io_u_queue: convert rings to bool
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 if (io_u->offset == f->real_file_size)
503 goto sync_done;
504
505 requeue_io_u(td, &io_u);
506 } else {
507sync_done:
508 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
509 __should_check_rate(td, DDIR_WRITE) ||
510 __should_check_rate(td, DDIR_TRIM)))
511 fio_gettime(comp_time, NULL);
512
513 *ret = io_u_sync_complete(td, io_u);
514 if (*ret < 0)
515 break;
516 }
517
518 if (td->flags & TD_F_REGROW_LOGS)
519 regrow_logs(td);
520
521 /*
522 * when doing I/O (not when verifying),
523 * check for any errors that are to be ignored
524 */
525 if (!from_verify)
526 break;
527
528 return 0;
529 case FIO_Q_QUEUED:
530 /*
531 * if the engine doesn't have a commit hook,
532 * the io_u is really queued. if it does have such
533 * a hook, it has to call io_u_queued() itself.
534 */
535 if (td->io_ops->commit == NULL)
536 io_u_queued(td, io_u);
537 if (bytes_issued)
538 *bytes_issued += io_u->xfer_buflen;
539 break;
540 case FIO_Q_BUSY:
541 if (!from_verify)
542 unlog_io_piece(td, io_u);
543 requeue_io_u(td, &io_u);
544 ret2 = td_io_commit(td);
545 if (ret2 < 0)
546 *ret = ret2;
547 break;
548 default:
549 assert(*ret < 0);
550 td_verror(td, -(*ret), "td_io_queue");
551 break;
552 }
553
554 if (break_on_this_error(td, ddir, ret))
555 return 1;
556
557 return 0;
558}
559
560static inline bool io_in_polling(struct thread_data *td)
561{
562 return !td->o.iodepth_batch_complete_min &&
563 !td->o.iodepth_batch_complete_max;
564}
565/*
566 * Unlinks files from thread data fio_file structure
567 */
568static int unlink_all_files(struct thread_data *td)
569{
570 struct fio_file *f;
571 unsigned int i;
572 int ret = 0;
573
574 for_each_file(td, f, i) {
575 if (f->filetype != FIO_TYPE_FILE)
576 continue;
577 ret = td_io_unlink_file(td, f);
578 if (ret)
579 break;
580 }
581
582 if (ret)
583 td_verror(td, ret, "unlink_all_files");
584
585 return ret;
586}
587
588/*
589 * Check if io_u will overlap an in-flight IO in the queue
590 */
591static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
592{
593 bool overlap;
594 struct io_u *check_io_u;
595 unsigned long long x1, x2, y1, y2;
596 int i;
597
598 x1 = io_u->offset;
599 x2 = io_u->offset + io_u->buflen;
600 overlap = false;
601 io_u_qiter(q, check_io_u, i) {
602 if (check_io_u->flags & IO_U_F_FLIGHT) {
603 y1 = check_io_u->offset;
604 y2 = check_io_u->offset + check_io_u->buflen;
605
606 if (x1 < y2 && y1 < x2) {
607 overlap = true;
608 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
609 x1, io_u->buflen,
610 y1, check_io_u->buflen);
611 break;
612 }
613 }
614 }
615
616 return overlap;
617}
618
619static int io_u_submit(struct thread_data *td, struct io_u *io_u)
620{
621 /*
622 * Check for overlap if the user asked us to, and we have
623 * at least one IO in flight besides this one.
624 */
625 if (td->o.serialize_overlap && td->cur_depth > 1 &&
626 in_flight_overlap(&td->io_u_all, io_u))
627 return FIO_Q_BUSY;
628
629 return td_io_queue(td, io_u);
630}
631
632/*
633 * The main verify engine. Runs over the writes we previously submitted,
634 * reads the blocks back in, and checks the crc/md5 of the data.
635 */
636static void do_verify(struct thread_data *td, uint64_t verify_bytes)
637{
638 struct fio_file *f;
639 struct io_u *io_u;
640 int ret, min_events;
641 unsigned int i;
642
643 dprint(FD_VERIFY, "starting loop\n");
644
645 /*
646 * sync io first and invalidate cache, to make sure we really
647 * read from disk.
648 */
649 for_each_file(td, f, i) {
650 if (!fio_file_open(f))
651 continue;
652 if (fio_io_sync(td, f))
653 break;
654 if (file_invalidate_cache(td, f))
655 break;
656 }
657
658 check_update_rusage(td);
659
660 if (td->error)
661 return;
662
663 /*
664 * verify_state needs to be reset before verification
665 * proceeds so that expected random seeds match actual
666 * random seeds in headers. The main loop will reset
667 * all random number generators if randrepeat is set.
668 */
669 if (!td->o.rand_repeatable)
670 td_fill_verify_state_seed(td);
671
672 td_set_runstate(td, TD_VERIFYING);
673
674 io_u = NULL;
675 while (!td->terminate) {
676 enum fio_ddir ddir;
677 int full;
678
679 update_ts_cache(td);
680 check_update_rusage(td);
681
682 if (runtime_exceeded(td, &td->ts_cache)) {
683 __update_ts_cache(td);
684 if (runtime_exceeded(td, &td->ts_cache)) {
685 fio_mark_td_terminate(td);
686 break;
687 }
688 }
689
690 if (flow_threshold_exceeded(td))
691 continue;
692
693 if (!td->o.experimental_verify) {
694 io_u = __get_io_u(td);
695 if (!io_u)
696 break;
697
698 if (get_next_verify(td, io_u)) {
699 put_io_u(td, io_u);
700 break;
701 }
702
703 if (td_io_prep(td, io_u)) {
704 put_io_u(td, io_u);
705 break;
706 }
707 } else {
708 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
709 break;
710
711 while ((io_u = get_io_u(td)) != NULL) {
712 if (IS_ERR_OR_NULL(io_u)) {
713 io_u = NULL;
714 ret = FIO_Q_BUSY;
715 goto reap;
716 }
717
718 /*
719 * We are only interested in the places where
720 * we wrote or trimmed IOs. Turn those into
721 * reads for verification purposes.
722 */
723 if (io_u->ddir == DDIR_READ) {
724 /*
725 * Pretend we issued it for rwmix
726 * accounting
727 */
728 td->io_issues[DDIR_READ]++;
729 put_io_u(td, io_u);
730 continue;
731 } else if (io_u->ddir == DDIR_TRIM) {
732 io_u->ddir = DDIR_READ;
733 io_u_set(td, io_u, IO_U_F_TRIMMED);
734 break;
735 } else if (io_u->ddir == DDIR_WRITE) {
736 io_u->ddir = DDIR_READ;
737 break;
738 } else {
739 put_io_u(td, io_u);
740 continue;
741 }
742 }
743
744 if (!io_u)
745 break;
746 }
747
748 if (verify_state_should_stop(td, io_u)) {
749 put_io_u(td, io_u);
750 break;
751 }
752
753 if (td->o.verify_async)
754 io_u->end_io = verify_io_u_async;
755 else
756 io_u->end_io = verify_io_u;
757
758 ddir = io_u->ddir;
759 if (!td->o.disable_slat)
760 fio_gettime(&io_u->start_time, NULL);
761
762 ret = io_u_submit(td, io_u);
763
764 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
765 break;
766
767 /*
768 * if we can queue more, do so. but check if there are
769 * completed io_u's first. Note that we can get BUSY even
770 * without IO queued, if the system is resource starved.
771 */
772reap:
773 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
774 if (full || io_in_polling(td))
775 ret = wait_for_completions(td, NULL);
776
777 if (ret < 0)
778 break;
779 }
780
781 check_update_rusage(td);
782
783 if (!td->error) {
784 min_events = td->cur_depth;
785
786 if (min_events)
787 ret = io_u_queued_complete(td, min_events);
788 } else
789 cleanup_pending_aio(td);
790
791 td_set_runstate(td, TD_RUNNING);
792
793 dprint(FD_VERIFY, "exiting loop\n");
794}
795
796static bool exceeds_number_ios(struct thread_data *td)
797{
798 unsigned long long number_ios;
799
800 if (!td->o.number_ios)
801 return false;
802
803 number_ios = ddir_rw_sum(td->io_blocks);
804 number_ios += td->io_u_queued + td->io_u_in_flight;
805
806 return number_ios >= (td->o.number_ios * td->loops);
807}
808
809static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
810{
811 unsigned long long bytes, limit;
812
813 if (td_rw(td))
814 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
815 else if (td_write(td))
816 bytes = this_bytes[DDIR_WRITE];
817 else if (td_read(td))
818 bytes = this_bytes[DDIR_READ];
819 else
820 bytes = this_bytes[DDIR_TRIM];
821
822 if (td->o.io_size)
823 limit = td->o.io_size;
824 else
825 limit = td->o.size;
826
827 limit *= td->loops;
828 return bytes >= limit || exceeds_number_ios(td);
829}
830
831static bool io_issue_bytes_exceeded(struct thread_data *td)
832{
833 return io_bytes_exceeded(td, td->io_issue_bytes);
834}
835
836static bool io_complete_bytes_exceeded(struct thread_data *td)
837{
838 return io_bytes_exceeded(td, td->this_io_bytes);
839}
840
841/*
842 * used to calculate the next io time for rate control
843 *
844 */
845static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
846{
847 uint64_t secs, remainder, bps, bytes, iops;
848
849 assert(!(td->flags & TD_F_CHILD));
850 bytes = td->rate_io_issue_bytes[ddir];
851 bps = td->rate_bps[ddir];
852
853 if (td->o.rate_process == RATE_PROCESS_POISSON) {
854 uint64_t val;
855 iops = bps / td->o.bs[ddir];
856 val = (int64_t) (1000000 / iops) *
857 -logf(__rand_0_1(&td->poisson_state[ddir]));
858 if (val) {
859 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
860 (unsigned long long) 1000000 / val,
861 ddir);
862 }
863 td->last_usec[ddir] += val;
864 return td->last_usec[ddir];
865 } else if (bps) {
866 secs = bytes / bps;
867 remainder = bytes % bps;
868 return remainder * 1000000 / bps + secs * 1000000;
869 }
870
871 return 0;
872}
873
874/*
875 * Main IO worker function. It retrieves io_u's to process and queues
876 * and reaps them, checking for rate and errors along the way.
877 *
878 * Returns number of bytes written and trimmed.
879 */
880static void do_io(struct thread_data *td, uint64_t *bytes_done)
881{
882 unsigned int i;
883 int ret = 0;
884 uint64_t total_bytes, bytes_issued = 0;
885
886 for (i = 0; i < DDIR_RWDIR_CNT; i++)
887 bytes_done[i] = td->bytes_done[i];
888
889 if (in_ramp_time(td))
890 td_set_runstate(td, TD_RAMP);
891 else
892 td_set_runstate(td, TD_RUNNING);
893
894 lat_target_init(td);
895
896 total_bytes = td->o.size;
897 /*
898 * Allow random overwrite workloads to write up to io_size
899 * before starting verification phase as 'size' doesn't apply.
900 */
901 if (td_write(td) && td_random(td) && td->o.norandommap)
902 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
903 /*
904 * If verify_backlog is enabled, we'll run the verify in this
905 * handler as well. For that case, we may need up to twice the
906 * amount of bytes.
907 */
908 if (td->o.verify != VERIFY_NONE &&
909 (td_write(td) && td->o.verify_backlog))
910 total_bytes += td->o.size;
911
912 /* In trimwrite mode, each byte is trimmed and then written, so
913 * allow total_bytes to be twice as big */
914 if (td_trimwrite(td))
915 total_bytes += td->total_io_size;
916
917 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
918 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
919 td->o.time_based) {
920 struct timespec comp_time;
921 struct io_u *io_u;
922 int full;
923 enum fio_ddir ddir;
924
925 check_update_rusage(td);
926
927 if (td->terminate || td->done)
928 break;
929
930 update_ts_cache(td);
931
932 if (runtime_exceeded(td, &td->ts_cache)) {
933 __update_ts_cache(td);
934 if (runtime_exceeded(td, &td->ts_cache)) {
935 fio_mark_td_terminate(td);
936 break;
937 }
938 }
939
940 if (flow_threshold_exceeded(td))
941 continue;
942
943 /*
944 * Break if we exceeded the bytes. The exception is time
945 * based runs, but we still need to break out of the loop
946 * for those to run verification, if enabled.
947 */
948 if (bytes_issued >= total_bytes &&
949 (!td->o.time_based ||
950 (td->o.time_based && td->o.verify != VERIFY_NONE)))
951 break;
952
953 io_u = get_io_u(td);
954 if (IS_ERR_OR_NULL(io_u)) {
955 int err = PTR_ERR(io_u);
956
957 io_u = NULL;
958 if (err == -EBUSY) {
959 ret = FIO_Q_BUSY;
960 goto reap;
961 }
962 if (td->o.latency_target)
963 goto reap;
964 break;
965 }
966
967 ddir = io_u->ddir;
968
969 /*
970 * Add verification end_io handler if:
971 * - Asked to verify (!td_rw(td))
972 * - Or the io_u is from our verify list (mixed write/ver)
973 */
974 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
975 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
976
977 if (!td->o.verify_pattern_bytes) {
978 io_u->rand_seed = __rand(&td->verify_state);
979 if (sizeof(int) != sizeof(long *))
980 io_u->rand_seed *= __rand(&td->verify_state);
981 }
982
983 if (verify_state_should_stop(td, io_u)) {
984 put_io_u(td, io_u);
985 break;
986 }
987
988 if (td->o.verify_async)
989 io_u->end_io = verify_io_u_async;
990 else
991 io_u->end_io = verify_io_u;
992 td_set_runstate(td, TD_VERIFYING);
993 } else if (in_ramp_time(td))
994 td_set_runstate(td, TD_RAMP);
995 else
996 td_set_runstate(td, TD_RUNNING);
997
998 /*
999 * Always log IO before it's issued, so we know the specific
1000 * order of it. The logged unit will track when the IO has
1001 * completed.
1002 */
1003 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1004 td->o.do_verify &&
1005 td->o.verify != VERIFY_NONE &&
1006 !td->o.experimental_verify)
1007 log_io_piece(td, io_u);
1008
1009 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1010 const unsigned long blen = io_u->xfer_buflen;
1011 const enum fio_ddir ddir = acct_ddir(io_u);
1012
1013 if (td->error)
1014 break;
1015
1016 workqueue_enqueue(&td->io_wq, &io_u->work);
1017 ret = FIO_Q_QUEUED;
1018
1019 if (ddir_rw(ddir)) {
1020 td->io_issues[ddir]++;
1021 td->io_issue_bytes[ddir] += blen;
1022 td->rate_io_issue_bytes[ddir] += blen;
1023 }
1024
1025 if (should_check_rate(td))
1026 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1027
1028 } else {
1029 ret = io_u_submit(td, io_u);
1030
1031 if (should_check_rate(td))
1032 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1033
1034 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1035 break;
1036
1037 /*
1038 * See if we need to complete some commands. Note that
1039 * we can get BUSY even without IO queued, if the
1040 * system is resource starved.
1041 */
1042reap:
1043 full = queue_full(td) ||
1044 (ret == FIO_Q_BUSY && td->cur_depth);
1045 if (full || io_in_polling(td))
1046 ret = wait_for_completions(td, &comp_time);
1047 }
1048 if (ret < 0)
1049 break;
1050 if (!ddir_rw_sum(td->bytes_done) &&
1051 !td_ioengine_flagged(td, FIO_NOIO))
1052 continue;
1053
1054 if (!in_ramp_time(td) && should_check_rate(td)) {
1055 if (check_min_rate(td, &comp_time)) {
1056 if (exitall_on_terminate || td->o.exitall_error)
1057 fio_terminate_threads(td->groupid);
1058 td_verror(td, EIO, "check_min_rate");
1059 break;
1060 }
1061 }
1062 if (!in_ramp_time(td) && td->o.latency_target)
1063 lat_target_check(td);
1064
1065 if (td->o.thinktime) {
1066 unsigned long long b;
1067
1068 b = ddir_rw_sum(td->io_blocks);
1069 if (!(b % td->o.thinktime_blocks)) {
1070 int left;
1071
1072 io_u_quiesce(td);
1073
1074 if (td->o.thinktime_spin)
1075 usec_spin(td->o.thinktime_spin);
1076
1077 left = td->o.thinktime - td->o.thinktime_spin;
1078 if (left)
1079 usec_sleep(td, left);
1080 }
1081 }
1082 }
1083
1084 check_update_rusage(td);
1085
1086 if (td->trim_entries)
1087 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1088
1089 if (td->o.fill_device && td->error == ENOSPC) {
1090 td->error = 0;
1091 fio_mark_td_terminate(td);
1092 }
1093 if (!td->error) {
1094 struct fio_file *f;
1095
1096 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1097 workqueue_flush(&td->io_wq);
1098 i = 0;
1099 } else
1100 i = td->cur_depth;
1101
1102 if (i) {
1103 ret = io_u_queued_complete(td, i);
1104 if (td->o.fill_device && td->error == ENOSPC)
1105 td->error = 0;
1106 }
1107
1108 if (should_fsync(td) && td->o.end_fsync) {
1109 td_set_runstate(td, TD_FSYNCING);
1110
1111 for_each_file(td, f, i) {
1112 if (!fio_file_fsync(td, f))
1113 continue;
1114
1115 log_err("fio: end_fsync failed for file %s\n",
1116 f->file_name);
1117 }
1118 }
1119 } else
1120 cleanup_pending_aio(td);
1121
1122 /*
1123 * stop job if we failed doing any IO
1124 */
1125 if (!ddir_rw_sum(td->this_io_bytes))
1126 td->done = 1;
1127
1128 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1129 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1130}
1131
1132static void free_file_completion_logging(struct thread_data *td)
1133{
1134 struct fio_file *f;
1135 unsigned int i;
1136
1137 for_each_file(td, f, i) {
1138 if (!f->last_write_comp)
1139 break;
1140 sfree(f->last_write_comp);
1141 }
1142}
1143
1144static int init_file_completion_logging(struct thread_data *td,
1145 unsigned int depth)
1146{
1147 struct fio_file *f;
1148 unsigned int i;
1149
1150 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1151 return 0;
1152
1153 for_each_file(td, f, i) {
1154 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1155 if (!f->last_write_comp)
1156 goto cleanup;
1157 }
1158
1159 return 0;
1160
1161cleanup:
1162 free_file_completion_logging(td);
1163 log_err("fio: failed to alloc write comp data\n");
1164 return 1;
1165}
1166
1167static void cleanup_io_u(struct thread_data *td)
1168{
1169 struct io_u *io_u;
1170
1171 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1172
1173 if (td->io_ops->io_u_free)
1174 td->io_ops->io_u_free(td, io_u);
1175
1176 fio_memfree(io_u, sizeof(*io_u));
1177 }
1178
1179 free_io_mem(td);
1180
1181 io_u_rexit(&td->io_u_requeues);
1182 io_u_qexit(&td->io_u_freelist);
1183 io_u_qexit(&td->io_u_all);
1184
1185 free_file_completion_logging(td);
1186}
1187
1188static int init_io_u(struct thread_data *td)
1189{
1190 struct io_u *io_u;
1191 unsigned int max_bs, min_write;
1192 int cl_align, i, max_units;
1193 int data_xfer = 1, err;
1194 char *p;
1195
1196 max_units = td->o.iodepth;
1197 max_bs = td_max_bs(td);
1198 min_write = td->o.min_bs[DDIR_WRITE];
1199 td->orig_buffer_size = (unsigned long long) max_bs
1200 * (unsigned long long) max_units;
1201
1202 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1203 data_xfer = 0;
1204
1205 err = 0;
1206 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1207 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1208 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1209
1210 if (err) {
1211 log_err("fio: failed setting up IO queues\n");
1212 return 1;
1213 }
1214
1215 /*
1216 * if we may later need to do address alignment, then add any
1217 * possible adjustment here so that we don't cause a buffer
1218 * overflow later. this adjustment may be too much if we get
1219 * lucky and the allocator gives us an aligned address.
1220 */
1221 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1222 td_ioengine_flagged(td, FIO_RAWIO))
1223 td->orig_buffer_size += page_mask + td->o.mem_align;
1224
1225 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1226 unsigned long bs;
1227
1228 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1229 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1230 }
1231
1232 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1233 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1234 return 1;
1235 }
1236
1237 if (data_xfer && allocate_io_mem(td))
1238 return 1;
1239
1240 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1241 td_ioengine_flagged(td, FIO_RAWIO))
1242 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1243 else
1244 p = td->orig_buffer;
1245
1246 cl_align = os_cache_line_size();
1247
1248 for (i = 0; i < max_units; i++) {
1249 void *ptr;
1250
1251 if (td->terminate)
1252 return 1;
1253
1254 ptr = fio_memalign(cl_align, sizeof(*io_u));
1255 if (!ptr) {
1256 log_err("fio: unable to allocate aligned memory\n");
1257 break;
1258 }
1259
1260 io_u = ptr;
1261 memset(io_u, 0, sizeof(*io_u));
1262 INIT_FLIST_HEAD(&io_u->verify_list);
1263 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1264
1265 if (data_xfer) {
1266 io_u->buf = p;
1267 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1268
1269 if (td_write(td))
1270 io_u_fill_buffer(td, io_u, min_write, max_bs);
1271 if (td_write(td) && td->o.verify_pattern_bytes) {
1272 /*
1273 * Fill the buffer with the pattern if we are
1274 * going to be doing writes.
1275 */
1276 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1277 }
1278 }
1279
1280 io_u->index = i;
1281 io_u->flags = IO_U_F_FREE;
1282 io_u_qpush(&td->io_u_freelist, io_u);
1283
1284 /*
1285 * io_u never leaves this stack, used for iteration of all
1286 * io_u buffers.
1287 */
1288 io_u_qpush(&td->io_u_all, io_u);
1289
1290 if (td->io_ops->io_u_init) {
1291 int ret = td->io_ops->io_u_init(td, io_u);
1292
1293 if (ret) {
1294 log_err("fio: failed to init engine data: %d\n", ret);
1295 return 1;
1296 }
1297 }
1298
1299 p += max_bs;
1300 }
1301
1302 if (init_file_completion_logging(td, max_units))
1303 return 1;
1304
1305 return 0;
1306}
1307
1308/*
1309 * This function is Linux specific.
1310 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1311 */
1312static int switch_ioscheduler(struct thread_data *td)
1313{
1314#ifdef FIO_HAVE_IOSCHED_SWITCH
1315 char tmp[256], tmp2[128];
1316 FILE *f;
1317 int ret;
1318
1319 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1320 return 0;
1321
1322 assert(td->files && td->files[0]);
1323 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1324
1325 f = fopen(tmp, "r+");
1326 if (!f) {
1327 if (errno == ENOENT) {
1328 log_err("fio: os or kernel doesn't support IO scheduler"
1329 " switching\n");
1330 return 0;
1331 }
1332 td_verror(td, errno, "fopen iosched");
1333 return 1;
1334 }
1335
1336 /*
1337 * Set io scheduler.
1338 */
1339 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1340 if (ferror(f) || ret != 1) {
1341 td_verror(td, errno, "fwrite");
1342 fclose(f);
1343 return 1;
1344 }
1345
1346 rewind(f);
1347
1348 /*
1349 * Read back and check that the selected scheduler is now the default.
1350 */
1351 memset(tmp, 0, sizeof(tmp));
1352 ret = fread(tmp, sizeof(tmp), 1, f);
1353 if (ferror(f) || ret < 0) {
1354 td_verror(td, errno, "fread");
1355 fclose(f);
1356 return 1;
1357 }
1358 /*
1359 * either a list of io schedulers or "none\n" is expected.
1360 */
1361 tmp[strlen(tmp) - 1] = '\0';
1362
1363 /*
1364 * Write to "none" entry doesn't fail, so check the result here.
1365 */
1366 if (!strcmp(tmp, "none")) {
1367 log_err("fio: io scheduler is not tunable\n");
1368 fclose(f);
1369 return 0;
1370 }
1371
1372 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1373 if (!strstr(tmp, tmp2)) {
1374 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1375 td_verror(td, EINVAL, "iosched_switch");
1376 fclose(f);
1377 return 1;
1378 }
1379
1380 fclose(f);
1381 return 0;
1382#else
1383 return 0;
1384#endif
1385}
1386
1387static bool keep_running(struct thread_data *td)
1388{
1389 unsigned long long limit;
1390
1391 if (td->done)
1392 return false;
1393 if (td->terminate)
1394 return false;
1395 if (td->o.time_based)
1396 return true;
1397 if (td->o.loops) {
1398 td->o.loops--;
1399 return true;
1400 }
1401 if (exceeds_number_ios(td))
1402 return false;
1403
1404 if (td->o.io_size)
1405 limit = td->o.io_size;
1406 else
1407 limit = td->o.size;
1408
1409 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1410 uint64_t diff;
1411
1412 /*
1413 * If the difference is less than the maximum IO size, we
1414 * are done.
1415 */
1416 diff = limit - ddir_rw_sum(td->io_bytes);
1417 if (diff < td_max_bs(td))
1418 return false;
1419
1420 if (fio_files_done(td) && !td->o.io_size)
1421 return false;
1422
1423 return true;
1424 }
1425
1426 return false;
1427}
1428
1429static int exec_string(struct thread_options *o, const char *string, const char *mode)
1430{
1431 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1432 int ret;
1433 char *str;
1434
1435 str = malloc(newlen);
1436 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1437
1438 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1439 ret = system(str);
1440 if (ret == -1)
1441 log_err("fio: exec of cmd <%s> failed\n", str);
1442
1443 free(str);
1444 return ret;
1445}
1446
1447/*
1448 * Dry run to compute correct state of numberio for verification.
1449 */
1450static uint64_t do_dry_run(struct thread_data *td)
1451{
1452 td_set_runstate(td, TD_RUNNING);
1453
1454 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1455 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1456 struct io_u *io_u;
1457 int ret;
1458
1459 if (td->terminate || td->done)
1460 break;
1461
1462 io_u = get_io_u(td);
1463 if (IS_ERR_OR_NULL(io_u))
1464 break;
1465
1466 io_u_set(td, io_u, IO_U_F_FLIGHT);
1467 io_u->error = 0;
1468 io_u->resid = 0;
1469 if (ddir_rw(acct_ddir(io_u)))
1470 td->io_issues[acct_ddir(io_u)]++;
1471 if (ddir_rw(io_u->ddir)) {
1472 io_u_mark_depth(td, 1);
1473 td->ts.total_io_u[io_u->ddir]++;
1474 }
1475
1476 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1477 td->o.do_verify &&
1478 td->o.verify != VERIFY_NONE &&
1479 !td->o.experimental_verify)
1480 log_io_piece(td, io_u);
1481
1482 ret = io_u_sync_complete(td, io_u);
1483 (void) ret;
1484 }
1485
1486 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1487}
1488
1489struct fork_data {
1490 struct thread_data *td;
1491 struct sk_out *sk_out;
1492};
1493
1494/*
1495 * Entry point for the thread based jobs. The process based jobs end up
1496 * here as well, after a little setup.
1497 */
1498static void *thread_main(void *data)
1499{
1500 struct fork_data *fd = data;
1501 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1502 struct thread_data *td = fd->td;
1503 struct thread_options *o = &td->o;
1504 struct sk_out *sk_out = fd->sk_out;
1505 uint64_t bytes_done[DDIR_RWDIR_CNT];
1506 int deadlock_loop_cnt;
1507 bool clear_state, did_some_io;
1508 int ret;
1509
1510 sk_out_assign(sk_out);
1511 free(fd);
1512
1513 if (!o->use_thread) {
1514 setsid();
1515 td->pid = getpid();
1516 } else
1517 td->pid = gettid();
1518
1519 fio_local_clock_init(o->use_thread);
1520
1521 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1522
1523 if (is_backend)
1524 fio_server_send_start(td);
1525
1526 INIT_FLIST_HEAD(&td->io_log_list);
1527 INIT_FLIST_HEAD(&td->io_hist_list);
1528 INIT_FLIST_HEAD(&td->verify_list);
1529 INIT_FLIST_HEAD(&td->trim_list);
1530 INIT_FLIST_HEAD(&td->next_rand_list);
1531 td->io_hist_tree = RB_ROOT;
1532
1533 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1534 if (ret) {
1535 td_verror(td, ret, "mutex_cond_init_pshared");
1536 goto err;
1537 }
1538 ret = cond_init_pshared(&td->verify_cond);
1539 if (ret) {
1540 td_verror(td, ret, "mutex_cond_pshared");
1541 goto err;
1542 }
1543
1544 td_set_runstate(td, TD_INITIALIZED);
1545 dprint(FD_MUTEX, "up startup_mutex\n");
1546 fio_mutex_up(startup_mutex);
1547 dprint(FD_MUTEX, "wait on td->mutex\n");
1548 fio_mutex_down(td->mutex);
1549 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1550
1551 /*
1552 * A new gid requires privilege, so we need to do this before setting
1553 * the uid.
1554 */
1555 if (o->gid != -1U && setgid(o->gid)) {
1556 td_verror(td, errno, "setgid");
1557 goto err;
1558 }
1559 if (o->uid != -1U && setuid(o->uid)) {
1560 td_verror(td, errno, "setuid");
1561 goto err;
1562 }
1563
1564 /*
1565 * Do this early, we don't want the compress threads to be limited
1566 * to the same CPUs as the IO workers. So do this before we set
1567 * any potential CPU affinity
1568 */
1569 if (iolog_compress_init(td, sk_out))
1570 goto err;
1571
1572 /*
1573 * If we have a gettimeofday() thread, make sure we exclude that
1574 * thread from this job
1575 */
1576 if (o->gtod_cpu)
1577 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1578
1579 /*
1580 * Set affinity first, in case it has an impact on the memory
1581 * allocations.
1582 */
1583 if (fio_option_is_set(o, cpumask)) {
1584 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1585 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1586 if (!ret) {
1587 log_err("fio: no CPUs set\n");
1588 log_err("fio: Try increasing number of available CPUs\n");
1589 td_verror(td, EINVAL, "cpus_split");
1590 goto err;
1591 }
1592 }
1593 ret = fio_setaffinity(td->pid, o->cpumask);
1594 if (ret == -1) {
1595 td_verror(td, errno, "cpu_set_affinity");
1596 goto err;
1597 }
1598 }
1599
1600#ifdef CONFIG_LIBNUMA
1601 /* numa node setup */
1602 if (fio_option_is_set(o, numa_cpunodes) ||
1603 fio_option_is_set(o, numa_memnodes)) {
1604 struct bitmask *mask;
1605
1606 if (numa_available() < 0) {
1607 td_verror(td, errno, "Does not support NUMA API\n");
1608 goto err;
1609 }
1610
1611 if (fio_option_is_set(o, numa_cpunodes)) {
1612 mask = numa_parse_nodestring(o->numa_cpunodes);
1613 ret = numa_run_on_node_mask(mask);
1614 numa_free_nodemask(mask);
1615 if (ret == -1) {
1616 td_verror(td, errno, \
1617 "numa_run_on_node_mask failed\n");
1618 goto err;
1619 }
1620 }
1621
1622 if (fio_option_is_set(o, numa_memnodes)) {
1623 mask = NULL;
1624 if (o->numa_memnodes)
1625 mask = numa_parse_nodestring(o->numa_memnodes);
1626
1627 switch (o->numa_mem_mode) {
1628 case MPOL_INTERLEAVE:
1629 numa_set_interleave_mask(mask);
1630 break;
1631 case MPOL_BIND:
1632 numa_set_membind(mask);
1633 break;
1634 case MPOL_LOCAL:
1635 numa_set_localalloc();
1636 break;
1637 case MPOL_PREFERRED:
1638 numa_set_preferred(o->numa_mem_prefer_node);
1639 break;
1640 case MPOL_DEFAULT:
1641 default:
1642 break;
1643 }
1644
1645 if (mask)
1646 numa_free_nodemask(mask);
1647
1648 }
1649 }
1650#endif
1651
1652 if (fio_pin_memory(td))
1653 goto err;
1654
1655 /*
1656 * May alter parameters that init_io_u() will use, so we need to
1657 * do this first.
1658 */
1659 if (init_iolog(td))
1660 goto err;
1661
1662 if (init_io_u(td))
1663 goto err;
1664
1665 if (o->verify_async && verify_async_init(td))
1666 goto err;
1667
1668 if (fio_option_is_set(o, ioprio) ||
1669 fio_option_is_set(o, ioprio_class)) {
1670 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1671 if (ret == -1) {
1672 td_verror(td, errno, "ioprio_set");
1673 goto err;
1674 }
1675 }
1676
1677 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1678 goto err;
1679
1680 errno = 0;
1681 if (nice(o->nice) == -1 && errno != 0) {
1682 td_verror(td, errno, "nice");
1683 goto err;
1684 }
1685
1686 if (o->ioscheduler && switch_ioscheduler(td))
1687 goto err;
1688
1689 if (!o->create_serialize && setup_files(td))
1690 goto err;
1691
1692 if (td_io_init(td))
1693 goto err;
1694
1695 if (!init_random_map(td))
1696 goto err;
1697
1698 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1699 goto err;
1700
1701 if (o->pre_read && !pre_read_files(td))
1702 goto err;
1703
1704 fio_verify_init(td);
1705
1706 if (rate_submit_init(td, sk_out))
1707 goto err;
1708
1709 set_epoch_time(td, o->log_unix_epoch);
1710 fio_getrusage(&td->ru_start);
1711 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1712 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1713 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1714
1715 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1716 o->ratemin[DDIR_TRIM]) {
1717 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1718 sizeof(td->bw_sample_time));
1719 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1720 sizeof(td->bw_sample_time));
1721 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1722 sizeof(td->bw_sample_time));
1723 }
1724
1725 memset(bytes_done, 0, sizeof(bytes_done));
1726 clear_state = false;
1727 did_some_io = false;
1728
1729 while (keep_running(td)) {
1730 uint64_t verify_bytes;
1731
1732 fio_gettime(&td->start, NULL);
1733 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1734
1735 if (clear_state) {
1736 clear_io_state(td, 0);
1737
1738 if (o->unlink_each_loop && unlink_all_files(td))
1739 break;
1740 }
1741
1742 prune_io_piece_log(td);
1743
1744 if (td->o.verify_only && td_write(td))
1745 verify_bytes = do_dry_run(td);
1746 else {
1747 do_io(td, bytes_done);
1748
1749 if (!ddir_rw_sum(bytes_done)) {
1750 fio_mark_td_terminate(td);
1751 verify_bytes = 0;
1752 } else {
1753 verify_bytes = bytes_done[DDIR_WRITE] +
1754 bytes_done[DDIR_TRIM];
1755 }
1756 }
1757
1758 /*
1759 * If we took too long to shut down, the main thread could
1760 * already consider us reaped/exited. If that happens, break
1761 * out and clean up.
1762 */
1763 if (td->runstate >= TD_EXITED)
1764 break;
1765
1766 clear_state = true;
1767
1768 /*
1769 * Make sure we've successfully updated the rusage stats
1770 * before waiting on the stat mutex. Otherwise we could have
1771 * the stat thread holding stat mutex and waiting for
1772 * the rusage_sem, which would never get upped because
1773 * this thread is waiting for the stat mutex.
1774 */
1775 deadlock_loop_cnt = 0;
1776 do {
1777 check_update_rusage(td);
1778 if (!fio_mutex_down_trylock(stat_mutex))
1779 break;
1780 usleep(1000);
1781 if (deadlock_loop_cnt++ > 5000) {
1782 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1783 td->error = EDEADLK;
1784 goto err;
1785 }
1786 } while (1);
1787
1788 if (td_read(td) && td->io_bytes[DDIR_READ])
1789 update_runtime(td, elapsed_us, DDIR_READ);
1790 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1791 update_runtime(td, elapsed_us, DDIR_WRITE);
1792 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1793 update_runtime(td, elapsed_us, DDIR_TRIM);
1794 fio_gettime(&td->start, NULL);
1795 fio_mutex_up(stat_mutex);
1796
1797 if (td->error || td->terminate)
1798 break;
1799
1800 if (!o->do_verify ||
1801 o->verify == VERIFY_NONE ||
1802 td_ioengine_flagged(td, FIO_UNIDIR))
1803 continue;
1804
1805 if (ddir_rw_sum(bytes_done))
1806 did_some_io = true;
1807
1808 clear_io_state(td, 0);
1809
1810 fio_gettime(&td->start, NULL);
1811
1812 do_verify(td, verify_bytes);
1813
1814 /*
1815 * See comment further up for why this is done here.
1816 */
1817 check_update_rusage(td);
1818
1819 fio_mutex_down(stat_mutex);
1820 update_runtime(td, elapsed_us, DDIR_READ);
1821 fio_gettime(&td->start, NULL);
1822 fio_mutex_up(stat_mutex);
1823
1824 if (td->error || td->terminate)
1825 break;
1826 }
1827
1828 /*
1829 * If td ended up with no I/O when it should have had,
1830 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1831 * (Are we not missing other flags that can be ignored ?)
1832 */
1833 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1834 !did_some_io && !td->o.create_only &&
1835 !(td_ioengine_flagged(td, FIO_NOIO) ||
1836 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1837 log_err("%s: No I/O performed by %s, "
1838 "perhaps try --debug=io option for details?\n",
1839 td->o.name, td->io_ops->name);
1840
1841 td_set_runstate(td, TD_FINISHING);
1842
1843 update_rusage_stat(td);
1844 td->ts.total_run_time = mtime_since_now(&td->epoch);
1845 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1846 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1847 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1848
1849 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1850 (td->o.verify != VERIFY_NONE && td_write(td)))
1851 verify_save_state(td->thread_number);
1852
1853 fio_unpin_memory(td);
1854
1855 td_writeout_logs(td, true);
1856
1857 iolog_compress_exit(td);
1858 rate_submit_exit(td);
1859
1860 if (o->exec_postrun)
1861 exec_string(o, o->exec_postrun, (const char *)"postrun");
1862
1863 if (exitall_on_terminate || (o->exitall_error && td->error))
1864 fio_terminate_threads(td->groupid);
1865
1866err:
1867 if (td->error)
1868 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1869 td->verror);
1870
1871 if (o->verify_async)
1872 verify_async_exit(td);
1873
1874 close_and_free_files(td);
1875 cleanup_io_u(td);
1876 close_ioengine(td);
1877 cgroup_shutdown(td, &cgroup_mnt);
1878 verify_free_state(td);
1879
1880 if (td->zone_state_index) {
1881 int i;
1882
1883 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1884 free(td->zone_state_index[i]);
1885 free(td->zone_state_index);
1886 td->zone_state_index = NULL;
1887 }
1888
1889 if (fio_option_is_set(o, cpumask)) {
1890 ret = fio_cpuset_exit(&o->cpumask);
1891 if (ret)
1892 td_verror(td, ret, "fio_cpuset_exit");
1893 }
1894
1895 /*
1896 * do this very late, it will log file closing as well
1897 */
1898 if (o->write_iolog_file)
1899 write_iolog_close(td);
1900
1901 td_set_runstate(td, TD_EXITED);
1902
1903 /*
1904 * Do this last after setting our runstate to exited, so we
1905 * know that the stat thread is signaled.
1906 */
1907 check_update_rusage(td);
1908
1909 sk_out_drop();
1910 return (void *) (uintptr_t) td->error;
1911}
1912
1913/*
1914 * Run over the job map and reap the threads that have exited, if any.
1915 */
1916static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1917 uint64_t *m_rate)
1918{
1919 struct thread_data *td;
1920 unsigned int cputhreads, realthreads, pending;
1921 int i, status, ret;
1922
1923 /*
1924 * reap exited threads (TD_EXITED -> TD_REAPED)
1925 */
1926 realthreads = pending = cputhreads = 0;
1927 for_each_td(td, i) {
1928 int flags = 0;
1929
1930 if (!strcmp(td->o.ioengine, "cpuio"))
1931 cputhreads++;
1932 else
1933 realthreads++;
1934
1935 if (!td->pid) {
1936 pending++;
1937 continue;
1938 }
1939 if (td->runstate == TD_REAPED)
1940 continue;
1941 if (td->o.use_thread) {
1942 if (td->runstate == TD_EXITED) {
1943 td_set_runstate(td, TD_REAPED);
1944 goto reaped;
1945 }
1946 continue;
1947 }
1948
1949 flags = WNOHANG;
1950 if (td->runstate == TD_EXITED)
1951 flags = 0;
1952
1953 /*
1954 * check if someone quit or got killed in an unusual way
1955 */
1956 ret = waitpid(td->pid, &status, flags);
1957 if (ret < 0) {
1958 if (errno == ECHILD) {
1959 log_err("fio: pid=%d disappeared %d\n",
1960 (int) td->pid, td->runstate);
1961 td->sig = ECHILD;
1962 td_set_runstate(td, TD_REAPED);
1963 goto reaped;
1964 }
1965 perror("waitpid");
1966 } else if (ret == td->pid) {
1967 if (WIFSIGNALED(status)) {
1968 int sig = WTERMSIG(status);
1969
1970 if (sig != SIGTERM && sig != SIGUSR2)
1971 log_err("fio: pid=%d, got signal=%d\n",
1972 (int) td->pid, sig);
1973 td->sig = sig;
1974 td_set_runstate(td, TD_REAPED);
1975 goto reaped;
1976 }
1977 if (WIFEXITED(status)) {
1978 if (WEXITSTATUS(status) && !td->error)
1979 td->error = WEXITSTATUS(status);
1980
1981 td_set_runstate(td, TD_REAPED);
1982 goto reaped;
1983 }
1984 }
1985
1986 /*
1987 * If the job is stuck, do a forceful timeout of it and
1988 * move on.
1989 */
1990 if (td->terminate &&
1991 td->runstate < TD_FSYNCING &&
1992 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1993 log_err("fio: job '%s' (state=%d) hasn't exited in "
1994 "%lu seconds, it appears to be stuck. Doing "
1995 "forceful exit of this job.\n",
1996 td->o.name, td->runstate,
1997 (unsigned long) time_since_now(&td->terminate_time));
1998 td_set_runstate(td, TD_REAPED);
1999 goto reaped;
2000 }
2001
2002 /*
2003 * thread is not dead, continue
2004 */
2005 pending++;
2006 continue;
2007reaped:
2008 (*nr_running)--;
2009 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2010 (*t_rate) -= ddir_rw_sum(td->o.rate);
2011 if (!td->pid)
2012 pending--;
2013
2014 if (td->error)
2015 exit_value++;
2016
2017 done_secs += mtime_since_now(&td->epoch) / 1000;
2018 profile_td_exit(td);
2019 }
2020
2021 if (*nr_running == cputhreads && !pending && realthreads)
2022 fio_terminate_threads(TERMINATE_ALL);
2023}
2024
2025static bool __check_trigger_file(void)
2026{
2027 struct stat sb;
2028
2029 if (!trigger_file)
2030 return false;
2031
2032 if (stat(trigger_file, &sb))
2033 return false;
2034
2035 if (unlink(trigger_file) < 0)
2036 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2037 strerror(errno));
2038
2039 return true;
2040}
2041
2042static bool trigger_timedout(void)
2043{
2044 if (trigger_timeout)
2045 if (time_since_genesis() >= trigger_timeout) {
2046 trigger_timeout = 0;
2047 return true;
2048 }
2049
2050 return false;
2051}
2052
2053void exec_trigger(const char *cmd)
2054{
2055 int ret;
2056
2057 if (!cmd || cmd[0] == '\0')
2058 return;
2059
2060 ret = system(cmd);
2061 if (ret == -1)
2062 log_err("fio: failed executing %s trigger\n", cmd);
2063}
2064
2065void check_trigger_file(void)
2066{
2067 if (__check_trigger_file() || trigger_timedout()) {
2068 if (nr_clients)
2069 fio_clients_send_trigger(trigger_remote_cmd);
2070 else {
2071 verify_save_state(IO_LIST_ALL);
2072 fio_terminate_threads(TERMINATE_ALL);
2073 exec_trigger(trigger_cmd);
2074 }
2075 }
2076}
2077
2078static int fio_verify_load_state(struct thread_data *td)
2079{
2080 int ret;
2081
2082 if (!td->o.verify_state)
2083 return 0;
2084
2085 if (is_backend) {
2086 void *data;
2087
2088 ret = fio_server_get_verify_state(td->o.name,
2089 td->thread_number - 1, &data);
2090 if (!ret)
2091 verify_assign_state(td, data);
2092 } else
2093 ret = verify_load_state(td, "local");
2094
2095 return ret;
2096}
2097
2098static void do_usleep(unsigned int usecs)
2099{
2100 check_for_running_stats();
2101 check_trigger_file();
2102 usleep(usecs);
2103}
2104
2105static bool check_mount_writes(struct thread_data *td)
2106{
2107 struct fio_file *f;
2108 unsigned int i;
2109
2110 if (!td_write(td) || td->o.allow_mounted_write)
2111 return false;
2112
2113 /*
2114 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2115 * are mkfs'd and mounted.
2116 */
2117 for_each_file(td, f, i) {
2118#ifdef FIO_HAVE_CHARDEV_SIZE
2119 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2120#else
2121 if (f->filetype != FIO_TYPE_BLOCK)
2122#endif
2123 continue;
2124 if (device_is_mounted(f->file_name))
2125 goto mounted;
2126 }
2127
2128 return false;
2129mounted:
2130 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2131 return true;
2132}
2133
2134static bool waitee_running(struct thread_data *me)
2135{
2136 const char *waitee = me->o.wait_for;
2137 const char *self = me->o.name;
2138 struct thread_data *td;
2139 int i;
2140
2141 if (!waitee)
2142 return false;
2143
2144 for_each_td(td, i) {
2145 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2146 continue;
2147
2148 if (td->runstate < TD_EXITED) {
2149 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2150 self, td->o.name,
2151 runstate_to_name(td->runstate));
2152 return true;
2153 }
2154 }
2155
2156 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2157 return false;
2158}
2159
2160/*
2161 * Main function for kicking off and reaping jobs, as needed.
2162 */
2163static void run_threads(struct sk_out *sk_out)
2164{
2165 struct thread_data *td;
2166 unsigned int i, todo, nr_running, nr_started;
2167 uint64_t m_rate, t_rate;
2168 uint64_t spent;
2169
2170 if (fio_gtod_offload && fio_start_gtod_thread())
2171 return;
2172
2173 fio_idle_prof_init();
2174
2175 set_sig_handlers();
2176
2177 nr_thread = nr_process = 0;
2178 for_each_td(td, i) {
2179 if (check_mount_writes(td))
2180 return;
2181 if (td->o.use_thread)
2182 nr_thread++;
2183 else
2184 nr_process++;
2185 }
2186
2187 if (output_format & FIO_OUTPUT_NORMAL) {
2188 log_info("Starting ");
2189 if (nr_thread)
2190 log_info("%d thread%s", nr_thread,
2191 nr_thread > 1 ? "s" : "");
2192 if (nr_process) {
2193 if (nr_thread)
2194 log_info(" and ");
2195 log_info("%d process%s", nr_process,
2196 nr_process > 1 ? "es" : "");
2197 }
2198 log_info("\n");
2199 log_info_flush();
2200 }
2201
2202 todo = thread_number;
2203 nr_running = 0;
2204 nr_started = 0;
2205 m_rate = t_rate = 0;
2206
2207 for_each_td(td, i) {
2208 print_status_init(td->thread_number - 1);
2209
2210 if (!td->o.create_serialize)
2211 continue;
2212
2213 if (fio_verify_load_state(td))
2214 goto reap;
2215
2216 /*
2217 * do file setup here so it happens sequentially,
2218 * we don't want X number of threads getting their
2219 * client data interspersed on disk
2220 */
2221 if (setup_files(td)) {
2222reap:
2223 exit_value++;
2224 if (td->error)
2225 log_err("fio: pid=%d, err=%d/%s\n",
2226 (int) td->pid, td->error, td->verror);
2227 td_set_runstate(td, TD_REAPED);
2228 todo--;
2229 } else {
2230 struct fio_file *f;
2231 unsigned int j;
2232
2233 /*
2234 * for sharing to work, each job must always open
2235 * its own files. so close them, if we opened them
2236 * for creation
2237 */
2238 for_each_file(td, f, j) {
2239 if (fio_file_open(f))
2240 td_io_close_file(td, f);
2241 }
2242 }
2243 }
2244
2245 /* start idle threads before io threads start to run */
2246 fio_idle_prof_start();
2247
2248 set_genesis_time();
2249
2250 while (todo) {
2251 struct thread_data *map[REAL_MAX_JOBS];
2252 struct timespec this_start;
2253 int this_jobs = 0, left;
2254 struct fork_data *fd;
2255
2256 /*
2257 * create threads (TD_NOT_CREATED -> TD_CREATED)
2258 */
2259 for_each_td(td, i) {
2260 if (td->runstate != TD_NOT_CREATED)
2261 continue;
2262
2263 /*
2264 * never got a chance to start, killed by other
2265 * thread for some reason
2266 */
2267 if (td->terminate) {
2268 todo--;
2269 continue;
2270 }
2271
2272 if (td->o.start_delay) {
2273 spent = utime_since_genesis();
2274
2275 if (td->o.start_delay > spent)
2276 continue;
2277 }
2278
2279 if (td->o.stonewall && (nr_started || nr_running)) {
2280 dprint(FD_PROCESS, "%s: stonewall wait\n",
2281 td->o.name);
2282 break;
2283 }
2284
2285 if (waitee_running(td)) {
2286 dprint(FD_PROCESS, "%s: waiting for %s\n",
2287 td->o.name, td->o.wait_for);
2288 continue;
2289 }
2290
2291 init_disk_util(td);
2292
2293 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2294 td->update_rusage = 0;
2295
2296 /*
2297 * Set state to created. Thread will transition
2298 * to TD_INITIALIZED when it's done setting up.
2299 */
2300 td_set_runstate(td, TD_CREATED);
2301 map[this_jobs++] = td;
2302 nr_started++;
2303
2304 fd = calloc(1, sizeof(*fd));
2305 fd->td = td;
2306 fd->sk_out = sk_out;
2307
2308 if (td->o.use_thread) {
2309 int ret;
2310
2311 dprint(FD_PROCESS, "will pthread_create\n");
2312 ret = pthread_create(&td->thread, NULL,
2313 thread_main, fd);
2314 if (ret) {
2315 log_err("pthread_create: %s\n",
2316 strerror(ret));
2317 free(fd);
2318 nr_started--;
2319 break;
2320 }
2321 ret = pthread_detach(td->thread);
2322 if (ret)
2323 log_err("pthread_detach: %s",
2324 strerror(ret));
2325 } else {
2326 pid_t pid;
2327 dprint(FD_PROCESS, "will fork\n");
2328 pid = fork();
2329 if (!pid) {
2330 int ret;
2331
2332 ret = (int)(uintptr_t)thread_main(fd);
2333 _exit(ret);
2334 } else if (i == fio_debug_jobno)
2335 *fio_debug_jobp = pid;
2336 }
2337 dprint(FD_MUTEX, "wait on startup_mutex\n");
2338 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2339 log_err("fio: job startup hung? exiting.\n");
2340 fio_terminate_threads(TERMINATE_ALL);
2341 fio_abort = 1;
2342 nr_started--;
2343 free(fd);
2344 break;
2345 }
2346 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2347 }
2348
2349 /*
2350 * Wait for the started threads to transition to
2351 * TD_INITIALIZED.
2352 */
2353 fio_gettime(&this_start, NULL);
2354 left = this_jobs;
2355 while (left && !fio_abort) {
2356 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2357 break;
2358
2359 do_usleep(100000);
2360
2361 for (i = 0; i < this_jobs; i++) {
2362 td = map[i];
2363 if (!td)
2364 continue;
2365 if (td->runstate == TD_INITIALIZED) {
2366 map[i] = NULL;
2367 left--;
2368 } else if (td->runstate >= TD_EXITED) {
2369 map[i] = NULL;
2370 left--;
2371 todo--;
2372 nr_running++; /* work-around... */
2373 }
2374 }
2375 }
2376
2377 if (left) {
2378 log_err("fio: %d job%s failed to start\n", left,
2379 left > 1 ? "s" : "");
2380 for (i = 0; i < this_jobs; i++) {
2381 td = map[i];
2382 if (!td)
2383 continue;
2384 kill(td->pid, SIGTERM);
2385 }
2386 break;
2387 }
2388
2389 /*
2390 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2391 */
2392 for_each_td(td, i) {
2393 if (td->runstate != TD_INITIALIZED)
2394 continue;
2395
2396 if (in_ramp_time(td))
2397 td_set_runstate(td, TD_RAMP);
2398 else
2399 td_set_runstate(td, TD_RUNNING);
2400 nr_running++;
2401 nr_started--;
2402 m_rate += ddir_rw_sum(td->o.ratemin);
2403 t_rate += ddir_rw_sum(td->o.rate);
2404 todo--;
2405 fio_mutex_up(td->mutex);
2406 }
2407
2408 reap_threads(&nr_running, &t_rate, &m_rate);
2409
2410 if (todo)
2411 do_usleep(100000);
2412 }
2413
2414 while (nr_running) {
2415 reap_threads(&nr_running, &t_rate, &m_rate);
2416 do_usleep(10000);
2417 }
2418
2419 fio_idle_prof_stop();
2420
2421 update_io_ticks();
2422}
2423
2424static void free_disk_util(void)
2425{
2426 disk_util_prune_entries();
2427 helper_thread_destroy();
2428}
2429
2430int fio_backend(struct sk_out *sk_out)
2431{
2432 struct thread_data *td;
2433 int i;
2434
2435 if (exec_profile) {
2436 if (load_profile(exec_profile))
2437 return 1;
2438 free(exec_profile);
2439 exec_profile = NULL;
2440 }
2441 if (!thread_number)
2442 return 0;
2443
2444 if (write_bw_log) {
2445 struct log_params p = {
2446 .log_type = IO_LOG_TYPE_BW,
2447 };
2448
2449 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2450 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2451 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2452 }
2453
2454 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2455 if (startup_mutex == NULL)
2456 return 1;
2457
2458 set_genesis_time();
2459 stat_init();
2460 helper_thread_create(startup_mutex, sk_out);
2461
2462 cgroup_list = smalloc(sizeof(*cgroup_list));
2463 INIT_FLIST_HEAD(cgroup_list);
2464
2465 run_threads(sk_out);
2466
2467 helper_thread_exit();
2468
2469 if (!fio_abort) {
2470 __show_run_stats();
2471 if (write_bw_log) {
2472 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2473 struct io_log *log = agg_io_log[i];
2474
2475 flush_log(log, false);
2476 free_log(log);
2477 }
2478 }
2479 }
2480
2481 for_each_td(td, i) {
2482 if (td->ss.dur) {
2483 if (td->ss.iops_data != NULL) {
2484 free(td->ss.iops_data);
2485 free(td->ss.bw_data);
2486 }
2487 }
2488 fio_options_free(td);
2489 if (td->rusage_sem) {
2490 fio_mutex_remove(td->rusage_sem);
2491 td->rusage_sem = NULL;
2492 }
2493 fio_mutex_remove(td->mutex);
2494 td->mutex = NULL;
2495 }
2496
2497 free_disk_util();
2498 cgroup_kill(cgroup_list);
2499 sfree(cgroup_list);
2500 sfree(cgroup_mnt);
2501
2502 fio_mutex_remove(startup_mutex);
2503 stat_exit();
2504 return exit_value;
2505}