server: make the setsockopt() error output a bit more informative
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56#include "lib/tp.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59
60static pthread_t helper_thread;
61static pthread_mutex_t helper_lock;
62pthread_cond_t helper_cond;
63int helper_do_stat = 0;
64
65static struct fio_mutex *startup_mutex;
66static struct flist_head *cgroup_list;
67static char *cgroup_mnt;
68static int exit_value;
69static volatile int fio_abort;
70static unsigned int nr_process = 0;
71static unsigned int nr_thread = 0;
72
73struct io_log *agg_io_log[DDIR_RWDIR_CNT];
74
75int groupid = 0;
76unsigned int thread_number = 0;
77unsigned int stat_number = 0;
78int shm_id = 0;
79int temp_stall_ts;
80unsigned long done_secs = 0;
81volatile int helper_exit = 0;
82
83#define PAGE_ALIGN(buf) \
84 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
85
86#define JOB_START_TIMEOUT (5 * 1000)
87
88static void sig_int(int sig)
89{
90 if (threads) {
91 if (is_backend)
92 fio_server_got_signal(sig);
93 else {
94 log_info("\nfio: terminating on signal %d\n", sig);
95 log_info_flush();
96 exit_value = 128;
97 }
98
99 fio_terminate_threads(TERMINATE_ALL);
100 }
101}
102
103static void sig_show_status(int sig)
104{
105 show_running_run_stats();
106}
107
108static void set_sig_handlers(void)
109{
110 struct sigaction act;
111
112 memset(&act, 0, sizeof(act));
113 act.sa_handler = sig_int;
114 act.sa_flags = SA_RESTART;
115 sigaction(SIGINT, &act, NULL);
116
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGTERM, &act, NULL);
121
122/* Windows uses SIGBREAK as a quit signal from other applications */
123#ifdef WIN32
124 memset(&act, 0, sizeof(act));
125 act.sa_handler = sig_int;
126 act.sa_flags = SA_RESTART;
127 sigaction(SIGBREAK, &act, NULL);
128#endif
129
130 memset(&act, 0, sizeof(act));
131 act.sa_handler = sig_show_status;
132 act.sa_flags = SA_RESTART;
133 sigaction(SIGUSR1, &act, NULL);
134
135 if (is_backend) {
136 memset(&act, 0, sizeof(act));
137 act.sa_handler = sig_int;
138 act.sa_flags = SA_RESTART;
139 sigaction(SIGPIPE, &act, NULL);
140 }
141}
142
143/*
144 * Check if we are above the minimum rate given.
145 */
146static int __check_min_rate(struct thread_data *td, struct timeval *now,
147 enum fio_ddir ddir)
148{
149 unsigned long long bytes = 0;
150 unsigned long iops = 0;
151 unsigned long spent;
152 unsigned long rate;
153 unsigned int ratemin = 0;
154 unsigned int rate_iops = 0;
155 unsigned int rate_iops_min = 0;
156
157 assert(ddir_rw(ddir));
158
159 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
160 return 0;
161
162 /*
163 * allow a 2 second settle period in the beginning
164 */
165 if (mtime_since(&td->start, now) < 2000)
166 return 0;
167
168 iops += td->this_io_blocks[ddir];
169 bytes += td->this_io_bytes[ddir];
170 ratemin += td->o.ratemin[ddir];
171 rate_iops += td->o.rate_iops[ddir];
172 rate_iops_min += td->o.rate_iops_min[ddir];
173
174 /*
175 * if rate blocks is set, sample is running
176 */
177 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
178 spent = mtime_since(&td->lastrate[ddir], now);
179 if (spent < td->o.ratecycle)
180 return 0;
181
182 if (td->o.rate[ddir]) {
183 /*
184 * check bandwidth specified rate
185 */
186 if (bytes < td->rate_bytes[ddir]) {
187 log_err("%s: min rate %u not met\n", td->o.name,
188 ratemin);
189 return 1;
190 } else {
191 if (spent)
192 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
193 else
194 rate = 0;
195
196 if (rate < ratemin ||
197 bytes < td->rate_bytes[ddir]) {
198 log_err("%s: min rate %u not met, got"
199 " %luKB/sec\n", td->o.name,
200 ratemin, rate);
201 return 1;
202 }
203 }
204 } else {
205 /*
206 * checks iops specified rate
207 */
208 if (iops < rate_iops) {
209 log_err("%s: min iops rate %u not met\n",
210 td->o.name, rate_iops);
211 return 1;
212 } else {
213 if (spent)
214 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
215 else
216 rate = 0;
217
218 if (rate < rate_iops_min ||
219 iops < td->rate_blocks[ddir]) {
220 log_err("%s: min iops rate %u not met,"
221 " got %lu\n", td->o.name,
222 rate_iops_min, rate);
223 }
224 }
225 }
226 }
227
228 td->rate_bytes[ddir] = bytes;
229 td->rate_blocks[ddir] = iops;
230 memcpy(&td->lastrate[ddir], now, sizeof(*now));
231 return 0;
232}
233
234static int check_min_rate(struct thread_data *td, struct timeval *now)
235{
236 int ret = 0;
237
238 if (td->bytes_done[DDIR_READ])
239 ret |= __check_min_rate(td, now, DDIR_READ);
240 if (td->bytes_done[DDIR_WRITE])
241 ret |= __check_min_rate(td, now, DDIR_WRITE);
242 if (td->bytes_done[DDIR_TRIM])
243 ret |= __check_min_rate(td, now, DDIR_TRIM);
244
245 return ret;
246}
247
248/*
249 * When job exits, we can cancel the in-flight IO if we are using async
250 * io. Attempt to do so.
251 */
252static void cleanup_pending_aio(struct thread_data *td)
253{
254 int r;
255
256 /*
257 * get immediately available events, if any
258 */
259 r = io_u_queued_complete(td, 0);
260 if (r < 0)
261 return;
262
263 /*
264 * now cancel remaining active events
265 */
266 if (td->io_ops->cancel) {
267 struct io_u *io_u;
268 int i;
269
270 io_u_qiter(&td->io_u_all, io_u, i) {
271 if (io_u->flags & IO_U_F_FLIGHT) {
272 r = td->io_ops->cancel(td, io_u);
273 if (!r)
274 put_io_u(td, io_u);
275 }
276 }
277 }
278
279 if (td->cur_depth)
280 r = io_u_queued_complete(td, td->cur_depth);
281}
282
283/*
284 * Helper to handle the final sync of a file. Works just like the normal
285 * io path, just does everything sync.
286 */
287static int fio_io_sync(struct thread_data *td, struct fio_file *f)
288{
289 struct io_u *io_u = __get_io_u(td);
290 int ret;
291
292 if (!io_u)
293 return 1;
294
295 io_u->ddir = DDIR_SYNC;
296 io_u->file = f;
297
298 if (td_io_prep(td, io_u)) {
299 put_io_u(td, io_u);
300 return 1;
301 }
302
303requeue:
304 ret = td_io_queue(td, io_u);
305 if (ret < 0) {
306 td_verror(td, io_u->error, "td_io_queue");
307 put_io_u(td, io_u);
308 return 1;
309 } else if (ret == FIO_Q_QUEUED) {
310 if (io_u_queued_complete(td, 1) < 0)
311 return 1;
312 } else if (ret == FIO_Q_COMPLETED) {
313 if (io_u->error) {
314 td_verror(td, io_u->error, "td_io_queue");
315 return 1;
316 }
317
318 if (io_u_sync_complete(td, io_u) < 0)
319 return 1;
320 } else if (ret == FIO_Q_BUSY) {
321 if (td_io_commit(td))
322 return 1;
323 goto requeue;
324 }
325
326 return 0;
327}
328
329static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
330{
331 int ret;
332
333 if (fio_file_open(f))
334 return fio_io_sync(td, f);
335
336 if (td_io_open_file(td, f))
337 return 1;
338
339 ret = fio_io_sync(td, f);
340 td_io_close_file(td, f);
341 return ret;
342}
343
344static inline void __update_tv_cache(struct thread_data *td)
345{
346 fio_gettime(&td->tv_cache, NULL);
347}
348
349static inline void update_tv_cache(struct thread_data *td)
350{
351 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
352 __update_tv_cache(td);
353}
354
355static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
356{
357 if (in_ramp_time(td))
358 return 0;
359 if (!td->o.timeout)
360 return 0;
361 if (utime_since(&td->epoch, t) >= td->o.timeout)
362 return 1;
363
364 return 0;
365}
366
367/*
368 * We need to update the runtime consistently in ms, but keep a running
369 * tally of the current elapsed time in microseconds for sub millisecond
370 * updates.
371 */
372static inline void update_runtime(struct thread_data *td,
373 unsigned long long *elapsed_us,
374 const enum fio_ddir ddir)
375{
376 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
377 return;
378
379 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
380 elapsed_us[ddir] += utime_since_now(&td->start);
381 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
382}
383
384static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
385 int *retptr)
386{
387 int ret = *retptr;
388
389 if (ret < 0 || td->error) {
390 int err = td->error;
391 enum error_type_bit eb;
392
393 if (ret < 0)
394 err = -ret;
395
396 eb = td_error_type(ddir, err);
397 if (!(td->o.continue_on_error & (1 << eb)))
398 return 1;
399
400 if (td_non_fatal_error(td, eb, err)) {
401 /*
402 * Continue with the I/Os in case of
403 * a non fatal error.
404 */
405 update_error_count(td, err);
406 td_clear_error(td);
407 *retptr = 0;
408 return 0;
409 } else if (td->o.fill_device && err == ENOSPC) {
410 /*
411 * We expect to hit this error if
412 * fill_device option is set.
413 */
414 td_clear_error(td);
415 fio_mark_td_terminate(td);
416 return 1;
417 } else {
418 /*
419 * Stop the I/O in case of a fatal
420 * error.
421 */
422 update_error_count(td, err);
423 return 1;
424 }
425 }
426
427 return 0;
428}
429
430static void check_update_rusage(struct thread_data *td)
431{
432 if (td->update_rusage) {
433 td->update_rusage = 0;
434 update_rusage_stat(td);
435 fio_mutex_up(td->rusage_sem);
436 }
437}
438
439static int wait_for_completions(struct thread_data *td, struct timeval *time)
440{
441 const int full = queue_full(td);
442 int min_evts = 0;
443 int ret;
444
445 /*
446 * if the queue is full, we MUST reap at least 1 event
447 */
448 min_evts = min(td->o.iodepth_batch_complete, td->cur_depth);
449 if ((full && !min_evts) || !td->o.iodepth_batch_complete)
450 min_evts = 1;
451
452 if (time && (__should_check_rate(td, DDIR_READ) ||
453 __should_check_rate(td, DDIR_WRITE) ||
454 __should_check_rate(td, DDIR_TRIM)))
455 fio_gettime(time, NULL);
456
457 do {
458 ret = io_u_queued_complete(td, min_evts);
459 if (ret < 0)
460 break;
461 } while (full && (td->cur_depth > td->o.iodepth_low));
462
463 return ret;
464}
465
466int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
467 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
468 struct timeval *comp_time)
469{
470 int ret2;
471
472 switch (*ret) {
473 case FIO_Q_COMPLETED:
474 if (io_u->error) {
475 *ret = -io_u->error;
476 clear_io_u(td, io_u);
477 } else if (io_u->resid) {
478 int bytes = io_u->xfer_buflen - io_u->resid;
479 struct fio_file *f = io_u->file;
480
481 if (bytes_issued)
482 *bytes_issued += bytes;
483
484 if (!from_verify)
485 trim_io_piece(td, io_u);
486
487 /*
488 * zero read, fail
489 */
490 if (!bytes) {
491 if (!from_verify)
492 unlog_io_piece(td, io_u);
493 td_verror(td, EIO, "full resid");
494 put_io_u(td, io_u);
495 break;
496 }
497
498 io_u->xfer_buflen = io_u->resid;
499 io_u->xfer_buf += bytes;
500 io_u->offset += bytes;
501
502 if (ddir_rw(io_u->ddir))
503 td->ts.short_io_u[io_u->ddir]++;
504
505 f = io_u->file;
506 if (io_u->offset == f->real_file_size)
507 goto sync_done;
508
509 requeue_io_u(td, &io_u);
510 } else {
511sync_done:
512 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
513 __should_check_rate(td, DDIR_WRITE) ||
514 __should_check_rate(td, DDIR_TRIM)))
515 fio_gettime(comp_time, NULL);
516
517 *ret = io_u_sync_complete(td, io_u);
518 if (*ret < 0)
519 break;
520 }
521 return 0;
522 case FIO_Q_QUEUED:
523 /*
524 * if the engine doesn't have a commit hook,
525 * the io_u is really queued. if it does have such
526 * a hook, it has to call io_u_queued() itself.
527 */
528 if (td->io_ops->commit == NULL)
529 io_u_queued(td, io_u);
530 if (bytes_issued)
531 *bytes_issued += io_u->xfer_buflen;
532 break;
533 case FIO_Q_BUSY:
534 if (!from_verify)
535 unlog_io_piece(td, io_u);
536 requeue_io_u(td, &io_u);
537 ret2 = td_io_commit(td);
538 if (ret2 < 0)
539 *ret = ret2;
540 break;
541 default:
542 assert(ret < 0);
543 td_verror(td, -(*ret), "td_io_queue");
544 break;
545 }
546
547 if (break_on_this_error(td, ddir, ret))
548 return 1;
549
550 return 0;
551}
552
553/*
554 * The main verify engine. Runs over the writes we previously submitted,
555 * reads the blocks back in, and checks the crc/md5 of the data.
556 */
557static void do_verify(struct thread_data *td, uint64_t verify_bytes)
558{
559 struct fio_file *f;
560 struct io_u *io_u;
561 int ret, min_events;
562 unsigned int i;
563
564 dprint(FD_VERIFY, "starting loop\n");
565
566 /*
567 * sync io first and invalidate cache, to make sure we really
568 * read from disk.
569 */
570 for_each_file(td, f, i) {
571 if (!fio_file_open(f))
572 continue;
573 if (fio_io_sync(td, f))
574 break;
575 if (file_invalidate_cache(td, f))
576 break;
577 }
578
579 check_update_rusage(td);
580
581 if (td->error)
582 return;
583
584 td_set_runstate(td, TD_VERIFYING);
585
586 io_u = NULL;
587 while (!td->terminate) {
588 enum fio_ddir ddir;
589 int full;
590
591 update_tv_cache(td);
592 check_update_rusage(td);
593
594 if (runtime_exceeded(td, &td->tv_cache)) {
595 __update_tv_cache(td);
596 if (runtime_exceeded(td, &td->tv_cache)) {
597 fio_mark_td_terminate(td);
598 break;
599 }
600 }
601
602 if (flow_threshold_exceeded(td))
603 continue;
604
605 if (!td->o.experimental_verify) {
606 io_u = __get_io_u(td);
607 if (!io_u)
608 break;
609
610 if (get_next_verify(td, io_u)) {
611 put_io_u(td, io_u);
612 break;
613 }
614
615 if (td_io_prep(td, io_u)) {
616 put_io_u(td, io_u);
617 break;
618 }
619 } else {
620 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
621 break;
622
623 while ((io_u = get_io_u(td)) != NULL) {
624 if (IS_ERR(io_u)) {
625 io_u = NULL;
626 ret = FIO_Q_BUSY;
627 goto reap;
628 }
629
630 /*
631 * We are only interested in the places where
632 * we wrote or trimmed IOs. Turn those into
633 * reads for verification purposes.
634 */
635 if (io_u->ddir == DDIR_READ) {
636 /*
637 * Pretend we issued it for rwmix
638 * accounting
639 */
640 td->io_issues[DDIR_READ]++;
641 put_io_u(td, io_u);
642 continue;
643 } else if (io_u->ddir == DDIR_TRIM) {
644 io_u->ddir = DDIR_READ;
645 io_u_set(io_u, IO_U_F_TRIMMED);
646 break;
647 } else if (io_u->ddir == DDIR_WRITE) {
648 io_u->ddir = DDIR_READ;
649 break;
650 } else {
651 put_io_u(td, io_u);
652 continue;
653 }
654 }
655
656 if (!io_u)
657 break;
658 }
659
660 if (verify_state_should_stop(td, io_u)) {
661 put_io_u(td, io_u);
662 break;
663 }
664
665 if (td->o.verify_async)
666 io_u->end_io = verify_io_u_async;
667 else
668 io_u->end_io = verify_io_u;
669
670 ddir = io_u->ddir;
671 if (!td->o.disable_slat)
672 fio_gettime(&io_u->start_time, NULL);
673
674 ret = td_io_queue(td, io_u);
675
676 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
677 break;
678
679 /*
680 * if we can queue more, do so. but check if there are
681 * completed io_u's first. Note that we can get BUSY even
682 * without IO queued, if the system is resource starved.
683 */
684reap:
685 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
686 if (full || !td->o.iodepth_batch_complete)
687 ret = wait_for_completions(td, NULL);
688
689 if (ret < 0)
690 break;
691 }
692
693 check_update_rusage(td);
694
695 if (!td->error) {
696 min_events = td->cur_depth;
697
698 if (min_events)
699 ret = io_u_queued_complete(td, min_events);
700 } else
701 cleanup_pending_aio(td);
702
703 td_set_runstate(td, TD_RUNNING);
704
705 dprint(FD_VERIFY, "exiting loop\n");
706}
707
708static unsigned int exceeds_number_ios(struct thread_data *td)
709{
710 unsigned long long number_ios;
711
712 if (!td->o.number_ios)
713 return 0;
714
715 number_ios = ddir_rw_sum(td->io_blocks);
716 number_ios += td->io_u_queued + td->io_u_in_flight;
717
718 return number_ios >= (td->o.number_ios * td->loops);
719}
720
721static int io_issue_bytes_exceeded(struct thread_data *td)
722{
723 unsigned long long bytes, limit;
724
725 if (td_rw(td))
726 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
727 else if (td_write(td))
728 bytes = td->io_issue_bytes[DDIR_WRITE];
729 else if (td_read(td))
730 bytes = td->io_issue_bytes[DDIR_READ];
731 else
732 bytes = td->io_issue_bytes[DDIR_TRIM];
733
734 if (td->o.io_limit)
735 limit = td->o.io_limit;
736 else
737 limit = td->o.size;
738
739 limit *= td->loops;
740 return bytes >= limit || exceeds_number_ios(td);
741}
742
743static int io_complete_bytes_exceeded(struct thread_data *td)
744{
745 unsigned long long bytes, limit;
746
747 if (td_rw(td))
748 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
749 else if (td_write(td))
750 bytes = td->this_io_bytes[DDIR_WRITE];
751 else if (td_read(td))
752 bytes = td->this_io_bytes[DDIR_READ];
753 else
754 bytes = td->this_io_bytes[DDIR_TRIM];
755
756 if (td->o.io_limit)
757 limit = td->o.io_limit;
758 else
759 limit = td->o.size;
760
761 limit *= td->loops;
762 return bytes >= limit || exceeds_number_ios(td);
763}
764
765/*
766 * Main IO worker function. It retrieves io_u's to process and queues
767 * and reaps them, checking for rate and errors along the way.
768 *
769 * Returns number of bytes written and trimmed.
770 */
771static uint64_t do_io(struct thread_data *td)
772{
773 unsigned int i;
774 int ret = 0;
775 uint64_t total_bytes, bytes_issued = 0;
776
777 if (in_ramp_time(td))
778 td_set_runstate(td, TD_RAMP);
779 else
780 td_set_runstate(td, TD_RUNNING);
781
782 lat_target_init(td);
783
784 total_bytes = td->o.size;
785 /*
786 * Allow random overwrite workloads to write up to io_limit
787 * before starting verification phase as 'size' doesn't apply.
788 */
789 if (td_write(td) && td_random(td) && td->o.norandommap)
790 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
791 /*
792 * If verify_backlog is enabled, we'll run the verify in this
793 * handler as well. For that case, we may need up to twice the
794 * amount of bytes.
795 */
796 if (td->o.verify != VERIFY_NONE &&
797 (td_write(td) && td->o.verify_backlog))
798 total_bytes += td->o.size;
799
800 /* In trimwrite mode, each byte is trimmed and then written, so
801 * allow total_bytes to be twice as big */
802 if (td_trimwrite(td))
803 total_bytes += td->total_io_size;
804
805 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
806 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
807 td->o.time_based) {
808 struct timeval comp_time;
809 struct io_u *io_u;
810 int full;
811 enum fio_ddir ddir;
812
813 check_update_rusage(td);
814
815 if (td->terminate || td->done)
816 break;
817
818 update_tv_cache(td);
819
820 if (runtime_exceeded(td, &td->tv_cache)) {
821 __update_tv_cache(td);
822 if (runtime_exceeded(td, &td->tv_cache)) {
823 fio_mark_td_terminate(td);
824 break;
825 }
826 }
827
828 if (flow_threshold_exceeded(td))
829 continue;
830
831 if (bytes_issued >= total_bytes)
832 break;
833
834 io_u = get_io_u(td);
835 if (IS_ERR_OR_NULL(io_u)) {
836 int err = PTR_ERR(io_u);
837
838 io_u = NULL;
839 if (err == -EBUSY) {
840 ret = FIO_Q_BUSY;
841 goto reap;
842 }
843 if (td->o.latency_target)
844 goto reap;
845 break;
846 }
847
848 ddir = io_u->ddir;
849
850 /*
851 * Add verification end_io handler if:
852 * - Asked to verify (!td_rw(td))
853 * - Or the io_u is from our verify list (mixed write/ver)
854 */
855 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
856 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
857
858 if (!td->o.verify_pattern_bytes) {
859 io_u->rand_seed = __rand(&td->verify_state);
860 if (sizeof(int) != sizeof(long *))
861 io_u->rand_seed *= __rand(&td->verify_state);
862 }
863
864 if (verify_state_should_stop(td, io_u)) {
865 put_io_u(td, io_u);
866 break;
867 }
868
869 if (td->o.verify_async)
870 io_u->end_io = verify_io_u_async;
871 else
872 io_u->end_io = verify_io_u;
873 td_set_runstate(td, TD_VERIFYING);
874 } else if (in_ramp_time(td))
875 td_set_runstate(td, TD_RAMP);
876 else
877 td_set_runstate(td, TD_RUNNING);
878
879 /*
880 * Always log IO before it's issued, so we know the specific
881 * order of it. The logged unit will track when the IO has
882 * completed.
883 */
884 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
885 td->o.do_verify &&
886 td->o.verify != VERIFY_NONE &&
887 !td->o.experimental_verify)
888 log_io_piece(td, io_u);
889
890 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
891 if (td->error)
892 break;
893 ret = workqueue_enqueue(&td->io_wq, io_u);
894 } else {
895 ret = td_io_queue(td, io_u);
896
897 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
898 break;
899
900 /*
901 * See if we need to complete some commands. Note that
902 * we can get BUSY even without IO queued, if the
903 * system is resource starved.
904 */
905reap:
906 full = queue_full(td) ||
907 (ret == FIO_Q_BUSY && td->cur_depth);
908 if (full || !td->o.iodepth_batch_complete)
909 ret = wait_for_completions(td, &comp_time);
910 }
911 if (ret < 0)
912 break;
913 if (!ddir_rw_sum(td->bytes_done) &&
914 !(td->io_ops->flags & FIO_NOIO))
915 continue;
916
917 if (!in_ramp_time(td) && should_check_rate(td)) {
918 if (check_min_rate(td, &comp_time)) {
919 if (exitall_on_terminate)
920 fio_terminate_threads(td->groupid);
921 td_verror(td, EIO, "check_min_rate");
922 break;
923 }
924 }
925 if (!in_ramp_time(td) && td->o.latency_target)
926 lat_target_check(td);
927
928 if (td->o.thinktime) {
929 unsigned long long b;
930
931 b = ddir_rw_sum(td->io_blocks);
932 if (!(b % td->o.thinktime_blocks)) {
933 int left;
934
935 io_u_quiesce(td);
936
937 if (td->o.thinktime_spin)
938 usec_spin(td->o.thinktime_spin);
939
940 left = td->o.thinktime - td->o.thinktime_spin;
941 if (left)
942 usec_sleep(td, left);
943 }
944 }
945 }
946
947 check_update_rusage(td);
948
949 if (td->trim_entries)
950 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
951
952 if (td->o.fill_device && td->error == ENOSPC) {
953 td->error = 0;
954 fio_mark_td_terminate(td);
955 }
956 if (!td->error) {
957 struct fio_file *f;
958
959 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
960 workqueue_flush(&td->io_wq);
961 i = 0;
962 } else
963 i = td->cur_depth;
964
965 if (i) {
966 ret = io_u_queued_complete(td, i);
967 if (td->o.fill_device && td->error == ENOSPC)
968 td->error = 0;
969 }
970
971 if (should_fsync(td) && td->o.end_fsync) {
972 td_set_runstate(td, TD_FSYNCING);
973
974 for_each_file(td, f, i) {
975 if (!fio_file_fsync(td, f))
976 continue;
977
978 log_err("fio: end_fsync failed for file %s\n",
979 f->file_name);
980 }
981 }
982 } else
983 cleanup_pending_aio(td);
984
985 /*
986 * stop job if we failed doing any IO
987 */
988 if (!ddir_rw_sum(td->this_io_bytes))
989 td->done = 1;
990
991 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
992}
993
994static void cleanup_io_u(struct thread_data *td)
995{
996 struct io_u *io_u;
997
998 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
999
1000 if (td->io_ops->io_u_free)
1001 td->io_ops->io_u_free(td, io_u);
1002
1003 fio_memfree(io_u, sizeof(*io_u));
1004 }
1005
1006 free_io_mem(td);
1007
1008 io_u_rexit(&td->io_u_requeues);
1009 io_u_qexit(&td->io_u_freelist);
1010 io_u_qexit(&td->io_u_all);
1011
1012 if (td->last_write_comp)
1013 sfree(td->last_write_comp);
1014}
1015
1016static int init_io_u(struct thread_data *td)
1017{
1018 struct io_u *io_u;
1019 unsigned int max_bs, min_write;
1020 int cl_align, i, max_units;
1021 int data_xfer = 1, err;
1022 char *p;
1023
1024 max_units = td->o.iodepth;
1025 max_bs = td_max_bs(td);
1026 min_write = td->o.min_bs[DDIR_WRITE];
1027 td->orig_buffer_size = (unsigned long long) max_bs
1028 * (unsigned long long) max_units;
1029
1030 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1031 data_xfer = 0;
1032
1033 err = 0;
1034 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1035 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1036 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1037
1038 if (err) {
1039 log_err("fio: failed setting up IO queues\n");
1040 return 1;
1041 }
1042
1043 /*
1044 * if we may later need to do address alignment, then add any
1045 * possible adjustment here so that we don't cause a buffer
1046 * overflow later. this adjustment may be too much if we get
1047 * lucky and the allocator gives us an aligned address.
1048 */
1049 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1050 (td->io_ops->flags & FIO_RAWIO))
1051 td->orig_buffer_size += page_mask + td->o.mem_align;
1052
1053 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1054 unsigned long bs;
1055
1056 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1057 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1058 }
1059
1060 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1061 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1062 return 1;
1063 }
1064
1065 if (data_xfer && allocate_io_mem(td))
1066 return 1;
1067
1068 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1069 (td->io_ops->flags & FIO_RAWIO))
1070 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1071 else
1072 p = td->orig_buffer;
1073
1074 cl_align = os_cache_line_size();
1075
1076 for (i = 0; i < max_units; i++) {
1077 void *ptr;
1078
1079 if (td->terminate)
1080 return 1;
1081
1082 ptr = fio_memalign(cl_align, sizeof(*io_u));
1083 if (!ptr) {
1084 log_err("fio: unable to allocate aligned memory\n");
1085 break;
1086 }
1087
1088 io_u = ptr;
1089 memset(io_u, 0, sizeof(*io_u));
1090 INIT_FLIST_HEAD(&io_u->verify_list);
1091 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1092
1093 if (data_xfer) {
1094 io_u->buf = p;
1095 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1096
1097 if (td_write(td))
1098 io_u_fill_buffer(td, io_u, min_write, max_bs);
1099 if (td_write(td) && td->o.verify_pattern_bytes) {
1100 /*
1101 * Fill the buffer with the pattern if we are
1102 * going to be doing writes.
1103 */
1104 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1105 }
1106 }
1107
1108 io_u->index = i;
1109 io_u->flags = IO_U_F_FREE;
1110 io_u_qpush(&td->io_u_freelist, io_u);
1111
1112 /*
1113 * io_u never leaves this stack, used for iteration of all
1114 * io_u buffers.
1115 */
1116 io_u_qpush(&td->io_u_all, io_u);
1117
1118 if (td->io_ops->io_u_init) {
1119 int ret = td->io_ops->io_u_init(td, io_u);
1120
1121 if (ret) {
1122 log_err("fio: failed to init engine data: %d\n", ret);
1123 return 1;
1124 }
1125 }
1126
1127 p += max_bs;
1128 }
1129
1130 if (td->o.verify != VERIFY_NONE) {
1131 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1132 if (!td->last_write_comp) {
1133 log_err("fio: failed to alloc write comp data\n");
1134 return 1;
1135 }
1136 }
1137
1138 return 0;
1139}
1140
1141static int switch_ioscheduler(struct thread_data *td)
1142{
1143 char tmp[256], tmp2[128];
1144 FILE *f;
1145 int ret;
1146
1147 if (td->io_ops->flags & FIO_DISKLESSIO)
1148 return 0;
1149
1150 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1151
1152 f = fopen(tmp, "r+");
1153 if (!f) {
1154 if (errno == ENOENT) {
1155 log_err("fio: os or kernel doesn't support IO scheduler"
1156 " switching\n");
1157 return 0;
1158 }
1159 td_verror(td, errno, "fopen iosched");
1160 return 1;
1161 }
1162
1163 /*
1164 * Set io scheduler.
1165 */
1166 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1167 if (ferror(f) || ret != 1) {
1168 td_verror(td, errno, "fwrite");
1169 fclose(f);
1170 return 1;
1171 }
1172
1173 rewind(f);
1174
1175 /*
1176 * Read back and check that the selected scheduler is now the default.
1177 */
1178 memset(tmp, 0, sizeof(tmp));
1179 ret = fread(tmp, sizeof(tmp), 1, f);
1180 if (ferror(f) || ret < 0) {
1181 td_verror(td, errno, "fread");
1182 fclose(f);
1183 return 1;
1184 }
1185 /*
1186 * either a list of io schedulers or "none\n" is expected.
1187 */
1188 tmp[strlen(tmp) - 1] = '\0';
1189
1190
1191 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1192 if (!strstr(tmp, tmp2)) {
1193 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1194 td_verror(td, EINVAL, "iosched_switch");
1195 fclose(f);
1196 return 1;
1197 }
1198
1199 fclose(f);
1200 return 0;
1201}
1202
1203static int keep_running(struct thread_data *td)
1204{
1205 unsigned long long limit;
1206
1207 if (td->done)
1208 return 0;
1209 if (td->o.time_based)
1210 return 1;
1211 if (td->o.loops) {
1212 td->o.loops--;
1213 return 1;
1214 }
1215 if (exceeds_number_ios(td))
1216 return 0;
1217
1218 if (td->o.io_limit)
1219 limit = td->o.io_limit;
1220 else
1221 limit = td->o.size;
1222
1223 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1224 uint64_t diff;
1225
1226 /*
1227 * If the difference is less than the minimum IO size, we
1228 * are done.
1229 */
1230 diff = limit - ddir_rw_sum(td->io_bytes);
1231 if (diff < td_max_bs(td))
1232 return 0;
1233
1234 if (fio_files_done(td))
1235 return 0;
1236
1237 return 1;
1238 }
1239
1240 return 0;
1241}
1242
1243static int exec_string(struct thread_options *o, const char *string, const char *mode)
1244{
1245 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1246 int ret;
1247 char *str;
1248
1249 str = malloc(newlen);
1250 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1251
1252 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1253 ret = system(str);
1254 if (ret == -1)
1255 log_err("fio: exec of cmd <%s> failed\n", str);
1256
1257 free(str);
1258 return ret;
1259}
1260
1261/*
1262 * Dry run to compute correct state of numberio for verification.
1263 */
1264static uint64_t do_dry_run(struct thread_data *td)
1265{
1266 td_set_runstate(td, TD_RUNNING);
1267
1268 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1269 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1270 struct io_u *io_u;
1271 int ret;
1272
1273 if (td->terminate || td->done)
1274 break;
1275
1276 io_u = get_io_u(td);
1277 if (!io_u)
1278 break;
1279
1280 io_u_set(io_u, IO_U_F_FLIGHT);
1281 io_u->error = 0;
1282 io_u->resid = 0;
1283 if (ddir_rw(acct_ddir(io_u)))
1284 td->io_issues[acct_ddir(io_u)]++;
1285 if (ddir_rw(io_u->ddir)) {
1286 io_u_mark_depth(td, 1);
1287 td->ts.total_io_u[io_u->ddir]++;
1288 }
1289
1290 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1291 td->o.do_verify &&
1292 td->o.verify != VERIFY_NONE &&
1293 !td->o.experimental_verify)
1294 log_io_piece(td, io_u);
1295
1296 ret = io_u_sync_complete(td, io_u);
1297 (void) ret;
1298 }
1299
1300 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1301}
1302
1303static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1304{
1305 const enum fio_ddir ddir = io_u->ddir;
1306 int ret;
1307
1308 dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1309
1310 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1311
1312 td->cur_depth++;
1313
1314 ret = td_io_queue(td, io_u);
1315
1316 dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1317
1318 io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1319
1320 if (ret == FIO_Q_QUEUED)
1321 ret = io_u_queued_complete(td, 1);
1322
1323 td->cur_depth--;
1324}
1325
1326/*
1327 * Entry point for the thread based jobs. The process based jobs end up
1328 * here as well, after a little setup.
1329 */
1330static void *thread_main(void *data)
1331{
1332 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1333 struct thread_data *td = data;
1334 struct thread_options *o = &td->o;
1335 pthread_condattr_t attr;
1336 int clear_state;
1337 int ret;
1338
1339 if (!o->use_thread) {
1340 setsid();
1341 td->pid = getpid();
1342 } else
1343 td->pid = gettid();
1344
1345 fio_local_clock_init(o->use_thread);
1346
1347 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1348
1349 if (is_backend)
1350 fio_server_send_start(td);
1351
1352 INIT_FLIST_HEAD(&td->io_log_list);
1353 INIT_FLIST_HEAD(&td->io_hist_list);
1354 INIT_FLIST_HEAD(&td->verify_list);
1355 INIT_FLIST_HEAD(&td->trim_list);
1356 INIT_FLIST_HEAD(&td->next_rand_list);
1357 pthread_mutex_init(&td->io_u_lock, NULL);
1358 td->io_hist_tree = RB_ROOT;
1359
1360 pthread_condattr_init(&attr);
1361 pthread_cond_init(&td->verify_cond, &attr);
1362 pthread_cond_init(&td->free_cond, &attr);
1363
1364 td_set_runstate(td, TD_INITIALIZED);
1365 dprint(FD_MUTEX, "up startup_mutex\n");
1366 fio_mutex_up(startup_mutex);
1367 dprint(FD_MUTEX, "wait on td->mutex\n");
1368 fio_mutex_down(td->mutex);
1369 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1370
1371 /*
1372 * A new gid requires privilege, so we need to do this before setting
1373 * the uid.
1374 */
1375 if (o->gid != -1U && setgid(o->gid)) {
1376 td_verror(td, errno, "setgid");
1377 goto err;
1378 }
1379 if (o->uid != -1U && setuid(o->uid)) {
1380 td_verror(td, errno, "setuid");
1381 goto err;
1382 }
1383
1384 /*
1385 * If we have a gettimeofday() thread, make sure we exclude that
1386 * thread from this job
1387 */
1388 if (o->gtod_cpu)
1389 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1390
1391 /*
1392 * Set affinity first, in case it has an impact on the memory
1393 * allocations.
1394 */
1395 if (fio_option_is_set(o, cpumask)) {
1396 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1397 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1398 if (!ret) {
1399 log_err("fio: no CPUs set\n");
1400 log_err("fio: Try increasing number of available CPUs\n");
1401 td_verror(td, EINVAL, "cpus_split");
1402 goto err;
1403 }
1404 }
1405 ret = fio_setaffinity(td->pid, o->cpumask);
1406 if (ret == -1) {
1407 td_verror(td, errno, "cpu_set_affinity");
1408 goto err;
1409 }
1410 }
1411
1412#ifdef CONFIG_LIBNUMA
1413 /* numa node setup */
1414 if (fio_option_is_set(o, numa_cpunodes) ||
1415 fio_option_is_set(o, numa_memnodes)) {
1416 struct bitmask *mask;
1417
1418 if (numa_available() < 0) {
1419 td_verror(td, errno, "Does not support NUMA API\n");
1420 goto err;
1421 }
1422
1423 if (fio_option_is_set(o, numa_cpunodes)) {
1424 mask = numa_parse_nodestring(o->numa_cpunodes);
1425 ret = numa_run_on_node_mask(mask);
1426 numa_free_nodemask(mask);
1427 if (ret == -1) {
1428 td_verror(td, errno, \
1429 "numa_run_on_node_mask failed\n");
1430 goto err;
1431 }
1432 }
1433
1434 if (fio_option_is_set(o, numa_memnodes)) {
1435 mask = NULL;
1436 if (o->numa_memnodes)
1437 mask = numa_parse_nodestring(o->numa_memnodes);
1438
1439 switch (o->numa_mem_mode) {
1440 case MPOL_INTERLEAVE:
1441 numa_set_interleave_mask(mask);
1442 break;
1443 case MPOL_BIND:
1444 numa_set_membind(mask);
1445 break;
1446 case MPOL_LOCAL:
1447 numa_set_localalloc();
1448 break;
1449 case MPOL_PREFERRED:
1450 numa_set_preferred(o->numa_mem_prefer_node);
1451 break;
1452 case MPOL_DEFAULT:
1453 default:
1454 break;
1455 }
1456
1457 if (mask)
1458 numa_free_nodemask(mask);
1459
1460 }
1461 }
1462#endif
1463
1464 if (fio_pin_memory(td))
1465 goto err;
1466
1467 /*
1468 * May alter parameters that init_io_u() will use, so we need to
1469 * do this first.
1470 */
1471 if (init_iolog(td))
1472 goto err;
1473
1474 if (init_io_u(td))
1475 goto err;
1476
1477 if (o->verify_async && verify_async_init(td))
1478 goto err;
1479
1480 if (fio_option_is_set(o, ioprio) ||
1481 fio_option_is_set(o, ioprio_class)) {
1482 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1483 if (ret == -1) {
1484 td_verror(td, errno, "ioprio_set");
1485 goto err;
1486 }
1487 }
1488
1489 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1490 goto err;
1491
1492 errno = 0;
1493 if (nice(o->nice) == -1 && errno != 0) {
1494 td_verror(td, errno, "nice");
1495 goto err;
1496 }
1497
1498 if (o->ioscheduler && switch_ioscheduler(td))
1499 goto err;
1500
1501 if (!o->create_serialize && setup_files(td))
1502 goto err;
1503
1504 if (td_io_init(td))
1505 goto err;
1506
1507 if (init_random_map(td))
1508 goto err;
1509
1510 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1511 goto err;
1512
1513 if (o->pre_read) {
1514 if (pre_read_files(td) < 0)
1515 goto err;
1516 }
1517
1518 if (td->flags & TD_F_COMPRESS_LOG)
1519 tp_init(&td->tp_data);
1520
1521 fio_verify_init(td);
1522
1523 if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1524 workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1525 goto err;
1526
1527 fio_gettime(&td->epoch, NULL);
1528 fio_getrusage(&td->ru_start);
1529 clear_state = 0;
1530 while (keep_running(td)) {
1531 uint64_t verify_bytes;
1532
1533 fio_gettime(&td->start, NULL);
1534 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1535 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1536 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1537
1538 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1539 o->ratemin[DDIR_TRIM]) {
1540 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1541 sizeof(td->bw_sample_time));
1542 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1543 sizeof(td->bw_sample_time));
1544 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1545 sizeof(td->bw_sample_time));
1546 }
1547
1548 if (clear_state)
1549 clear_io_state(td);
1550
1551 prune_io_piece_log(td);
1552
1553 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1554 verify_bytes = do_dry_run(td);
1555 else
1556 verify_bytes = do_io(td);
1557
1558 clear_state = 1;
1559
1560 /*
1561 * Make sure we've successfully updated the rusage stats
1562 * before waiting on the stat mutex. Otherwise we could have
1563 * the stat thread holding stat mutex and waiting for
1564 * the rusage_sem, which would never get upped because
1565 * this thread is waiting for the stat mutex.
1566 */
1567 check_update_rusage(td);
1568
1569 fio_mutex_down(stat_mutex);
1570 if (td_read(td) && td->io_bytes[DDIR_READ])
1571 update_runtime(td, elapsed_us, DDIR_READ);
1572 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1573 update_runtime(td, elapsed_us, DDIR_WRITE);
1574 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1575 update_runtime(td, elapsed_us, DDIR_TRIM);
1576 fio_gettime(&td->start, NULL);
1577 fio_mutex_up(stat_mutex);
1578
1579 if (td->error || td->terminate)
1580 break;
1581
1582 if (!o->do_verify ||
1583 o->verify == VERIFY_NONE ||
1584 (td->io_ops->flags & FIO_UNIDIR))
1585 continue;
1586
1587 clear_io_state(td);
1588
1589 fio_gettime(&td->start, NULL);
1590
1591 do_verify(td, verify_bytes);
1592
1593 /*
1594 * See comment further up for why this is done here.
1595 */
1596 check_update_rusage(td);
1597
1598 fio_mutex_down(stat_mutex);
1599 update_runtime(td, elapsed_us, DDIR_READ);
1600 fio_gettime(&td->start, NULL);
1601 fio_mutex_up(stat_mutex);
1602
1603 if (td->error || td->terminate)
1604 break;
1605 }
1606
1607 update_rusage_stat(td);
1608 td->ts.total_run_time = mtime_since_now(&td->epoch);
1609 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1610 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1611 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1612
1613 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1614 (td->o.verify != VERIFY_NONE && td_write(td))) {
1615 struct all_io_list *state;
1616 size_t sz;
1617
1618 state = get_all_io_list(td->thread_number, &sz);
1619 if (state) {
1620 __verify_save_state(state, "local");
1621 free(state);
1622 }
1623 }
1624
1625 fio_unpin_memory(td);
1626
1627 fio_writeout_logs(td);
1628
1629 if (o->io_submit_mode == IO_MODE_OFFLOAD)
1630 workqueue_exit(&td->io_wq);
1631
1632 if (td->flags & TD_F_COMPRESS_LOG)
1633 tp_exit(&td->tp_data);
1634
1635 if (o->exec_postrun)
1636 exec_string(o, o->exec_postrun, (const char *)"postrun");
1637
1638 if (exitall_on_terminate)
1639 fio_terminate_threads(td->groupid);
1640
1641err:
1642 if (td->error)
1643 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1644 td->verror);
1645
1646 if (o->verify_async)
1647 verify_async_exit(td);
1648
1649 close_and_free_files(td);
1650 cleanup_io_u(td);
1651 close_ioengine(td);
1652 cgroup_shutdown(td, &cgroup_mnt);
1653 verify_free_state(td);
1654
1655 if (fio_option_is_set(o, cpumask)) {
1656 ret = fio_cpuset_exit(&o->cpumask);
1657 if (ret)
1658 td_verror(td, ret, "fio_cpuset_exit");
1659 }
1660
1661 /*
1662 * do this very late, it will log file closing as well
1663 */
1664 if (o->write_iolog_file)
1665 write_iolog_close(td);
1666
1667 fio_mutex_remove(td->mutex);
1668 td->mutex = NULL;
1669
1670 td_set_runstate(td, TD_EXITED);
1671
1672 /*
1673 * Do this last after setting our runstate to exited, so we
1674 * know that the stat thread is signaled.
1675 */
1676 check_update_rusage(td);
1677
1678 return (void *) (uintptr_t) td->error;
1679}
1680
1681
1682/*
1683 * We cannot pass the td data into a forked process, so attach the td and
1684 * pass it to the thread worker.
1685 */
1686static int fork_main(int shmid, int offset)
1687{
1688 struct thread_data *td;
1689 void *data, *ret;
1690
1691#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1692 data = shmat(shmid, NULL, 0);
1693 if (data == (void *) -1) {
1694 int __err = errno;
1695
1696 perror("shmat");
1697 return __err;
1698 }
1699#else
1700 /*
1701 * HP-UX inherits shm mappings?
1702 */
1703 data = threads;
1704#endif
1705
1706 td = data + offset * sizeof(struct thread_data);
1707 ret = thread_main(td);
1708 shmdt(data);
1709 return (int) (uintptr_t) ret;
1710}
1711
1712static void dump_td_info(struct thread_data *td)
1713{
1714 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1715 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1716 (unsigned long) time_since_now(&td->terminate_time));
1717}
1718
1719/*
1720 * Run over the job map and reap the threads that have exited, if any.
1721 */
1722static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1723 unsigned int *m_rate)
1724{
1725 struct thread_data *td;
1726 unsigned int cputhreads, realthreads, pending;
1727 int i, status, ret;
1728
1729 /*
1730 * reap exited threads (TD_EXITED -> TD_REAPED)
1731 */
1732 realthreads = pending = cputhreads = 0;
1733 for_each_td(td, i) {
1734 int flags = 0;
1735
1736 /*
1737 * ->io_ops is NULL for a thread that has closed its
1738 * io engine
1739 */
1740 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1741 cputhreads++;
1742 else
1743 realthreads++;
1744
1745 if (!td->pid) {
1746 pending++;
1747 continue;
1748 }
1749 if (td->runstate == TD_REAPED)
1750 continue;
1751 if (td->o.use_thread) {
1752 if (td->runstate == TD_EXITED) {
1753 td_set_runstate(td, TD_REAPED);
1754 goto reaped;
1755 }
1756 continue;
1757 }
1758
1759 flags = WNOHANG;
1760 if (td->runstate == TD_EXITED)
1761 flags = 0;
1762
1763 /*
1764 * check if someone quit or got killed in an unusual way
1765 */
1766 ret = waitpid(td->pid, &status, flags);
1767 if (ret < 0) {
1768 if (errno == ECHILD) {
1769 log_err("fio: pid=%d disappeared %d\n",
1770 (int) td->pid, td->runstate);
1771 td->sig = ECHILD;
1772 td_set_runstate(td, TD_REAPED);
1773 goto reaped;
1774 }
1775 perror("waitpid");
1776 } else if (ret == td->pid) {
1777 if (WIFSIGNALED(status)) {
1778 int sig = WTERMSIG(status);
1779
1780 if (sig != SIGTERM && sig != SIGUSR2)
1781 log_err("fio: pid=%d, got signal=%d\n",
1782 (int) td->pid, sig);
1783 td->sig = sig;
1784 td_set_runstate(td, TD_REAPED);
1785 goto reaped;
1786 }
1787 if (WIFEXITED(status)) {
1788 if (WEXITSTATUS(status) && !td->error)
1789 td->error = WEXITSTATUS(status);
1790
1791 td_set_runstate(td, TD_REAPED);
1792 goto reaped;
1793 }
1794 }
1795
1796 /*
1797 * If the job is stuck, do a forceful timeout of it and
1798 * move on.
1799 */
1800 if (td->terminate &&
1801 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1802 dump_td_info(td);
1803 td_set_runstate(td, TD_REAPED);
1804 goto reaped;
1805 }
1806
1807 /*
1808 * thread is not dead, continue
1809 */
1810 pending++;
1811 continue;
1812reaped:
1813 (*nr_running)--;
1814 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1815 (*t_rate) -= ddir_rw_sum(td->o.rate);
1816 if (!td->pid)
1817 pending--;
1818
1819 if (td->error)
1820 exit_value++;
1821
1822 done_secs += mtime_since_now(&td->epoch) / 1000;
1823 profile_td_exit(td);
1824 }
1825
1826 if (*nr_running == cputhreads && !pending && realthreads)
1827 fio_terminate_threads(TERMINATE_ALL);
1828}
1829
1830static int __check_trigger_file(void)
1831{
1832 struct stat sb;
1833
1834 if (!trigger_file)
1835 return 0;
1836
1837 if (stat(trigger_file, &sb))
1838 return 0;
1839
1840 if (unlink(trigger_file) < 0)
1841 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1842 strerror(errno));
1843
1844 return 1;
1845}
1846
1847static int trigger_timedout(void)
1848{
1849 if (trigger_timeout)
1850 return time_since_genesis() >= trigger_timeout;
1851
1852 return 0;
1853}
1854
1855void exec_trigger(const char *cmd)
1856{
1857 int ret;
1858
1859 if (!cmd)
1860 return;
1861
1862 ret = system(cmd);
1863 if (ret == -1)
1864 log_err("fio: failed executing %s trigger\n", cmd);
1865}
1866
1867void check_trigger_file(void)
1868{
1869 if (__check_trigger_file() || trigger_timedout()) {
1870 if (nr_clients)
1871 fio_clients_send_trigger(trigger_remote_cmd);
1872 else {
1873 verify_save_state();
1874 fio_terminate_threads(TERMINATE_ALL);
1875 exec_trigger(trigger_cmd);
1876 }
1877 }
1878}
1879
1880static int fio_verify_load_state(struct thread_data *td)
1881{
1882 int ret;
1883
1884 if (!td->o.verify_state)
1885 return 0;
1886
1887 if (is_backend) {
1888 void *data;
1889 int ver;
1890
1891 ret = fio_server_get_verify_state(td->o.name,
1892 td->thread_number - 1, &data, &ver);
1893 if (!ret)
1894 verify_convert_assign_state(td, data, ver);
1895 } else
1896 ret = verify_load_state(td, "local");
1897
1898 return ret;
1899}
1900
1901static void do_usleep(unsigned int usecs)
1902{
1903 check_for_running_stats();
1904 check_trigger_file();
1905 usleep(usecs);
1906}
1907
1908static int check_mount_writes(struct thread_data *td)
1909{
1910 struct fio_file *f;
1911 unsigned int i;
1912
1913 if (!td_write(td) || td->o.allow_mounted_write)
1914 return 0;
1915
1916 for_each_file(td, f, i) {
1917 if (f->filetype != FIO_TYPE_BD)
1918 continue;
1919 if (device_is_mounted(f->file_name))
1920 goto mounted;
1921 }
1922
1923 return 0;
1924mounted:
1925 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1926 return 1;
1927}
1928
1929/*
1930 * Main function for kicking off and reaping jobs, as needed.
1931 */
1932static void run_threads(void)
1933{
1934 struct thread_data *td;
1935 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1936 uint64_t spent;
1937
1938 if (fio_gtod_offload && fio_start_gtod_thread())
1939 return;
1940
1941 fio_idle_prof_init();
1942
1943 set_sig_handlers();
1944
1945 nr_thread = nr_process = 0;
1946 for_each_td(td, i) {
1947 if (check_mount_writes(td))
1948 return;
1949 if (td->o.use_thread)
1950 nr_thread++;
1951 else
1952 nr_process++;
1953 }
1954
1955 if (output_format == FIO_OUTPUT_NORMAL) {
1956 log_info("Starting ");
1957 if (nr_thread)
1958 log_info("%d thread%s", nr_thread,
1959 nr_thread > 1 ? "s" : "");
1960 if (nr_process) {
1961 if (nr_thread)
1962 log_info(" and ");
1963 log_info("%d process%s", nr_process,
1964 nr_process > 1 ? "es" : "");
1965 }
1966 log_info("\n");
1967 log_info_flush();
1968 }
1969
1970 todo = thread_number;
1971 nr_running = 0;
1972 nr_started = 0;
1973 m_rate = t_rate = 0;
1974
1975 for_each_td(td, i) {
1976 print_status_init(td->thread_number - 1);
1977
1978 if (!td->o.create_serialize)
1979 continue;
1980
1981 if (fio_verify_load_state(td))
1982 goto reap;
1983
1984 /*
1985 * do file setup here so it happens sequentially,
1986 * we don't want X number of threads getting their
1987 * client data interspersed on disk
1988 */
1989 if (setup_files(td)) {
1990reap:
1991 exit_value++;
1992 if (td->error)
1993 log_err("fio: pid=%d, err=%d/%s\n",
1994 (int) td->pid, td->error, td->verror);
1995 td_set_runstate(td, TD_REAPED);
1996 todo--;
1997 } else {
1998 struct fio_file *f;
1999 unsigned int j;
2000
2001 /*
2002 * for sharing to work, each job must always open
2003 * its own files. so close them, if we opened them
2004 * for creation
2005 */
2006 for_each_file(td, f, j) {
2007 if (fio_file_open(f))
2008 td_io_close_file(td, f);
2009 }
2010 }
2011 }
2012
2013 /* start idle threads before io threads start to run */
2014 fio_idle_prof_start();
2015
2016 set_genesis_time();
2017
2018 while (todo) {
2019 struct thread_data *map[REAL_MAX_JOBS];
2020 struct timeval this_start;
2021 int this_jobs = 0, left;
2022
2023 /*
2024 * create threads (TD_NOT_CREATED -> TD_CREATED)
2025 */
2026 for_each_td(td, i) {
2027 if (td->runstate != TD_NOT_CREATED)
2028 continue;
2029
2030 /*
2031 * never got a chance to start, killed by other
2032 * thread for some reason
2033 */
2034 if (td->terminate) {
2035 todo--;
2036 continue;
2037 }
2038
2039 if (td->o.start_delay) {
2040 spent = utime_since_genesis();
2041
2042 if (td->o.start_delay > spent)
2043 continue;
2044 }
2045
2046 if (td->o.stonewall && (nr_started || nr_running)) {
2047 dprint(FD_PROCESS, "%s: stonewall wait\n",
2048 td->o.name);
2049 break;
2050 }
2051
2052 init_disk_util(td);
2053
2054 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2055 td->update_rusage = 0;
2056
2057 /*
2058 * Set state to created. Thread will transition
2059 * to TD_INITIALIZED when it's done setting up.
2060 */
2061 td_set_runstate(td, TD_CREATED);
2062 map[this_jobs++] = td;
2063 nr_started++;
2064
2065 if (td->o.use_thread) {
2066 int ret;
2067
2068 dprint(FD_PROCESS, "will pthread_create\n");
2069 ret = pthread_create(&td->thread, NULL,
2070 thread_main, td);
2071 if (ret) {
2072 log_err("pthread_create: %s\n",
2073 strerror(ret));
2074 nr_started--;
2075 break;
2076 }
2077 ret = pthread_detach(td->thread);
2078 if (ret)
2079 log_err("pthread_detach: %s",
2080 strerror(ret));
2081 } else {
2082 pid_t pid;
2083 dprint(FD_PROCESS, "will fork\n");
2084 pid = fork();
2085 if (!pid) {
2086 int ret = fork_main(shm_id, i);
2087
2088 _exit(ret);
2089 } else if (i == fio_debug_jobno)
2090 *fio_debug_jobp = pid;
2091 }
2092 dprint(FD_MUTEX, "wait on startup_mutex\n");
2093 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2094 log_err("fio: job startup hung? exiting.\n");
2095 fio_terminate_threads(TERMINATE_ALL);
2096 fio_abort = 1;
2097 nr_started--;
2098 break;
2099 }
2100 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2101 }
2102
2103 /*
2104 * Wait for the started threads to transition to
2105 * TD_INITIALIZED.
2106 */
2107 fio_gettime(&this_start, NULL);
2108 left = this_jobs;
2109 while (left && !fio_abort) {
2110 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2111 break;
2112
2113 do_usleep(100000);
2114
2115 for (i = 0; i < this_jobs; i++) {
2116 td = map[i];
2117 if (!td)
2118 continue;
2119 if (td->runstate == TD_INITIALIZED) {
2120 map[i] = NULL;
2121 left--;
2122 } else if (td->runstate >= TD_EXITED) {
2123 map[i] = NULL;
2124 left--;
2125 todo--;
2126 nr_running++; /* work-around... */
2127 }
2128 }
2129 }
2130
2131 if (left) {
2132 log_err("fio: %d job%s failed to start\n", left,
2133 left > 1 ? "s" : "");
2134 for (i = 0; i < this_jobs; i++) {
2135 td = map[i];
2136 if (!td)
2137 continue;
2138 kill(td->pid, SIGTERM);
2139 }
2140 break;
2141 }
2142
2143 /*
2144 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2145 */
2146 for_each_td(td, i) {
2147 if (td->runstate != TD_INITIALIZED)
2148 continue;
2149
2150 if (in_ramp_time(td))
2151 td_set_runstate(td, TD_RAMP);
2152 else
2153 td_set_runstate(td, TD_RUNNING);
2154 nr_running++;
2155 nr_started--;
2156 m_rate += ddir_rw_sum(td->o.ratemin);
2157 t_rate += ddir_rw_sum(td->o.rate);
2158 todo--;
2159 fio_mutex_up(td->mutex);
2160 }
2161
2162 reap_threads(&nr_running, &t_rate, &m_rate);
2163
2164 if (todo)
2165 do_usleep(100000);
2166 }
2167
2168 while (nr_running) {
2169 reap_threads(&nr_running, &t_rate, &m_rate);
2170 do_usleep(10000);
2171 }
2172
2173 fio_idle_prof_stop();
2174
2175 update_io_ticks();
2176}
2177
2178static void wait_for_helper_thread_exit(void)
2179{
2180 void *ret;
2181
2182 helper_exit = 1;
2183 pthread_cond_signal(&helper_cond);
2184 pthread_join(helper_thread, &ret);
2185}
2186
2187static void free_disk_util(void)
2188{
2189 disk_util_prune_entries();
2190
2191 pthread_cond_destroy(&helper_cond);
2192}
2193
2194static void *helper_thread_main(void *data)
2195{
2196 int ret = 0;
2197
2198 fio_mutex_up(startup_mutex);
2199
2200 while (!ret) {
2201 uint64_t sec = DISK_UTIL_MSEC / 1000;
2202 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2203 struct timespec ts;
2204 struct timeval tv;
2205
2206 gettimeofday(&tv, NULL);
2207 ts.tv_sec = tv.tv_sec + sec;
2208 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2209
2210 if (ts.tv_nsec >= 1000000000ULL) {
2211 ts.tv_nsec -= 1000000000ULL;
2212 ts.tv_sec++;
2213 }
2214
2215 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2216
2217 ret = update_io_ticks();
2218
2219 if (helper_do_stat) {
2220 helper_do_stat = 0;
2221 __show_running_run_stats();
2222 }
2223
2224 if (!is_backend)
2225 print_thread_status();
2226 }
2227
2228 return NULL;
2229}
2230
2231static int create_helper_thread(void)
2232{
2233 int ret;
2234
2235 setup_disk_util();
2236
2237 pthread_cond_init(&helper_cond, NULL);
2238 pthread_mutex_init(&helper_lock, NULL);
2239
2240 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2241 if (ret) {
2242 log_err("Can't create helper thread: %s\n", strerror(ret));
2243 return 1;
2244 }
2245
2246 dprint(FD_MUTEX, "wait on startup_mutex\n");
2247 fio_mutex_down(startup_mutex);
2248 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2249 return 0;
2250}
2251
2252int fio_backend(void)
2253{
2254 struct thread_data *td;
2255 int i;
2256
2257 if (exec_profile) {
2258 if (load_profile(exec_profile))
2259 return 1;
2260 free(exec_profile);
2261 exec_profile = NULL;
2262 }
2263 if (!thread_number)
2264 return 0;
2265
2266 if (write_bw_log) {
2267 struct log_params p = {
2268 .log_type = IO_LOG_TYPE_BW,
2269 };
2270
2271 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2272 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2273 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2274 }
2275
2276 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2277 if (startup_mutex == NULL)
2278 return 1;
2279
2280 set_genesis_time();
2281 stat_init();
2282 create_helper_thread();
2283
2284 cgroup_list = smalloc(sizeof(*cgroup_list));
2285 INIT_FLIST_HEAD(cgroup_list);
2286
2287 run_threads();
2288
2289 wait_for_helper_thread_exit();
2290
2291 if (!fio_abort) {
2292 __show_run_stats();
2293 if (write_bw_log) {
2294 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2295 struct io_log *log = agg_io_log[i];
2296
2297 flush_log(log, 0);
2298 free_log(log);
2299 }
2300 }
2301 }
2302
2303 for_each_td(td, i) {
2304 fio_options_free(td);
2305 if (td->rusage_sem) {
2306 fio_mutex_remove(td->rusage_sem);
2307 td->rusage_sem = NULL;
2308 }
2309 }
2310
2311 free_disk_util();
2312 cgroup_kill(cgroup_list);
2313 sfree(cgroup_list);
2314 sfree(cgroup_mnt);
2315
2316 fio_mutex_remove(startup_mutex);
2317 stat_exit();
2318 return exit_value;
2319}