Use the POSIX `EDEADLK` instead of the Linux `EDEADLOCK`
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define PAGE_ALIGN(buf) \
80 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82#define JOB_START_TIMEOUT (5 * 1000)
83
84static void sig_int(int sig)
85{
86 if (threads) {
87 if (is_backend)
88 fio_server_got_signal(sig);
89 else {
90 log_info("\nfio: terminating on signal %d\n", sig);
91 log_info_flush();
92 exit_value = 128;
93 }
94
95 fio_terminate_threads(TERMINATE_ALL);
96 }
97}
98
99void sig_show_status(int sig)
100{
101 show_running_run_stats();
102}
103
104static void set_sig_handlers(void)
105{
106 struct sigaction act;
107
108 memset(&act, 0, sizeof(act));
109 act.sa_handler = sig_int;
110 act.sa_flags = SA_RESTART;
111 sigaction(SIGINT, &act, NULL);
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGTERM, &act, NULL);
117
118/* Windows uses SIGBREAK as a quit signal from other applications */
119#ifdef WIN32
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_int;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGBREAK, &act, NULL);
124#endif
125
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_show_status;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGUSR1, &act, NULL);
130
131 if (is_backend) {
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_int;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGPIPE, &act, NULL);
136 }
137}
138
139/*
140 * Check if we are above the minimum rate given.
141 */
142static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143 enum fio_ddir ddir)
144{
145 unsigned long long bytes = 0;
146 unsigned long iops = 0;
147 unsigned long spent;
148 unsigned long rate;
149 unsigned int ratemin = 0;
150 unsigned int rate_iops = 0;
151 unsigned int rate_iops_min = 0;
152
153 assert(ddir_rw(ddir));
154
155 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156 return false;
157
158 /*
159 * allow a 2 second settle period in the beginning
160 */
161 if (mtime_since(&td->start, now) < 2000)
162 return false;
163
164 iops += td->this_io_blocks[ddir];
165 bytes += td->this_io_bytes[ddir];
166 ratemin += td->o.ratemin[ddir];
167 rate_iops += td->o.rate_iops[ddir];
168 rate_iops_min += td->o.rate_iops_min[ddir];
169
170 /*
171 * if rate blocks is set, sample is running
172 */
173 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174 spent = mtime_since(&td->lastrate[ddir], now);
175 if (spent < td->o.ratecycle)
176 return false;
177
178 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179 /*
180 * check bandwidth specified rate
181 */
182 if (bytes < td->rate_bytes[ddir]) {
183 log_err("%s: min rate %u not met\n", td->o.name,
184 ratemin);
185 return true;
186 } else {
187 if (spent)
188 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189 else
190 rate = 0;
191
192 if (rate < ratemin ||
193 bytes < td->rate_bytes[ddir]) {
194 log_err("%s: min rate %u not met, got"
195 " %luKB/sec\n", td->o.name,
196 ratemin, rate);
197 return true;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, rate_iops);
207 return true;
208 } else {
209 if (spent)
210 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211 else
212 rate = 0;
213
214 if (rate < rate_iops_min ||
215 iops < td->rate_blocks[ddir]) {
216 log_err("%s: min iops rate %u not met,"
217 " got %lu\n", td->o.name,
218 rate_iops_min, rate);
219 return true;
220 }
221 }
222 }
223 }
224
225 td->rate_bytes[ddir] = bytes;
226 td->rate_blocks[ddir] = iops;
227 memcpy(&td->lastrate[ddir], now, sizeof(*now));
228 return false;
229}
230
231static bool check_min_rate(struct thread_data *td, struct timeval *now)
232{
233 bool ret = false;
234
235 if (td->bytes_done[DDIR_READ])
236 ret |= __check_min_rate(td, now, DDIR_READ);
237 if (td->bytes_done[DDIR_WRITE])
238 ret |= __check_min_rate(td, now, DDIR_WRITE);
239 if (td->bytes_done[DDIR_TRIM])
240 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242 return ret;
243}
244
245/*
246 * When job exits, we can cancel the in-flight IO if we are using async
247 * io. Attempt to do so.
248 */
249static void cleanup_pending_aio(struct thread_data *td)
250{
251 int r;
252
253 /*
254 * get immediately available events, if any
255 */
256 r = io_u_queued_complete(td, 0);
257 if (r < 0)
258 return;
259
260 /*
261 * now cancel remaining active events
262 */
263 if (td->io_ops->cancel) {
264 struct io_u *io_u;
265 int i;
266
267 io_u_qiter(&td->io_u_all, io_u, i) {
268 if (io_u->flags & IO_U_F_FLIGHT) {
269 r = td->io_ops->cancel(td, io_u);
270 if (!r)
271 put_io_u(td, io_u);
272 }
273 }
274 }
275
276 if (td->cur_depth)
277 r = io_u_queued_complete(td, td->cur_depth);
278}
279
280/*
281 * Helper to handle the final sync of a file. Works just like the normal
282 * io path, just does everything sync.
283 */
284static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285{
286 struct io_u *io_u = __get_io_u(td);
287 int ret;
288
289 if (!io_u)
290 return true;
291
292 io_u->ddir = DDIR_SYNC;
293 io_u->file = f;
294
295 if (td_io_prep(td, io_u)) {
296 put_io_u(td, io_u);
297 return true;
298 }
299
300requeue:
301 ret = td_io_queue(td, io_u);
302 if (ret < 0) {
303 td_verror(td, io_u->error, "td_io_queue");
304 put_io_u(td, io_u);
305 return true;
306 } else if (ret == FIO_Q_QUEUED) {
307 if (td_io_commit(td))
308 return true;
309 if (io_u_queued_complete(td, 1) < 0)
310 return true;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return true;
315 }
316
317 if (io_u_sync_complete(td, io_u) < 0)
318 return true;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return true;
322 goto requeue;
323 }
324
325 return false;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return false;
358 if (!td->o.timeout)
359 return false;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return true;
362
363 return false;
364}
365
366/*
367 * We need to update the runtime consistently in ms, but keep a running
368 * tally of the current elapsed time in microseconds for sub millisecond
369 * updates.
370 */
371static inline void update_runtime(struct thread_data *td,
372 unsigned long long *elapsed_us,
373 const enum fio_ddir ddir)
374{
375 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376 return;
377
378 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379 elapsed_us[ddir] += utime_since_now(&td->start);
380 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381}
382
383static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384 int *retptr)
385{
386 int ret = *retptr;
387
388 if (ret < 0 || td->error) {
389 int err = td->error;
390 enum error_type_bit eb;
391
392 if (ret < 0)
393 err = -ret;
394
395 eb = td_error_type(ddir, err);
396 if (!(td->o.continue_on_error & (1 << eb)))
397 return true;
398
399 if (td_non_fatal_error(td, eb, err)) {
400 /*
401 * Continue with the I/Os in case of
402 * a non fatal error.
403 */
404 update_error_count(td, err);
405 td_clear_error(td);
406 *retptr = 0;
407 return false;
408 } else if (td->o.fill_device && err == ENOSPC) {
409 /*
410 * We expect to hit this error if
411 * fill_device option is set.
412 */
413 td_clear_error(td);
414 fio_mark_td_terminate(td);
415 return true;
416 } else {
417 /*
418 * Stop the I/O in case of a fatal
419 * error.
420 */
421 update_error_count(td, err);
422 return true;
423 }
424 }
425
426 return false;
427}
428
429static void check_update_rusage(struct thread_data *td)
430{
431 if (td->update_rusage) {
432 td->update_rusage = 0;
433 update_rusage_stat(td);
434 fio_mutex_up(td->rusage_sem);
435 }
436}
437
438static int wait_for_completions(struct thread_data *td, struct timeval *time)
439{
440 const int full = queue_full(td);
441 int min_evts = 0;
442 int ret;
443
444 if (td->flags & TD_F_REGROW_LOGS) {
445 ret = io_u_quiesce(td);
446 regrow_logs(td);
447 return ret;
448 }
449
450 /*
451 * if the queue is full, we MUST reap at least 1 event
452 */
453 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
454 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
455 min_evts = 1;
456
457 if (time && (__should_check_rate(td, DDIR_READ) ||
458 __should_check_rate(td, DDIR_WRITE) ||
459 __should_check_rate(td, DDIR_TRIM)))
460 fio_gettime(time, NULL);
461
462 do {
463 ret = io_u_queued_complete(td, min_evts);
464 if (ret < 0)
465 break;
466 } while (full && (td->cur_depth > td->o.iodepth_low));
467
468 return ret;
469}
470
471int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
472 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
473 struct timeval *comp_time)
474{
475 int ret2;
476
477 switch (*ret) {
478 case FIO_Q_COMPLETED:
479 if (io_u->error) {
480 *ret = -io_u->error;
481 clear_io_u(td, io_u);
482 } else if (io_u->resid) {
483 int bytes = io_u->xfer_buflen - io_u->resid;
484 struct fio_file *f = io_u->file;
485
486 if (bytes_issued)
487 *bytes_issued += bytes;
488
489 if (!from_verify)
490 trim_io_piece(td, io_u);
491
492 /*
493 * zero read, fail
494 */
495 if (!bytes) {
496 if (!from_verify)
497 unlog_io_piece(td, io_u);
498 td_verror(td, EIO, "full resid");
499 put_io_u(td, io_u);
500 break;
501 }
502
503 io_u->xfer_buflen = io_u->resid;
504 io_u->xfer_buf += bytes;
505 io_u->offset += bytes;
506
507 if (ddir_rw(io_u->ddir))
508 td->ts.short_io_u[io_u->ddir]++;
509
510 f = io_u->file;
511 if (io_u->offset == f->real_file_size)
512 goto sync_done;
513
514 requeue_io_u(td, &io_u);
515 } else {
516sync_done:
517 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
518 __should_check_rate(td, DDIR_WRITE) ||
519 __should_check_rate(td, DDIR_TRIM)))
520 fio_gettime(comp_time, NULL);
521
522 *ret = io_u_sync_complete(td, io_u);
523 if (*ret < 0)
524 break;
525 }
526
527 if (td->flags & TD_F_REGROW_LOGS)
528 regrow_logs(td);
529
530 /*
531 * when doing I/O (not when verifying),
532 * check for any errors that are to be ignored
533 */
534 if (!from_verify)
535 break;
536
537 return 0;
538 case FIO_Q_QUEUED:
539 /*
540 * if the engine doesn't have a commit hook,
541 * the io_u is really queued. if it does have such
542 * a hook, it has to call io_u_queued() itself.
543 */
544 if (td->io_ops->commit == NULL)
545 io_u_queued(td, io_u);
546 if (bytes_issued)
547 *bytes_issued += io_u->xfer_buflen;
548 break;
549 case FIO_Q_BUSY:
550 if (!from_verify)
551 unlog_io_piece(td, io_u);
552 requeue_io_u(td, &io_u);
553 ret2 = td_io_commit(td);
554 if (ret2 < 0)
555 *ret = ret2;
556 break;
557 default:
558 assert(*ret < 0);
559 td_verror(td, -(*ret), "td_io_queue");
560 break;
561 }
562
563 if (break_on_this_error(td, ddir, ret))
564 return 1;
565
566 return 0;
567}
568
569static inline bool io_in_polling(struct thread_data *td)
570{
571 return !td->o.iodepth_batch_complete_min &&
572 !td->o.iodepth_batch_complete_max;
573}
574/*
575 * Unlinks files from thread data fio_file structure
576 */
577static int unlink_all_files(struct thread_data *td)
578{
579 struct fio_file *f;
580 unsigned int i;
581 int ret = 0;
582
583 for_each_file(td, f, i) {
584 if (f->filetype != FIO_TYPE_FILE)
585 continue;
586 ret = td_io_unlink_file(td, f);
587 if (ret)
588 break;
589 }
590
591 if (ret)
592 td_verror(td, ret, "unlink_all_files");
593
594 return ret;
595}
596
597/*
598 * The main verify engine. Runs over the writes we previously submitted,
599 * reads the blocks back in, and checks the crc/md5 of the data.
600 */
601static void do_verify(struct thread_data *td, uint64_t verify_bytes)
602{
603 struct fio_file *f;
604 struct io_u *io_u;
605 int ret, min_events;
606 unsigned int i;
607
608 dprint(FD_VERIFY, "starting loop\n");
609
610 /*
611 * sync io first and invalidate cache, to make sure we really
612 * read from disk.
613 */
614 for_each_file(td, f, i) {
615 if (!fio_file_open(f))
616 continue;
617 if (fio_io_sync(td, f))
618 break;
619 if (file_invalidate_cache(td, f))
620 break;
621 }
622
623 check_update_rusage(td);
624
625 if (td->error)
626 return;
627
628 /*
629 * verify_state needs to be reset before verification
630 * proceeds so that expected random seeds match actual
631 * random seeds in headers. The main loop will reset
632 * all random number generators if randrepeat is set.
633 */
634 if (!td->o.rand_repeatable)
635 td_fill_verify_state_seed(td);
636
637 td_set_runstate(td, TD_VERIFYING);
638
639 io_u = NULL;
640 while (!td->terminate) {
641 enum fio_ddir ddir;
642 int full;
643
644 update_tv_cache(td);
645 check_update_rusage(td);
646
647 if (runtime_exceeded(td, &td->tv_cache)) {
648 __update_tv_cache(td);
649 if (runtime_exceeded(td, &td->tv_cache)) {
650 fio_mark_td_terminate(td);
651 break;
652 }
653 }
654
655 if (flow_threshold_exceeded(td))
656 continue;
657
658 if (!td->o.experimental_verify) {
659 io_u = __get_io_u(td);
660 if (!io_u)
661 break;
662
663 if (get_next_verify(td, io_u)) {
664 put_io_u(td, io_u);
665 break;
666 }
667
668 if (td_io_prep(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672 } else {
673 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
674 break;
675
676 while ((io_u = get_io_u(td)) != NULL) {
677 if (IS_ERR_OR_NULL(io_u)) {
678 io_u = NULL;
679 ret = FIO_Q_BUSY;
680 goto reap;
681 }
682
683 /*
684 * We are only interested in the places where
685 * we wrote or trimmed IOs. Turn those into
686 * reads for verification purposes.
687 */
688 if (io_u->ddir == DDIR_READ) {
689 /*
690 * Pretend we issued it for rwmix
691 * accounting
692 */
693 td->io_issues[DDIR_READ]++;
694 put_io_u(td, io_u);
695 continue;
696 } else if (io_u->ddir == DDIR_TRIM) {
697 io_u->ddir = DDIR_READ;
698 io_u_set(td, io_u, IO_U_F_TRIMMED);
699 break;
700 } else if (io_u->ddir == DDIR_WRITE) {
701 io_u->ddir = DDIR_READ;
702 break;
703 } else {
704 put_io_u(td, io_u);
705 continue;
706 }
707 }
708
709 if (!io_u)
710 break;
711 }
712
713 if (verify_state_should_stop(td, io_u)) {
714 put_io_u(td, io_u);
715 break;
716 }
717
718 if (td->o.verify_async)
719 io_u->end_io = verify_io_u_async;
720 else
721 io_u->end_io = verify_io_u;
722
723 ddir = io_u->ddir;
724 if (!td->o.disable_slat)
725 fio_gettime(&io_u->start_time, NULL);
726
727 ret = td_io_queue(td, io_u);
728
729 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
730 break;
731
732 /*
733 * if we can queue more, do so. but check if there are
734 * completed io_u's first. Note that we can get BUSY even
735 * without IO queued, if the system is resource starved.
736 */
737reap:
738 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
739 if (full || io_in_polling(td))
740 ret = wait_for_completions(td, NULL);
741
742 if (ret < 0)
743 break;
744 }
745
746 check_update_rusage(td);
747
748 if (!td->error) {
749 min_events = td->cur_depth;
750
751 if (min_events)
752 ret = io_u_queued_complete(td, min_events);
753 } else
754 cleanup_pending_aio(td);
755
756 td_set_runstate(td, TD_RUNNING);
757
758 dprint(FD_VERIFY, "exiting loop\n");
759}
760
761static bool exceeds_number_ios(struct thread_data *td)
762{
763 unsigned long long number_ios;
764
765 if (!td->o.number_ios)
766 return false;
767
768 number_ios = ddir_rw_sum(td->io_blocks);
769 number_ios += td->io_u_queued + td->io_u_in_flight;
770
771 return number_ios >= (td->o.number_ios * td->loops);
772}
773
774static bool io_issue_bytes_exceeded(struct thread_data *td)
775{
776 unsigned long long bytes, limit;
777
778 if (td_rw(td))
779 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
780 else if (td_write(td))
781 bytes = td->io_issue_bytes[DDIR_WRITE];
782 else if (td_read(td))
783 bytes = td->io_issue_bytes[DDIR_READ];
784 else
785 bytes = td->io_issue_bytes[DDIR_TRIM];
786
787 if (td->o.io_limit)
788 limit = td->o.io_limit;
789 else
790 limit = td->o.size;
791
792 limit *= td->loops;
793 return bytes >= limit || exceeds_number_ios(td);
794}
795
796static bool io_complete_bytes_exceeded(struct thread_data *td)
797{
798 unsigned long long bytes, limit;
799
800 if (td_rw(td))
801 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
802 else if (td_write(td))
803 bytes = td->this_io_bytes[DDIR_WRITE];
804 else if (td_read(td))
805 bytes = td->this_io_bytes[DDIR_READ];
806 else
807 bytes = td->this_io_bytes[DDIR_TRIM];
808
809 if (td->o.io_limit)
810 limit = td->o.io_limit;
811 else
812 limit = td->o.size;
813
814 limit *= td->loops;
815 return bytes >= limit || exceeds_number_ios(td);
816}
817
818/*
819 * used to calculate the next io time for rate control
820 *
821 */
822static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
823{
824 uint64_t secs, remainder, bps, bytes, iops;
825
826 assert(!(td->flags & TD_F_CHILD));
827 bytes = td->rate_io_issue_bytes[ddir];
828 bps = td->rate_bps[ddir];
829
830 if (td->o.rate_process == RATE_PROCESS_POISSON) {
831 uint64_t val;
832 iops = bps / td->o.bs[ddir];
833 val = (int64_t) (1000000 / iops) *
834 -logf(__rand_0_1(&td->poisson_state));
835 if (val) {
836 dprint(FD_RATE, "poisson rate iops=%llu\n",
837 (unsigned long long) 1000000 / val);
838 }
839 td->last_usec += val;
840 return td->last_usec;
841 } else if (bps) {
842 secs = bytes / bps;
843 remainder = bytes % bps;
844 return remainder * 1000000 / bps + secs * 1000000;
845 }
846
847 return 0;
848}
849
850/*
851 * Main IO worker function. It retrieves io_u's to process and queues
852 * and reaps them, checking for rate and errors along the way.
853 *
854 * Returns number of bytes written and trimmed.
855 */
856static void do_io(struct thread_data *td, uint64_t *bytes_done)
857{
858 unsigned int i;
859 int ret = 0;
860 uint64_t total_bytes, bytes_issued = 0;
861
862 for (i = 0; i < DDIR_RWDIR_CNT; i++)
863 bytes_done[i] = td->bytes_done[i];
864
865 if (in_ramp_time(td))
866 td_set_runstate(td, TD_RAMP);
867 else
868 td_set_runstate(td, TD_RUNNING);
869
870 lat_target_init(td);
871
872 total_bytes = td->o.size;
873 /*
874 * Allow random overwrite workloads to write up to io_limit
875 * before starting verification phase as 'size' doesn't apply.
876 */
877 if (td_write(td) && td_random(td) && td->o.norandommap)
878 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
879 /*
880 * If verify_backlog is enabled, we'll run the verify in this
881 * handler as well. For that case, we may need up to twice the
882 * amount of bytes.
883 */
884 if (td->o.verify != VERIFY_NONE &&
885 (td_write(td) && td->o.verify_backlog))
886 total_bytes += td->o.size;
887
888 /* In trimwrite mode, each byte is trimmed and then written, so
889 * allow total_bytes to be twice as big */
890 if (td_trimwrite(td))
891 total_bytes += td->total_io_size;
892
893 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
894 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
895 td->o.time_based) {
896 struct timeval comp_time;
897 struct io_u *io_u;
898 int full;
899 enum fio_ddir ddir;
900
901 check_update_rusage(td);
902
903 if (td->terminate || td->done)
904 break;
905
906 update_tv_cache(td);
907
908 if (runtime_exceeded(td, &td->tv_cache)) {
909 __update_tv_cache(td);
910 if (runtime_exceeded(td, &td->tv_cache)) {
911 fio_mark_td_terminate(td);
912 break;
913 }
914 }
915
916 if (flow_threshold_exceeded(td))
917 continue;
918
919 /*
920 * Break if we exceeded the bytes. The exception is time
921 * based runs, but we still need to break out of the loop
922 * for those to run verification, if enabled.
923 */
924 if (bytes_issued >= total_bytes &&
925 (!td->o.time_based ||
926 (td->o.time_based && td->o.verify != VERIFY_NONE)))
927 break;
928
929 io_u = get_io_u(td);
930 if (IS_ERR_OR_NULL(io_u)) {
931 int err = PTR_ERR(io_u);
932
933 io_u = NULL;
934 if (err == -EBUSY) {
935 ret = FIO_Q_BUSY;
936 goto reap;
937 }
938 if (td->o.latency_target)
939 goto reap;
940 break;
941 }
942
943 ddir = io_u->ddir;
944
945 /*
946 * Add verification end_io handler if:
947 * - Asked to verify (!td_rw(td))
948 * - Or the io_u is from our verify list (mixed write/ver)
949 */
950 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
951 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
952
953 if (!td->o.verify_pattern_bytes) {
954 io_u->rand_seed = __rand(&td->verify_state);
955 if (sizeof(int) != sizeof(long *))
956 io_u->rand_seed *= __rand(&td->verify_state);
957 }
958
959 if (verify_state_should_stop(td, io_u)) {
960 put_io_u(td, io_u);
961 break;
962 }
963
964 if (td->o.verify_async)
965 io_u->end_io = verify_io_u_async;
966 else
967 io_u->end_io = verify_io_u;
968 td_set_runstate(td, TD_VERIFYING);
969 } else if (in_ramp_time(td))
970 td_set_runstate(td, TD_RAMP);
971 else
972 td_set_runstate(td, TD_RUNNING);
973
974 /*
975 * Always log IO before it's issued, so we know the specific
976 * order of it. The logged unit will track when the IO has
977 * completed.
978 */
979 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
980 td->o.do_verify &&
981 td->o.verify != VERIFY_NONE &&
982 !td->o.experimental_verify)
983 log_io_piece(td, io_u);
984
985 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
986 const unsigned long blen = io_u->xfer_buflen;
987 const enum fio_ddir ddir = acct_ddir(io_u);
988
989 if (td->error)
990 break;
991
992 workqueue_enqueue(&td->io_wq, &io_u->work);
993 ret = FIO_Q_QUEUED;
994
995 if (ddir_rw(ddir)) {
996 td->io_issues[ddir]++;
997 td->io_issue_bytes[ddir] += blen;
998 td->rate_io_issue_bytes[ddir] += blen;
999 }
1000
1001 if (should_check_rate(td))
1002 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1003
1004 } else {
1005 ret = td_io_queue(td, io_u);
1006
1007 if (should_check_rate(td))
1008 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1009
1010 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1011 break;
1012
1013 /*
1014 * See if we need to complete some commands. Note that
1015 * we can get BUSY even without IO queued, if the
1016 * system is resource starved.
1017 */
1018reap:
1019 full = queue_full(td) ||
1020 (ret == FIO_Q_BUSY && td->cur_depth);
1021 if (full || io_in_polling(td))
1022 ret = wait_for_completions(td, &comp_time);
1023 }
1024 if (ret < 0)
1025 break;
1026 if (!ddir_rw_sum(td->bytes_done) &&
1027 !td_ioengine_flagged(td, FIO_NOIO))
1028 continue;
1029
1030 if (!in_ramp_time(td) && should_check_rate(td)) {
1031 if (check_min_rate(td, &comp_time)) {
1032 if (exitall_on_terminate || td->o.exitall_error)
1033 fio_terminate_threads(td->groupid);
1034 td_verror(td, EIO, "check_min_rate");
1035 break;
1036 }
1037 }
1038 if (!in_ramp_time(td) && td->o.latency_target)
1039 lat_target_check(td);
1040
1041 if (td->o.thinktime) {
1042 unsigned long long b;
1043
1044 b = ddir_rw_sum(td->io_blocks);
1045 if (!(b % td->o.thinktime_blocks)) {
1046 int left;
1047
1048 io_u_quiesce(td);
1049
1050 if (td->o.thinktime_spin)
1051 usec_spin(td->o.thinktime_spin);
1052
1053 left = td->o.thinktime - td->o.thinktime_spin;
1054 if (left)
1055 usec_sleep(td, left);
1056 }
1057 }
1058 }
1059
1060 check_update_rusage(td);
1061
1062 if (td->trim_entries)
1063 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1064
1065 if (td->o.fill_device && td->error == ENOSPC) {
1066 td->error = 0;
1067 fio_mark_td_terminate(td);
1068 }
1069 if (!td->error) {
1070 struct fio_file *f;
1071
1072 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1073 workqueue_flush(&td->io_wq);
1074 i = 0;
1075 } else
1076 i = td->cur_depth;
1077
1078 if (i) {
1079 ret = io_u_queued_complete(td, i);
1080 if (td->o.fill_device && td->error == ENOSPC)
1081 td->error = 0;
1082 }
1083
1084 if (should_fsync(td) && td->o.end_fsync) {
1085 td_set_runstate(td, TD_FSYNCING);
1086
1087 for_each_file(td, f, i) {
1088 if (!fio_file_fsync(td, f))
1089 continue;
1090
1091 log_err("fio: end_fsync failed for file %s\n",
1092 f->file_name);
1093 }
1094 }
1095 } else
1096 cleanup_pending_aio(td);
1097
1098 /*
1099 * stop job if we failed doing any IO
1100 */
1101 if (!ddir_rw_sum(td->this_io_bytes))
1102 td->done = 1;
1103
1104 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1105 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1106}
1107
1108static void free_file_completion_logging(struct thread_data *td)
1109{
1110 struct fio_file *f;
1111 unsigned int i;
1112
1113 for_each_file(td, f, i) {
1114 if (!f->last_write_comp)
1115 break;
1116 sfree(f->last_write_comp);
1117 }
1118}
1119
1120static int init_file_completion_logging(struct thread_data *td,
1121 unsigned int depth)
1122{
1123 struct fio_file *f;
1124 unsigned int i;
1125
1126 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1127 return 0;
1128
1129 for_each_file(td, f, i) {
1130 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1131 if (!f->last_write_comp)
1132 goto cleanup;
1133 }
1134
1135 return 0;
1136
1137cleanup:
1138 free_file_completion_logging(td);
1139 log_err("fio: failed to alloc write comp data\n");
1140 return 1;
1141}
1142
1143static void cleanup_io_u(struct thread_data *td)
1144{
1145 struct io_u *io_u;
1146
1147 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1148
1149 if (td->io_ops->io_u_free)
1150 td->io_ops->io_u_free(td, io_u);
1151
1152 fio_memfree(io_u, sizeof(*io_u));
1153 }
1154
1155 free_io_mem(td);
1156
1157 io_u_rexit(&td->io_u_requeues);
1158 io_u_qexit(&td->io_u_freelist);
1159 io_u_qexit(&td->io_u_all);
1160
1161 free_file_completion_logging(td);
1162}
1163
1164static int init_io_u(struct thread_data *td)
1165{
1166 struct io_u *io_u;
1167 unsigned int max_bs, min_write;
1168 int cl_align, i, max_units;
1169 int data_xfer = 1, err;
1170 char *p;
1171
1172 max_units = td->o.iodepth;
1173 max_bs = td_max_bs(td);
1174 min_write = td->o.min_bs[DDIR_WRITE];
1175 td->orig_buffer_size = (unsigned long long) max_bs
1176 * (unsigned long long) max_units;
1177
1178 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1179 data_xfer = 0;
1180
1181 err = 0;
1182 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1183 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1184 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1185
1186 if (err) {
1187 log_err("fio: failed setting up IO queues\n");
1188 return 1;
1189 }
1190
1191 /*
1192 * if we may later need to do address alignment, then add any
1193 * possible adjustment here so that we don't cause a buffer
1194 * overflow later. this adjustment may be too much if we get
1195 * lucky and the allocator gives us an aligned address.
1196 */
1197 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198 td_ioengine_flagged(td, FIO_RAWIO))
1199 td->orig_buffer_size += page_mask + td->o.mem_align;
1200
1201 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1202 unsigned long bs;
1203
1204 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1205 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1206 }
1207
1208 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1209 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1210 return 1;
1211 }
1212
1213 if (data_xfer && allocate_io_mem(td))
1214 return 1;
1215
1216 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1217 td_ioengine_flagged(td, FIO_RAWIO))
1218 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1219 else
1220 p = td->orig_buffer;
1221
1222 cl_align = os_cache_line_size();
1223
1224 for (i = 0; i < max_units; i++) {
1225 void *ptr;
1226
1227 if (td->terminate)
1228 return 1;
1229
1230 ptr = fio_memalign(cl_align, sizeof(*io_u));
1231 if (!ptr) {
1232 log_err("fio: unable to allocate aligned memory\n");
1233 break;
1234 }
1235
1236 io_u = ptr;
1237 memset(io_u, 0, sizeof(*io_u));
1238 INIT_FLIST_HEAD(&io_u->verify_list);
1239 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1240
1241 if (data_xfer) {
1242 io_u->buf = p;
1243 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1244
1245 if (td_write(td))
1246 io_u_fill_buffer(td, io_u, min_write, max_bs);
1247 if (td_write(td) && td->o.verify_pattern_bytes) {
1248 /*
1249 * Fill the buffer with the pattern if we are
1250 * going to be doing writes.
1251 */
1252 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1253 }
1254 }
1255
1256 io_u->index = i;
1257 io_u->flags = IO_U_F_FREE;
1258 io_u_qpush(&td->io_u_freelist, io_u);
1259
1260 /*
1261 * io_u never leaves this stack, used for iteration of all
1262 * io_u buffers.
1263 */
1264 io_u_qpush(&td->io_u_all, io_u);
1265
1266 if (td->io_ops->io_u_init) {
1267 int ret = td->io_ops->io_u_init(td, io_u);
1268
1269 if (ret) {
1270 log_err("fio: failed to init engine data: %d\n", ret);
1271 return 1;
1272 }
1273 }
1274
1275 p += max_bs;
1276 }
1277
1278 if (init_file_completion_logging(td, max_units))
1279 return 1;
1280
1281 return 0;
1282}
1283
1284static int switch_ioscheduler(struct thread_data *td)
1285{
1286#ifdef FIO_HAVE_IOSCHED_SWITCH
1287 char tmp[256], tmp2[128];
1288 FILE *f;
1289 int ret;
1290
1291 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1292 return 0;
1293
1294 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1295
1296 f = fopen(tmp, "r+");
1297 if (!f) {
1298 if (errno == ENOENT) {
1299 log_err("fio: os or kernel doesn't support IO scheduler"
1300 " switching\n");
1301 return 0;
1302 }
1303 td_verror(td, errno, "fopen iosched");
1304 return 1;
1305 }
1306
1307 /*
1308 * Set io scheduler.
1309 */
1310 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1311 if (ferror(f) || ret != 1) {
1312 td_verror(td, errno, "fwrite");
1313 fclose(f);
1314 return 1;
1315 }
1316
1317 rewind(f);
1318
1319 /*
1320 * Read back and check that the selected scheduler is now the default.
1321 */
1322 memset(tmp, 0, sizeof(tmp));
1323 ret = fread(tmp, sizeof(tmp), 1, f);
1324 if (ferror(f) || ret < 0) {
1325 td_verror(td, errno, "fread");
1326 fclose(f);
1327 return 1;
1328 }
1329 /*
1330 * either a list of io schedulers or "none\n" is expected.
1331 */
1332 tmp[strlen(tmp) - 1] = '\0';
1333
1334 /*
1335 * Write to "none" entry doesn't fail, so check the result here.
1336 */
1337 if (!strcmp(tmp, "none")) {
1338 log_err("fio: io scheduler is not tunable\n");
1339 fclose(f);
1340 return 0;
1341 }
1342
1343 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1344 if (!strstr(tmp, tmp2)) {
1345 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1346 td_verror(td, EINVAL, "iosched_switch");
1347 fclose(f);
1348 return 1;
1349 }
1350
1351 fclose(f);
1352 return 0;
1353#else
1354 return 0;
1355#endif
1356}
1357
1358static bool keep_running(struct thread_data *td)
1359{
1360 unsigned long long limit;
1361
1362 if (td->done)
1363 return false;
1364 if (td->o.time_based)
1365 return true;
1366 if (td->o.loops) {
1367 td->o.loops--;
1368 return true;
1369 }
1370 if (exceeds_number_ios(td))
1371 return false;
1372
1373 if (td->o.io_limit)
1374 limit = td->o.io_limit;
1375 else
1376 limit = td->o.size;
1377
1378 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1379 uint64_t diff;
1380
1381 /*
1382 * If the difference is less than the minimum IO size, we
1383 * are done.
1384 */
1385 diff = limit - ddir_rw_sum(td->io_bytes);
1386 if (diff < td_max_bs(td))
1387 return false;
1388
1389 if (fio_files_done(td) && !td->o.io_limit)
1390 return false;
1391
1392 return true;
1393 }
1394
1395 return false;
1396}
1397
1398static int exec_string(struct thread_options *o, const char *string, const char *mode)
1399{
1400 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1401 int ret;
1402 char *str;
1403
1404 str = malloc(newlen);
1405 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1406
1407 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1408 ret = system(str);
1409 if (ret == -1)
1410 log_err("fio: exec of cmd <%s> failed\n", str);
1411
1412 free(str);
1413 return ret;
1414}
1415
1416/*
1417 * Dry run to compute correct state of numberio for verification.
1418 */
1419static uint64_t do_dry_run(struct thread_data *td)
1420{
1421 td_set_runstate(td, TD_RUNNING);
1422
1423 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1424 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1425 struct io_u *io_u;
1426 int ret;
1427
1428 if (td->terminate || td->done)
1429 break;
1430
1431 io_u = get_io_u(td);
1432 if (IS_ERR_OR_NULL(io_u))
1433 break;
1434
1435 io_u_set(td, io_u, IO_U_F_FLIGHT);
1436 io_u->error = 0;
1437 io_u->resid = 0;
1438 if (ddir_rw(acct_ddir(io_u)))
1439 td->io_issues[acct_ddir(io_u)]++;
1440 if (ddir_rw(io_u->ddir)) {
1441 io_u_mark_depth(td, 1);
1442 td->ts.total_io_u[io_u->ddir]++;
1443 }
1444
1445 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1446 td->o.do_verify &&
1447 td->o.verify != VERIFY_NONE &&
1448 !td->o.experimental_verify)
1449 log_io_piece(td, io_u);
1450
1451 ret = io_u_sync_complete(td, io_u);
1452 (void) ret;
1453 }
1454
1455 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1456}
1457
1458struct fork_data {
1459 struct thread_data *td;
1460 struct sk_out *sk_out;
1461};
1462
1463/*
1464 * Entry point for the thread based jobs. The process based jobs end up
1465 * here as well, after a little setup.
1466 */
1467static void *thread_main(void *data)
1468{
1469 struct fork_data *fd = data;
1470 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1471 struct thread_data *td = fd->td;
1472 struct thread_options *o = &td->o;
1473 struct sk_out *sk_out = fd->sk_out;
1474 int deadlock_loop_cnt;
1475 int clear_state;
1476 int ret;
1477
1478 sk_out_assign(sk_out);
1479 free(fd);
1480
1481 if (!o->use_thread) {
1482 setsid();
1483 td->pid = getpid();
1484 } else
1485 td->pid = gettid();
1486
1487 fio_local_clock_init(o->use_thread);
1488
1489 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1490
1491 if (is_backend)
1492 fio_server_send_start(td);
1493
1494 INIT_FLIST_HEAD(&td->io_log_list);
1495 INIT_FLIST_HEAD(&td->io_hist_list);
1496 INIT_FLIST_HEAD(&td->verify_list);
1497 INIT_FLIST_HEAD(&td->trim_list);
1498 INIT_FLIST_HEAD(&td->next_rand_list);
1499 td->io_hist_tree = RB_ROOT;
1500
1501 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1502 if (ret) {
1503 td_verror(td, ret, "mutex_cond_init_pshared");
1504 goto err;
1505 }
1506 ret = cond_init_pshared(&td->verify_cond);
1507 if (ret) {
1508 td_verror(td, ret, "mutex_cond_pshared");
1509 goto err;
1510 }
1511
1512 td_set_runstate(td, TD_INITIALIZED);
1513 dprint(FD_MUTEX, "up startup_mutex\n");
1514 fio_mutex_up(startup_mutex);
1515 dprint(FD_MUTEX, "wait on td->mutex\n");
1516 fio_mutex_down(td->mutex);
1517 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1518
1519 /*
1520 * A new gid requires privilege, so we need to do this before setting
1521 * the uid.
1522 */
1523 if (o->gid != -1U && setgid(o->gid)) {
1524 td_verror(td, errno, "setgid");
1525 goto err;
1526 }
1527 if (o->uid != -1U && setuid(o->uid)) {
1528 td_verror(td, errno, "setuid");
1529 goto err;
1530 }
1531
1532 /*
1533 * Do this early, we don't want the compress threads to be limited
1534 * to the same CPUs as the IO workers. So do this before we set
1535 * any potential CPU affinity
1536 */
1537 if (iolog_compress_init(td, sk_out))
1538 goto err;
1539
1540 /*
1541 * If we have a gettimeofday() thread, make sure we exclude that
1542 * thread from this job
1543 */
1544 if (o->gtod_cpu)
1545 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1546
1547 /*
1548 * Set affinity first, in case it has an impact on the memory
1549 * allocations.
1550 */
1551 if (fio_option_is_set(o, cpumask)) {
1552 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1553 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1554 if (!ret) {
1555 log_err("fio: no CPUs set\n");
1556 log_err("fio: Try increasing number of available CPUs\n");
1557 td_verror(td, EINVAL, "cpus_split");
1558 goto err;
1559 }
1560 }
1561 ret = fio_setaffinity(td->pid, o->cpumask);
1562 if (ret == -1) {
1563 td_verror(td, errno, "cpu_set_affinity");
1564 goto err;
1565 }
1566 }
1567
1568#ifdef CONFIG_LIBNUMA
1569 /* numa node setup */
1570 if (fio_option_is_set(o, numa_cpunodes) ||
1571 fio_option_is_set(o, numa_memnodes)) {
1572 struct bitmask *mask;
1573
1574 if (numa_available() < 0) {
1575 td_verror(td, errno, "Does not support NUMA API\n");
1576 goto err;
1577 }
1578
1579 if (fio_option_is_set(o, numa_cpunodes)) {
1580 mask = numa_parse_nodestring(o->numa_cpunodes);
1581 ret = numa_run_on_node_mask(mask);
1582 numa_free_nodemask(mask);
1583 if (ret == -1) {
1584 td_verror(td, errno, \
1585 "numa_run_on_node_mask failed\n");
1586 goto err;
1587 }
1588 }
1589
1590 if (fio_option_is_set(o, numa_memnodes)) {
1591 mask = NULL;
1592 if (o->numa_memnodes)
1593 mask = numa_parse_nodestring(o->numa_memnodes);
1594
1595 switch (o->numa_mem_mode) {
1596 case MPOL_INTERLEAVE:
1597 numa_set_interleave_mask(mask);
1598 break;
1599 case MPOL_BIND:
1600 numa_set_membind(mask);
1601 break;
1602 case MPOL_LOCAL:
1603 numa_set_localalloc();
1604 break;
1605 case MPOL_PREFERRED:
1606 numa_set_preferred(o->numa_mem_prefer_node);
1607 break;
1608 case MPOL_DEFAULT:
1609 default:
1610 break;
1611 }
1612
1613 if (mask)
1614 numa_free_nodemask(mask);
1615
1616 }
1617 }
1618#endif
1619
1620 if (fio_pin_memory(td))
1621 goto err;
1622
1623 /*
1624 * May alter parameters that init_io_u() will use, so we need to
1625 * do this first.
1626 */
1627 if (init_iolog(td))
1628 goto err;
1629
1630 if (init_io_u(td))
1631 goto err;
1632
1633 if (o->verify_async && verify_async_init(td))
1634 goto err;
1635
1636 if (fio_option_is_set(o, ioprio) ||
1637 fio_option_is_set(o, ioprio_class)) {
1638 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1639 if (ret == -1) {
1640 td_verror(td, errno, "ioprio_set");
1641 goto err;
1642 }
1643 }
1644
1645 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1646 goto err;
1647
1648 errno = 0;
1649 if (nice(o->nice) == -1 && errno != 0) {
1650 td_verror(td, errno, "nice");
1651 goto err;
1652 }
1653
1654 if (o->ioscheduler && switch_ioscheduler(td))
1655 goto err;
1656
1657 if (!o->create_serialize && setup_files(td))
1658 goto err;
1659
1660 if (td_io_init(td))
1661 goto err;
1662
1663 if (init_random_map(td))
1664 goto err;
1665
1666 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1667 goto err;
1668
1669 if (o->pre_read) {
1670 if (pre_read_files(td) < 0)
1671 goto err;
1672 }
1673
1674 fio_verify_init(td);
1675
1676 if (rate_submit_init(td, sk_out))
1677 goto err;
1678
1679 set_epoch_time(td, o->log_unix_epoch);
1680 fio_getrusage(&td->ru_start);
1681 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1682 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1683
1684 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1685 o->ratemin[DDIR_TRIM]) {
1686 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1687 sizeof(td->bw_sample_time));
1688 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1689 sizeof(td->bw_sample_time));
1690 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1691 sizeof(td->bw_sample_time));
1692 }
1693
1694 clear_state = 0;
1695 while (keep_running(td)) {
1696 uint64_t verify_bytes;
1697
1698 fio_gettime(&td->start, NULL);
1699 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1700
1701 if (clear_state) {
1702 clear_io_state(td, 0);
1703
1704 if (o->unlink_each_loop && unlink_all_files(td))
1705 break;
1706 }
1707
1708 prune_io_piece_log(td);
1709
1710 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1711 verify_bytes = do_dry_run(td);
1712 else {
1713 uint64_t bytes_done[DDIR_RWDIR_CNT];
1714
1715 do_io(td, bytes_done);
1716
1717 if (!ddir_rw_sum(bytes_done)) {
1718 fio_mark_td_terminate(td);
1719 verify_bytes = 0;
1720 } else {
1721 verify_bytes = bytes_done[DDIR_WRITE] +
1722 bytes_done[DDIR_TRIM];
1723 }
1724 }
1725
1726 /*
1727 * If we took too long to shut down, the main thread could
1728 * already consider us reaped/exited. If that happens, break
1729 * out and clean up.
1730 */
1731 if (td->runstate >= TD_EXITED)
1732 break;
1733
1734 clear_state = 1;
1735
1736 /*
1737 * Make sure we've successfully updated the rusage stats
1738 * before waiting on the stat mutex. Otherwise we could have
1739 * the stat thread holding stat mutex and waiting for
1740 * the rusage_sem, which would never get upped because
1741 * this thread is waiting for the stat mutex.
1742 */
1743 deadlock_loop_cnt = 0;
1744 do {
1745 check_update_rusage(td);
1746 if (!fio_mutex_down_trylock(stat_mutex))
1747 break;
1748 usleep(1000);
1749 if (deadlock_loop_cnt++ > 5000) {
1750 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1751 td->error = EDEADLK;
1752 goto err;
1753 }
1754 } while (1);
1755
1756 if (td_read(td) && td->io_bytes[DDIR_READ])
1757 update_runtime(td, elapsed_us, DDIR_READ);
1758 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1759 update_runtime(td, elapsed_us, DDIR_WRITE);
1760 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1761 update_runtime(td, elapsed_us, DDIR_TRIM);
1762 fio_gettime(&td->start, NULL);
1763 fio_mutex_up(stat_mutex);
1764
1765 if (td->error || td->terminate)
1766 break;
1767
1768 if (!o->do_verify ||
1769 o->verify == VERIFY_NONE ||
1770 td_ioengine_flagged(td, FIO_UNIDIR))
1771 continue;
1772
1773 clear_io_state(td, 0);
1774
1775 fio_gettime(&td->start, NULL);
1776
1777 do_verify(td, verify_bytes);
1778
1779 /*
1780 * See comment further up for why this is done here.
1781 */
1782 check_update_rusage(td);
1783
1784 fio_mutex_down(stat_mutex);
1785 update_runtime(td, elapsed_us, DDIR_READ);
1786 fio_gettime(&td->start, NULL);
1787 fio_mutex_up(stat_mutex);
1788
1789 if (td->error || td->terminate)
1790 break;
1791 }
1792
1793 td_set_runstate(td, TD_FINISHING);
1794
1795 update_rusage_stat(td);
1796 td->ts.total_run_time = mtime_since_now(&td->epoch);
1797 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1798 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1799 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1800
1801 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1802 (td->o.verify != VERIFY_NONE && td_write(td)))
1803 verify_save_state(td->thread_number);
1804
1805 fio_unpin_memory(td);
1806
1807 td_writeout_logs(td, true);
1808
1809 iolog_compress_exit(td);
1810 rate_submit_exit(td);
1811
1812 if (o->exec_postrun)
1813 exec_string(o, o->exec_postrun, (const char *)"postrun");
1814
1815 if (exitall_on_terminate || (o->exitall_error && td->error))
1816 fio_terminate_threads(td->groupid);
1817
1818err:
1819 if (td->error)
1820 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1821 td->verror);
1822
1823 if (o->verify_async)
1824 verify_async_exit(td);
1825
1826 close_and_free_files(td);
1827 cleanup_io_u(td);
1828 close_ioengine(td);
1829 cgroup_shutdown(td, &cgroup_mnt);
1830 verify_free_state(td);
1831
1832 if (td->zone_state_index) {
1833 int i;
1834
1835 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1836 free(td->zone_state_index[i]);
1837 free(td->zone_state_index);
1838 td->zone_state_index = NULL;
1839 }
1840
1841 if (fio_option_is_set(o, cpumask)) {
1842 ret = fio_cpuset_exit(&o->cpumask);
1843 if (ret)
1844 td_verror(td, ret, "fio_cpuset_exit");
1845 }
1846
1847 /*
1848 * do this very late, it will log file closing as well
1849 */
1850 if (o->write_iolog_file)
1851 write_iolog_close(td);
1852
1853 fio_mutex_remove(td->mutex);
1854 td->mutex = NULL;
1855
1856 td_set_runstate(td, TD_EXITED);
1857
1858 /*
1859 * Do this last after setting our runstate to exited, so we
1860 * know that the stat thread is signaled.
1861 */
1862 check_update_rusage(td);
1863
1864 sk_out_drop();
1865 return (void *) (uintptr_t) td->error;
1866}
1867
1868static void dump_td_info(struct thread_data *td)
1869{
1870 log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1871 "appears to be stuck. Doing forceful exit of this job.\n",
1872 td->o.name, td->runstate,
1873 (unsigned long) time_since_now(&td->terminate_time));
1874}
1875
1876/*
1877 * Run over the job map and reap the threads that have exited, if any.
1878 */
1879static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1880 unsigned int *m_rate)
1881{
1882 struct thread_data *td;
1883 unsigned int cputhreads, realthreads, pending;
1884 int i, status, ret;
1885
1886 /*
1887 * reap exited threads (TD_EXITED -> TD_REAPED)
1888 */
1889 realthreads = pending = cputhreads = 0;
1890 for_each_td(td, i) {
1891 int flags = 0;
1892
1893 /*
1894 * ->io_ops is NULL for a thread that has closed its
1895 * io engine
1896 */
1897 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1898 cputhreads++;
1899 else
1900 realthreads++;
1901
1902 if (!td->pid) {
1903 pending++;
1904 continue;
1905 }
1906 if (td->runstate == TD_REAPED)
1907 continue;
1908 if (td->o.use_thread) {
1909 if (td->runstate == TD_EXITED) {
1910 td_set_runstate(td, TD_REAPED);
1911 goto reaped;
1912 }
1913 continue;
1914 }
1915
1916 flags = WNOHANG;
1917 if (td->runstate == TD_EXITED)
1918 flags = 0;
1919
1920 /*
1921 * check if someone quit or got killed in an unusual way
1922 */
1923 ret = waitpid(td->pid, &status, flags);
1924 if (ret < 0) {
1925 if (errno == ECHILD) {
1926 log_err("fio: pid=%d disappeared %d\n",
1927 (int) td->pid, td->runstate);
1928 td->sig = ECHILD;
1929 td_set_runstate(td, TD_REAPED);
1930 goto reaped;
1931 }
1932 perror("waitpid");
1933 } else if (ret == td->pid) {
1934 if (WIFSIGNALED(status)) {
1935 int sig = WTERMSIG(status);
1936
1937 if (sig != SIGTERM && sig != SIGUSR2)
1938 log_err("fio: pid=%d, got signal=%d\n",
1939 (int) td->pid, sig);
1940 td->sig = sig;
1941 td_set_runstate(td, TD_REAPED);
1942 goto reaped;
1943 }
1944 if (WIFEXITED(status)) {
1945 if (WEXITSTATUS(status) && !td->error)
1946 td->error = WEXITSTATUS(status);
1947
1948 td_set_runstate(td, TD_REAPED);
1949 goto reaped;
1950 }
1951 }
1952
1953 /*
1954 * If the job is stuck, do a forceful timeout of it and
1955 * move on.
1956 */
1957 if (td->terminate &&
1958 td->runstate < TD_FSYNCING &&
1959 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1960 dump_td_info(td);
1961 td_set_runstate(td, TD_REAPED);
1962 goto reaped;
1963 }
1964
1965 /*
1966 * thread is not dead, continue
1967 */
1968 pending++;
1969 continue;
1970reaped:
1971 (*nr_running)--;
1972 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1973 (*t_rate) -= ddir_rw_sum(td->o.rate);
1974 if (!td->pid)
1975 pending--;
1976
1977 if (td->error)
1978 exit_value++;
1979
1980 done_secs += mtime_since_now(&td->epoch) / 1000;
1981 profile_td_exit(td);
1982 }
1983
1984 if (*nr_running == cputhreads && !pending && realthreads)
1985 fio_terminate_threads(TERMINATE_ALL);
1986}
1987
1988static bool __check_trigger_file(void)
1989{
1990 struct stat sb;
1991
1992 if (!trigger_file)
1993 return false;
1994
1995 if (stat(trigger_file, &sb))
1996 return false;
1997
1998 if (unlink(trigger_file) < 0)
1999 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2000 strerror(errno));
2001
2002 return true;
2003}
2004
2005static bool trigger_timedout(void)
2006{
2007 if (trigger_timeout)
2008 return time_since_genesis() >= trigger_timeout;
2009
2010 return false;
2011}
2012
2013void exec_trigger(const char *cmd)
2014{
2015 int ret;
2016
2017 if (!cmd)
2018 return;
2019
2020 ret = system(cmd);
2021 if (ret == -1)
2022 log_err("fio: failed executing %s trigger\n", cmd);
2023}
2024
2025void check_trigger_file(void)
2026{
2027 if (__check_trigger_file() || trigger_timedout()) {
2028 if (nr_clients)
2029 fio_clients_send_trigger(trigger_remote_cmd);
2030 else {
2031 verify_save_state(IO_LIST_ALL);
2032 fio_terminate_threads(TERMINATE_ALL);
2033 exec_trigger(trigger_cmd);
2034 }
2035 }
2036}
2037
2038static int fio_verify_load_state(struct thread_data *td)
2039{
2040 int ret;
2041
2042 if (!td->o.verify_state)
2043 return 0;
2044
2045 if (is_backend) {
2046 void *data;
2047
2048 ret = fio_server_get_verify_state(td->o.name,
2049 td->thread_number - 1, &data);
2050 if (!ret)
2051 verify_assign_state(td, data);
2052 } else
2053 ret = verify_load_state(td, "local");
2054
2055 return ret;
2056}
2057
2058static void do_usleep(unsigned int usecs)
2059{
2060 check_for_running_stats();
2061 check_trigger_file();
2062 usleep(usecs);
2063}
2064
2065static bool check_mount_writes(struct thread_data *td)
2066{
2067 struct fio_file *f;
2068 unsigned int i;
2069
2070 if (!td_write(td) || td->o.allow_mounted_write)
2071 return false;
2072
2073 for_each_file(td, f, i) {
2074 if (f->filetype != FIO_TYPE_BD)
2075 continue;
2076 if (device_is_mounted(f->file_name))
2077 goto mounted;
2078 }
2079
2080 return false;
2081mounted:
2082 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2083 return true;
2084}
2085
2086static bool waitee_running(struct thread_data *me)
2087{
2088 const char *waitee = me->o.wait_for;
2089 const char *self = me->o.name;
2090 struct thread_data *td;
2091 int i;
2092
2093 if (!waitee)
2094 return false;
2095
2096 for_each_td(td, i) {
2097 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2098 continue;
2099
2100 if (td->runstate < TD_EXITED) {
2101 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2102 self, td->o.name,
2103 runstate_to_name(td->runstate));
2104 return true;
2105 }
2106 }
2107
2108 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2109 return false;
2110}
2111
2112/*
2113 * Main function for kicking off and reaping jobs, as needed.
2114 */
2115static void run_threads(struct sk_out *sk_out)
2116{
2117 struct thread_data *td;
2118 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2119 uint64_t spent;
2120
2121 if (fio_gtod_offload && fio_start_gtod_thread())
2122 return;
2123
2124 fio_idle_prof_init();
2125
2126 set_sig_handlers();
2127
2128 nr_thread = nr_process = 0;
2129 for_each_td(td, i) {
2130 if (check_mount_writes(td))
2131 return;
2132 if (td->o.use_thread)
2133 nr_thread++;
2134 else
2135 nr_process++;
2136 }
2137
2138 if (output_format & FIO_OUTPUT_NORMAL) {
2139 log_info("Starting ");
2140 if (nr_thread)
2141 log_info("%d thread%s", nr_thread,
2142 nr_thread > 1 ? "s" : "");
2143 if (nr_process) {
2144 if (nr_thread)
2145 log_info(" and ");
2146 log_info("%d process%s", nr_process,
2147 nr_process > 1 ? "es" : "");
2148 }
2149 log_info("\n");
2150 log_info_flush();
2151 }
2152
2153 todo = thread_number;
2154 nr_running = 0;
2155 nr_started = 0;
2156 m_rate = t_rate = 0;
2157
2158 for_each_td(td, i) {
2159 print_status_init(td->thread_number - 1);
2160
2161 if (!td->o.create_serialize)
2162 continue;
2163
2164 if (fio_verify_load_state(td))
2165 goto reap;
2166
2167 /*
2168 * do file setup here so it happens sequentially,
2169 * we don't want X number of threads getting their
2170 * client data interspersed on disk
2171 */
2172 if (setup_files(td)) {
2173reap:
2174 exit_value++;
2175 if (td->error)
2176 log_err("fio: pid=%d, err=%d/%s\n",
2177 (int) td->pid, td->error, td->verror);
2178 td_set_runstate(td, TD_REAPED);
2179 todo--;
2180 } else {
2181 struct fio_file *f;
2182 unsigned int j;
2183
2184 /*
2185 * for sharing to work, each job must always open
2186 * its own files. so close them, if we opened them
2187 * for creation
2188 */
2189 for_each_file(td, f, j) {
2190 if (fio_file_open(f))
2191 td_io_close_file(td, f);
2192 }
2193 }
2194 }
2195
2196 /* start idle threads before io threads start to run */
2197 fio_idle_prof_start();
2198
2199 set_genesis_time();
2200
2201 while (todo) {
2202 struct thread_data *map[REAL_MAX_JOBS];
2203 struct timeval this_start;
2204 int this_jobs = 0, left;
2205 struct fork_data *fd;
2206
2207 /*
2208 * create threads (TD_NOT_CREATED -> TD_CREATED)
2209 */
2210 for_each_td(td, i) {
2211 if (td->runstate != TD_NOT_CREATED)
2212 continue;
2213
2214 /*
2215 * never got a chance to start, killed by other
2216 * thread for some reason
2217 */
2218 if (td->terminate) {
2219 todo--;
2220 continue;
2221 }
2222
2223 if (td->o.start_delay) {
2224 spent = utime_since_genesis();
2225
2226 if (td->o.start_delay > spent)
2227 continue;
2228 }
2229
2230 if (td->o.stonewall && (nr_started || nr_running)) {
2231 dprint(FD_PROCESS, "%s: stonewall wait\n",
2232 td->o.name);
2233 break;
2234 }
2235
2236 if (waitee_running(td)) {
2237 dprint(FD_PROCESS, "%s: waiting for %s\n",
2238 td->o.name, td->o.wait_for);
2239 continue;
2240 }
2241
2242 init_disk_util(td);
2243
2244 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2245 td->update_rusage = 0;
2246
2247 /*
2248 * Set state to created. Thread will transition
2249 * to TD_INITIALIZED when it's done setting up.
2250 */
2251 td_set_runstate(td, TD_CREATED);
2252 map[this_jobs++] = td;
2253 nr_started++;
2254
2255 fd = calloc(1, sizeof(*fd));
2256 fd->td = td;
2257 fd->sk_out = sk_out;
2258
2259 if (td->o.use_thread) {
2260 int ret;
2261
2262 dprint(FD_PROCESS, "will pthread_create\n");
2263 ret = pthread_create(&td->thread, NULL,
2264 thread_main, fd);
2265 if (ret) {
2266 log_err("pthread_create: %s\n",
2267 strerror(ret));
2268 free(fd);
2269 nr_started--;
2270 break;
2271 }
2272 ret = pthread_detach(td->thread);
2273 if (ret)
2274 log_err("pthread_detach: %s",
2275 strerror(ret));
2276 } else {
2277 pid_t pid;
2278 dprint(FD_PROCESS, "will fork\n");
2279 pid = fork();
2280 if (!pid) {
2281 int ret;
2282
2283 ret = (int)(uintptr_t)thread_main(fd);
2284 _exit(ret);
2285 } else if (i == fio_debug_jobno)
2286 *fio_debug_jobp = pid;
2287 }
2288 dprint(FD_MUTEX, "wait on startup_mutex\n");
2289 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2290 log_err("fio: job startup hung? exiting.\n");
2291 fio_terminate_threads(TERMINATE_ALL);
2292 fio_abort = 1;
2293 nr_started--;
2294 break;
2295 }
2296 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2297 }
2298
2299 /*
2300 * Wait for the started threads to transition to
2301 * TD_INITIALIZED.
2302 */
2303 fio_gettime(&this_start, NULL);
2304 left = this_jobs;
2305 while (left && !fio_abort) {
2306 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2307 break;
2308
2309 do_usleep(100000);
2310
2311 for (i = 0; i < this_jobs; i++) {
2312 td = map[i];
2313 if (!td)
2314 continue;
2315 if (td->runstate == TD_INITIALIZED) {
2316 map[i] = NULL;
2317 left--;
2318 } else if (td->runstate >= TD_EXITED) {
2319 map[i] = NULL;
2320 left--;
2321 todo--;
2322 nr_running++; /* work-around... */
2323 }
2324 }
2325 }
2326
2327 if (left) {
2328 log_err("fio: %d job%s failed to start\n", left,
2329 left > 1 ? "s" : "");
2330 for (i = 0; i < this_jobs; i++) {
2331 td = map[i];
2332 if (!td)
2333 continue;
2334 kill(td->pid, SIGTERM);
2335 }
2336 break;
2337 }
2338
2339 /*
2340 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2341 */
2342 for_each_td(td, i) {
2343 if (td->runstate != TD_INITIALIZED)
2344 continue;
2345
2346 if (in_ramp_time(td))
2347 td_set_runstate(td, TD_RAMP);
2348 else
2349 td_set_runstate(td, TD_RUNNING);
2350 nr_running++;
2351 nr_started--;
2352 m_rate += ddir_rw_sum(td->o.ratemin);
2353 t_rate += ddir_rw_sum(td->o.rate);
2354 todo--;
2355 fio_mutex_up(td->mutex);
2356 }
2357
2358 reap_threads(&nr_running, &t_rate, &m_rate);
2359
2360 if (todo)
2361 do_usleep(100000);
2362 }
2363
2364 while (nr_running) {
2365 reap_threads(&nr_running, &t_rate, &m_rate);
2366 do_usleep(10000);
2367 }
2368
2369 fio_idle_prof_stop();
2370
2371 update_io_ticks();
2372}
2373
2374static void free_disk_util(void)
2375{
2376 disk_util_prune_entries();
2377 helper_thread_destroy();
2378}
2379
2380int fio_backend(struct sk_out *sk_out)
2381{
2382 struct thread_data *td;
2383 int i;
2384
2385 if (exec_profile) {
2386 if (load_profile(exec_profile))
2387 return 1;
2388 free(exec_profile);
2389 exec_profile = NULL;
2390 }
2391 if (!thread_number)
2392 return 0;
2393
2394 if (write_bw_log) {
2395 struct log_params p = {
2396 .log_type = IO_LOG_TYPE_BW,
2397 };
2398
2399 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2400 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2401 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2402 }
2403
2404 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2405 if (startup_mutex == NULL)
2406 return 1;
2407
2408 set_genesis_time();
2409 stat_init();
2410 helper_thread_create(startup_mutex, sk_out);
2411
2412 cgroup_list = smalloc(sizeof(*cgroup_list));
2413 INIT_FLIST_HEAD(cgroup_list);
2414
2415 run_threads(sk_out);
2416
2417 helper_thread_exit();
2418
2419 if (!fio_abort) {
2420 __show_run_stats();
2421 if (write_bw_log) {
2422 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2423 struct io_log *log = agg_io_log[i];
2424
2425 flush_log(log, false);
2426 free_log(log);
2427 }
2428 }
2429 }
2430
2431 for_each_td(td, i) {
2432 fio_options_free(td);
2433 if (td->rusage_sem) {
2434 fio_mutex_remove(td->rusage_sem);
2435 td->rusage_sem = NULL;
2436 }
2437 }
2438
2439 free_disk_util();
2440 cgroup_kill(cgroup_list);
2441 sfree(cgroup_list);
2442 sfree(cgroup_mnt);
2443
2444 fio_mutex_remove(startup_mutex);
2445 stat_exit();
2446 return exit_value;
2447}