Allow random overwrite workloads to write io_limit
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56#include "lib/tp.h"
57
58static pthread_t helper_thread;
59static pthread_mutex_t helper_lock;
60pthread_cond_t helper_cond;
61int helper_do_stat = 0;
62
63static struct fio_mutex *startup_mutex;
64static struct flist_head *cgroup_list;
65static char *cgroup_mnt;
66static int exit_value;
67static volatile int fio_abort;
68static unsigned int nr_process = 0;
69static unsigned int nr_thread = 0;
70
71struct io_log *agg_io_log[DDIR_RWDIR_CNT];
72
73int groupid = 0;
74unsigned int thread_number = 0;
75unsigned int stat_number = 0;
76int shm_id = 0;
77int temp_stall_ts;
78unsigned long done_secs = 0;
79volatile int helper_exit = 0;
80
81#define PAGE_ALIGN(buf) \
82 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
83
84#define JOB_START_TIMEOUT (5 * 1000)
85
86static void sig_int(int sig)
87{
88 if (threads) {
89 if (is_backend)
90 fio_server_got_signal(sig);
91 else {
92 log_info("\nfio: terminating on signal %d\n", sig);
93 log_info_flush();
94 exit_value = 128;
95 }
96
97 fio_terminate_threads(TERMINATE_ALL);
98 }
99}
100
101static void sig_show_status(int sig)
102{
103 show_running_run_stats();
104}
105
106static void set_sig_handlers(void)
107{
108 struct sigaction act;
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGINT, &act, NULL);
114
115 memset(&act, 0, sizeof(act));
116 act.sa_handler = sig_int;
117 act.sa_flags = SA_RESTART;
118 sigaction(SIGTERM, &act, NULL);
119
120/* Windows uses SIGBREAK as a quit signal from other applications */
121#ifdef WIN32
122 memset(&act, 0, sizeof(act));
123 act.sa_handler = sig_int;
124 act.sa_flags = SA_RESTART;
125 sigaction(SIGBREAK, &act, NULL);
126#endif
127
128 memset(&act, 0, sizeof(act));
129 act.sa_handler = sig_show_status;
130 act.sa_flags = SA_RESTART;
131 sigaction(SIGUSR1, &act, NULL);
132
133 if (is_backend) {
134 memset(&act, 0, sizeof(act));
135 act.sa_handler = sig_int;
136 act.sa_flags = SA_RESTART;
137 sigaction(SIGPIPE, &act, NULL);
138 }
139}
140
141/*
142 * Check if we are above the minimum rate given.
143 */
144static int __check_min_rate(struct thread_data *td, struct timeval *now,
145 enum fio_ddir ddir)
146{
147 unsigned long long bytes = 0;
148 unsigned long iops = 0;
149 unsigned long spent;
150 unsigned long rate;
151 unsigned int ratemin = 0;
152 unsigned int rate_iops = 0;
153 unsigned int rate_iops_min = 0;
154
155 assert(ddir_rw(ddir));
156
157 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
158 return 0;
159
160 /*
161 * allow a 2 second settle period in the beginning
162 */
163 if (mtime_since(&td->start, now) < 2000)
164 return 0;
165
166 iops += td->this_io_blocks[ddir];
167 bytes += td->this_io_bytes[ddir];
168 ratemin += td->o.ratemin[ddir];
169 rate_iops += td->o.rate_iops[ddir];
170 rate_iops_min += td->o.rate_iops_min[ddir];
171
172 /*
173 * if rate blocks is set, sample is running
174 */
175 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
176 spent = mtime_since(&td->lastrate[ddir], now);
177 if (spent < td->o.ratecycle)
178 return 0;
179
180 if (td->o.rate[ddir]) {
181 /*
182 * check bandwidth specified rate
183 */
184 if (bytes < td->rate_bytes[ddir]) {
185 log_err("%s: min rate %u not met\n", td->o.name,
186 ratemin);
187 return 1;
188 } else {
189 if (spent)
190 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
191 else
192 rate = 0;
193
194 if (rate < ratemin ||
195 bytes < td->rate_bytes[ddir]) {
196 log_err("%s: min rate %u not met, got"
197 " %luKB/sec\n", td->o.name,
198 ratemin, rate);
199 return 1;
200 }
201 }
202 } else {
203 /*
204 * checks iops specified rate
205 */
206 if (iops < rate_iops) {
207 log_err("%s: min iops rate %u not met\n",
208 td->o.name, rate_iops);
209 return 1;
210 } else {
211 if (spent)
212 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
213 else
214 rate = 0;
215
216 if (rate < rate_iops_min ||
217 iops < td->rate_blocks[ddir]) {
218 log_err("%s: min iops rate %u not met,"
219 " got %lu\n", td->o.name,
220 rate_iops_min, rate);
221 }
222 }
223 }
224 }
225
226 td->rate_bytes[ddir] = bytes;
227 td->rate_blocks[ddir] = iops;
228 memcpy(&td->lastrate[ddir], now, sizeof(*now));
229 return 0;
230}
231
232static int check_min_rate(struct thread_data *td, struct timeval *now,
233 uint64_t *bytes_done)
234{
235 int ret = 0;
236
237 if (bytes_done[DDIR_READ])
238 ret |= __check_min_rate(td, now, DDIR_READ);
239 if (bytes_done[DDIR_WRITE])
240 ret |= __check_min_rate(td, now, DDIR_WRITE);
241 if (bytes_done[DDIR_TRIM])
242 ret |= __check_min_rate(td, now, DDIR_TRIM);
243
244 return ret;
245}
246
247/*
248 * When job exits, we can cancel the in-flight IO if we are using async
249 * io. Attempt to do so.
250 */
251static void cleanup_pending_aio(struct thread_data *td)
252{
253 int r;
254
255 /*
256 * get immediately available events, if any
257 */
258 r = io_u_queued_complete(td, 0, NULL);
259 if (r < 0)
260 return;
261
262 /*
263 * now cancel remaining active events
264 */
265 if (td->io_ops->cancel) {
266 struct io_u *io_u;
267 int i;
268
269 io_u_qiter(&td->io_u_all, io_u, i) {
270 if (io_u->flags & IO_U_F_FLIGHT) {
271 r = td->io_ops->cancel(td, io_u);
272 if (!r)
273 put_io_u(td, io_u);
274 }
275 }
276 }
277
278 if (td->cur_depth)
279 r = io_u_queued_complete(td, td->cur_depth, NULL);
280}
281
282/*
283 * Helper to handle the final sync of a file. Works just like the normal
284 * io path, just does everything sync.
285 */
286static int fio_io_sync(struct thread_data *td, struct fio_file *f)
287{
288 struct io_u *io_u = __get_io_u(td);
289 int ret;
290
291 if (!io_u)
292 return 1;
293
294 io_u->ddir = DDIR_SYNC;
295 io_u->file = f;
296
297 if (td_io_prep(td, io_u)) {
298 put_io_u(td, io_u);
299 return 1;
300 }
301
302requeue:
303 ret = td_io_queue(td, io_u);
304 if (ret < 0) {
305 td_verror(td, io_u->error, "td_io_queue");
306 put_io_u(td, io_u);
307 return 1;
308 } else if (ret == FIO_Q_QUEUED) {
309 if (io_u_queued_complete(td, 1, NULL) < 0)
310 return 1;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return 1;
315 }
316
317 if (io_u_sync_complete(td, io_u, NULL) < 0)
318 return 1;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return 1;
322 goto requeue;
323 }
324
325 return 0;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return 0;
358 if (!td->o.timeout)
359 return 0;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return 1;
362
363 return 0;
364}
365
366static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
367 int *retptr)
368{
369 int ret = *retptr;
370
371 if (ret < 0 || td->error) {
372 int err = td->error;
373 enum error_type_bit eb;
374
375 if (ret < 0)
376 err = -ret;
377
378 eb = td_error_type(ddir, err);
379 if (!(td->o.continue_on_error & (1 << eb)))
380 return 1;
381
382 if (td_non_fatal_error(td, eb, err)) {
383 /*
384 * Continue with the I/Os in case of
385 * a non fatal error.
386 */
387 update_error_count(td, err);
388 td_clear_error(td);
389 *retptr = 0;
390 return 0;
391 } else if (td->o.fill_device && err == ENOSPC) {
392 /*
393 * We expect to hit this error if
394 * fill_device option is set.
395 */
396 td_clear_error(td);
397 fio_mark_td_terminate(td);
398 return 1;
399 } else {
400 /*
401 * Stop the I/O in case of a fatal
402 * error.
403 */
404 update_error_count(td, err);
405 return 1;
406 }
407 }
408
409 return 0;
410}
411
412static void check_update_rusage(struct thread_data *td)
413{
414 if (td->update_rusage) {
415 td->update_rusage = 0;
416 update_rusage_stat(td);
417 fio_mutex_up(td->rusage_sem);
418 }
419}
420
421static int wait_for_completions(struct thread_data *td, struct timeval *time,
422 uint64_t *bytes_done)
423{
424 const int full = queue_full(td);
425 int min_evts = 0;
426 int ret;
427
428 /*
429 * if the queue is full, we MUST reap at least 1 event
430 */
431 min_evts = min(td->o.iodepth_batch_complete, td->cur_depth);
432 if (full && !min_evts)
433 min_evts = 1;
434
435 if (time && (__should_check_rate(td, DDIR_READ) ||
436 __should_check_rate(td, DDIR_WRITE) ||
437 __should_check_rate(td, DDIR_TRIM)))
438 fio_gettime(time, NULL);
439
440 do {
441 ret = io_u_queued_complete(td, min_evts, bytes_done);
442 if (ret < 0)
443 break;
444 } while (full && (td->cur_depth > td->o.iodepth_low));
445
446 return ret;
447}
448
449/*
450 * The main verify engine. Runs over the writes we previously submitted,
451 * reads the blocks back in, and checks the crc/md5 of the data.
452 */
453static void do_verify(struct thread_data *td, uint64_t verify_bytes)
454{
455 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
456 struct fio_file *f;
457 struct io_u *io_u;
458 int ret, min_events;
459 unsigned int i;
460
461 dprint(FD_VERIFY, "starting loop\n");
462
463 /*
464 * sync io first and invalidate cache, to make sure we really
465 * read from disk.
466 */
467 for_each_file(td, f, i) {
468 if (!fio_file_open(f))
469 continue;
470 if (fio_io_sync(td, f))
471 break;
472 if (file_invalidate_cache(td, f))
473 break;
474 }
475
476 check_update_rusage(td);
477
478 if (td->error)
479 return;
480
481 td_set_runstate(td, TD_VERIFYING);
482
483 io_u = NULL;
484 while (!td->terminate) {
485 enum fio_ddir ddir;
486 int ret2, full;
487
488 update_tv_cache(td);
489 check_update_rusage(td);
490
491 if (runtime_exceeded(td, &td->tv_cache)) {
492 __update_tv_cache(td);
493 if (runtime_exceeded(td, &td->tv_cache)) {
494 fio_mark_td_terminate(td);
495 break;
496 }
497 }
498
499 if (flow_threshold_exceeded(td))
500 continue;
501
502 if (!td->o.experimental_verify) {
503 io_u = __get_io_u(td);
504 if (!io_u)
505 break;
506
507 if (get_next_verify(td, io_u)) {
508 put_io_u(td, io_u);
509 break;
510 }
511
512 if (td_io_prep(td, io_u)) {
513 put_io_u(td, io_u);
514 break;
515 }
516 } else {
517 if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
518 break;
519
520 while ((io_u = get_io_u(td)) != NULL) {
521 if (IS_ERR(io_u)) {
522 io_u = NULL;
523 ret = FIO_Q_BUSY;
524 goto reap;
525 }
526
527 /*
528 * We are only interested in the places where
529 * we wrote or trimmed IOs. Turn those into
530 * reads for verification purposes.
531 */
532 if (io_u->ddir == DDIR_READ) {
533 /*
534 * Pretend we issued it for rwmix
535 * accounting
536 */
537 td->io_issues[DDIR_READ]++;
538 put_io_u(td, io_u);
539 continue;
540 } else if (io_u->ddir == DDIR_TRIM) {
541 io_u->ddir = DDIR_READ;
542 io_u->flags |= IO_U_F_TRIMMED;
543 break;
544 } else if (io_u->ddir == DDIR_WRITE) {
545 io_u->ddir = DDIR_READ;
546 break;
547 } else {
548 put_io_u(td, io_u);
549 continue;
550 }
551 }
552
553 if (!io_u)
554 break;
555 }
556
557 if (verify_state_should_stop(td, io_u)) {
558 put_io_u(td, io_u);
559 break;
560 }
561
562 if (td->o.verify_async)
563 io_u->end_io = verify_io_u_async;
564 else
565 io_u->end_io = verify_io_u;
566
567 ddir = io_u->ddir;
568 if (!td->o.disable_slat)
569 fio_gettime(&io_u->start_time, NULL);
570
571 ret = td_io_queue(td, io_u);
572 switch (ret) {
573 case FIO_Q_COMPLETED:
574 if (io_u->error) {
575 ret = -io_u->error;
576 clear_io_u(td, io_u);
577 } else if (io_u->resid) {
578 int bytes = io_u->xfer_buflen - io_u->resid;
579
580 /*
581 * zero read, fail
582 */
583 if (!bytes) {
584 td_verror(td, EIO, "full resid");
585 put_io_u(td, io_u);
586 break;
587 }
588
589 io_u->xfer_buflen = io_u->resid;
590 io_u->xfer_buf += bytes;
591 io_u->offset += bytes;
592
593 if (ddir_rw(io_u->ddir))
594 td->ts.short_io_u[io_u->ddir]++;
595
596 f = io_u->file;
597 if (io_u->offset == f->real_file_size)
598 goto sync_done;
599
600 requeue_io_u(td, &io_u);
601 } else {
602sync_done:
603 ret = io_u_sync_complete(td, io_u, bytes_done);
604 if (ret < 0)
605 break;
606 }
607 continue;
608 case FIO_Q_QUEUED:
609 break;
610 case FIO_Q_BUSY:
611 requeue_io_u(td, &io_u);
612 ret2 = td_io_commit(td);
613 if (ret2 < 0)
614 ret = ret2;
615 break;
616 default:
617 assert(ret < 0);
618 td_verror(td, -ret, "td_io_queue");
619 break;
620 }
621
622 if (break_on_this_error(td, ddir, &ret))
623 break;
624
625 /*
626 * if we can queue more, do so. but check if there are
627 * completed io_u's first. Note that we can get BUSY even
628 * without IO queued, if the system is resource starved.
629 */
630reap:
631 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
632 if (full || !td->o.iodepth_batch_complete)
633 ret = wait_for_completions(td, NULL, bytes_done);
634
635 if (ret < 0)
636 break;
637 }
638
639 check_update_rusage(td);
640
641 if (!td->error) {
642 min_events = td->cur_depth;
643
644 if (min_events)
645 ret = io_u_queued_complete(td, min_events, NULL);
646 } else
647 cleanup_pending_aio(td);
648
649 td_set_runstate(td, TD_RUNNING);
650
651 dprint(FD_VERIFY, "exiting loop\n");
652}
653
654static unsigned int exceeds_number_ios(struct thread_data *td)
655{
656 unsigned long long number_ios;
657
658 if (!td->o.number_ios)
659 return 0;
660
661 number_ios = ddir_rw_sum(td->this_io_blocks);
662 number_ios += td->io_u_queued + td->io_u_in_flight;
663
664 return number_ios >= td->o.number_ios;
665}
666
667static int io_issue_bytes_exceeded(struct thread_data *td)
668{
669 unsigned long long bytes, limit;
670
671 if (td_rw(td))
672 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
673 else if (td_write(td))
674 bytes = td->io_issue_bytes[DDIR_WRITE];
675 else if (td_read(td))
676 bytes = td->io_issue_bytes[DDIR_READ];
677 else
678 bytes = td->io_issue_bytes[DDIR_TRIM];
679
680 if (td->o.io_limit)
681 limit = td->o.io_limit;
682 else
683 limit = td->o.size;
684
685 return bytes >= limit || exceeds_number_ios(td);
686}
687
688static int io_complete_bytes_exceeded(struct thread_data *td)
689{
690 unsigned long long bytes, limit;
691
692 if (td_rw(td))
693 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
694 else if (td_write(td))
695 bytes = td->this_io_bytes[DDIR_WRITE];
696 else if (td_read(td))
697 bytes = td->this_io_bytes[DDIR_READ];
698 else
699 bytes = td->this_io_bytes[DDIR_TRIM];
700
701 if (td->o.io_limit)
702 limit = td->o.io_limit;
703 else
704 limit = td->o.size;
705
706 return bytes >= limit || exceeds_number_ios(td);
707}
708
709/*
710 * Main IO worker function. It retrieves io_u's to process and queues
711 * and reaps them, checking for rate and errors along the way.
712 *
713 * Returns number of bytes written and trimmed.
714 */
715static uint64_t do_io(struct thread_data *td)
716{
717 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
718 unsigned int i;
719 int ret = 0;
720 uint64_t total_bytes, bytes_issued = 0;
721
722 if (in_ramp_time(td))
723 td_set_runstate(td, TD_RAMP);
724 else
725 td_set_runstate(td, TD_RUNNING);
726
727 lat_target_init(td);
728
729 total_bytes = td->o.size;
730 /*
731 * Allow random overwrite workloads to write up to io_limit
732 * before starting verification phase as 'size' doesn't apply.
733 */
734 if (td_write(td) && td_random(td) && td->o.norandommap)
735 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
736 /*
737 * If verify_backlog is enabled, we'll run the verify in this
738 * handler as well. For that case, we may need up to twice the
739 * amount of bytes.
740 */
741 if (td->o.verify != VERIFY_NONE &&
742 (td_write(td) && td->o.verify_backlog))
743 total_bytes += td->o.size;
744
745 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
746 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
747 td->o.time_based) {
748 struct timeval comp_time;
749 struct io_u *io_u;
750 int ret2, full;
751 enum fio_ddir ddir;
752
753 check_update_rusage(td);
754
755 if (td->terminate || td->done)
756 break;
757
758 update_tv_cache(td);
759
760 if (runtime_exceeded(td, &td->tv_cache)) {
761 __update_tv_cache(td);
762 if (runtime_exceeded(td, &td->tv_cache)) {
763 fio_mark_td_terminate(td);
764 break;
765 }
766 }
767
768 if (flow_threshold_exceeded(td))
769 continue;
770
771 if (bytes_issued >= total_bytes)
772 break;
773
774 io_u = get_io_u(td);
775 if (IS_ERR_OR_NULL(io_u)) {
776 int err = PTR_ERR(io_u);
777
778 io_u = NULL;
779 if (err == -EBUSY) {
780 ret = FIO_Q_BUSY;
781 goto reap;
782 }
783 if (td->o.latency_target)
784 goto reap;
785 break;
786 }
787
788 ddir = io_u->ddir;
789
790 /*
791 * Add verification end_io handler if:
792 * - Asked to verify (!td_rw(td))
793 * - Or the io_u is from our verify list (mixed write/ver)
794 */
795 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
796 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
797
798 if (!td->o.verify_pattern_bytes) {
799 io_u->rand_seed = __rand(&td->verify_state);
800 if (sizeof(int) != sizeof(long *))
801 io_u->rand_seed *= __rand(&td->verify_state);
802 }
803
804 if (verify_state_should_stop(td, io_u)) {
805 put_io_u(td, io_u);
806 break;
807 }
808
809 if (td->o.verify_async)
810 io_u->end_io = verify_io_u_async;
811 else
812 io_u->end_io = verify_io_u;
813 td_set_runstate(td, TD_VERIFYING);
814 } else if (in_ramp_time(td))
815 td_set_runstate(td, TD_RAMP);
816 else
817 td_set_runstate(td, TD_RUNNING);
818
819 /*
820 * Always log IO before it's issued, so we know the specific
821 * order of it. The logged unit will track when the IO has
822 * completed.
823 */
824 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
825 td->o.do_verify &&
826 td->o.verify != VERIFY_NONE &&
827 !td->o.experimental_verify)
828 log_io_piece(td, io_u);
829
830 ret = td_io_queue(td, io_u);
831 switch (ret) {
832 case FIO_Q_COMPLETED:
833 if (io_u->error) {
834 ret = -io_u->error;
835 unlog_io_piece(td, io_u);
836 clear_io_u(td, io_u);
837 } else if (io_u->resid) {
838 int bytes = io_u->xfer_buflen - io_u->resid;
839 struct fio_file *f = io_u->file;
840
841 bytes_issued += bytes;
842
843 trim_io_piece(td, io_u);
844
845 /*
846 * zero read, fail
847 */
848 if (!bytes) {
849 unlog_io_piece(td, io_u);
850 td_verror(td, EIO, "full resid");
851 put_io_u(td, io_u);
852 break;
853 }
854
855 io_u->xfer_buflen = io_u->resid;
856 io_u->xfer_buf += bytes;
857 io_u->offset += bytes;
858
859 if (ddir_rw(io_u->ddir))
860 td->ts.short_io_u[io_u->ddir]++;
861
862 if (io_u->offset == f->real_file_size)
863 goto sync_done;
864
865 requeue_io_u(td, &io_u);
866 } else {
867sync_done:
868 if (__should_check_rate(td, DDIR_READ) ||
869 __should_check_rate(td, DDIR_WRITE) ||
870 __should_check_rate(td, DDIR_TRIM))
871 fio_gettime(&comp_time, NULL);
872
873 ret = io_u_sync_complete(td, io_u, bytes_done);
874 if (ret < 0)
875 break;
876 bytes_issued += io_u->xfer_buflen;
877 }
878 break;
879 case FIO_Q_QUEUED:
880 /*
881 * if the engine doesn't have a commit hook,
882 * the io_u is really queued. if it does have such
883 * a hook, it has to call io_u_queued() itself.
884 */
885 if (td->io_ops->commit == NULL)
886 io_u_queued(td, io_u);
887 bytes_issued += io_u->xfer_buflen;
888 break;
889 case FIO_Q_BUSY:
890 unlog_io_piece(td, io_u);
891 requeue_io_u(td, &io_u);
892 ret2 = td_io_commit(td);
893 if (ret2 < 0)
894 ret = ret2;
895 break;
896 default:
897 assert(ret < 0);
898 put_io_u(td, io_u);
899 break;
900 }
901
902 if (break_on_this_error(td, ddir, &ret))
903 break;
904
905 /*
906 * See if we need to complete some commands. Note that we
907 * can get BUSY even without IO queued, if the system is
908 * resource starved.
909 */
910reap:
911 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
912 if (full || !td->o.iodepth_batch_complete)
913 ret = wait_for_completions(td, &comp_time, bytes_done);
914 if (ret < 0)
915 break;
916 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
917 continue;
918
919 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
920 if (check_min_rate(td, &comp_time, bytes_done)) {
921 if (exitall_on_terminate)
922 fio_terminate_threads(td->groupid);
923 td_verror(td, EIO, "check_min_rate");
924 break;
925 }
926 }
927 if (!in_ramp_time(td) && td->o.latency_target)
928 lat_target_check(td);
929
930 if (td->o.thinktime) {
931 unsigned long long b;
932
933 b = ddir_rw_sum(td->io_blocks);
934 if (!(b % td->o.thinktime_blocks)) {
935 int left;
936
937 io_u_quiesce(td);
938
939 if (td->o.thinktime_spin)
940 usec_spin(td->o.thinktime_spin);
941
942 left = td->o.thinktime - td->o.thinktime_spin;
943 if (left)
944 usec_sleep(td, left);
945 }
946 }
947 }
948
949 check_update_rusage(td);
950
951 if (td->trim_entries)
952 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
953
954 if (td->o.fill_device && td->error == ENOSPC) {
955 td->error = 0;
956 fio_mark_td_terminate(td);
957 }
958 if (!td->error) {
959 struct fio_file *f;
960
961 i = td->cur_depth;
962 if (i) {
963 ret = io_u_queued_complete(td, i, bytes_done);
964 if (td->o.fill_device && td->error == ENOSPC)
965 td->error = 0;
966 }
967
968 if (should_fsync(td) && td->o.end_fsync) {
969 td_set_runstate(td, TD_FSYNCING);
970
971 for_each_file(td, f, i) {
972 if (!fio_file_fsync(td, f))
973 continue;
974
975 log_err("fio: end_fsync failed for file %s\n",
976 f->file_name);
977 }
978 }
979 } else
980 cleanup_pending_aio(td);
981
982 /*
983 * stop job if we failed doing any IO
984 */
985 if (!ddir_rw_sum(td->this_io_bytes))
986 td->done = 1;
987
988 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
989}
990
991static void cleanup_io_u(struct thread_data *td)
992{
993 struct io_u *io_u;
994
995 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
996
997 if (td->io_ops->io_u_free)
998 td->io_ops->io_u_free(td, io_u);
999
1000 fio_memfree(io_u, sizeof(*io_u));
1001 }
1002
1003 free_io_mem(td);
1004
1005 io_u_rexit(&td->io_u_requeues);
1006 io_u_qexit(&td->io_u_freelist);
1007 io_u_qexit(&td->io_u_all);
1008
1009 if (td->last_write_comp)
1010 sfree(td->last_write_comp);
1011}
1012
1013static int init_io_u(struct thread_data *td)
1014{
1015 struct io_u *io_u;
1016 unsigned int max_bs, min_write;
1017 int cl_align, i, max_units;
1018 int data_xfer = 1, err;
1019 char *p;
1020
1021 max_units = td->o.iodepth;
1022 max_bs = td_max_bs(td);
1023 min_write = td->o.min_bs[DDIR_WRITE];
1024 td->orig_buffer_size = (unsigned long long) max_bs
1025 * (unsigned long long) max_units;
1026
1027 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1028 data_xfer = 0;
1029
1030 err = 0;
1031 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1032 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1033 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1034
1035 if (err) {
1036 log_err("fio: failed setting up IO queues\n");
1037 return 1;
1038 }
1039
1040 /*
1041 * if we may later need to do address alignment, then add any
1042 * possible adjustment here so that we don't cause a buffer
1043 * overflow later. this adjustment may be too much if we get
1044 * lucky and the allocator gives us an aligned address.
1045 */
1046 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1047 (td->io_ops->flags & FIO_RAWIO))
1048 td->orig_buffer_size += page_mask + td->o.mem_align;
1049
1050 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1051 unsigned long bs;
1052
1053 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1054 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1055 }
1056
1057 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1058 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1059 return 1;
1060 }
1061
1062 if (data_xfer && allocate_io_mem(td))
1063 return 1;
1064
1065 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1066 (td->io_ops->flags & FIO_RAWIO))
1067 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1068 else
1069 p = td->orig_buffer;
1070
1071 cl_align = os_cache_line_size();
1072
1073 for (i = 0; i < max_units; i++) {
1074 void *ptr;
1075
1076 if (td->terminate)
1077 return 1;
1078
1079 ptr = fio_memalign(cl_align, sizeof(*io_u));
1080 if (!ptr) {
1081 log_err("fio: unable to allocate aligned memory\n");
1082 break;
1083 }
1084
1085 io_u = ptr;
1086 memset(io_u, 0, sizeof(*io_u));
1087 INIT_FLIST_HEAD(&io_u->verify_list);
1088 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1089
1090 if (data_xfer) {
1091 io_u->buf = p;
1092 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1093
1094 if (td_write(td))
1095 io_u_fill_buffer(td, io_u, min_write, max_bs);
1096 if (td_write(td) && td->o.verify_pattern_bytes) {
1097 /*
1098 * Fill the buffer with the pattern if we are
1099 * going to be doing writes.
1100 */
1101 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1102 }
1103 }
1104
1105 io_u->index = i;
1106 io_u->flags = IO_U_F_FREE;
1107 io_u_qpush(&td->io_u_freelist, io_u);
1108
1109 /*
1110 * io_u never leaves this stack, used for iteration of all
1111 * io_u buffers.
1112 */
1113 io_u_qpush(&td->io_u_all, io_u);
1114
1115 if (td->io_ops->io_u_init) {
1116 int ret = td->io_ops->io_u_init(td, io_u);
1117
1118 if (ret) {
1119 log_err("fio: failed to init engine data: %d\n", ret);
1120 return 1;
1121 }
1122 }
1123
1124 p += max_bs;
1125 }
1126
1127 if (td->o.verify != VERIFY_NONE) {
1128 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1129 if (!td->last_write_comp) {
1130 log_err("fio: failed to alloc write comp data\n");
1131 return 1;
1132 }
1133 }
1134
1135 return 0;
1136}
1137
1138static int switch_ioscheduler(struct thread_data *td)
1139{
1140 char tmp[256], tmp2[128];
1141 FILE *f;
1142 int ret;
1143
1144 if (td->io_ops->flags & FIO_DISKLESSIO)
1145 return 0;
1146
1147 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1148
1149 f = fopen(tmp, "r+");
1150 if (!f) {
1151 if (errno == ENOENT) {
1152 log_err("fio: os or kernel doesn't support IO scheduler"
1153 " switching\n");
1154 return 0;
1155 }
1156 td_verror(td, errno, "fopen iosched");
1157 return 1;
1158 }
1159
1160 /*
1161 * Set io scheduler.
1162 */
1163 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1164 if (ferror(f) || ret != 1) {
1165 td_verror(td, errno, "fwrite");
1166 fclose(f);
1167 return 1;
1168 }
1169
1170 rewind(f);
1171
1172 /*
1173 * Read back and check that the selected scheduler is now the default.
1174 */
1175 ret = fread(tmp, sizeof(tmp), 1, f);
1176 if (ferror(f) || ret < 0) {
1177 td_verror(td, errno, "fread");
1178 fclose(f);
1179 return 1;
1180 }
1181 tmp[sizeof(tmp) - 1] = '\0';
1182
1183
1184 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1185 if (!strstr(tmp, tmp2)) {
1186 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1187 td_verror(td, EINVAL, "iosched_switch");
1188 fclose(f);
1189 return 1;
1190 }
1191
1192 fclose(f);
1193 return 0;
1194}
1195
1196static int keep_running(struct thread_data *td)
1197{
1198 unsigned long long limit;
1199
1200 if (td->done)
1201 return 0;
1202 if (td->o.time_based)
1203 return 1;
1204 if (td->o.loops) {
1205 td->o.loops--;
1206 return 1;
1207 }
1208 if (exceeds_number_ios(td))
1209 return 0;
1210
1211 if (td->o.io_limit)
1212 limit = td->o.io_limit;
1213 else
1214 limit = td->o.size;
1215
1216 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1217 uint64_t diff;
1218
1219 /*
1220 * If the difference is less than the minimum IO size, we
1221 * are done.
1222 */
1223 diff = limit - ddir_rw_sum(td->io_bytes);
1224 if (diff < td_max_bs(td))
1225 return 0;
1226
1227 if (fio_files_done(td))
1228 return 0;
1229
1230 return 1;
1231 }
1232
1233 return 0;
1234}
1235
1236static int exec_string(struct thread_options *o, const char *string, const char *mode)
1237{
1238 int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1239 char *str;
1240
1241 str = malloc(newlen);
1242 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1243
1244 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1245 ret = system(str);
1246 if (ret == -1)
1247 log_err("fio: exec of cmd <%s> failed\n", str);
1248
1249 free(str);
1250 return ret;
1251}
1252
1253/*
1254 * Dry run to compute correct state of numberio for verification.
1255 */
1256static uint64_t do_dry_run(struct thread_data *td)
1257{
1258 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1259
1260 td_set_runstate(td, TD_RUNNING);
1261
1262 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1263 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1264 struct io_u *io_u;
1265 int ret;
1266
1267 if (td->terminate || td->done)
1268 break;
1269
1270 io_u = get_io_u(td);
1271 if (!io_u)
1272 break;
1273
1274 io_u->flags |= IO_U_F_FLIGHT;
1275 io_u->error = 0;
1276 io_u->resid = 0;
1277 if (ddir_rw(acct_ddir(io_u)))
1278 td->io_issues[acct_ddir(io_u)]++;
1279 if (ddir_rw(io_u->ddir)) {
1280 io_u_mark_depth(td, 1);
1281 td->ts.total_io_u[io_u->ddir]++;
1282 }
1283
1284 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1285 td->o.do_verify &&
1286 td->o.verify != VERIFY_NONE &&
1287 !td->o.experimental_verify)
1288 log_io_piece(td, io_u);
1289
1290 ret = io_u_sync_complete(td, io_u, bytes_done);
1291 (void) ret;
1292 }
1293
1294 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1295}
1296
1297/*
1298 * Entry point for the thread based jobs. The process based jobs end up
1299 * here as well, after a little setup.
1300 */
1301static void *thread_main(void *data)
1302{
1303 unsigned long long elapsed;
1304 struct thread_data *td = data;
1305 struct thread_options *o = &td->o;
1306 pthread_condattr_t attr;
1307 int clear_state;
1308 int ret;
1309
1310 if (!o->use_thread) {
1311 setsid();
1312 td->pid = getpid();
1313 } else
1314 td->pid = gettid();
1315
1316 fio_local_clock_init(o->use_thread);
1317
1318 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1319
1320 if (is_backend)
1321 fio_server_send_start(td);
1322
1323 INIT_FLIST_HEAD(&td->io_log_list);
1324 INIT_FLIST_HEAD(&td->io_hist_list);
1325 INIT_FLIST_HEAD(&td->verify_list);
1326 INIT_FLIST_HEAD(&td->trim_list);
1327 INIT_FLIST_HEAD(&td->next_rand_list);
1328 pthread_mutex_init(&td->io_u_lock, NULL);
1329 td->io_hist_tree = RB_ROOT;
1330
1331 pthread_condattr_init(&attr);
1332 pthread_cond_init(&td->verify_cond, &attr);
1333 pthread_cond_init(&td->free_cond, &attr);
1334
1335 td_set_runstate(td, TD_INITIALIZED);
1336 dprint(FD_MUTEX, "up startup_mutex\n");
1337 fio_mutex_up(startup_mutex);
1338 dprint(FD_MUTEX, "wait on td->mutex\n");
1339 fio_mutex_down(td->mutex);
1340 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1341
1342 /*
1343 * A new gid requires privilege, so we need to do this before setting
1344 * the uid.
1345 */
1346 if (o->gid != -1U && setgid(o->gid)) {
1347 td_verror(td, errno, "setgid");
1348 goto err;
1349 }
1350 if (o->uid != -1U && setuid(o->uid)) {
1351 td_verror(td, errno, "setuid");
1352 goto err;
1353 }
1354
1355 /*
1356 * If we have a gettimeofday() thread, make sure we exclude that
1357 * thread from this job
1358 */
1359 if (o->gtod_cpu)
1360 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1361
1362 /*
1363 * Set affinity first, in case it has an impact on the memory
1364 * allocations.
1365 */
1366 if (fio_option_is_set(o, cpumask)) {
1367 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1368 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1369 if (!ret) {
1370 log_err("fio: no CPUs set\n");
1371 log_err("fio: Try increasing number of available CPUs\n");
1372 td_verror(td, EINVAL, "cpus_split");
1373 goto err;
1374 }
1375 }
1376 ret = fio_setaffinity(td->pid, o->cpumask);
1377 if (ret == -1) {
1378 td_verror(td, errno, "cpu_set_affinity");
1379 goto err;
1380 }
1381 }
1382
1383#ifdef CONFIG_LIBNUMA
1384 /* numa node setup */
1385 if (fio_option_is_set(o, numa_cpunodes) ||
1386 fio_option_is_set(o, numa_memnodes)) {
1387 struct bitmask *mask;
1388
1389 if (numa_available() < 0) {
1390 td_verror(td, errno, "Does not support NUMA API\n");
1391 goto err;
1392 }
1393
1394 if (fio_option_is_set(o, numa_cpunodes)) {
1395 mask = numa_parse_nodestring(o->numa_cpunodes);
1396 ret = numa_run_on_node_mask(mask);
1397 numa_free_nodemask(mask);
1398 if (ret == -1) {
1399 td_verror(td, errno, \
1400 "numa_run_on_node_mask failed\n");
1401 goto err;
1402 }
1403 }
1404
1405 if (fio_option_is_set(o, numa_memnodes)) {
1406 mask = NULL;
1407 if (o->numa_memnodes)
1408 mask = numa_parse_nodestring(o->numa_memnodes);
1409
1410 switch (o->numa_mem_mode) {
1411 case MPOL_INTERLEAVE:
1412 numa_set_interleave_mask(mask);
1413 break;
1414 case MPOL_BIND:
1415 numa_set_membind(mask);
1416 break;
1417 case MPOL_LOCAL:
1418 numa_set_localalloc();
1419 break;
1420 case MPOL_PREFERRED:
1421 numa_set_preferred(o->numa_mem_prefer_node);
1422 break;
1423 case MPOL_DEFAULT:
1424 default:
1425 break;
1426 }
1427
1428 if (mask)
1429 numa_free_nodemask(mask);
1430
1431 }
1432 }
1433#endif
1434
1435 if (fio_pin_memory(td))
1436 goto err;
1437
1438 /*
1439 * May alter parameters that init_io_u() will use, so we need to
1440 * do this first.
1441 */
1442 if (init_iolog(td))
1443 goto err;
1444
1445 if (init_io_u(td))
1446 goto err;
1447
1448 if (o->verify_async && verify_async_init(td))
1449 goto err;
1450
1451 if (fio_option_is_set(o, ioprio) ||
1452 fio_option_is_set(o, ioprio_class)) {
1453 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1454 if (ret == -1) {
1455 td_verror(td, errno, "ioprio_set");
1456 goto err;
1457 }
1458 }
1459
1460 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1461 goto err;
1462
1463 errno = 0;
1464 if (nice(o->nice) == -1 && errno != 0) {
1465 td_verror(td, errno, "nice");
1466 goto err;
1467 }
1468
1469 if (o->ioscheduler && switch_ioscheduler(td))
1470 goto err;
1471
1472 if (!o->create_serialize && setup_files(td))
1473 goto err;
1474
1475 if (td_io_init(td))
1476 goto err;
1477
1478 if (init_random_map(td))
1479 goto err;
1480
1481 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1482 goto err;
1483
1484 if (o->pre_read) {
1485 if (pre_read_files(td) < 0)
1486 goto err;
1487 }
1488
1489 if (td->flags & TD_F_COMPRESS_LOG)
1490 tp_init(&td->tp_data);
1491
1492 fio_verify_init(td);
1493
1494 fio_gettime(&td->epoch, NULL);
1495 fio_getrusage(&td->ru_start);
1496 clear_state = 0;
1497 while (keep_running(td)) {
1498 uint64_t verify_bytes;
1499
1500 fio_gettime(&td->start, NULL);
1501 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1502 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1503 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1504
1505 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1506 o->ratemin[DDIR_TRIM]) {
1507 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1508 sizeof(td->bw_sample_time));
1509 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1510 sizeof(td->bw_sample_time));
1511 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1512 sizeof(td->bw_sample_time));
1513 }
1514
1515 if (clear_state)
1516 clear_io_state(td);
1517
1518 prune_io_piece_log(td);
1519
1520 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1521 verify_bytes = do_dry_run(td);
1522 else
1523 verify_bytes = do_io(td);
1524
1525 clear_state = 1;
1526
1527 fio_mutex_down(stat_mutex);
1528 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1529 elapsed = mtime_since_now(&td->start);
1530 td->ts.runtime[DDIR_READ] += elapsed;
1531 }
1532 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1533 elapsed = mtime_since_now(&td->start);
1534 td->ts.runtime[DDIR_WRITE] += elapsed;
1535 }
1536 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1537 elapsed = mtime_since_now(&td->start);
1538 td->ts.runtime[DDIR_TRIM] += elapsed;
1539 }
1540 fio_gettime(&td->start, NULL);
1541 fio_mutex_up(stat_mutex);
1542
1543 if (td->error || td->terminate)
1544 break;
1545
1546 if (!o->do_verify ||
1547 o->verify == VERIFY_NONE ||
1548 (td->io_ops->flags & FIO_UNIDIR))
1549 continue;
1550
1551 clear_io_state(td);
1552
1553 fio_gettime(&td->start, NULL);
1554
1555 do_verify(td, verify_bytes);
1556
1557 fio_mutex_down(stat_mutex);
1558 td->ts.runtime[DDIR_READ] += mtime_since_now(&td->start);
1559 fio_gettime(&td->start, NULL);
1560 fio_mutex_up(stat_mutex);
1561
1562 if (td->error || td->terminate)
1563 break;
1564 }
1565
1566 update_rusage_stat(td);
1567 td->ts.total_run_time = mtime_since_now(&td->epoch);
1568 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1569 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1570 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1571
1572 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1573 (td->o.verify != VERIFY_NONE && td_write(td))) {
1574 struct all_io_list *state;
1575 size_t sz;
1576
1577 state = get_all_io_list(td->thread_number, &sz);
1578 if (state) {
1579 __verify_save_state(state, "local");
1580 free(state);
1581 }
1582 }
1583
1584 fio_unpin_memory(td);
1585
1586 fio_writeout_logs(td);
1587
1588 if (td->flags & TD_F_COMPRESS_LOG)
1589 tp_exit(&td->tp_data);
1590
1591 if (o->exec_postrun)
1592 exec_string(o, o->exec_postrun, (const char *)"postrun");
1593
1594 if (exitall_on_terminate)
1595 fio_terminate_threads(td->groupid);
1596
1597err:
1598 if (td->error)
1599 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1600 td->verror);
1601
1602 if (o->verify_async)
1603 verify_async_exit(td);
1604
1605 close_and_free_files(td);
1606 cleanup_io_u(td);
1607 close_ioengine(td);
1608 cgroup_shutdown(td, &cgroup_mnt);
1609 verify_free_state(td);
1610
1611 if (fio_option_is_set(o, cpumask)) {
1612 ret = fio_cpuset_exit(&o->cpumask);
1613 if (ret)
1614 td_verror(td, ret, "fio_cpuset_exit");
1615 }
1616
1617 /*
1618 * do this very late, it will log file closing as well
1619 */
1620 if (o->write_iolog_file)
1621 write_iolog_close(td);
1622
1623 fio_mutex_remove(td->mutex);
1624 td->mutex = NULL;
1625
1626 td_set_runstate(td, TD_EXITED);
1627
1628 /*
1629 * Do this last after setting our runstate to exited, so we
1630 * know that the stat thread is signaled.
1631 */
1632 check_update_rusage(td);
1633
1634 return (void *) (uintptr_t) td->error;
1635}
1636
1637
1638/*
1639 * We cannot pass the td data into a forked process, so attach the td and
1640 * pass it to the thread worker.
1641 */
1642static int fork_main(int shmid, int offset)
1643{
1644 struct thread_data *td;
1645 void *data, *ret;
1646
1647#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1648 data = shmat(shmid, NULL, 0);
1649 if (data == (void *) -1) {
1650 int __err = errno;
1651
1652 perror("shmat");
1653 return __err;
1654 }
1655#else
1656 /*
1657 * HP-UX inherits shm mappings?
1658 */
1659 data = threads;
1660#endif
1661
1662 td = data + offset * sizeof(struct thread_data);
1663 ret = thread_main(td);
1664 shmdt(data);
1665 return (int) (uintptr_t) ret;
1666}
1667
1668static void dump_td_info(struct thread_data *td)
1669{
1670 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1671 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1672 (unsigned long) time_since_now(&td->terminate_time));
1673}
1674
1675/*
1676 * Run over the job map and reap the threads that have exited, if any.
1677 */
1678static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1679 unsigned int *m_rate)
1680{
1681 struct thread_data *td;
1682 unsigned int cputhreads, realthreads, pending;
1683 int i, status, ret;
1684
1685 /*
1686 * reap exited threads (TD_EXITED -> TD_REAPED)
1687 */
1688 realthreads = pending = cputhreads = 0;
1689 for_each_td(td, i) {
1690 int flags = 0;
1691
1692 /*
1693 * ->io_ops is NULL for a thread that has closed its
1694 * io engine
1695 */
1696 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1697 cputhreads++;
1698 else
1699 realthreads++;
1700
1701 if (!td->pid) {
1702 pending++;
1703 continue;
1704 }
1705 if (td->runstate == TD_REAPED)
1706 continue;
1707 if (td->o.use_thread) {
1708 if (td->runstate == TD_EXITED) {
1709 td_set_runstate(td, TD_REAPED);
1710 goto reaped;
1711 }
1712 continue;
1713 }
1714
1715 flags = WNOHANG;
1716 if (td->runstate == TD_EXITED)
1717 flags = 0;
1718
1719 /*
1720 * check if someone quit or got killed in an unusual way
1721 */
1722 ret = waitpid(td->pid, &status, flags);
1723 if (ret < 0) {
1724 if (errno == ECHILD) {
1725 log_err("fio: pid=%d disappeared %d\n",
1726 (int) td->pid, td->runstate);
1727 td->sig = ECHILD;
1728 td_set_runstate(td, TD_REAPED);
1729 goto reaped;
1730 }
1731 perror("waitpid");
1732 } else if (ret == td->pid) {
1733 if (WIFSIGNALED(status)) {
1734 int sig = WTERMSIG(status);
1735
1736 if (sig != SIGTERM && sig != SIGUSR2)
1737 log_err("fio: pid=%d, got signal=%d\n",
1738 (int) td->pid, sig);
1739 td->sig = sig;
1740 td_set_runstate(td, TD_REAPED);
1741 goto reaped;
1742 }
1743 if (WIFEXITED(status)) {
1744 if (WEXITSTATUS(status) && !td->error)
1745 td->error = WEXITSTATUS(status);
1746
1747 td_set_runstate(td, TD_REAPED);
1748 goto reaped;
1749 }
1750 }
1751
1752 /*
1753 * If the job is stuck, do a forceful timeout of it and
1754 * move on.
1755 */
1756 if (td->terminate &&
1757 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1758 dump_td_info(td);
1759 td_set_runstate(td, TD_REAPED);
1760 goto reaped;
1761 }
1762
1763 /*
1764 * thread is not dead, continue
1765 */
1766 pending++;
1767 continue;
1768reaped:
1769 (*nr_running)--;
1770 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1771 (*t_rate) -= ddir_rw_sum(td->o.rate);
1772 if (!td->pid)
1773 pending--;
1774
1775 if (td->error)
1776 exit_value++;
1777
1778 done_secs += mtime_since_now(&td->epoch) / 1000;
1779 profile_td_exit(td);
1780 }
1781
1782 if (*nr_running == cputhreads && !pending && realthreads)
1783 fio_terminate_threads(TERMINATE_ALL);
1784}
1785
1786static int __check_trigger_file(void)
1787{
1788 struct stat sb;
1789
1790 if (!trigger_file)
1791 return 0;
1792
1793 if (stat(trigger_file, &sb))
1794 return 0;
1795
1796 if (unlink(trigger_file) < 0)
1797 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1798 strerror(errno));
1799
1800 return 1;
1801}
1802
1803static int trigger_timedout(void)
1804{
1805 if (trigger_timeout)
1806 return time_since_genesis() >= trigger_timeout;
1807
1808 return 0;
1809}
1810
1811void exec_trigger(const char *cmd)
1812{
1813 int ret;
1814
1815 if (!cmd)
1816 return;
1817
1818 ret = system(cmd);
1819 if (ret == -1)
1820 log_err("fio: failed executing %s trigger\n", cmd);
1821}
1822
1823void check_trigger_file(void)
1824{
1825 if (__check_trigger_file() || trigger_timedout()) {
1826 if (nr_clients)
1827 fio_clients_send_trigger(trigger_remote_cmd);
1828 else {
1829 verify_save_state();
1830 fio_terminate_threads(TERMINATE_ALL);
1831 exec_trigger(trigger_cmd);
1832 }
1833 }
1834}
1835
1836static int fio_verify_load_state(struct thread_data *td)
1837{
1838 int ret;
1839
1840 if (!td->o.verify_state)
1841 return 0;
1842
1843 if (is_backend) {
1844 void *data;
1845
1846 ret = fio_server_get_verify_state(td->o.name,
1847 td->thread_number - 1, &data);
1848 if (!ret)
1849 verify_convert_assign_state(td, data);
1850 } else
1851 ret = verify_load_state(td, "local");
1852
1853 return ret;
1854}
1855
1856static void do_usleep(unsigned int usecs)
1857{
1858 check_for_running_stats();
1859 check_trigger_file();
1860 usleep(usecs);
1861}
1862
1863/*
1864 * Main function for kicking off and reaping jobs, as needed.
1865 */
1866static void run_threads(void)
1867{
1868 struct thread_data *td;
1869 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1870 uint64_t spent;
1871
1872 if (fio_gtod_offload && fio_start_gtod_thread())
1873 return;
1874
1875 fio_idle_prof_init();
1876
1877 set_sig_handlers();
1878
1879 nr_thread = nr_process = 0;
1880 for_each_td(td, i) {
1881 if (td->o.use_thread)
1882 nr_thread++;
1883 else
1884 nr_process++;
1885 }
1886
1887 if (output_format == FIO_OUTPUT_NORMAL) {
1888 log_info("Starting ");
1889 if (nr_thread)
1890 log_info("%d thread%s", nr_thread,
1891 nr_thread > 1 ? "s" : "");
1892 if (nr_process) {
1893 if (nr_thread)
1894 log_info(" and ");
1895 log_info("%d process%s", nr_process,
1896 nr_process > 1 ? "es" : "");
1897 }
1898 log_info("\n");
1899 log_info_flush();
1900 }
1901
1902 todo = thread_number;
1903 nr_running = 0;
1904 nr_started = 0;
1905 m_rate = t_rate = 0;
1906
1907 for_each_td(td, i) {
1908 print_status_init(td->thread_number - 1);
1909
1910 if (!td->o.create_serialize)
1911 continue;
1912
1913 if (fio_verify_load_state(td))
1914 goto reap;
1915
1916 /*
1917 * do file setup here so it happens sequentially,
1918 * we don't want X number of threads getting their
1919 * client data interspersed on disk
1920 */
1921 if (setup_files(td)) {
1922reap:
1923 exit_value++;
1924 if (td->error)
1925 log_err("fio: pid=%d, err=%d/%s\n",
1926 (int) td->pid, td->error, td->verror);
1927 td_set_runstate(td, TD_REAPED);
1928 todo--;
1929 } else {
1930 struct fio_file *f;
1931 unsigned int j;
1932
1933 /*
1934 * for sharing to work, each job must always open
1935 * its own files. so close them, if we opened them
1936 * for creation
1937 */
1938 for_each_file(td, f, j) {
1939 if (fio_file_open(f))
1940 td_io_close_file(td, f);
1941 }
1942 }
1943 }
1944
1945 /* start idle threads before io threads start to run */
1946 fio_idle_prof_start();
1947
1948 set_genesis_time();
1949
1950 while (todo) {
1951 struct thread_data *map[REAL_MAX_JOBS];
1952 struct timeval this_start;
1953 int this_jobs = 0, left;
1954
1955 /*
1956 * create threads (TD_NOT_CREATED -> TD_CREATED)
1957 */
1958 for_each_td(td, i) {
1959 if (td->runstate != TD_NOT_CREATED)
1960 continue;
1961
1962 /*
1963 * never got a chance to start, killed by other
1964 * thread for some reason
1965 */
1966 if (td->terminate) {
1967 todo--;
1968 continue;
1969 }
1970
1971 if (td->o.start_delay) {
1972 spent = utime_since_genesis();
1973
1974 if (td->o.start_delay > spent)
1975 continue;
1976 }
1977
1978 if (td->o.stonewall && (nr_started || nr_running)) {
1979 dprint(FD_PROCESS, "%s: stonewall wait\n",
1980 td->o.name);
1981 break;
1982 }
1983
1984 init_disk_util(td);
1985
1986 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1987 td->update_rusage = 0;
1988
1989 /*
1990 * Set state to created. Thread will transition
1991 * to TD_INITIALIZED when it's done setting up.
1992 */
1993 td_set_runstate(td, TD_CREATED);
1994 map[this_jobs++] = td;
1995 nr_started++;
1996
1997 if (td->o.use_thread) {
1998 int ret;
1999
2000 dprint(FD_PROCESS, "will pthread_create\n");
2001 ret = pthread_create(&td->thread, NULL,
2002 thread_main, td);
2003 if (ret) {
2004 log_err("pthread_create: %s\n",
2005 strerror(ret));
2006 nr_started--;
2007 break;
2008 }
2009 ret = pthread_detach(td->thread);
2010 if (ret)
2011 log_err("pthread_detach: %s",
2012 strerror(ret));
2013 } else {
2014 pid_t pid;
2015 dprint(FD_PROCESS, "will fork\n");
2016 pid = fork();
2017 if (!pid) {
2018 int ret = fork_main(shm_id, i);
2019
2020 _exit(ret);
2021 } else if (i == fio_debug_jobno)
2022 *fio_debug_jobp = pid;
2023 }
2024 dprint(FD_MUTEX, "wait on startup_mutex\n");
2025 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2026 log_err("fio: job startup hung? exiting.\n");
2027 fio_terminate_threads(TERMINATE_ALL);
2028 fio_abort = 1;
2029 nr_started--;
2030 break;
2031 }
2032 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2033 }
2034
2035 /*
2036 * Wait for the started threads to transition to
2037 * TD_INITIALIZED.
2038 */
2039 fio_gettime(&this_start, NULL);
2040 left = this_jobs;
2041 while (left && !fio_abort) {
2042 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2043 break;
2044
2045 do_usleep(100000);
2046
2047 for (i = 0; i < this_jobs; i++) {
2048 td = map[i];
2049 if (!td)
2050 continue;
2051 if (td->runstate == TD_INITIALIZED) {
2052 map[i] = NULL;
2053 left--;
2054 } else if (td->runstate >= TD_EXITED) {
2055 map[i] = NULL;
2056 left--;
2057 todo--;
2058 nr_running++; /* work-around... */
2059 }
2060 }
2061 }
2062
2063 if (left) {
2064 log_err("fio: %d job%s failed to start\n", left,
2065 left > 1 ? "s" : "");
2066 for (i = 0; i < this_jobs; i++) {
2067 td = map[i];
2068 if (!td)
2069 continue;
2070 kill(td->pid, SIGTERM);
2071 }
2072 break;
2073 }
2074
2075 /*
2076 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2077 */
2078 for_each_td(td, i) {
2079 if (td->runstate != TD_INITIALIZED)
2080 continue;
2081
2082 if (in_ramp_time(td))
2083 td_set_runstate(td, TD_RAMP);
2084 else
2085 td_set_runstate(td, TD_RUNNING);
2086 nr_running++;
2087 nr_started--;
2088 m_rate += ddir_rw_sum(td->o.ratemin);
2089 t_rate += ddir_rw_sum(td->o.rate);
2090 todo--;
2091 fio_mutex_up(td->mutex);
2092 }
2093
2094 reap_threads(&nr_running, &t_rate, &m_rate);
2095
2096 if (todo)
2097 do_usleep(100000);
2098 }
2099
2100 while (nr_running) {
2101 reap_threads(&nr_running, &t_rate, &m_rate);
2102 do_usleep(10000);
2103 }
2104
2105 fio_idle_prof_stop();
2106
2107 update_io_ticks();
2108}
2109
2110static void wait_for_helper_thread_exit(void)
2111{
2112 void *ret;
2113
2114 helper_exit = 1;
2115 pthread_cond_signal(&helper_cond);
2116 pthread_join(helper_thread, &ret);
2117}
2118
2119static void free_disk_util(void)
2120{
2121 disk_util_prune_entries();
2122
2123 pthread_cond_destroy(&helper_cond);
2124}
2125
2126static void *helper_thread_main(void *data)
2127{
2128 int ret = 0;
2129
2130 fio_mutex_up(startup_mutex);
2131
2132 while (!ret) {
2133 uint64_t sec = DISK_UTIL_MSEC / 1000;
2134 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2135 struct timespec ts;
2136 struct timeval tv;
2137
2138 gettimeofday(&tv, NULL);
2139 ts.tv_sec = tv.tv_sec + sec;
2140 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2141
2142 if (ts.tv_nsec >= 1000000000ULL) {
2143 ts.tv_nsec -= 1000000000ULL;
2144 ts.tv_sec++;
2145 }
2146
2147 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2148
2149 ret = update_io_ticks();
2150
2151 if (helper_do_stat) {
2152 helper_do_stat = 0;
2153 __show_running_run_stats();
2154 }
2155
2156 if (!is_backend)
2157 print_thread_status();
2158 }
2159
2160 return NULL;
2161}
2162
2163static int create_helper_thread(void)
2164{
2165 int ret;
2166
2167 setup_disk_util();
2168
2169 pthread_cond_init(&helper_cond, NULL);
2170 pthread_mutex_init(&helper_lock, NULL);
2171
2172 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2173 if (ret) {
2174 log_err("Can't create helper thread: %s\n", strerror(ret));
2175 return 1;
2176 }
2177
2178 dprint(FD_MUTEX, "wait on startup_mutex\n");
2179 fio_mutex_down(startup_mutex);
2180 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2181 return 0;
2182}
2183
2184int fio_backend(void)
2185{
2186 struct thread_data *td;
2187 int i;
2188
2189 if (exec_profile) {
2190 if (load_profile(exec_profile))
2191 return 1;
2192 free(exec_profile);
2193 exec_profile = NULL;
2194 }
2195 if (!thread_number)
2196 return 0;
2197
2198 if (write_bw_log) {
2199 struct log_params p = {
2200 .log_type = IO_LOG_TYPE_BW,
2201 };
2202
2203 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2204 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2205 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2206 }
2207
2208 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2209 if (startup_mutex == NULL)
2210 return 1;
2211
2212 set_genesis_time();
2213 stat_init();
2214 create_helper_thread();
2215
2216 cgroup_list = smalloc(sizeof(*cgroup_list));
2217 INIT_FLIST_HEAD(cgroup_list);
2218
2219 run_threads();
2220
2221 wait_for_helper_thread_exit();
2222
2223 if (!fio_abort) {
2224 __show_run_stats();
2225 if (write_bw_log) {
2226 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2227 struct io_log *log = agg_io_log[i];
2228
2229 flush_log(log);
2230 free_log(log);
2231 }
2232 }
2233 }
2234
2235 for_each_td(td, i) {
2236 fio_options_free(td);
2237 if (td->rusage_sem) {
2238 fio_mutex_remove(td->rusage_sem);
2239 td->rusage_sem = NULL;
2240 }
2241 }
2242
2243 free_disk_util();
2244 cgroup_kill(cgroup_list);
2245 sfree(cgroup_list);
2246 sfree(cgroup_mnt);
2247
2248 fio_mutex_remove(startup_mutex);
2249 stat_exit();
2250 return exit_value;
2251}