ratemin);
2342 t_rate += ddir_rw_sum(td->o.rate);
2343 todo--;
2344 fio_mutex_up(td->mutex);
2345 }
2346
2347 reap_threads(&nr_running, &t_rate, &m_rate);
2348
2349 if (todo)
2350 do_usleep(100000);
2351 }
2352
2353 while (nr_running) {
2354 reap_threads(&nr_running, &t_rate, &m_rate);
2355 do_usleep(10000);
2356 }
2357
2358 fio_idle_prof_stop();
2359
2360 update_io_ticks();
2361}
2362
2363static void free_disk_util(void)
2364{
2365 disk_util_prune_entries();
2366 helper_thread_destroy();
2367}
2368
2369int fio_backend(struct sk_out *sk_out)
2370{
2371 struct thread_data *td;
2372 int i;
2373
2374 if (exec_profile) {
2375 if (load_profile(exec_profile))
2376 return 1;
2377 free(exec_profile);
2378 exec_profile = NULL;
2379 }
2380 if (!thread_number)
2381 return 0;
2382
2383 if (write_bw_log) {
2384 struct log_params p = {
2385 .log_type = IO_LOG_TYPE_BW,
2386 };
2387
2388 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2389 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2390 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2391 }
2392
2393 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2394 if (startup_mutex == NULL)
2395 return 1;
2396
2397 set_genesis_time();
2398 stat_init();
2399 helper_thread_create(startup_mutex, sk_out);
2400
2401 cgroup_list = smalloc(sizeof(*cgroup_list));
2402 INIT_FLIST_HEAD(cgroup_list);
2403
2404 run_threads(sk_out);
2405
2406 helper_thread_exit();
2407
2408 if (!fio_abort) {
2409 __show_run_stats();
2410 if (write_bw_log) {
2411 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2412 struct io_log *log = agg_io_log[i];
2413
2414 flush_log(log, false);
2415 free_log(log);
2416 }
2417 }
2418 }
2419
2420 for_each_td(td, i) {
2421 fio_options_free(td);
2422 if (td->rusage_sem) {
2423 fio_mutex_remove(td->rusage_sem);
2424 td->rusage_sem = NULL;
2425 }
2426 }
2427
2428 free_disk_util();
2429 cgroup_kill(cgroup_list);
2430 sfree(cgroup_list);
2431 sfree(cgroup_mnt);
2432
2433 fio_mutex_remove(startup_mutex);
2434 stat_exit();
2435 return exit_value;
2436}