workqueue: move private accounting to caller
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "lib/tp.h"
58#include "workqueue.h"
59#include "lib/mountcheck.h"
60
61static pthread_t helper_thread;
62static pthread_mutex_t helper_lock;
63pthread_cond_t helper_cond;
64int helper_do_stat = 0;
65
66static struct fio_mutex *startup_mutex;
67static struct flist_head *cgroup_list;
68static char *cgroup_mnt;
69static int exit_value;
70static volatile int fio_abort;
71static unsigned int nr_process = 0;
72static unsigned int nr_thread = 0;
73
74struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76int groupid = 0;
77unsigned int thread_number = 0;
78unsigned int stat_number = 0;
79int shm_id = 0;
80int temp_stall_ts;
81unsigned long done_secs = 0;
82volatile int helper_exit = 0;
83
84#define PAGE_ALIGN(buf) \
85 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87#define JOB_START_TIMEOUT (5 * 1000)
88
89static void sig_int(int sig)
90{
91 if (threads) {
92 if (is_backend)
93 fio_server_got_signal(sig);
94 else {
95 log_info("\nfio: terminating on signal %d\n", sig);
96 log_info_flush();
97 exit_value = 128;
98 }
99
100 fio_terminate_threads(TERMINATE_ALL);
101 }
102}
103
104void sig_show_status(int sig)
105{
106 show_running_run_stats();
107}
108
109static void set_sig_handlers(void)
110{
111 struct sigaction act;
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGINT, &act, NULL);
117
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGTERM, &act, NULL);
122
123/* Windows uses SIGBREAK as a quit signal from other applications */
124#ifdef WIN32
125 memset(&act, 0, sizeof(act));
126 act.sa_handler = sig_int;
127 act.sa_flags = SA_RESTART;
128 sigaction(SIGBREAK, &act, NULL);
129#endif
130
131 memset(&act, 0, sizeof(act));
132 act.sa_handler = sig_show_status;
133 act.sa_flags = SA_RESTART;
134 sigaction(SIGUSR1, &act, NULL);
135
136 if (is_backend) {
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_int;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGPIPE, &act, NULL);
141 }
142}
143
144/*
145 * Check if we are above the minimum rate given.
146 */
147static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148 enum fio_ddir ddir)
149{
150 unsigned long long bytes = 0;
151 unsigned long iops = 0;
152 unsigned long spent;
153 unsigned long rate;
154 unsigned int ratemin = 0;
155 unsigned int rate_iops = 0;
156 unsigned int rate_iops_min = 0;
157
158 assert(ddir_rw(ddir));
159
160 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161 return false;
162
163 /*
164 * allow a 2 second settle period in the beginning
165 */
166 if (mtime_since(&td->start, now) < 2000)
167 return false;
168
169 iops += td->this_io_blocks[ddir];
170 bytes += td->this_io_bytes[ddir];
171 ratemin += td->o.ratemin[ddir];
172 rate_iops += td->o.rate_iops[ddir];
173 rate_iops_min += td->o.rate_iops_min[ddir];
174
175 /*
176 * if rate blocks is set, sample is running
177 */
178 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179 spent = mtime_since(&td->lastrate[ddir], now);
180 if (spent < td->o.ratecycle)
181 return false;
182
183 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184 /*
185 * check bandwidth specified rate
186 */
187 if (bytes < td->rate_bytes[ddir]) {
188 log_err("%s: min rate %u not met\n", td->o.name,
189 ratemin);
190 return true;
191 } else {
192 if (spent)
193 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194 else
195 rate = 0;
196
197 if (rate < ratemin ||
198 bytes < td->rate_bytes[ddir]) {
199 log_err("%s: min rate %u not met, got"
200 " %luKB/sec\n", td->o.name,
201 ratemin, rate);
202 return true;
203 }
204 }
205 } else {
206 /*
207 * checks iops specified rate
208 */
209 if (iops < rate_iops) {
210 log_err("%s: min iops rate %u not met\n",
211 td->o.name, rate_iops);
212 return true;
213 } else {
214 if (spent)
215 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216 else
217 rate = 0;
218
219 if (rate < rate_iops_min ||
220 iops < td->rate_blocks[ddir]) {
221 log_err("%s: min iops rate %u not met,"
222 " got %lu\n", td->o.name,
223 rate_iops_min, rate);
224 return true;
225 }
226 }
227 }
228 }
229
230 td->rate_bytes[ddir] = bytes;
231 td->rate_blocks[ddir] = iops;
232 memcpy(&td->lastrate[ddir], now, sizeof(*now));
233 return false;
234}
235
236static bool check_min_rate(struct thread_data *td, struct timeval *now)
237{
238 bool ret = false;
239
240 if (td->bytes_done[DDIR_READ])
241 ret |= __check_min_rate(td, now, DDIR_READ);
242 if (td->bytes_done[DDIR_WRITE])
243 ret |= __check_min_rate(td, now, DDIR_WRITE);
244 if (td->bytes_done[DDIR_TRIM])
245 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247 return ret;
248}
249
250/*
251 * When job exits, we can cancel the in-flight IO if we are using async
252 * io. Attempt to do so.
253 */
254static void cleanup_pending_aio(struct thread_data *td)
255{
256 int r;
257
258 /*
259 * get immediately available events, if any
260 */
261 r = io_u_queued_complete(td, 0);
262 if (r < 0)
263 return;
264
265 /*
266 * now cancel remaining active events
267 */
268 if (td->io_ops->cancel) {
269 struct io_u *io_u;
270 int i;
271
272 io_u_qiter(&td->io_u_all, io_u, i) {
273 if (io_u->flags & IO_U_F_FLIGHT) {
274 r = td->io_ops->cancel(td, io_u);
275 if (!r)
276 put_io_u(td, io_u);
277 }
278 }
279 }
280
281 if (td->cur_depth)
282 r = io_u_queued_complete(td, td->cur_depth);
283}
284
285/*
286 * Helper to handle the final sync of a file. Works just like the normal
287 * io path, just does everything sync.
288 */
289static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290{
291 struct io_u *io_u = __get_io_u(td);
292 int ret;
293
294 if (!io_u)
295 return true;
296
297 io_u->ddir = DDIR_SYNC;
298 io_u->file = f;
299
300 if (td_io_prep(td, io_u)) {
301 put_io_u(td, io_u);
302 return true;
303 }
304
305requeue:
306 ret = td_io_queue(td, io_u);
307 if (ret < 0) {
308 td_verror(td, io_u->error, "td_io_queue");
309 put_io_u(td, io_u);
310 return true;
311 } else if (ret == FIO_Q_QUEUED) {
312 if (io_u_queued_complete(td, 1) < 0)
313 return true;
314 } else if (ret == FIO_Q_COMPLETED) {
315 if (io_u->error) {
316 td_verror(td, io_u->error, "td_io_queue");
317 return true;
318 }
319
320 if (io_u_sync_complete(td, io_u) < 0)
321 return true;
322 } else if (ret == FIO_Q_BUSY) {
323 if (td_io_commit(td))
324 return true;
325 goto requeue;
326 }
327
328 return false;
329}
330
331static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332{
333 int ret;
334
335 if (fio_file_open(f))
336 return fio_io_sync(td, f);
337
338 if (td_io_open_file(td, f))
339 return 1;
340
341 ret = fio_io_sync(td, f);
342 td_io_close_file(td, f);
343 return ret;
344}
345
346static inline void __update_tv_cache(struct thread_data *td)
347{
348 fio_gettime(&td->tv_cache, NULL);
349}
350
351static inline void update_tv_cache(struct thread_data *td)
352{
353 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354 __update_tv_cache(td);
355}
356
357static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
358{
359 if (in_ramp_time(td))
360 return false;
361 if (!td->o.timeout)
362 return false;
363 if (utime_since(&td->epoch, t) >= td->o.timeout)
364 return true;
365
366 return false;
367}
368
369/*
370 * We need to update the runtime consistently in ms, but keep a running
371 * tally of the current elapsed time in microseconds for sub millisecond
372 * updates.
373 */
374static inline void update_runtime(struct thread_data *td,
375 unsigned long long *elapsed_us,
376 const enum fio_ddir ddir)
377{
378 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379 return;
380
381 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382 elapsed_us[ddir] += utime_since_now(&td->start);
383 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384}
385
386static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387 int *retptr)
388{
389 int ret = *retptr;
390
391 if (ret < 0 || td->error) {
392 int err = td->error;
393 enum error_type_bit eb;
394
395 if (ret < 0)
396 err = -ret;
397
398 eb = td_error_type(ddir, err);
399 if (!(td->o.continue_on_error & (1 << eb)))
400 return true;
401
402 if (td_non_fatal_error(td, eb, err)) {
403 /*
404 * Continue with the I/Os in case of
405 * a non fatal error.
406 */
407 update_error_count(td, err);
408 td_clear_error(td);
409 *retptr = 0;
410 return false;
411 } else if (td->o.fill_device && err == ENOSPC) {
412 /*
413 * We expect to hit this error if
414 * fill_device option is set.
415 */
416 td_clear_error(td);
417 fio_mark_td_terminate(td);
418 return true;
419 } else {
420 /*
421 * Stop the I/O in case of a fatal
422 * error.
423 */
424 update_error_count(td, err);
425 return true;
426 }
427 }
428
429 return false;
430}
431
432static void check_update_rusage(struct thread_data *td)
433{
434 if (td->update_rusage) {
435 td->update_rusage = 0;
436 update_rusage_stat(td);
437 fio_mutex_up(td->rusage_sem);
438 }
439}
440
441static int wait_for_completions(struct thread_data *td, struct timeval *time)
442{
443 const int full = queue_full(td);
444 int min_evts = 0;
445 int ret;
446
447 /*
448 * if the queue is full, we MUST reap at least 1 event
449 */
450 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452 min_evts = 1;
453
454 if (time && (__should_check_rate(td, DDIR_READ) ||
455 __should_check_rate(td, DDIR_WRITE) ||
456 __should_check_rate(td, DDIR_TRIM)))
457 fio_gettime(time, NULL);
458
459 do {
460 ret = io_u_queued_complete(td, min_evts);
461 if (ret < 0)
462 break;
463 } while (full && (td->cur_depth > td->o.iodepth_low));
464
465 return ret;
466}
467
468int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470 struct timeval *comp_time)
471{
472 int ret2;
473
474 switch (*ret) {
475 case FIO_Q_COMPLETED:
476 if (io_u->error) {
477 *ret = -io_u->error;
478 clear_io_u(td, io_u);
479 } else if (io_u->resid) {
480 int bytes = io_u->xfer_buflen - io_u->resid;
481 struct fio_file *f = io_u->file;
482
483 if (bytes_issued)
484 *bytes_issued += bytes;
485
486 if (!from_verify)
487 trim_io_piece(td, io_u);
488
489 /*
490 * zero read, fail
491 */
492 if (!bytes) {
493 if (!from_verify)
494 unlog_io_piece(td, io_u);
495 td_verror(td, EIO, "full resid");
496 put_io_u(td, io_u);
497 break;
498 }
499
500 io_u->xfer_buflen = io_u->resid;
501 io_u->xfer_buf += bytes;
502 io_u->offset += bytes;
503
504 if (ddir_rw(io_u->ddir))
505 td->ts.short_io_u[io_u->ddir]++;
506
507 f = io_u->file;
508 if (io_u->offset == f->real_file_size)
509 goto sync_done;
510
511 requeue_io_u(td, &io_u);
512 } else {
513sync_done:
514 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515 __should_check_rate(td, DDIR_WRITE) ||
516 __should_check_rate(td, DDIR_TRIM)))
517 fio_gettime(comp_time, NULL);
518
519 *ret = io_u_sync_complete(td, io_u);
520 if (*ret < 0)
521 break;
522 }
523 return 0;
524 case FIO_Q_QUEUED:
525 /*
526 * if the engine doesn't have a commit hook,
527 * the io_u is really queued. if it does have such
528 * a hook, it has to call io_u_queued() itself.
529 */
530 if (td->io_ops->commit == NULL)
531 io_u_queued(td, io_u);
532 if (bytes_issued)
533 *bytes_issued += io_u->xfer_buflen;
534 break;
535 case FIO_Q_BUSY:
536 if (!from_verify)
537 unlog_io_piece(td, io_u);
538 requeue_io_u(td, &io_u);
539 ret2 = td_io_commit(td);
540 if (ret2 < 0)
541 *ret = ret2;
542 break;
543 default:
544 assert(*ret < 0);
545 td_verror(td, -(*ret), "td_io_queue");
546 break;
547 }
548
549 if (break_on_this_error(td, ddir, ret))
550 return 1;
551
552 return 0;
553}
554
555static inline bool io_in_polling(struct thread_data *td)
556{
557 return !td->o.iodepth_batch_complete_min &&
558 !td->o.iodepth_batch_complete_max;
559}
560
561/*
562 * The main verify engine. Runs over the writes we previously submitted,
563 * reads the blocks back in, and checks the crc/md5 of the data.
564 */
565static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566{
567 struct fio_file *f;
568 struct io_u *io_u;
569 int ret, min_events;
570 unsigned int i;
571
572 dprint(FD_VERIFY, "starting loop\n");
573
574 /*
575 * sync io first and invalidate cache, to make sure we really
576 * read from disk.
577 */
578 for_each_file(td, f, i) {
579 if (!fio_file_open(f))
580 continue;
581 if (fio_io_sync(td, f))
582 break;
583 if (file_invalidate_cache(td, f))
584 break;
585 }
586
587 check_update_rusage(td);
588
589 if (td->error)
590 return;
591
592 td_set_runstate(td, TD_VERIFYING);
593
594 io_u = NULL;
595 while (!td->terminate) {
596 enum fio_ddir ddir;
597 int full;
598
599 update_tv_cache(td);
600 check_update_rusage(td);
601
602 if (runtime_exceeded(td, &td->tv_cache)) {
603 __update_tv_cache(td);
604 if (runtime_exceeded(td, &td->tv_cache)) {
605 fio_mark_td_terminate(td);
606 break;
607 }
608 }
609
610 if (flow_threshold_exceeded(td))
611 continue;
612
613 if (!td->o.experimental_verify) {
614 io_u = __get_io_u(td);
615 if (!io_u)
616 break;
617
618 if (get_next_verify(td, io_u)) {
619 put_io_u(td, io_u);
620 break;
621 }
622
623 if (td_io_prep(td, io_u)) {
624 put_io_u(td, io_u);
625 break;
626 }
627 } else {
628 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629 break;
630
631 while ((io_u = get_io_u(td)) != NULL) {
632 if (IS_ERR(io_u)) {
633 io_u = NULL;
634 ret = FIO_Q_BUSY;
635 goto reap;
636 }
637
638 /*
639 * We are only interested in the places where
640 * we wrote or trimmed IOs. Turn those into
641 * reads for verification purposes.
642 */
643 if (io_u->ddir == DDIR_READ) {
644 /*
645 * Pretend we issued it for rwmix
646 * accounting
647 */
648 td->io_issues[DDIR_READ]++;
649 put_io_u(td, io_u);
650 continue;
651 } else if (io_u->ddir == DDIR_TRIM) {
652 io_u->ddir = DDIR_READ;
653 io_u_set(io_u, IO_U_F_TRIMMED);
654 break;
655 } else if (io_u->ddir == DDIR_WRITE) {
656 io_u->ddir = DDIR_READ;
657 break;
658 } else {
659 put_io_u(td, io_u);
660 continue;
661 }
662 }
663
664 if (!io_u)
665 break;
666 }
667
668 if (verify_state_should_stop(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672
673 if (td->o.verify_async)
674 io_u->end_io = verify_io_u_async;
675 else
676 io_u->end_io = verify_io_u;
677
678 ddir = io_u->ddir;
679 if (!td->o.disable_slat)
680 fio_gettime(&io_u->start_time, NULL);
681
682 ret = td_io_queue(td, io_u);
683
684 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685 break;
686
687 /*
688 * if we can queue more, do so. but check if there are
689 * completed io_u's first. Note that we can get BUSY even
690 * without IO queued, if the system is resource starved.
691 */
692reap:
693 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694 if (full || io_in_polling(td))
695 ret = wait_for_completions(td, NULL);
696
697 if (ret < 0)
698 break;
699 }
700
701 check_update_rusage(td);
702
703 if (!td->error) {
704 min_events = td->cur_depth;
705
706 if (min_events)
707 ret = io_u_queued_complete(td, min_events);
708 } else
709 cleanup_pending_aio(td);
710
711 td_set_runstate(td, TD_RUNNING);
712
713 dprint(FD_VERIFY, "exiting loop\n");
714}
715
716static bool exceeds_number_ios(struct thread_data *td)
717{
718 unsigned long long number_ios;
719
720 if (!td->o.number_ios)
721 return false;
722
723 number_ios = ddir_rw_sum(td->io_blocks);
724 number_ios += td->io_u_queued + td->io_u_in_flight;
725
726 return number_ios >= (td->o.number_ios * td->loops);
727}
728
729static bool io_issue_bytes_exceeded(struct thread_data *td)
730{
731 unsigned long long bytes, limit;
732
733 if (td_rw(td))
734 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735 else if (td_write(td))
736 bytes = td->io_issue_bytes[DDIR_WRITE];
737 else if (td_read(td))
738 bytes = td->io_issue_bytes[DDIR_READ];
739 else
740 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742 if (td->o.io_limit)
743 limit = td->o.io_limit;
744 else
745 limit = td->o.size;
746
747 limit *= td->loops;
748 return bytes >= limit || exceeds_number_ios(td);
749}
750
751static bool io_complete_bytes_exceeded(struct thread_data *td)
752{
753 unsigned long long bytes, limit;
754
755 if (td_rw(td))
756 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757 else if (td_write(td))
758 bytes = td->this_io_bytes[DDIR_WRITE];
759 else if (td_read(td))
760 bytes = td->this_io_bytes[DDIR_READ];
761 else
762 bytes = td->this_io_bytes[DDIR_TRIM];
763
764 if (td->o.io_limit)
765 limit = td->o.io_limit;
766 else
767 limit = td->o.size;
768
769 limit *= td->loops;
770 return bytes >= limit || exceeds_number_ios(td);
771}
772
773/*
774 * used to calculate the next io time for rate control
775 *
776 */
777static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778{
779 uint64_t secs, remainder, bps, bytes, iops;
780
781 assert(!(td->flags & TD_F_CHILD));
782 bytes = td->rate_io_issue_bytes[ddir];
783 bps = td->rate_bps[ddir];
784
785 if (td->o.rate_process == RATE_PROCESS_POISSON) {
786 uint64_t val;
787 iops = bps / td->o.bs[ddir];
788 val = (int64_t) (1000000 / iops) *
789 -logf(__rand_0_1(&td->poisson_state));
790 if (val) {
791 dprint(FD_RATE, "poisson rate iops=%llu\n",
792 (unsigned long long) 1000000 / val);
793 }
794 td->last_usec += val;
795 return td->last_usec;
796 } else if (bps) {
797 secs = bytes / bps;
798 remainder = bytes % bps;
799 return remainder * 1000000 / bps + secs * 1000000;
800 }
801
802 return 0;
803}
804
805/*
806 * Main IO worker function. It retrieves io_u's to process and queues
807 * and reaps them, checking for rate and errors along the way.
808 *
809 * Returns number of bytes written and trimmed.
810 */
811static uint64_t do_io(struct thread_data *td)
812{
813 unsigned int i;
814 int ret = 0;
815 uint64_t total_bytes, bytes_issued = 0;
816
817 if (in_ramp_time(td))
818 td_set_runstate(td, TD_RAMP);
819 else
820 td_set_runstate(td, TD_RUNNING);
821
822 lat_target_init(td);
823
824 total_bytes = td->o.size;
825 /*
826 * Allow random overwrite workloads to write up to io_limit
827 * before starting verification phase as 'size' doesn't apply.
828 */
829 if (td_write(td) && td_random(td) && td->o.norandommap)
830 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
831 /*
832 * If verify_backlog is enabled, we'll run the verify in this
833 * handler as well. For that case, we may need up to twice the
834 * amount of bytes.
835 */
836 if (td->o.verify != VERIFY_NONE &&
837 (td_write(td) && td->o.verify_backlog))
838 total_bytes += td->o.size;
839
840 /* In trimwrite mode, each byte is trimmed and then written, so
841 * allow total_bytes to be twice as big */
842 if (td_trimwrite(td))
843 total_bytes += td->total_io_size;
844
845 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
846 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
847 td->o.time_based) {
848 struct timeval comp_time;
849 struct io_u *io_u;
850 int full;
851 enum fio_ddir ddir;
852
853 check_update_rusage(td);
854
855 if (td->terminate || td->done)
856 break;
857
858 update_tv_cache(td);
859
860 if (runtime_exceeded(td, &td->tv_cache)) {
861 __update_tv_cache(td);
862 if (runtime_exceeded(td, &td->tv_cache)) {
863 fio_mark_td_terminate(td);
864 break;
865 }
866 }
867
868 if (flow_threshold_exceeded(td))
869 continue;
870
871 if (!td->o.time_based && bytes_issued >= total_bytes)
872 break;
873
874 io_u = get_io_u(td);
875 if (IS_ERR_OR_NULL(io_u)) {
876 int err = PTR_ERR(io_u);
877
878 io_u = NULL;
879 if (err == -EBUSY) {
880 ret = FIO_Q_BUSY;
881 goto reap;
882 }
883 if (td->o.latency_target)
884 goto reap;
885 break;
886 }
887
888 ddir = io_u->ddir;
889
890 /*
891 * Add verification end_io handler if:
892 * - Asked to verify (!td_rw(td))
893 * - Or the io_u is from our verify list (mixed write/ver)
894 */
895 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
896 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
897
898 if (!td->o.verify_pattern_bytes) {
899 io_u->rand_seed = __rand(&td->verify_state);
900 if (sizeof(int) != sizeof(long *))
901 io_u->rand_seed *= __rand(&td->verify_state);
902 }
903
904 if (verify_state_should_stop(td, io_u)) {
905 put_io_u(td, io_u);
906 break;
907 }
908
909 if (td->o.verify_async)
910 io_u->end_io = verify_io_u_async;
911 else
912 io_u->end_io = verify_io_u;
913 td_set_runstate(td, TD_VERIFYING);
914 } else if (in_ramp_time(td))
915 td_set_runstate(td, TD_RAMP);
916 else
917 td_set_runstate(td, TD_RUNNING);
918
919 /*
920 * Always log IO before it's issued, so we know the specific
921 * order of it. The logged unit will track when the IO has
922 * completed.
923 */
924 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
925 td->o.do_verify &&
926 td->o.verify != VERIFY_NONE &&
927 !td->o.experimental_verify)
928 log_io_piece(td, io_u);
929
930 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
931 const unsigned long blen = io_u->xfer_buflen;
932 const enum fio_ddir ddir = acct_ddir(io_u);
933
934 if (td->error)
935 break;
936
937 ret = workqueue_enqueue(&td->io_wq, &io_u->work);
938 if (ret)
939 ret = FIO_Q_QUEUED;
940 else
941 ret = FIO_Q_BUSY;
942
943 if (ret == FIO_Q_QUEUED && ddir_rw(ddir)) {
944 td->io_issues[ddir]++;
945 td->io_issue_bytes[ddir] += blen;
946 td->rate_io_issue_bytes[ddir] += blen;
947 }
948
949 if (should_check_rate(td))
950 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
951
952 } else {
953 ret = td_io_queue(td, io_u);
954
955 if (should_check_rate(td))
956 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
957
958 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
959 break;
960
961 /*
962 * See if we need to complete some commands. Note that
963 * we can get BUSY even without IO queued, if the
964 * system is resource starved.
965 */
966reap:
967 full = queue_full(td) ||
968 (ret == FIO_Q_BUSY && td->cur_depth);
969 if (full || io_in_polling(td))
970 ret = wait_for_completions(td, &comp_time);
971 }
972 if (ret < 0)
973 break;
974 if (!ddir_rw_sum(td->bytes_done) &&
975 !(td->io_ops->flags & FIO_NOIO))
976 continue;
977
978 if (!in_ramp_time(td) && should_check_rate(td)) {
979 if (check_min_rate(td, &comp_time)) {
980 if (exitall_on_terminate)
981 fio_terminate_threads(td->groupid);
982 td_verror(td, EIO, "check_min_rate");
983 break;
984 }
985 }
986 if (!in_ramp_time(td) && td->o.latency_target)
987 lat_target_check(td);
988
989 if (td->o.thinktime) {
990 unsigned long long b;
991
992 b = ddir_rw_sum(td->io_blocks);
993 if (!(b % td->o.thinktime_blocks)) {
994 int left;
995
996 io_u_quiesce(td);
997
998 if (td->o.thinktime_spin)
999 usec_spin(td->o.thinktime_spin);
1000
1001 left = td->o.thinktime - td->o.thinktime_spin;
1002 if (left)
1003 usec_sleep(td, left);
1004 }
1005 }
1006 }
1007
1008 check_update_rusage(td);
1009
1010 if (td->trim_entries)
1011 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1012
1013 if (td->o.fill_device && td->error == ENOSPC) {
1014 td->error = 0;
1015 fio_mark_td_terminate(td);
1016 }
1017 if (!td->error) {
1018 struct fio_file *f;
1019
1020 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1021 workqueue_flush(&td->io_wq);
1022 i = 0;
1023 } else
1024 i = td->cur_depth;
1025
1026 if (i) {
1027 ret = io_u_queued_complete(td, i);
1028 if (td->o.fill_device && td->error == ENOSPC)
1029 td->error = 0;
1030 }
1031
1032 if (should_fsync(td) && td->o.end_fsync) {
1033 td_set_runstate(td, TD_FSYNCING);
1034
1035 for_each_file(td, f, i) {
1036 if (!fio_file_fsync(td, f))
1037 continue;
1038
1039 log_err("fio: end_fsync failed for file %s\n",
1040 f->file_name);
1041 }
1042 }
1043 } else
1044 cleanup_pending_aio(td);
1045
1046 /*
1047 * stop job if we failed doing any IO
1048 */
1049 if (!ddir_rw_sum(td->this_io_bytes))
1050 td->done = 1;
1051
1052 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1053}
1054
1055static void cleanup_io_u(struct thread_data *td)
1056{
1057 struct io_u *io_u;
1058
1059 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1060
1061 if (td->io_ops->io_u_free)
1062 td->io_ops->io_u_free(td, io_u);
1063
1064 fio_memfree(io_u, sizeof(*io_u));
1065 }
1066
1067 free_io_mem(td);
1068
1069 io_u_rexit(&td->io_u_requeues);
1070 io_u_qexit(&td->io_u_freelist);
1071 io_u_qexit(&td->io_u_all);
1072
1073 if (td->last_write_comp)
1074 sfree(td->last_write_comp);
1075}
1076
1077static int init_io_u(struct thread_data *td)
1078{
1079 struct io_u *io_u;
1080 unsigned int max_bs, min_write;
1081 int cl_align, i, max_units;
1082 int data_xfer = 1, err;
1083 char *p;
1084
1085 max_units = td->o.iodepth;
1086 max_bs = td_max_bs(td);
1087 min_write = td->o.min_bs[DDIR_WRITE];
1088 td->orig_buffer_size = (unsigned long long) max_bs
1089 * (unsigned long long) max_units;
1090
1091 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1092 data_xfer = 0;
1093
1094 err = 0;
1095 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1096 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1097 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1098
1099 if (err) {
1100 log_err("fio: failed setting up IO queues\n");
1101 return 1;
1102 }
1103
1104 /*
1105 * if we may later need to do address alignment, then add any
1106 * possible adjustment here so that we don't cause a buffer
1107 * overflow later. this adjustment may be too much if we get
1108 * lucky and the allocator gives us an aligned address.
1109 */
1110 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1111 (td->io_ops->flags & FIO_RAWIO))
1112 td->orig_buffer_size += page_mask + td->o.mem_align;
1113
1114 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1115 unsigned long bs;
1116
1117 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1118 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1119 }
1120
1121 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1122 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1123 return 1;
1124 }
1125
1126 if (data_xfer && allocate_io_mem(td))
1127 return 1;
1128
1129 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1130 (td->io_ops->flags & FIO_RAWIO))
1131 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1132 else
1133 p = td->orig_buffer;
1134
1135 cl_align = os_cache_line_size();
1136
1137 for (i = 0; i < max_units; i++) {
1138 void *ptr;
1139
1140 if (td->terminate)
1141 return 1;
1142
1143 ptr = fio_memalign(cl_align, sizeof(*io_u));
1144 if (!ptr) {
1145 log_err("fio: unable to allocate aligned memory\n");
1146 break;
1147 }
1148
1149 io_u = ptr;
1150 memset(io_u, 0, sizeof(*io_u));
1151 INIT_FLIST_HEAD(&io_u->verify_list);
1152 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1153
1154 if (data_xfer) {
1155 io_u->buf = p;
1156 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1157
1158 if (td_write(td))
1159 io_u_fill_buffer(td, io_u, min_write, max_bs);
1160 if (td_write(td) && td->o.verify_pattern_bytes) {
1161 /*
1162 * Fill the buffer with the pattern if we are
1163 * going to be doing writes.
1164 */
1165 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1166 }
1167 }
1168
1169 io_u->index = i;
1170 io_u->flags = IO_U_F_FREE;
1171 io_u_qpush(&td->io_u_freelist, io_u);
1172
1173 /*
1174 * io_u never leaves this stack, used for iteration of all
1175 * io_u buffers.
1176 */
1177 io_u_qpush(&td->io_u_all, io_u);
1178
1179 if (td->io_ops->io_u_init) {
1180 int ret = td->io_ops->io_u_init(td, io_u);
1181
1182 if (ret) {
1183 log_err("fio: failed to init engine data: %d\n", ret);
1184 return 1;
1185 }
1186 }
1187
1188 p += max_bs;
1189 }
1190
1191 if (td->o.verify != VERIFY_NONE) {
1192 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1193 if (!td->last_write_comp) {
1194 log_err("fio: failed to alloc write comp data\n");
1195 return 1;
1196 }
1197 }
1198
1199 return 0;
1200}
1201
1202static int switch_ioscheduler(struct thread_data *td)
1203{
1204 char tmp[256], tmp2[128];
1205 FILE *f;
1206 int ret;
1207
1208 if (td->io_ops->flags & FIO_DISKLESSIO)
1209 return 0;
1210
1211 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1212
1213 f = fopen(tmp, "r+");
1214 if (!f) {
1215 if (errno == ENOENT) {
1216 log_err("fio: os or kernel doesn't support IO scheduler"
1217 " switching\n");
1218 return 0;
1219 }
1220 td_verror(td, errno, "fopen iosched");
1221 return 1;
1222 }
1223
1224 /*
1225 * Set io scheduler.
1226 */
1227 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1228 if (ferror(f) || ret != 1) {
1229 td_verror(td, errno, "fwrite");
1230 fclose(f);
1231 return 1;
1232 }
1233
1234 rewind(f);
1235
1236 /*
1237 * Read back and check that the selected scheduler is now the default.
1238 */
1239 memset(tmp, 0, sizeof(tmp));
1240 ret = fread(tmp, sizeof(tmp), 1, f);
1241 if (ferror(f) || ret < 0) {
1242 td_verror(td, errno, "fread");
1243 fclose(f);
1244 return 1;
1245 }
1246 /*
1247 * either a list of io schedulers or "none\n" is expected.
1248 */
1249 tmp[strlen(tmp) - 1] = '\0';
1250
1251
1252 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1253 if (!strstr(tmp, tmp2)) {
1254 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1255 td_verror(td, EINVAL, "iosched_switch");
1256 fclose(f);
1257 return 1;
1258 }
1259
1260 fclose(f);
1261 return 0;
1262}
1263
1264static bool keep_running(struct thread_data *td)
1265{
1266 unsigned long long limit;
1267
1268 if (td->done)
1269 return false;
1270 if (td->o.time_based)
1271 return true;
1272 if (td->o.loops) {
1273 td->o.loops--;
1274 return true;
1275 }
1276 if (exceeds_number_ios(td))
1277 return false;
1278
1279 if (td->o.io_limit)
1280 limit = td->o.io_limit;
1281 else
1282 limit = td->o.size;
1283
1284 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1285 uint64_t diff;
1286
1287 /*
1288 * If the difference is less than the minimum IO size, we
1289 * are done.
1290 */
1291 diff = limit - ddir_rw_sum(td->io_bytes);
1292 if (diff < td_max_bs(td))
1293 return false;
1294
1295 if (fio_files_done(td))
1296 return false;
1297
1298 return true;
1299 }
1300
1301 return false;
1302}
1303
1304static int exec_string(struct thread_options *o, const char *string, const char *mode)
1305{
1306 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1307 int ret;
1308 char *str;
1309
1310 str = malloc(newlen);
1311 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1312
1313 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1314 ret = system(str);
1315 if (ret == -1)
1316 log_err("fio: exec of cmd <%s> failed\n", str);
1317
1318 free(str);
1319 return ret;
1320}
1321
1322/*
1323 * Dry run to compute correct state of numberio for verification.
1324 */
1325static uint64_t do_dry_run(struct thread_data *td)
1326{
1327 td_set_runstate(td, TD_RUNNING);
1328
1329 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1330 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1331 struct io_u *io_u;
1332 int ret;
1333
1334 if (td->terminate || td->done)
1335 break;
1336
1337 io_u = get_io_u(td);
1338 if (!io_u)
1339 break;
1340
1341 io_u_set(io_u, IO_U_F_FLIGHT);
1342 io_u->error = 0;
1343 io_u->resid = 0;
1344 if (ddir_rw(acct_ddir(io_u)))
1345 td->io_issues[acct_ddir(io_u)]++;
1346 if (ddir_rw(io_u->ddir)) {
1347 io_u_mark_depth(td, 1);
1348 td->ts.total_io_u[io_u->ddir]++;
1349 }
1350
1351 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1352 td->o.do_verify &&
1353 td->o.verify != VERIFY_NONE &&
1354 !td->o.experimental_verify)
1355 log_io_piece(td, io_u);
1356
1357 ret = io_u_sync_complete(td, io_u);
1358 (void) ret;
1359 }
1360
1361 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1362}
1363
1364static void io_workqueue_fn(struct submit_worker *sw,
1365 struct workqueue_work *work)
1366{
1367 struct io_u *io_u = container_of(work, struct io_u, work);
1368 const enum fio_ddir ddir = io_u->ddir;
1369 struct thread_data *td = sw->private;
1370 int ret;
1371
1372 dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1373
1374 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1375
1376 td->cur_depth++;
1377
1378 do {
1379 ret = td_io_queue(td, io_u);
1380 if (ret != FIO_Q_BUSY)
1381 break;
1382 ret = io_u_queued_complete(td, 1);
1383 if (ret > 0)
1384 td->cur_depth -= ret;
1385 io_u_clear(io_u, IO_U_F_FLIGHT);
1386 } while (1);
1387
1388 dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1389
1390 io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1391
1392 if (ret == FIO_Q_COMPLETED)
1393 td->cur_depth--;
1394 else if (ret == FIO_Q_QUEUED) {
1395 unsigned int min_evts;
1396
1397 if (td->o.iodepth == 1)
1398 min_evts = 1;
1399 else
1400 min_evts = 0;
1401
1402 ret = io_u_queued_complete(td, min_evts);
1403 if (ret > 0)
1404 td->cur_depth -= ret;
1405 } else if (ret == FIO_Q_BUSY) {
1406 ret = io_u_queued_complete(td, td->cur_depth);
1407 if (ret > 0)
1408 td->cur_depth -= ret;
1409 }
1410}
1411
1412static bool io_workqueue_pre_sleep_flush_fn(struct submit_worker *sw)
1413{
1414 struct thread_data *td = sw->private;
1415
1416 if (td->io_u_queued || td->cur_depth || td->io_u_in_flight)
1417 return true;
1418
1419 return false;
1420}
1421
1422static void io_workqueue_pre_sleep_fn(struct submit_worker *sw)
1423{
1424 struct thread_data *td = sw->private;
1425 int ret;
1426
1427 ret = io_u_quiesce(td);
1428 if (ret > 0)
1429 td->cur_depth -= ret;
1430}
1431
1432static int io_workqueue_alloc_fn(struct submit_worker *sw)
1433{
1434 struct thread_data *td;
1435
1436 td = calloc(1, sizeof(*td));
1437 sw->private = td;
1438 return 0;
1439}
1440
1441static void io_workqueue_free_fn(struct submit_worker *sw)
1442{
1443 free(sw->private);
1444 sw->private = NULL;
1445}
1446
1447static int io_workqueue_init_worker_fn(struct submit_worker *sw)
1448{
1449 struct thread_data *parent = sw->wq->td;
1450 struct thread_data *td = sw->private;
1451 int fio_unused ret;
1452
1453 memcpy(&td->o, &parent->o, sizeof(td->o));
1454 memcpy(&td->ts, &parent->ts, sizeof(td->ts));
1455 td->o.uid = td->o.gid = -1U;
1456 dup_files(td, parent);
1457 td->eo = parent->eo;
1458 fio_options_mem_dupe(td);
1459
1460 if (ioengine_load(td))
1461 goto err;
1462
1463 if (td->o.odirect)
1464 td->io_ops->flags |= FIO_RAWIO;
1465
1466 td->pid = gettid();
1467
1468 INIT_FLIST_HEAD(&td->io_log_list);
1469 INIT_FLIST_HEAD(&td->io_hist_list);
1470 INIT_FLIST_HEAD(&td->verify_list);
1471 INIT_FLIST_HEAD(&td->trim_list);
1472 INIT_FLIST_HEAD(&td->next_rand_list);
1473 td->io_hist_tree = RB_ROOT;
1474
1475 td->o.iodepth = 1;
1476 if (td_io_init(td))
1477 goto err_io_init;
1478
1479 fio_gettime(&td->epoch, NULL);
1480 fio_getrusage(&td->ru_start);
1481 clear_io_state(td, 1);
1482
1483 td_set_runstate(td, TD_RUNNING);
1484 td->flags |= TD_F_CHILD;
1485 td->parent = parent;
1486 return 0;
1487
1488err_io_init:
1489 close_ioengine(td);
1490err:
1491 return 1;
1492
1493}
1494
1495static void io_workqueue_exit_worker_fn(struct submit_worker *sw)
1496{
1497 struct thread_data *td = sw->private;
1498
1499 fio_options_free(td);
1500 close_and_free_files(td);
1501 if (td->io_ops)
1502 close_ioengine(td);
1503 td_set_runstate(td, TD_EXITED);
1504}
1505
1506#ifdef CONFIG_SFAA
1507static void sum_val(uint64_t *dst, uint64_t *src)
1508{
1509 if (*src) {
1510 __sync_fetch_and_add(dst, *src);
1511 *src = 0;
1512 }
1513}
1514#else
1515static void sum_val(uint64_t *dst, uint64_t *src)
1516{
1517 if (*src) {
1518 *dst += *src;
1519 *src = 0;
1520 }
1521}
1522#endif
1523
1524static void pthread_double_unlock(pthread_mutex_t *lock1,
1525 pthread_mutex_t *lock2)
1526{
1527#ifndef CONFIG_SFAA
1528 pthread_mutex_unlock(lock1);
1529 pthread_mutex_unlock(lock2);
1530#endif
1531}
1532
1533static void pthread_double_lock(pthread_mutex_t *lock1, pthread_mutex_t *lock2)
1534{
1535#ifndef CONFIG_SFAA
1536 if (lock1 < lock2) {
1537 pthread_mutex_lock(lock1);
1538 pthread_mutex_lock(lock2);
1539 } else {
1540 pthread_mutex_lock(lock2);
1541 pthread_mutex_lock(lock1);
1542 }
1543#endif
1544}
1545
1546static void sum_ddir(struct thread_data *dst, struct thread_data *src,
1547 enum fio_ddir ddir)
1548{
1549 pthread_double_lock(&dst->io_wq.stat_lock, &src->io_wq.stat_lock);
1550
1551 sum_val(&dst->io_bytes[ddir], &src->io_bytes[ddir]);
1552 sum_val(&dst->io_blocks[ddir], &src->io_blocks[ddir]);
1553 sum_val(&dst->this_io_blocks[ddir], &src->this_io_blocks[ddir]);
1554 sum_val(&dst->this_io_bytes[ddir], &src->this_io_bytes[ddir]);
1555 sum_val(&dst->bytes_done[ddir], &src->bytes_done[ddir]);
1556
1557 pthread_double_unlock(&dst->io_wq.stat_lock, &src->io_wq.stat_lock);
1558}
1559
1560static void io_workqueue_update_acct_fn(struct submit_worker *sw)
1561{
1562 struct thread_data *src = sw->private;
1563 struct thread_data *dst = sw->wq->td;
1564
1565 if (td_read(src))
1566 sum_ddir(dst, src, DDIR_READ);
1567 if (td_write(src))
1568 sum_ddir(dst, src, DDIR_WRITE);
1569 if (td_trim(src))
1570 sum_ddir(dst, src, DDIR_TRIM);
1571
1572}
1573
1574struct workqueue_ops rated_wq_ops = {
1575 .fn = io_workqueue_fn,
1576 .pre_sleep_flush_fn = io_workqueue_pre_sleep_flush_fn,
1577 .pre_sleep_fn = io_workqueue_pre_sleep_fn,
1578 .update_acct_fn = io_workqueue_update_acct_fn,
1579 .alloc_worker_fn = io_workqueue_alloc_fn,
1580 .free_worker_fn = io_workqueue_free_fn,
1581 .init_worker_fn = io_workqueue_init_worker_fn,
1582 .exit_worker_fn = io_workqueue_exit_worker_fn,
1583};
1584
1585/*
1586 * Entry point for the thread based jobs. The process based jobs end up
1587 * here as well, after a little setup.
1588 */
1589static void *thread_main(void *data)
1590{
1591 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1592 struct thread_data *td = data;
1593 struct thread_options *o = &td->o;
1594 pthread_condattr_t attr;
1595 int clear_state;
1596 int ret;
1597
1598 if (!o->use_thread) {
1599 setsid();
1600 td->pid = getpid();
1601 } else
1602 td->pid = gettid();
1603
1604 fio_local_clock_init(o->use_thread);
1605
1606 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1607
1608 if (is_backend)
1609 fio_server_send_start(td);
1610
1611 INIT_FLIST_HEAD(&td->io_log_list);
1612 INIT_FLIST_HEAD(&td->io_hist_list);
1613 INIT_FLIST_HEAD(&td->verify_list);
1614 INIT_FLIST_HEAD(&td->trim_list);
1615 INIT_FLIST_HEAD(&td->next_rand_list);
1616 pthread_mutex_init(&td->io_u_lock, NULL);
1617 td->io_hist_tree = RB_ROOT;
1618
1619 pthread_condattr_init(&attr);
1620 pthread_cond_init(&td->verify_cond, &attr);
1621 pthread_cond_init(&td->free_cond, &attr);
1622
1623 td_set_runstate(td, TD_INITIALIZED);
1624 dprint(FD_MUTEX, "up startup_mutex\n");
1625 fio_mutex_up(startup_mutex);
1626 dprint(FD_MUTEX, "wait on td->mutex\n");
1627 fio_mutex_down(td->mutex);
1628 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1629
1630 /*
1631 * A new gid requires privilege, so we need to do this before setting
1632 * the uid.
1633 */
1634 if (o->gid != -1U && setgid(o->gid)) {
1635 td_verror(td, errno, "setgid");
1636 goto err;
1637 }
1638 if (o->uid != -1U && setuid(o->uid)) {
1639 td_verror(td, errno, "setuid");
1640 goto err;
1641 }
1642
1643 /*
1644 * If we have a gettimeofday() thread, make sure we exclude that
1645 * thread from this job
1646 */
1647 if (o->gtod_cpu)
1648 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1649
1650 /*
1651 * Set affinity first, in case it has an impact on the memory
1652 * allocations.
1653 */
1654 if (fio_option_is_set(o, cpumask)) {
1655 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1656 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1657 if (!ret) {
1658 log_err("fio: no CPUs set\n");
1659 log_err("fio: Try increasing number of available CPUs\n");
1660 td_verror(td, EINVAL, "cpus_split");
1661 goto err;
1662 }
1663 }
1664 ret = fio_setaffinity(td->pid, o->cpumask);
1665 if (ret == -1) {
1666 td_verror(td, errno, "cpu_set_affinity");
1667 goto err;
1668 }
1669 }
1670
1671#ifdef CONFIG_LIBNUMA
1672 /* numa node setup */
1673 if (fio_option_is_set(o, numa_cpunodes) ||
1674 fio_option_is_set(o, numa_memnodes)) {
1675 struct bitmask *mask;
1676
1677 if (numa_available() < 0) {
1678 td_verror(td, errno, "Does not support NUMA API\n");
1679 goto err;
1680 }
1681
1682 if (fio_option_is_set(o, numa_cpunodes)) {
1683 mask = numa_parse_nodestring(o->numa_cpunodes);
1684 ret = numa_run_on_node_mask(mask);
1685 numa_free_nodemask(mask);
1686 if (ret == -1) {
1687 td_verror(td, errno, \
1688 "numa_run_on_node_mask failed\n");
1689 goto err;
1690 }
1691 }
1692
1693 if (fio_option_is_set(o, numa_memnodes)) {
1694 mask = NULL;
1695 if (o->numa_memnodes)
1696 mask = numa_parse_nodestring(o->numa_memnodes);
1697
1698 switch (o->numa_mem_mode) {
1699 case MPOL_INTERLEAVE:
1700 numa_set_interleave_mask(mask);
1701 break;
1702 case MPOL_BIND:
1703 numa_set_membind(mask);
1704 break;
1705 case MPOL_LOCAL:
1706 numa_set_localalloc();
1707 break;
1708 case MPOL_PREFERRED:
1709 numa_set_preferred(o->numa_mem_prefer_node);
1710 break;
1711 case MPOL_DEFAULT:
1712 default:
1713 break;
1714 }
1715
1716 if (mask)
1717 numa_free_nodemask(mask);
1718
1719 }
1720 }
1721#endif
1722
1723 if (fio_pin_memory(td))
1724 goto err;
1725
1726 /*
1727 * May alter parameters that init_io_u() will use, so we need to
1728 * do this first.
1729 */
1730 if (init_iolog(td))
1731 goto err;
1732
1733 if (init_io_u(td))
1734 goto err;
1735
1736 if (o->verify_async && verify_async_init(td))
1737 goto err;
1738
1739 if (fio_option_is_set(o, ioprio) ||
1740 fio_option_is_set(o, ioprio_class)) {
1741 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1742 if (ret == -1) {
1743 td_verror(td, errno, "ioprio_set");
1744 goto err;
1745 }
1746 }
1747
1748 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1749 goto err;
1750
1751 errno = 0;
1752 if (nice(o->nice) == -1 && errno != 0) {
1753 td_verror(td, errno, "nice");
1754 goto err;
1755 }
1756
1757 if (o->ioscheduler && switch_ioscheduler(td))
1758 goto err;
1759
1760 if (!o->create_serialize && setup_files(td))
1761 goto err;
1762
1763 if (td_io_init(td))
1764 goto err;
1765
1766 if (init_random_map(td))
1767 goto err;
1768
1769 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1770 goto err;
1771
1772 if (o->pre_read) {
1773 if (pre_read_files(td) < 0)
1774 goto err;
1775 }
1776
1777 if (td->flags & TD_F_COMPRESS_LOG)
1778 tp_init(&td->tp_data);
1779
1780 fio_verify_init(td);
1781
1782 if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1783 workqueue_init(td, &td->io_wq, &rated_wq_ops, td->o.iodepth))
1784 goto err;
1785
1786 fio_gettime(&td->epoch, NULL);
1787 fio_getrusage(&td->ru_start);
1788 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1789 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1790
1791 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1792 o->ratemin[DDIR_TRIM]) {
1793 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1794 sizeof(td->bw_sample_time));
1795 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1796 sizeof(td->bw_sample_time));
1797 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1798 sizeof(td->bw_sample_time));
1799 }
1800
1801 clear_state = 0;
1802 while (keep_running(td)) {
1803 uint64_t verify_bytes;
1804
1805 fio_gettime(&td->start, NULL);
1806 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1807
1808 if (clear_state)
1809 clear_io_state(td, 0);
1810
1811 prune_io_piece_log(td);
1812
1813 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1814 verify_bytes = do_dry_run(td);
1815 else
1816 verify_bytes = do_io(td);
1817
1818 clear_state = 1;
1819
1820 /*
1821 * Make sure we've successfully updated the rusage stats
1822 * before waiting on the stat mutex. Otherwise we could have
1823 * the stat thread holding stat mutex and waiting for
1824 * the rusage_sem, which would never get upped because
1825 * this thread is waiting for the stat mutex.
1826 */
1827 check_update_rusage(td);
1828
1829 fio_mutex_down(stat_mutex);
1830 if (td_read(td) && td->io_bytes[DDIR_READ])
1831 update_runtime(td, elapsed_us, DDIR_READ);
1832 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1833 update_runtime(td, elapsed_us, DDIR_WRITE);
1834 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1835 update_runtime(td, elapsed_us, DDIR_TRIM);
1836 fio_gettime(&td->start, NULL);
1837 fio_mutex_up(stat_mutex);
1838
1839 if (td->error || td->terminate)
1840 break;
1841
1842 if (!o->do_verify ||
1843 o->verify == VERIFY_NONE ||
1844 (td->io_ops->flags & FIO_UNIDIR))
1845 continue;
1846
1847 clear_io_state(td, 0);
1848
1849 fio_gettime(&td->start, NULL);
1850
1851 do_verify(td, verify_bytes);
1852
1853 /*
1854 * See comment further up for why this is done here.
1855 */
1856 check_update_rusage(td);
1857
1858 fio_mutex_down(stat_mutex);
1859 update_runtime(td, elapsed_us, DDIR_READ);
1860 fio_gettime(&td->start, NULL);
1861 fio_mutex_up(stat_mutex);
1862
1863 if (td->error || td->terminate)
1864 break;
1865 }
1866
1867 update_rusage_stat(td);
1868 td->ts.total_run_time = mtime_since_now(&td->epoch);
1869 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1870 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1871 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1872
1873 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1874 (td->o.verify != VERIFY_NONE && td_write(td)))
1875 verify_save_state(td->thread_number);
1876
1877 fio_unpin_memory(td);
1878
1879 fio_writeout_logs(td);
1880
1881 if (o->io_submit_mode == IO_MODE_OFFLOAD)
1882 workqueue_exit(&td->io_wq);
1883
1884 if (td->flags & TD_F_COMPRESS_LOG)
1885 tp_exit(&td->tp_data);
1886
1887 if (o->exec_postrun)
1888 exec_string(o, o->exec_postrun, (const char *)"postrun");
1889
1890 if (exitall_on_terminate)
1891 fio_terminate_threads(td->groupid);
1892
1893err:
1894 if (td->error)
1895 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1896 td->verror);
1897
1898 if (o->verify_async)
1899 verify_async_exit(td);
1900
1901 close_and_free_files(td);
1902 cleanup_io_u(td);
1903 close_ioengine(td);
1904 cgroup_shutdown(td, &cgroup_mnt);
1905 verify_free_state(td);
1906
1907 if (fio_option_is_set(o, cpumask)) {
1908 ret = fio_cpuset_exit(&o->cpumask);
1909 if (ret)
1910 td_verror(td, ret, "fio_cpuset_exit");
1911 }
1912
1913 /*
1914 * do this very late, it will log file closing as well
1915 */
1916 if (o->write_iolog_file)
1917 write_iolog_close(td);
1918
1919 fio_mutex_remove(td->mutex);
1920 td->mutex = NULL;
1921
1922 td_set_runstate(td, TD_EXITED);
1923
1924 /*
1925 * Do this last after setting our runstate to exited, so we
1926 * know that the stat thread is signaled.
1927 */
1928 check_update_rusage(td);
1929
1930 return (void *) (uintptr_t) td->error;
1931}
1932
1933
1934/*
1935 * We cannot pass the td data into a forked process, so attach the td and
1936 * pass it to the thread worker.
1937 */
1938static int fork_main(int shmid, int offset)
1939{
1940 struct thread_data *td;
1941 void *data, *ret;
1942
1943#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1944 data = shmat(shmid, NULL, 0);
1945 if (data == (void *) -1) {
1946 int __err = errno;
1947
1948 perror("shmat");
1949 return __err;
1950 }
1951#else
1952 /*
1953 * HP-UX inherits shm mappings?
1954 */
1955 data = threads;
1956#endif
1957
1958 td = data + offset * sizeof(struct thread_data);
1959 ret = thread_main(td);
1960 shmdt(data);
1961 return (int) (uintptr_t) ret;
1962}
1963
1964static void dump_td_info(struct thread_data *td)
1965{
1966 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1967 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1968 (unsigned long) time_since_now(&td->terminate_time));
1969}
1970
1971/*
1972 * Run over the job map and reap the threads that have exited, if any.
1973 */
1974static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1975 unsigned int *m_rate)
1976{
1977 struct thread_data *td;
1978 unsigned int cputhreads, realthreads, pending;
1979 int i, status, ret;
1980
1981 /*
1982 * reap exited threads (TD_EXITED -> TD_REAPED)
1983 */
1984 realthreads = pending = cputhreads = 0;
1985 for_each_td(td, i) {
1986 int flags = 0;
1987
1988 /*
1989 * ->io_ops is NULL for a thread that has closed its
1990 * io engine
1991 */
1992 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1993 cputhreads++;
1994 else
1995 realthreads++;
1996
1997 if (!td->pid) {
1998 pending++;
1999 continue;
2000 }
2001 if (td->runstate == TD_REAPED)
2002 continue;
2003 if (td->o.use_thread) {
2004 if (td->runstate == TD_EXITED) {
2005 td_set_runstate(td, TD_REAPED);
2006 goto reaped;
2007 }
2008 continue;
2009 }
2010
2011 flags = WNOHANG;
2012 if (td->runstate == TD_EXITED)
2013 flags = 0;
2014
2015 /*
2016 * check if someone quit or got killed in an unusual way
2017 */
2018 ret = waitpid(td->pid, &status, flags);
2019 if (ret < 0) {
2020 if (errno == ECHILD) {
2021 log_err("fio: pid=%d disappeared %d\n",
2022 (int) td->pid, td->runstate);
2023 td->sig = ECHILD;
2024 td_set_runstate(td, TD_REAPED);
2025 goto reaped;
2026 }
2027 perror("waitpid");
2028 } else if (ret == td->pid) {
2029 if (WIFSIGNALED(status)) {
2030 int sig = WTERMSIG(status);
2031
2032 if (sig != SIGTERM && sig != SIGUSR2)
2033 log_err("fio: pid=%d, got signal=%d\n",
2034 (int) td->pid, sig);
2035 td->sig = sig;
2036 td_set_runstate(td, TD_REAPED);
2037 goto reaped;
2038 }
2039 if (WIFEXITED(status)) {
2040 if (WEXITSTATUS(status) && !td->error)
2041 td->error = WEXITSTATUS(status);
2042
2043 td_set_runstate(td, TD_REAPED);
2044 goto reaped;
2045 }
2046 }
2047
2048 /*
2049 * If the job is stuck, do a forceful timeout of it and
2050 * move on.
2051 */
2052 if (td->terminate &&
2053 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2054 dump_td_info(td);
2055 td_set_runstate(td, TD_REAPED);
2056 goto reaped;
2057 }
2058
2059 /*
2060 * thread is not dead, continue
2061 */
2062 pending++;
2063 continue;
2064reaped:
2065 (*nr_running)--;
2066 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2067 (*t_rate) -= ddir_rw_sum(td->o.rate);
2068 if (!td->pid)
2069 pending--;
2070
2071 if (td->error)
2072 exit_value++;
2073
2074 done_secs += mtime_since_now(&td->epoch) / 1000;
2075 profile_td_exit(td);
2076 }
2077
2078 if (*nr_running == cputhreads && !pending && realthreads)
2079 fio_terminate_threads(TERMINATE_ALL);
2080}
2081
2082static bool __check_trigger_file(void)
2083{
2084 struct stat sb;
2085
2086 if (!trigger_file)
2087 return false;
2088
2089 if (stat(trigger_file, &sb))
2090 return false;
2091
2092 if (unlink(trigger_file) < 0)
2093 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2094 strerror(errno));
2095
2096 return true;
2097}
2098
2099static bool trigger_timedout(void)
2100{
2101 if (trigger_timeout)
2102 return time_since_genesis() >= trigger_timeout;
2103
2104 return false;
2105}
2106
2107void exec_trigger(const char *cmd)
2108{
2109 int ret;
2110
2111 if (!cmd)
2112 return;
2113
2114 ret = system(cmd);
2115 if (ret == -1)
2116 log_err("fio: failed executing %s trigger\n", cmd);
2117}
2118
2119void check_trigger_file(void)
2120{
2121 if (__check_trigger_file() || trigger_timedout()) {
2122 if (nr_clients)
2123 fio_clients_send_trigger(trigger_remote_cmd);
2124 else {
2125 verify_save_state(IO_LIST_ALL);
2126 fio_terminate_threads(TERMINATE_ALL);
2127 exec_trigger(trigger_cmd);
2128 }
2129 }
2130}
2131
2132static int fio_verify_load_state(struct thread_data *td)
2133{
2134 int ret;
2135
2136 if (!td->o.verify_state)
2137 return 0;
2138
2139 if (is_backend) {
2140 void *data;
2141 int ver;
2142
2143 ret = fio_server_get_verify_state(td->o.name,
2144 td->thread_number - 1, &data, &ver);
2145 if (!ret)
2146 verify_convert_assign_state(td, data, ver);
2147 } else
2148 ret = verify_load_state(td, "local");
2149
2150 return ret;
2151}
2152
2153static void do_usleep(unsigned int usecs)
2154{
2155 check_for_running_stats();
2156 check_trigger_file();
2157 usleep(usecs);
2158}
2159
2160static bool check_mount_writes(struct thread_data *td)
2161{
2162 struct fio_file *f;
2163 unsigned int i;
2164
2165 if (!td_write(td) || td->o.allow_mounted_write)
2166 return false;
2167
2168 for_each_file(td, f, i) {
2169 if (f->filetype != FIO_TYPE_BD)
2170 continue;
2171 if (device_is_mounted(f->file_name))
2172 goto mounted;
2173 }
2174
2175 return false;
2176mounted:
2177 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2178 return true;
2179}
2180
2181/*
2182 * Main function for kicking off and reaping jobs, as needed.
2183 */
2184static void run_threads(void)
2185{
2186 struct thread_data *td;
2187 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2188 uint64_t spent;
2189
2190 if (fio_gtod_offload && fio_start_gtod_thread())
2191 return;
2192
2193 fio_idle_prof_init();
2194
2195 set_sig_handlers();
2196
2197 nr_thread = nr_process = 0;
2198 for_each_td(td, i) {
2199 if (check_mount_writes(td))
2200 return;
2201 if (td->o.use_thread)
2202 nr_thread++;
2203 else
2204 nr_process++;
2205 }
2206
2207 if (output_format & FIO_OUTPUT_NORMAL) {
2208 log_info("Starting ");
2209 if (nr_thread)
2210 log_info("%d thread%s", nr_thread,
2211 nr_thread > 1 ? "s" : "");
2212 if (nr_process) {
2213 if (nr_thread)
2214 log_info(" and ");
2215 log_info("%d process%s", nr_process,
2216 nr_process > 1 ? "es" : "");
2217 }
2218 log_info("\n");
2219 log_info_flush();
2220 }
2221
2222 todo = thread_number;
2223 nr_running = 0;
2224 nr_started = 0;
2225 m_rate = t_rate = 0;
2226
2227 for_each_td(td, i) {
2228 print_status_init(td->thread_number - 1);
2229
2230 if (!td->o.create_serialize)
2231 continue;
2232
2233 if (fio_verify_load_state(td))
2234 goto reap;
2235
2236 /*
2237 * do file setup here so it happens sequentially,
2238 * we don't want X number of threads getting their
2239 * client data interspersed on disk
2240 */
2241 if (setup_files(td)) {
2242reap:
2243 exit_value++;
2244 if (td->error)
2245 log_err("fio: pid=%d, err=%d/%s\n",
2246 (int) td->pid, td->error, td->verror);
2247 td_set_runstate(td, TD_REAPED);
2248 todo--;
2249 } else {
2250 struct fio_file *f;
2251 unsigned int j;
2252
2253 /*
2254 * for sharing to work, each job must always open
2255 * its own files. so close them, if we opened them
2256 * for creation
2257 */
2258 for_each_file(td, f, j) {
2259 if (fio_file_open(f))
2260 td_io_close_file(td, f);
2261 }
2262 }
2263 }
2264
2265 /* start idle threads before io threads start to run */
2266 fio_idle_prof_start();
2267
2268 set_genesis_time();
2269
2270 while (todo) {
2271 struct thread_data *map[REAL_MAX_JOBS];
2272 struct timeval this_start;
2273 int this_jobs = 0, left;
2274
2275 /*
2276 * create threads (TD_NOT_CREATED -> TD_CREATED)
2277 */
2278 for_each_td(td, i) {
2279 if (td->runstate != TD_NOT_CREATED)
2280 continue;
2281
2282 /*
2283 * never got a chance to start, killed by other
2284 * thread for some reason
2285 */
2286 if (td->terminate) {
2287 todo--;
2288 continue;
2289 }
2290
2291 if (td->o.start_delay) {
2292 spent = utime_since_genesis();
2293
2294 if (td->o.start_delay > spent)
2295 continue;
2296 }
2297
2298 if (td->o.stonewall && (nr_started || nr_running)) {
2299 dprint(FD_PROCESS, "%s: stonewall wait\n",
2300 td->o.name);
2301 break;
2302 }
2303
2304 init_disk_util(td);
2305
2306 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2307 td->update_rusage = 0;
2308
2309 /*
2310 * Set state to created. Thread will transition
2311 * to TD_INITIALIZED when it's done setting up.
2312 */
2313 td_set_runstate(td, TD_CREATED);
2314 map[this_jobs++] = td;
2315 nr_started++;
2316
2317 if (td->o.use_thread) {
2318 int ret;
2319
2320 dprint(FD_PROCESS, "will pthread_create\n");
2321 ret = pthread_create(&td->thread, NULL,
2322 thread_main, td);
2323 if (ret) {
2324 log_err("pthread_create: %s\n",
2325 strerror(ret));
2326 nr_started--;
2327 break;
2328 }
2329 ret = pthread_detach(td->thread);
2330 if (ret)
2331 log_err("pthread_detach: %s",
2332 strerror(ret));
2333 } else {
2334 pid_t pid;
2335 dprint(FD_PROCESS, "will fork\n");
2336 pid = fork();
2337 if (!pid) {
2338 int ret = fork_main(shm_id, i);
2339
2340 _exit(ret);
2341 } else if (i == fio_debug_jobno)
2342 *fio_debug_jobp = pid;
2343 }
2344 dprint(FD_MUTEX, "wait on startup_mutex\n");
2345 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2346 log_err("fio: job startup hung? exiting.\n");
2347 fio_terminate_threads(TERMINATE_ALL);
2348 fio_abort = 1;
2349 nr_started--;
2350 break;
2351 }
2352 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2353 }
2354
2355 /*
2356 * Wait for the started threads to transition to
2357 * TD_INITIALIZED.
2358 */
2359 fio_gettime(&this_start, NULL);
2360 left = this_jobs;
2361 while (left && !fio_abort) {
2362 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2363 break;
2364
2365 do_usleep(100000);
2366
2367 for (i = 0; i < this_jobs; i++) {
2368 td = map[i];
2369 if (!td)
2370 continue;
2371 if (td->runstate == TD_INITIALIZED) {
2372 map[i] = NULL;
2373 left--;
2374 } else if (td->runstate >= TD_EXITED) {
2375 map[i] = NULL;
2376 left--;
2377 todo--;
2378 nr_running++; /* work-around... */
2379 }
2380 }
2381 }
2382
2383 if (left) {
2384 log_err("fio: %d job%s failed to start\n", left,
2385 left > 1 ? "s" : "");
2386 for (i = 0; i < this_jobs; i++) {
2387 td = map[i];
2388 if (!td)
2389 continue;
2390 kill(td->pid, SIGTERM);
2391 }
2392 break;
2393 }
2394
2395 /*
2396 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2397 */
2398 for_each_td(td, i) {
2399 if (td->runstate != TD_INITIALIZED)
2400 continue;
2401
2402 if (in_ramp_time(td))
2403 td_set_runstate(td, TD_RAMP);
2404 else
2405 td_set_runstate(td, TD_RUNNING);
2406 nr_running++;
2407 nr_started--;
2408 m_rate += ddir_rw_sum(td->o.ratemin);
2409 t_rate += ddir_rw_sum(td->o.rate);
2410 todo--;
2411 fio_mutex_up(td->mutex);
2412 }
2413
2414 reap_threads(&nr_running, &t_rate, &m_rate);
2415
2416 if (todo)
2417 do_usleep(100000);
2418 }
2419
2420 while (nr_running) {
2421 reap_threads(&nr_running, &t_rate, &m_rate);
2422 do_usleep(10000);
2423 }
2424
2425 fio_idle_prof_stop();
2426
2427 update_io_ticks();
2428}
2429
2430static void wait_for_helper_thread_exit(void)
2431{
2432 void *ret;
2433
2434 helper_exit = 1;
2435 pthread_cond_signal(&helper_cond);
2436 pthread_join(helper_thread, &ret);
2437}
2438
2439static void free_disk_util(void)
2440{
2441 disk_util_prune_entries();
2442
2443 pthread_cond_destroy(&helper_cond);
2444}
2445
2446static void *helper_thread_main(void *data)
2447{
2448 int ret = 0;
2449
2450 fio_mutex_up(startup_mutex);
2451
2452 while (!ret) {
2453 uint64_t sec = DISK_UTIL_MSEC / 1000;
2454 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2455 struct timespec ts;
2456 struct timeval tv;
2457
2458 gettimeofday(&tv, NULL);
2459 ts.tv_sec = tv.tv_sec + sec;
2460 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2461
2462 if (ts.tv_nsec >= 1000000000ULL) {
2463 ts.tv_nsec -= 1000000000ULL;
2464 ts.tv_sec++;
2465 }
2466
2467 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2468
2469 ret = update_io_ticks();
2470
2471 if (helper_do_stat) {
2472 helper_do_stat = 0;
2473 __show_running_run_stats();
2474 }
2475
2476 if (!is_backend)
2477 print_thread_status();
2478 }
2479
2480 return NULL;
2481}
2482
2483static int create_helper_thread(void)
2484{
2485 int ret;
2486
2487 setup_disk_util();
2488
2489 pthread_cond_init(&helper_cond, NULL);
2490 pthread_mutex_init(&helper_lock, NULL);
2491
2492 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2493 if (ret) {
2494 log_err("Can't create helper thread: %s\n", strerror(ret));
2495 return 1;
2496 }
2497
2498 dprint(FD_MUTEX, "wait on startup_mutex\n");
2499 fio_mutex_down(startup_mutex);
2500 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2501 return 0;
2502}
2503
2504int fio_backend(void)
2505{
2506 struct thread_data *td;
2507 int i;
2508
2509 if (exec_profile) {
2510 if (load_profile(exec_profile))
2511 return 1;
2512 free(exec_profile);
2513 exec_profile = NULL;
2514 }
2515 if (!thread_number)
2516 return 0;
2517
2518 if (write_bw_log) {
2519 struct log_params p = {
2520 .log_type = IO_LOG_TYPE_BW,
2521 };
2522
2523 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2524 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2525 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2526 }
2527
2528 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2529 if (startup_mutex == NULL)
2530 return 1;
2531
2532 set_genesis_time();
2533 stat_init();
2534 create_helper_thread();
2535
2536 cgroup_list = smalloc(sizeof(*cgroup_list));
2537 INIT_FLIST_HEAD(cgroup_list);
2538
2539 run_threads();
2540
2541 wait_for_helper_thread_exit();
2542
2543 if (!fio_abort) {
2544 __show_run_stats();
2545 if (write_bw_log) {
2546 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2547 struct io_log *log = agg_io_log[i];
2548
2549 flush_log(log, 0);
2550 free_log(log);
2551 }
2552 }
2553 }
2554
2555 for_each_td(td, i) {
2556 fio_options_free(td);
2557 if (td->rusage_sem) {
2558 fio_mutex_remove(td->rusage_sem);
2559 td->rusage_sem = NULL;
2560 }
2561 }
2562
2563 free_disk_util();
2564 cgroup_kill(cgroup_list);
2565 sfree(cgroup_list);
2566 sfree(cgroup_mnt);
2567
2568 fio_mutex_remove(startup_mutex);
2569 stat_exit();
2570 return exit_value;
2571}