Avoid buildenv conditional in thread_option struct
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56
57static pthread_t disk_util_thread;
58static struct fio_mutex *disk_thread_mutex;
59static struct fio_mutex *startup_mutex;
60static struct flist_head *cgroup_list;
61static char *cgroup_mnt;
62static int exit_value;
63static volatile int fio_abort;
64static unsigned int nr_process = 0;
65static unsigned int nr_thread = 0;
66
67struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69int groupid = 0;
70unsigned int thread_number = 0;
71unsigned int stat_number = 0;
72int shm_id = 0;
73int temp_stall_ts;
74unsigned long done_secs = 0;
75volatile int disk_util_exit = 0;
76
77#define PAGE_ALIGN(buf) \
78 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80#define JOB_START_TIMEOUT (5 * 1000)
81
82static void sig_int(int sig)
83{
84 if (threads) {
85 if (is_backend)
86 fio_server_got_signal(sig);
87 else {
88 log_info("\nfio: terminating on signal %d\n", sig);
89 fflush(stdout);
90 exit_value = 128;
91 }
92
93 fio_terminate_threads(TERMINATE_ALL);
94 }
95}
96
97static void sig_show_status(int sig)
98{
99 show_running_run_stats();
100}
101
102static void set_sig_handlers(void)
103{
104 struct sigaction act;
105
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGINT, &act, NULL);
110
111 memset(&act, 0, sizeof(act));
112 act.sa_handler = sig_int;
113 act.sa_flags = SA_RESTART;
114 sigaction(SIGTERM, &act, NULL);
115
116/* Windows uses SIGBREAK as a quit signal from other applications */
117#ifdef WIN32
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGBREAK, &act, NULL);
122#endif
123
124 memset(&act, 0, sizeof(act));
125 act.sa_handler = sig_show_status;
126 act.sa_flags = SA_RESTART;
127 sigaction(SIGUSR1, &act, NULL);
128
129 if (is_backend) {
130 memset(&act, 0, sizeof(act));
131 act.sa_handler = sig_int;
132 act.sa_flags = SA_RESTART;
133 sigaction(SIGPIPE, &act, NULL);
134 }
135}
136
137/*
138 * Check if we are above the minimum rate given.
139 */
140static int __check_min_rate(struct thread_data *td, struct timeval *now,
141 enum fio_ddir ddir)
142{
143 unsigned long long bytes = 0;
144 unsigned long iops = 0;
145 unsigned long spent;
146 unsigned long rate;
147 unsigned int ratemin = 0;
148 unsigned int rate_iops = 0;
149 unsigned int rate_iops_min = 0;
150
151 assert(ddir_rw(ddir));
152
153 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154 return 0;
155
156 /*
157 * allow a 2 second settle period in the beginning
158 */
159 if (mtime_since(&td->start, now) < 2000)
160 return 0;
161
162 iops += td->this_io_blocks[ddir];
163 bytes += td->this_io_bytes[ddir];
164 ratemin += td->o.ratemin[ddir];
165 rate_iops += td->o.rate_iops[ddir];
166 rate_iops_min += td->o.rate_iops_min[ddir];
167
168 /*
169 * if rate blocks is set, sample is running
170 */
171 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172 spent = mtime_since(&td->lastrate[ddir], now);
173 if (spent < td->o.ratecycle)
174 return 0;
175
176 if (td->o.rate[ddir]) {
177 /*
178 * check bandwidth specified rate
179 */
180 if (bytes < td->rate_bytes[ddir]) {
181 log_err("%s: min rate %u not met\n", td->o.name,
182 ratemin);
183 return 1;
184 } else {
185 if (spent)
186 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
187 else
188 rate = 0;
189
190 if (rate < ratemin ||
191 bytes < td->rate_bytes[ddir]) {
192 log_err("%s: min rate %u not met, got"
193 " %luKB/sec\n", td->o.name,
194 ratemin, rate);
195 return 1;
196 }
197 }
198 } else {
199 /*
200 * checks iops specified rate
201 */
202 if (iops < rate_iops) {
203 log_err("%s: min iops rate %u not met\n",
204 td->o.name, rate_iops);
205 return 1;
206 } else {
207 if (spent)
208 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
209 else
210 rate = 0;
211
212 if (rate < rate_iops_min ||
213 iops < td->rate_blocks[ddir]) {
214 log_err("%s: min iops rate %u not met,"
215 " got %lu\n", td->o.name,
216 rate_iops_min, rate);
217 }
218 }
219 }
220 }
221
222 td->rate_bytes[ddir] = bytes;
223 td->rate_blocks[ddir] = iops;
224 memcpy(&td->lastrate[ddir], now, sizeof(*now));
225 return 0;
226}
227
228static int check_min_rate(struct thread_data *td, struct timeval *now,
229 uint64_t *bytes_done)
230{
231 int ret = 0;
232
233 if (bytes_done[DDIR_READ])
234 ret |= __check_min_rate(td, now, DDIR_READ);
235 if (bytes_done[DDIR_WRITE])
236 ret |= __check_min_rate(td, now, DDIR_WRITE);
237 if (bytes_done[DDIR_TRIM])
238 ret |= __check_min_rate(td, now, DDIR_TRIM);
239
240 return ret;
241}
242
243/*
244 * When job exits, we can cancel the in-flight IO if we are using async
245 * io. Attempt to do so.
246 */
247static void cleanup_pending_aio(struct thread_data *td)
248{
249 int r;
250
251 /*
252 * get immediately available events, if any
253 */
254 r = io_u_queued_complete(td, 0, NULL);
255 if (r < 0)
256 return;
257
258 /*
259 * now cancel remaining active events
260 */
261 if (td->io_ops->cancel) {
262 struct io_u *io_u;
263 int i;
264
265 io_u_qiter(&td->io_u_all, io_u, i) {
266 if (io_u->flags & IO_U_F_FLIGHT) {
267 r = td->io_ops->cancel(td, io_u);
268 if (!r)
269 put_io_u(td, io_u);
270 }
271 }
272 }
273
274 if (td->cur_depth)
275 r = io_u_queued_complete(td, td->cur_depth, NULL);
276}
277
278/*
279 * Helper to handle the final sync of a file. Works just like the normal
280 * io path, just does everything sync.
281 */
282static int fio_io_sync(struct thread_data *td, struct fio_file *f)
283{
284 struct io_u *io_u = __get_io_u(td);
285 int ret;
286
287 if (!io_u)
288 return 1;
289
290 io_u->ddir = DDIR_SYNC;
291 io_u->file = f;
292
293 if (td_io_prep(td, io_u)) {
294 put_io_u(td, io_u);
295 return 1;
296 }
297
298requeue:
299 ret = td_io_queue(td, io_u);
300 if (ret < 0) {
301 td_verror(td, io_u->error, "td_io_queue");
302 put_io_u(td, io_u);
303 return 1;
304 } else if (ret == FIO_Q_QUEUED) {
305 if (io_u_queued_complete(td, 1, NULL) < 0)
306 return 1;
307 } else if (ret == FIO_Q_COMPLETED) {
308 if (io_u->error) {
309 td_verror(td, io_u->error, "td_io_queue");
310 return 1;
311 }
312
313 if (io_u_sync_complete(td, io_u, NULL) < 0)
314 return 1;
315 } else if (ret == FIO_Q_BUSY) {
316 if (td_io_commit(td))
317 return 1;
318 goto requeue;
319 }
320
321 return 0;
322}
323
324static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
325{
326 int ret;
327
328 if (fio_file_open(f))
329 return fio_io_sync(td, f);
330
331 if (td_io_open_file(td, f))
332 return 1;
333
334 ret = fio_io_sync(td, f);
335 td_io_close_file(td, f);
336 return ret;
337}
338
339static inline void __update_tv_cache(struct thread_data *td)
340{
341 fio_gettime(&td->tv_cache, NULL);
342}
343
344static inline void update_tv_cache(struct thread_data *td)
345{
346 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
347 __update_tv_cache(td);
348}
349
350static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
351{
352 if (in_ramp_time(td))
353 return 0;
354 if (!td->o.timeout)
355 return 0;
356 if (utime_since(&td->epoch, t) >= td->o.timeout)
357 return 1;
358
359 return 0;
360}
361
362static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
363 int *retptr)
364{
365 int ret = *retptr;
366
367 if (ret < 0 || td->error) {
368 int err = td->error;
369 enum error_type_bit eb;
370
371 if (ret < 0)
372 err = -ret;
373
374 eb = td_error_type(ddir, err);
375 if (!(td->o.continue_on_error & (1 << eb)))
376 return 1;
377
378 if (td_non_fatal_error(td, eb, err)) {
379 /*
380 * Continue with the I/Os in case of
381 * a non fatal error.
382 */
383 update_error_count(td, err);
384 td_clear_error(td);
385 *retptr = 0;
386 return 0;
387 } else if (td->o.fill_device && err == ENOSPC) {
388 /*
389 * We expect to hit this error if
390 * fill_device option is set.
391 */
392 td_clear_error(td);
393 td->terminate = 1;
394 return 1;
395 } else {
396 /*
397 * Stop the I/O in case of a fatal
398 * error.
399 */
400 update_error_count(td, err);
401 return 1;
402 }
403 }
404
405 return 0;
406}
407
408static void check_update_rusage(struct thread_data *td)
409{
410 if (td->update_rusage) {
411 td->update_rusage = 0;
412 update_rusage_stat(td);
413 fio_mutex_up(td->rusage_sem);
414 }
415}
416
417/*
418 * The main verify engine. Runs over the writes we previously submitted,
419 * reads the blocks back in, and checks the crc/md5 of the data.
420 */
421static void do_verify(struct thread_data *td, uint64_t verify_bytes)
422{
423 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
424 struct fio_file *f;
425 struct io_u *io_u;
426 int ret, min_events;
427 unsigned int i;
428
429 dprint(FD_VERIFY, "starting loop\n");
430
431 /*
432 * sync io first and invalidate cache, to make sure we really
433 * read from disk.
434 */
435 for_each_file(td, f, i) {
436 if (!fio_file_open(f))
437 continue;
438 if (fio_io_sync(td, f))
439 break;
440 if (file_invalidate_cache(td, f))
441 break;
442 }
443
444 check_update_rusage(td);
445
446 if (td->error)
447 return;
448
449 td_set_runstate(td, TD_VERIFYING);
450
451 io_u = NULL;
452 while (!td->terminate) {
453 enum fio_ddir ddir;
454 int ret2, full;
455
456 update_tv_cache(td);
457 check_update_rusage(td);
458
459 if (runtime_exceeded(td, &td->tv_cache)) {
460 __update_tv_cache(td);
461 if (runtime_exceeded(td, &td->tv_cache)) {
462 td->terminate = 1;
463 break;
464 }
465 }
466
467 if (flow_threshold_exceeded(td))
468 continue;
469
470 if (!td->o.experimental_verify) {
471 io_u = __get_io_u(td);
472 if (!io_u)
473 break;
474
475 if (get_next_verify(td, io_u)) {
476 put_io_u(td, io_u);
477 break;
478 }
479
480 if (td_io_prep(td, io_u)) {
481 put_io_u(td, io_u);
482 break;
483 }
484 } else {
485 if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
486 break;
487
488 while ((io_u = get_io_u(td)) != NULL) {
489 if (IS_ERR(io_u)) {
490 io_u = NULL;
491 ret = FIO_Q_BUSY;
492 goto reap;
493 }
494
495 /*
496 * We are only interested in the places where
497 * we wrote or trimmed IOs. Turn those into
498 * reads for verification purposes.
499 */
500 if (io_u->ddir == DDIR_READ) {
501 /*
502 * Pretend we issued it for rwmix
503 * accounting
504 */
505 td->io_issues[DDIR_READ]++;
506 put_io_u(td, io_u);
507 continue;
508 } else if (io_u->ddir == DDIR_TRIM) {
509 io_u->ddir = DDIR_READ;
510 io_u->flags |= IO_U_F_TRIMMED;
511 break;
512 } else if (io_u->ddir == DDIR_WRITE) {
513 io_u->ddir = DDIR_READ;
514 break;
515 } else {
516 put_io_u(td, io_u);
517 continue;
518 }
519 }
520
521 if (!io_u)
522 break;
523 }
524
525 if (td->o.verify_async)
526 io_u->end_io = verify_io_u_async;
527 else
528 io_u->end_io = verify_io_u;
529
530 ddir = io_u->ddir;
531
532 ret = td_io_queue(td, io_u);
533 switch (ret) {
534 case FIO_Q_COMPLETED:
535 if (io_u->error) {
536 ret = -io_u->error;
537 clear_io_u(td, io_u);
538 } else if (io_u->resid) {
539 int bytes = io_u->xfer_buflen - io_u->resid;
540
541 /*
542 * zero read, fail
543 */
544 if (!bytes) {
545 td_verror(td, EIO, "full resid");
546 put_io_u(td, io_u);
547 break;
548 }
549
550 io_u->xfer_buflen = io_u->resid;
551 io_u->xfer_buf += bytes;
552 io_u->offset += bytes;
553
554 if (ddir_rw(io_u->ddir))
555 td->ts.short_io_u[io_u->ddir]++;
556
557 f = io_u->file;
558 if (io_u->offset == f->real_file_size)
559 goto sync_done;
560
561 requeue_io_u(td, &io_u);
562 } else {
563sync_done:
564 ret = io_u_sync_complete(td, io_u, bytes_done);
565 if (ret < 0)
566 break;
567 }
568 continue;
569 case FIO_Q_QUEUED:
570 break;
571 case FIO_Q_BUSY:
572 requeue_io_u(td, &io_u);
573 ret2 = td_io_commit(td);
574 if (ret2 < 0)
575 ret = ret2;
576 break;
577 default:
578 assert(ret < 0);
579 td_verror(td, -ret, "td_io_queue");
580 break;
581 }
582
583 if (break_on_this_error(td, ddir, &ret))
584 break;
585
586 /*
587 * if we can queue more, do so. but check if there are
588 * completed io_u's first. Note that we can get BUSY even
589 * without IO queued, if the system is resource starved.
590 */
591reap:
592 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
593 if (full || !td->o.iodepth_batch_complete) {
594 min_events = min(td->o.iodepth_batch_complete,
595 td->cur_depth);
596 /*
597 * if the queue is full, we MUST reap at least 1 event
598 */
599 if (full && !min_events)
600 min_events = 1;
601
602 do {
603 /*
604 * Reap required number of io units, if any,
605 * and do the verification on them through
606 * the callback handler
607 */
608 if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
609 ret = -1;
610 break;
611 }
612 } while (full && (td->cur_depth > td->o.iodepth_low));
613 }
614 if (ret < 0)
615 break;
616 }
617
618 check_update_rusage(td);
619
620 if (!td->error) {
621 min_events = td->cur_depth;
622
623 if (min_events)
624 ret = io_u_queued_complete(td, min_events, NULL);
625 } else
626 cleanup_pending_aio(td);
627
628 td_set_runstate(td, TD_RUNNING);
629
630 dprint(FD_VERIFY, "exiting loop\n");
631}
632
633static unsigned int exceeds_number_ios(struct thread_data *td)
634{
635 unsigned long long number_ios;
636
637 if (!td->o.number_ios)
638 return 0;
639
640 number_ios = ddir_rw_sum(td->this_io_blocks);
641 number_ios += td->io_u_queued + td->io_u_in_flight;
642
643 return number_ios >= td->o.number_ios;
644}
645
646static int io_bytes_exceeded(struct thread_data *td)
647{
648 unsigned long long bytes, limit;
649
650 if (td_rw(td))
651 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
652 else if (td_write(td))
653 bytes = td->this_io_bytes[DDIR_WRITE];
654 else if (td_read(td))
655 bytes = td->this_io_bytes[DDIR_READ];
656 else
657 bytes = td->this_io_bytes[DDIR_TRIM];
658
659 if (td->o.io_limit)
660 limit = td->o.io_limit;
661 else
662 limit = td->o.size;
663
664 return bytes >= limit || exceeds_number_ios(td);
665}
666
667/*
668 * Main IO worker function. It retrieves io_u's to process and queues
669 * and reaps them, checking for rate and errors along the way.
670 *
671 * Returns number of bytes written and trimmed.
672 */
673static uint64_t do_io(struct thread_data *td)
674{
675 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
676 unsigned int i;
677 int ret = 0;
678 uint64_t total_bytes, bytes_issued = 0;
679
680 if (in_ramp_time(td))
681 td_set_runstate(td, TD_RAMP);
682 else
683 td_set_runstate(td, TD_RUNNING);
684
685 lat_target_init(td);
686
687 /*
688 * If verify_backlog is enabled, we'll run the verify in this
689 * handler as well. For that case, we may need up to twice the
690 * amount of bytes.
691 */
692 total_bytes = td->o.size;
693 if (td->o.verify != VERIFY_NONE &&
694 (td_write(td) && td->o.verify_backlog))
695 total_bytes += td->o.size;
696
697 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
698 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
699 td->o.time_based) {
700 struct timeval comp_time;
701 int min_evts = 0;
702 struct io_u *io_u;
703 int ret2, full;
704 enum fio_ddir ddir;
705
706 check_update_rusage(td);
707
708 if (td->terminate || td->done)
709 break;
710
711 update_tv_cache(td);
712
713 if (runtime_exceeded(td, &td->tv_cache)) {
714 __update_tv_cache(td);
715 if (runtime_exceeded(td, &td->tv_cache)) {
716 td->terminate = 1;
717 break;
718 }
719 }
720
721 if (flow_threshold_exceeded(td))
722 continue;
723
724 if (bytes_issued >= total_bytes)
725 break;
726
727 io_u = get_io_u(td);
728 if (IS_ERR_OR_NULL(io_u)) {
729 int err = PTR_ERR(io_u);
730
731 io_u = NULL;
732 if (err == -EBUSY) {
733 ret = FIO_Q_BUSY;
734 goto reap;
735 }
736 if (td->o.latency_target)
737 goto reap;
738 break;
739 }
740
741 ddir = io_u->ddir;
742
743 /*
744 * Add verification end_io handler if:
745 * - Asked to verify (!td_rw(td))
746 * - Or the io_u is from our verify list (mixed write/ver)
747 */
748 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
749 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
750
751 if (!td->o.verify_pattern_bytes) {
752 io_u->rand_seed = __rand(&td->__verify_state);
753 if (sizeof(int) != sizeof(long *))
754 io_u->rand_seed *= __rand(&td->__verify_state);
755 }
756
757 if (td->o.verify_async)
758 io_u->end_io = verify_io_u_async;
759 else
760 io_u->end_io = verify_io_u;
761 td_set_runstate(td, TD_VERIFYING);
762 } else if (in_ramp_time(td))
763 td_set_runstate(td, TD_RAMP);
764 else
765 td_set_runstate(td, TD_RUNNING);
766
767 /*
768 * Always log IO before it's issued, so we know the specific
769 * order of it. The logged unit will track when the IO has
770 * completed.
771 */
772 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
773 td->o.do_verify &&
774 td->o.verify != VERIFY_NONE &&
775 !td->o.experimental_verify)
776 log_io_piece(td, io_u);
777
778 ret = td_io_queue(td, io_u);
779 switch (ret) {
780 case FIO_Q_COMPLETED:
781 if (io_u->error) {
782 ret = -io_u->error;
783 clear_io_u(td, io_u);
784 } else if (io_u->resid) {
785 int bytes = io_u->xfer_buflen - io_u->resid;
786 struct fio_file *f = io_u->file;
787
788 bytes_issued += bytes;
789 /*
790 * zero read, fail
791 */
792 if (!bytes) {
793 td_verror(td, EIO, "full resid");
794 put_io_u(td, io_u);
795 break;
796 }
797
798 io_u->xfer_buflen = io_u->resid;
799 io_u->xfer_buf += bytes;
800 io_u->offset += bytes;
801
802 if (ddir_rw(io_u->ddir))
803 td->ts.short_io_u[io_u->ddir]++;
804
805 if (io_u->offset == f->real_file_size)
806 goto sync_done;
807
808 requeue_io_u(td, &io_u);
809 } else {
810sync_done:
811 if (__should_check_rate(td, DDIR_READ) ||
812 __should_check_rate(td, DDIR_WRITE) ||
813 __should_check_rate(td, DDIR_TRIM))
814 fio_gettime(&comp_time, NULL);
815
816 ret = io_u_sync_complete(td, io_u, bytes_done);
817 if (ret < 0)
818 break;
819 bytes_issued += io_u->xfer_buflen;
820 }
821 break;
822 case FIO_Q_QUEUED:
823 /*
824 * if the engine doesn't have a commit hook,
825 * the io_u is really queued. if it does have such
826 * a hook, it has to call io_u_queued() itself.
827 */
828 if (td->io_ops->commit == NULL)
829 io_u_queued(td, io_u);
830 bytes_issued += io_u->xfer_buflen;
831 break;
832 case FIO_Q_BUSY:
833 requeue_io_u(td, &io_u);
834 ret2 = td_io_commit(td);
835 if (ret2 < 0)
836 ret = ret2;
837 break;
838 default:
839 assert(ret < 0);
840 put_io_u(td, io_u);
841 break;
842 }
843
844 if (break_on_this_error(td, ddir, &ret))
845 break;
846
847 /*
848 * See if we need to complete some commands. Note that we
849 * can get BUSY even without IO queued, if the system is
850 * resource starved.
851 */
852reap:
853 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
854 if (full || !td->o.iodepth_batch_complete) {
855 min_evts = min(td->o.iodepth_batch_complete,
856 td->cur_depth);
857 /*
858 * if the queue is full, we MUST reap at least 1 event
859 */
860 if (full && !min_evts)
861 min_evts = 1;
862
863 if (__should_check_rate(td, DDIR_READ) ||
864 __should_check_rate(td, DDIR_WRITE) ||
865 __should_check_rate(td, DDIR_TRIM))
866 fio_gettime(&comp_time, NULL);
867
868 do {
869 ret = io_u_queued_complete(td, min_evts, bytes_done);
870 if (ret < 0)
871 break;
872
873 } while (full && (td->cur_depth > td->o.iodepth_low));
874 }
875
876 if (ret < 0)
877 break;
878 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
879 continue;
880
881 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
882 if (check_min_rate(td, &comp_time, bytes_done)) {
883 if (exitall_on_terminate)
884 fio_terminate_threads(td->groupid);
885 td_verror(td, EIO, "check_min_rate");
886 break;
887 }
888 }
889 if (!in_ramp_time(td) && td->o.latency_target)
890 lat_target_check(td);
891
892 if (td->o.thinktime) {
893 unsigned long long b;
894
895 b = ddir_rw_sum(td->io_blocks);
896 if (!(b % td->o.thinktime_blocks)) {
897 int left;
898
899 io_u_quiesce(td);
900
901 if (td->o.thinktime_spin)
902 usec_spin(td->o.thinktime_spin);
903
904 left = td->o.thinktime - td->o.thinktime_spin;
905 if (left)
906 usec_sleep(td, left);
907 }
908 }
909 }
910
911 check_update_rusage(td);
912
913 if (td->trim_entries)
914 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
915
916 if (td->o.fill_device && td->error == ENOSPC) {
917 td->error = 0;
918 td->terminate = 1;
919 }
920 if (!td->error) {
921 struct fio_file *f;
922
923 i = td->cur_depth;
924 if (i) {
925 ret = io_u_queued_complete(td, i, bytes_done);
926 if (td->o.fill_device && td->error == ENOSPC)
927 td->error = 0;
928 }
929
930 if (should_fsync(td) && td->o.end_fsync) {
931 td_set_runstate(td, TD_FSYNCING);
932
933 for_each_file(td, f, i) {
934 if (!fio_file_fsync(td, f))
935 continue;
936
937 log_err("fio: end_fsync failed for file %s\n",
938 f->file_name);
939 }
940 }
941 } else
942 cleanup_pending_aio(td);
943
944 /*
945 * stop job if we failed doing any IO
946 */
947 if (!ddir_rw_sum(td->this_io_bytes))
948 td->done = 1;
949
950 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
951}
952
953static void cleanup_io_u(struct thread_data *td)
954{
955 struct io_u *io_u;
956
957 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
958
959 if (td->io_ops->io_u_free)
960 td->io_ops->io_u_free(td, io_u);
961
962 fio_memfree(io_u, sizeof(*io_u));
963 }
964
965 free_io_mem(td);
966
967 io_u_rexit(&td->io_u_requeues);
968 io_u_qexit(&td->io_u_freelist);
969 io_u_qexit(&td->io_u_all);
970}
971
972static int init_io_u(struct thread_data *td)
973{
974 struct io_u *io_u;
975 unsigned int max_bs, min_write;
976 int cl_align, i, max_units;
977 int data_xfer = 1, err;
978 char *p;
979
980 max_units = td->o.iodepth;
981 max_bs = td_max_bs(td);
982 min_write = td->o.min_bs[DDIR_WRITE];
983 td->orig_buffer_size = (unsigned long long) max_bs
984 * (unsigned long long) max_units;
985
986 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
987 data_xfer = 0;
988
989 err = 0;
990 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
991 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
992 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
993
994 if (err) {
995 log_err("fio: failed setting up IO queues\n");
996 return 1;
997 }
998
999 /*
1000 * if we may later need to do address alignment, then add any
1001 * possible adjustment here so that we don't cause a buffer
1002 * overflow later. this adjustment may be too much if we get
1003 * lucky and the allocator gives us an aligned address.
1004 */
1005 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1006 (td->io_ops->flags & FIO_RAWIO))
1007 td->orig_buffer_size += page_mask + td->o.mem_align;
1008
1009 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1010 unsigned long bs;
1011
1012 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1013 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1014 }
1015
1016 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1017 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1018 return 1;
1019 }
1020
1021 if (data_xfer && allocate_io_mem(td))
1022 return 1;
1023
1024 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1025 (td->io_ops->flags & FIO_RAWIO))
1026 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1027 else
1028 p = td->orig_buffer;
1029
1030 cl_align = os_cache_line_size();
1031
1032 for (i = 0; i < max_units; i++) {
1033 void *ptr;
1034
1035 if (td->terminate)
1036 return 1;
1037
1038 ptr = fio_memalign(cl_align, sizeof(*io_u));
1039 if (!ptr) {
1040 log_err("fio: unable to allocate aligned memory\n");
1041 break;
1042 }
1043
1044 io_u = ptr;
1045 memset(io_u, 0, sizeof(*io_u));
1046 INIT_FLIST_HEAD(&io_u->verify_list);
1047 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1048
1049 if (data_xfer) {
1050 io_u->buf = p;
1051 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1052
1053 if (td_write(td))
1054 io_u_fill_buffer(td, io_u, min_write, max_bs);
1055 if (td_write(td) && td->o.verify_pattern_bytes) {
1056 /*
1057 * Fill the buffer with the pattern if we are
1058 * going to be doing writes.
1059 */
1060 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1061 }
1062 }
1063
1064 io_u->index = i;
1065 io_u->flags = IO_U_F_FREE;
1066 io_u_qpush(&td->io_u_freelist, io_u);
1067
1068 /*
1069 * io_u never leaves this stack, used for iteration of all
1070 * io_u buffers.
1071 */
1072 io_u_qpush(&td->io_u_all, io_u);
1073
1074 if (td->io_ops->io_u_init) {
1075 int ret = td->io_ops->io_u_init(td, io_u);
1076
1077 if (ret) {
1078 log_err("fio: failed to init engine data: %d\n", ret);
1079 return 1;
1080 }
1081 }
1082
1083 p += max_bs;
1084 }
1085
1086 return 0;
1087}
1088
1089static int switch_ioscheduler(struct thread_data *td)
1090{
1091 char tmp[256], tmp2[128];
1092 FILE *f;
1093 int ret;
1094
1095 if (td->io_ops->flags & FIO_DISKLESSIO)
1096 return 0;
1097
1098 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1099
1100 f = fopen(tmp, "r+");
1101 if (!f) {
1102 if (errno == ENOENT) {
1103 log_err("fio: os or kernel doesn't support IO scheduler"
1104 " switching\n");
1105 return 0;
1106 }
1107 td_verror(td, errno, "fopen iosched");
1108 return 1;
1109 }
1110
1111 /*
1112 * Set io scheduler.
1113 */
1114 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1115 if (ferror(f) || ret != 1) {
1116 td_verror(td, errno, "fwrite");
1117 fclose(f);
1118 return 1;
1119 }
1120
1121 rewind(f);
1122
1123 /*
1124 * Read back and check that the selected scheduler is now the default.
1125 */
1126 ret = fread(tmp, sizeof(tmp), 1, f);
1127 if (ferror(f) || ret < 0) {
1128 td_verror(td, errno, "fread");
1129 fclose(f);
1130 return 1;
1131 }
1132 tmp[sizeof(tmp) - 1] = '\0';
1133
1134
1135 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1136 if (!strstr(tmp, tmp2)) {
1137 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1138 td_verror(td, EINVAL, "iosched_switch");
1139 fclose(f);
1140 return 1;
1141 }
1142
1143 fclose(f);
1144 return 0;
1145}
1146
1147static int keep_running(struct thread_data *td)
1148{
1149 unsigned long long limit;
1150
1151 if (td->done)
1152 return 0;
1153 if (td->o.time_based)
1154 return 1;
1155 if (td->o.loops) {
1156 td->o.loops--;
1157 return 1;
1158 }
1159 if (exceeds_number_ios(td))
1160 return 0;
1161
1162 if (td->o.io_limit)
1163 limit = td->o.io_limit;
1164 else
1165 limit = td->o.size;
1166
1167 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1168 uint64_t diff;
1169
1170 /*
1171 * If the difference is less than the minimum IO size, we
1172 * are done.
1173 */
1174 diff = limit - ddir_rw_sum(td->io_bytes);
1175 if (diff < td_max_bs(td))
1176 return 0;
1177
1178 if (fio_files_done(td))
1179 return 0;
1180
1181 return 1;
1182 }
1183
1184 return 0;
1185}
1186
1187static int exec_string(struct thread_options *o, const char *string, const char *mode)
1188{
1189 int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1190 char *str;
1191
1192 str = malloc(newlen);
1193 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1194
1195 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1196 ret = system(str);
1197 if (ret == -1)
1198 log_err("fio: exec of cmd <%s> failed\n", str);
1199
1200 free(str);
1201 return ret;
1202}
1203
1204/*
1205 * Dry run to compute correct state of numberio for verification.
1206 */
1207static uint64_t do_dry_run(struct thread_data *td)
1208{
1209 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1210
1211 td_set_runstate(td, TD_RUNNING);
1212
1213 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1214 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1215 struct io_u *io_u;
1216 int ret;
1217
1218 if (td->terminate || td->done)
1219 break;
1220
1221 io_u = get_io_u(td);
1222 if (!io_u)
1223 break;
1224
1225 io_u->flags |= IO_U_F_FLIGHT;
1226 io_u->error = 0;
1227 io_u->resid = 0;
1228 if (ddir_rw(acct_ddir(io_u)))
1229 td->io_issues[acct_ddir(io_u)]++;
1230 if (ddir_rw(io_u->ddir)) {
1231 io_u_mark_depth(td, 1);
1232 td->ts.total_io_u[io_u->ddir]++;
1233 }
1234
1235 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1236 td->o.do_verify &&
1237 td->o.verify != VERIFY_NONE &&
1238 !td->o.experimental_verify)
1239 log_io_piece(td, io_u);
1240
1241 ret = io_u_sync_complete(td, io_u, bytes_done);
1242 (void) ret;
1243 }
1244
1245 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1246}
1247
1248/*
1249 * Entry point for the thread based jobs. The process based jobs end up
1250 * here as well, after a little setup.
1251 */
1252static void *thread_main(void *data)
1253{
1254 unsigned long long elapsed;
1255 struct thread_data *td = data;
1256 struct thread_options *o = &td->o;
1257 pthread_condattr_t attr;
1258 int clear_state;
1259 int ret;
1260
1261 if (!o->use_thread) {
1262 setsid();
1263 td->pid = getpid();
1264 } else
1265 td->pid = gettid();
1266
1267 /*
1268 * fio_time_init() may not have been called yet if running as a server
1269 */
1270 fio_time_init();
1271
1272 fio_local_clock_init(o->use_thread);
1273
1274 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1275
1276 if (is_backend)
1277 fio_server_send_start(td);
1278
1279 INIT_FLIST_HEAD(&td->io_log_list);
1280 INIT_FLIST_HEAD(&td->io_hist_list);
1281 INIT_FLIST_HEAD(&td->verify_list);
1282 INIT_FLIST_HEAD(&td->trim_list);
1283 INIT_FLIST_HEAD(&td->next_rand_list);
1284 pthread_mutex_init(&td->io_u_lock, NULL);
1285 td->io_hist_tree = RB_ROOT;
1286
1287 pthread_condattr_init(&attr);
1288 pthread_cond_init(&td->verify_cond, &attr);
1289 pthread_cond_init(&td->free_cond, &attr);
1290
1291 td_set_runstate(td, TD_INITIALIZED);
1292 dprint(FD_MUTEX, "up startup_mutex\n");
1293 fio_mutex_up(startup_mutex);
1294 dprint(FD_MUTEX, "wait on td->mutex\n");
1295 fio_mutex_down(td->mutex);
1296 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1297
1298 /*
1299 * A new gid requires privilege, so we need to do this before setting
1300 * the uid.
1301 */
1302 if (o->gid != -1U && setgid(o->gid)) {
1303 td_verror(td, errno, "setgid");
1304 goto err;
1305 }
1306 if (o->uid != -1U && setuid(o->uid)) {
1307 td_verror(td, errno, "setuid");
1308 goto err;
1309 }
1310
1311 /*
1312 * If we have a gettimeofday() thread, make sure we exclude that
1313 * thread from this job
1314 */
1315 if (o->gtod_cpu)
1316 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1317
1318 /*
1319 * Set affinity first, in case it has an impact on the memory
1320 * allocations.
1321 */
1322 if (o->cpumask_set) {
1323 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1324 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1325 if (!ret) {
1326 log_err("fio: no CPUs set\n");
1327 log_err("fio: Try increasing number of available CPUs\n");
1328 td_verror(td, EINVAL, "cpus_split");
1329 goto err;
1330 }
1331 }
1332 ret = fio_setaffinity(td->pid, o->cpumask);
1333 if (ret == -1) {
1334 td_verror(td, errno, "cpu_set_affinity");
1335 goto err;
1336 }
1337 }
1338
1339#ifdef CONFIG_LIBNUMA
1340 /* numa node setup */
1341 if (o->numa_cpumask_set || o->numa_memmask_set) {
1342 struct bitmask *mask;
1343 int ret;
1344
1345 if (numa_available() < 0) {
1346 td_verror(td, errno, "Does not support NUMA API\n");
1347 goto err;
1348 }
1349
1350 if (o->numa_cpumask_set) {
1351 mask = numa_parse_nodestring(o->numa_cpunodes);
1352 ret = numa_run_on_node_mask(mask);
1353 numa_free_nodemask(mask);
1354 if (ret == -1) {
1355 td_verror(td, errno, \
1356 "numa_run_on_node_mask failed\n");
1357 goto err;
1358 }
1359 }
1360
1361 if (o->numa_memmask_set) {
1362
1363 mask = NULL;
1364 if (o->numa_memnodes)
1365 mask = numa_parse_nodestring(o->numa_memnodes);
1366
1367 switch (o->numa_mem_mode) {
1368 case MPOL_INTERLEAVE:
1369 numa_set_interleave_mask(mask);
1370 break;
1371 case MPOL_BIND:
1372 numa_set_membind(mask);
1373 break;
1374 case MPOL_LOCAL:
1375 numa_set_localalloc();
1376 break;
1377 case MPOL_PREFERRED:
1378 numa_set_preferred(o->numa_mem_prefer_node);
1379 break;
1380 case MPOL_DEFAULT:
1381 default:
1382 break;
1383 }
1384
1385 if (mask)
1386 numa_free_nodemask(mask);
1387
1388 }
1389 }
1390#endif
1391
1392 if (fio_pin_memory(td))
1393 goto err;
1394
1395 /*
1396 * May alter parameters that init_io_u() will use, so we need to
1397 * do this first.
1398 */
1399 if (init_iolog(td))
1400 goto err;
1401
1402 if (init_io_u(td))
1403 goto err;
1404
1405 if (o->verify_async && verify_async_init(td))
1406 goto err;
1407
1408 if (o->ioprio) {
1409 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1410 if (ret == -1) {
1411 td_verror(td, errno, "ioprio_set");
1412 goto err;
1413 }
1414 }
1415
1416 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1417 goto err;
1418
1419 errno = 0;
1420 if (nice(o->nice) == -1 && errno != 0) {
1421 td_verror(td, errno, "nice");
1422 goto err;
1423 }
1424
1425 if (o->ioscheduler && switch_ioscheduler(td))
1426 goto err;
1427
1428 if (!o->create_serialize && setup_files(td))
1429 goto err;
1430
1431 if (td_io_init(td))
1432 goto err;
1433
1434 if (init_random_map(td))
1435 goto err;
1436
1437 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1438 goto err;
1439
1440 if (o->pre_read) {
1441 if (pre_read_files(td) < 0)
1442 goto err;
1443 }
1444
1445 fio_verify_init(td);
1446
1447 fio_gettime(&td->epoch, NULL);
1448 fio_getrusage(&td->ru_start);
1449 clear_state = 0;
1450 while (keep_running(td)) {
1451 uint64_t verify_bytes;
1452
1453 fio_gettime(&td->start, NULL);
1454 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1455 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1456 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1457
1458 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1459 o->ratemin[DDIR_TRIM]) {
1460 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1461 sizeof(td->bw_sample_time));
1462 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1463 sizeof(td->bw_sample_time));
1464 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1465 sizeof(td->bw_sample_time));
1466 }
1467
1468 if (clear_state)
1469 clear_io_state(td);
1470
1471 prune_io_piece_log(td);
1472
1473 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1474 verify_bytes = do_dry_run(td);
1475 else
1476 verify_bytes = do_io(td);
1477
1478 clear_state = 1;
1479
1480 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1481 elapsed = utime_since_now(&td->start);
1482 td->ts.runtime[DDIR_READ] += elapsed;
1483 }
1484 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1485 elapsed = utime_since_now(&td->start);
1486 td->ts.runtime[DDIR_WRITE] += elapsed;
1487 }
1488 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1489 elapsed = utime_since_now(&td->start);
1490 td->ts.runtime[DDIR_TRIM] += elapsed;
1491 }
1492
1493 if (td->error || td->terminate)
1494 break;
1495
1496 if (!o->do_verify ||
1497 o->verify == VERIFY_NONE ||
1498 (td->io_ops->flags & FIO_UNIDIR))
1499 continue;
1500
1501 clear_io_state(td);
1502
1503 fio_gettime(&td->start, NULL);
1504
1505 do_verify(td, verify_bytes);
1506
1507 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1508
1509 if (td->error || td->terminate)
1510 break;
1511 }
1512
1513 update_rusage_stat(td);
1514 td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1515 td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1516 td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1517 td->ts.total_run_time = mtime_since_now(&td->epoch);
1518 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1519 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1520 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1521
1522 fio_unpin_memory(td);
1523
1524 fio_writeout_logs(td);
1525
1526 if (o->exec_postrun)
1527 exec_string(o, o->exec_postrun, (const char *)"postrun");
1528
1529 if (exitall_on_terminate)
1530 fio_terminate_threads(td->groupid);
1531
1532err:
1533 if (td->error)
1534 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1535 td->verror);
1536
1537 if (o->verify_async)
1538 verify_async_exit(td);
1539
1540 close_and_free_files(td);
1541 cleanup_io_u(td);
1542 close_ioengine(td);
1543 cgroup_shutdown(td, &cgroup_mnt);
1544
1545 if (o->cpumask_set) {
1546 int ret = fio_cpuset_exit(&o->cpumask);
1547
1548 td_verror(td, ret, "fio_cpuset_exit");
1549 }
1550
1551 /*
1552 * do this very late, it will log file closing as well
1553 */
1554 if (o->write_iolog_file)
1555 write_iolog_close(td);
1556
1557 fio_mutex_remove(td->rusage_sem);
1558 td->rusage_sem = NULL;
1559
1560 fio_mutex_remove(td->mutex);
1561 td->mutex = NULL;
1562
1563 td_set_runstate(td, TD_EXITED);
1564 return (void *) (uintptr_t) td->error;
1565}
1566
1567
1568/*
1569 * We cannot pass the td data into a forked process, so attach the td and
1570 * pass it to the thread worker.
1571 */
1572static int fork_main(int shmid, int offset)
1573{
1574 struct thread_data *td;
1575 void *data, *ret;
1576
1577#ifndef __hpux
1578 data = shmat(shmid, NULL, 0);
1579 if (data == (void *) -1) {
1580 int __err = errno;
1581
1582 perror("shmat");
1583 return __err;
1584 }
1585#else
1586 /*
1587 * HP-UX inherits shm mappings?
1588 */
1589 data = threads;
1590#endif
1591
1592 td = data + offset * sizeof(struct thread_data);
1593 ret = thread_main(td);
1594 shmdt(data);
1595 return (int) (uintptr_t) ret;
1596}
1597
1598/*
1599 * Run over the job map and reap the threads that have exited, if any.
1600 */
1601static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1602 unsigned int *m_rate)
1603{
1604 struct thread_data *td;
1605 unsigned int cputhreads, realthreads, pending;
1606 int i, status, ret;
1607
1608 /*
1609 * reap exited threads (TD_EXITED -> TD_REAPED)
1610 */
1611 realthreads = pending = cputhreads = 0;
1612 for_each_td(td, i) {
1613 int flags = 0;
1614
1615 /*
1616 * ->io_ops is NULL for a thread that has closed its
1617 * io engine
1618 */
1619 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1620 cputhreads++;
1621 else
1622 realthreads++;
1623
1624 if (!td->pid) {
1625 pending++;
1626 continue;
1627 }
1628 if (td->runstate == TD_REAPED)
1629 continue;
1630 if (td->o.use_thread) {
1631 if (td->runstate == TD_EXITED) {
1632 td_set_runstate(td, TD_REAPED);
1633 goto reaped;
1634 }
1635 continue;
1636 }
1637
1638 flags = WNOHANG;
1639 if (td->runstate == TD_EXITED)
1640 flags = 0;
1641
1642 /*
1643 * check if someone quit or got killed in an unusual way
1644 */
1645 ret = waitpid(td->pid, &status, flags);
1646 if (ret < 0) {
1647 if (errno == ECHILD) {
1648 log_err("fio: pid=%d disappeared %d\n",
1649 (int) td->pid, td->runstate);
1650 td->sig = ECHILD;
1651 td_set_runstate(td, TD_REAPED);
1652 goto reaped;
1653 }
1654 perror("waitpid");
1655 } else if (ret == td->pid) {
1656 if (WIFSIGNALED(status)) {
1657 int sig = WTERMSIG(status);
1658
1659 if (sig != SIGTERM && sig != SIGUSR2)
1660 log_err("fio: pid=%d, got signal=%d\n",
1661 (int) td->pid, sig);
1662 td->sig = sig;
1663 td_set_runstate(td, TD_REAPED);
1664 goto reaped;
1665 }
1666 if (WIFEXITED(status)) {
1667 if (WEXITSTATUS(status) && !td->error)
1668 td->error = WEXITSTATUS(status);
1669
1670 td_set_runstate(td, TD_REAPED);
1671 goto reaped;
1672 }
1673 }
1674
1675 /*
1676 * thread is not dead, continue
1677 */
1678 pending++;
1679 continue;
1680reaped:
1681 (*nr_running)--;
1682 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1683 (*t_rate) -= ddir_rw_sum(td->o.rate);
1684 if (!td->pid)
1685 pending--;
1686
1687 if (td->error)
1688 exit_value++;
1689
1690 done_secs += mtime_since_now(&td->epoch) / 1000;
1691 profile_td_exit(td);
1692 }
1693
1694 if (*nr_running == cputhreads && !pending && realthreads)
1695 fio_terminate_threads(TERMINATE_ALL);
1696}
1697
1698static void do_usleep(unsigned int usecs)
1699{
1700 check_for_running_stats();
1701 usleep(usecs);
1702}
1703
1704/*
1705 * Main function for kicking off and reaping jobs, as needed.
1706 */
1707static void run_threads(void)
1708{
1709 struct thread_data *td;
1710 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1711 uint64_t spent;
1712
1713 if (fio_gtod_offload && fio_start_gtod_thread())
1714 return;
1715
1716 fio_idle_prof_init();
1717
1718 set_sig_handlers();
1719
1720 nr_thread = nr_process = 0;
1721 for_each_td(td, i) {
1722 if (td->o.use_thread)
1723 nr_thread++;
1724 else
1725 nr_process++;
1726 }
1727
1728 if (output_format == FIO_OUTPUT_NORMAL) {
1729 log_info("Starting ");
1730 if (nr_thread)
1731 log_info("%d thread%s", nr_thread,
1732 nr_thread > 1 ? "s" : "");
1733 if (nr_process) {
1734 if (nr_thread)
1735 log_info(" and ");
1736 log_info("%d process%s", nr_process,
1737 nr_process > 1 ? "es" : "");
1738 }
1739 log_info("\n");
1740 fflush(stdout);
1741 }
1742
1743 todo = thread_number;
1744 nr_running = 0;
1745 nr_started = 0;
1746 m_rate = t_rate = 0;
1747
1748 for_each_td(td, i) {
1749 print_status_init(td->thread_number - 1);
1750
1751 if (!td->o.create_serialize)
1752 continue;
1753
1754 /*
1755 * do file setup here so it happens sequentially,
1756 * we don't want X number of threads getting their
1757 * client data interspersed on disk
1758 */
1759 if (setup_files(td)) {
1760 exit_value++;
1761 if (td->error)
1762 log_err("fio: pid=%d, err=%d/%s\n",
1763 (int) td->pid, td->error, td->verror);
1764 td_set_runstate(td, TD_REAPED);
1765 todo--;
1766 } else {
1767 struct fio_file *f;
1768 unsigned int j;
1769
1770 /*
1771 * for sharing to work, each job must always open
1772 * its own files. so close them, if we opened them
1773 * for creation
1774 */
1775 for_each_file(td, f, j) {
1776 if (fio_file_open(f))
1777 td_io_close_file(td, f);
1778 }
1779 }
1780 }
1781
1782 /* start idle threads before io threads start to run */
1783 fio_idle_prof_start();
1784
1785 set_genesis_time();
1786
1787 while (todo) {
1788 struct thread_data *map[REAL_MAX_JOBS];
1789 struct timeval this_start;
1790 int this_jobs = 0, left;
1791
1792 /*
1793 * create threads (TD_NOT_CREATED -> TD_CREATED)
1794 */
1795 for_each_td(td, i) {
1796 if (td->runstate != TD_NOT_CREATED)
1797 continue;
1798
1799 /*
1800 * never got a chance to start, killed by other
1801 * thread for some reason
1802 */
1803 if (td->terminate) {
1804 todo--;
1805 continue;
1806 }
1807
1808 if (td->o.start_delay) {
1809 spent = utime_since_genesis();
1810
1811 if (td->o.start_delay > spent)
1812 continue;
1813 }
1814
1815 if (td->o.stonewall && (nr_started || nr_running)) {
1816 dprint(FD_PROCESS, "%s: stonewall wait\n",
1817 td->o.name);
1818 break;
1819 }
1820
1821 init_disk_util(td);
1822
1823 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1824 td->update_rusage = 0;
1825
1826 /*
1827 * Set state to created. Thread will transition
1828 * to TD_INITIALIZED when it's done setting up.
1829 */
1830 td_set_runstate(td, TD_CREATED);
1831 map[this_jobs++] = td;
1832 nr_started++;
1833
1834 if (td->o.use_thread) {
1835 int ret;
1836
1837 dprint(FD_PROCESS, "will pthread_create\n");
1838 ret = pthread_create(&td->thread, NULL,
1839 thread_main, td);
1840 if (ret) {
1841 log_err("pthread_create: %s\n",
1842 strerror(ret));
1843 nr_started--;
1844 break;
1845 }
1846 ret = pthread_detach(td->thread);
1847 if (ret)
1848 log_err("pthread_detach: %s",
1849 strerror(ret));
1850 } else {
1851 pid_t pid;
1852 dprint(FD_PROCESS, "will fork\n");
1853 pid = fork();
1854 if (!pid) {
1855 int ret = fork_main(shm_id, i);
1856
1857 _exit(ret);
1858 } else if (i == fio_debug_jobno)
1859 *fio_debug_jobp = pid;
1860 }
1861 dprint(FD_MUTEX, "wait on startup_mutex\n");
1862 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1863 log_err("fio: job startup hung? exiting.\n");
1864 fio_terminate_threads(TERMINATE_ALL);
1865 fio_abort = 1;
1866 nr_started--;
1867 break;
1868 }
1869 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1870 }
1871
1872 /*
1873 * Wait for the started threads to transition to
1874 * TD_INITIALIZED.
1875 */
1876 fio_gettime(&this_start, NULL);
1877 left = this_jobs;
1878 while (left && !fio_abort) {
1879 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1880 break;
1881
1882 do_usleep(100000);
1883
1884 for (i = 0; i < this_jobs; i++) {
1885 td = map[i];
1886 if (!td)
1887 continue;
1888 if (td->runstate == TD_INITIALIZED) {
1889 map[i] = NULL;
1890 left--;
1891 } else if (td->runstate >= TD_EXITED) {
1892 map[i] = NULL;
1893 left--;
1894 todo--;
1895 nr_running++; /* work-around... */
1896 }
1897 }
1898 }
1899
1900 if (left) {
1901 log_err("fio: %d job%s failed to start\n", left,
1902 left > 1 ? "s" : "");
1903 for (i = 0; i < this_jobs; i++) {
1904 td = map[i];
1905 if (!td)
1906 continue;
1907 kill(td->pid, SIGTERM);
1908 }
1909 break;
1910 }
1911
1912 /*
1913 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1914 */
1915 for_each_td(td, i) {
1916 if (td->runstate != TD_INITIALIZED)
1917 continue;
1918
1919 if (in_ramp_time(td))
1920 td_set_runstate(td, TD_RAMP);
1921 else
1922 td_set_runstate(td, TD_RUNNING);
1923 nr_running++;
1924 nr_started--;
1925 m_rate += ddir_rw_sum(td->o.ratemin);
1926 t_rate += ddir_rw_sum(td->o.rate);
1927 todo--;
1928 fio_mutex_up(td->mutex);
1929 }
1930
1931 reap_threads(&nr_running, &t_rate, &m_rate);
1932
1933 if (todo)
1934 do_usleep(100000);
1935 }
1936
1937 while (nr_running) {
1938 reap_threads(&nr_running, &t_rate, &m_rate);
1939 do_usleep(10000);
1940 }
1941
1942 fio_idle_prof_stop();
1943
1944 update_io_ticks();
1945}
1946
1947void wait_for_disk_thread_exit(void)
1948{
1949 fio_mutex_down(disk_thread_mutex);
1950}
1951
1952static void free_disk_util(void)
1953{
1954 disk_util_start_exit();
1955 wait_for_disk_thread_exit();
1956 disk_util_prune_entries();
1957}
1958
1959static void *disk_thread_main(void *data)
1960{
1961 int ret = 0;
1962
1963 fio_mutex_up(startup_mutex);
1964
1965 while (threads && !ret) {
1966 usleep(DISK_UTIL_MSEC * 1000);
1967 if (!threads)
1968 break;
1969 ret = update_io_ticks();
1970
1971 if (!is_backend)
1972 print_thread_status();
1973 }
1974
1975 fio_mutex_up(disk_thread_mutex);
1976 return NULL;
1977}
1978
1979static int create_disk_util_thread(void)
1980{
1981 int ret;
1982
1983 setup_disk_util();
1984
1985 disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1986
1987 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1988 if (ret) {
1989 fio_mutex_remove(disk_thread_mutex);
1990 log_err("Can't create disk util thread: %s\n", strerror(ret));
1991 return 1;
1992 }
1993
1994 ret = pthread_detach(disk_util_thread);
1995 if (ret) {
1996 fio_mutex_remove(disk_thread_mutex);
1997 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1998 return 1;
1999 }
2000
2001 dprint(FD_MUTEX, "wait on startup_mutex\n");
2002 fio_mutex_down(startup_mutex);
2003 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2004 return 0;
2005}
2006
2007int fio_backend(void)
2008{
2009 struct thread_data *td;
2010 int i;
2011
2012 if (exec_profile) {
2013 if (load_profile(exec_profile))
2014 return 1;
2015 free(exec_profile);
2016 exec_profile = NULL;
2017 }
2018 if (!thread_number)
2019 return 0;
2020
2021 if (write_bw_log) {
2022 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
2023 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
2024 setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
2025 }
2026
2027 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2028 if (startup_mutex == NULL)
2029 return 1;
2030
2031 set_genesis_time();
2032 stat_init();
2033 create_disk_util_thread();
2034
2035 cgroup_list = smalloc(sizeof(*cgroup_list));
2036 INIT_FLIST_HEAD(cgroup_list);
2037
2038 run_threads();
2039
2040 if (!fio_abort) {
2041 show_run_stats();
2042 if (write_bw_log) {
2043 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2044 __finish_log(agg_io_log[DDIR_WRITE],
2045 "agg-write_bw.log");
2046 __finish_log(agg_io_log[DDIR_TRIM],
2047 "agg-write_bw.log");
2048 }
2049 }
2050
2051 for_each_td(td, i)
2052 fio_options_free(td);
2053
2054 free_disk_util();
2055 cgroup_kill(cgroup_list);
2056 sfree(cgroup_list);
2057 sfree(cgroup_mnt);
2058
2059 fio_mutex_remove(startup_mutex);
2060 fio_mutex_remove(disk_thread_mutex);
2061 stat_exit();
2062 return exit_value;
2063}