workqueue: remove knowledge of io issue (and others) stats
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "lib/tp.h"
58#include "workqueue.h"
59#include "lib/mountcheck.h"
60
61static pthread_t helper_thread;
62static pthread_mutex_t helper_lock;
63pthread_cond_t helper_cond;
64int helper_do_stat = 0;
65
66static struct fio_mutex *startup_mutex;
67static struct flist_head *cgroup_list;
68static char *cgroup_mnt;
69static int exit_value;
70static volatile int fio_abort;
71static unsigned int nr_process = 0;
72static unsigned int nr_thread = 0;
73
74struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76int groupid = 0;
77unsigned int thread_number = 0;
78unsigned int stat_number = 0;
79int shm_id = 0;
80int temp_stall_ts;
81unsigned long done_secs = 0;
82volatile int helper_exit = 0;
83
84#define PAGE_ALIGN(buf) \
85 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87#define JOB_START_TIMEOUT (5 * 1000)
88
89static void sig_int(int sig)
90{
91 if (threads) {
92 if (is_backend)
93 fio_server_got_signal(sig);
94 else {
95 log_info("\nfio: terminating on signal %d\n", sig);
96 log_info_flush();
97 exit_value = 128;
98 }
99
100 fio_terminate_threads(TERMINATE_ALL);
101 }
102}
103
104void sig_show_status(int sig)
105{
106 show_running_run_stats();
107}
108
109static void set_sig_handlers(void)
110{
111 struct sigaction act;
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGINT, &act, NULL);
117
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGTERM, &act, NULL);
122
123/* Windows uses SIGBREAK as a quit signal from other applications */
124#ifdef WIN32
125 memset(&act, 0, sizeof(act));
126 act.sa_handler = sig_int;
127 act.sa_flags = SA_RESTART;
128 sigaction(SIGBREAK, &act, NULL);
129#endif
130
131 memset(&act, 0, sizeof(act));
132 act.sa_handler = sig_show_status;
133 act.sa_flags = SA_RESTART;
134 sigaction(SIGUSR1, &act, NULL);
135
136 if (is_backend) {
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_int;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGPIPE, &act, NULL);
141 }
142}
143
144/*
145 * Check if we are above the minimum rate given.
146 */
147static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148 enum fio_ddir ddir)
149{
150 unsigned long long bytes = 0;
151 unsigned long iops = 0;
152 unsigned long spent;
153 unsigned long rate;
154 unsigned int ratemin = 0;
155 unsigned int rate_iops = 0;
156 unsigned int rate_iops_min = 0;
157
158 assert(ddir_rw(ddir));
159
160 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161 return false;
162
163 /*
164 * allow a 2 second settle period in the beginning
165 */
166 if (mtime_since(&td->start, now) < 2000)
167 return false;
168
169 iops += td->this_io_blocks[ddir];
170 bytes += td->this_io_bytes[ddir];
171 ratemin += td->o.ratemin[ddir];
172 rate_iops += td->o.rate_iops[ddir];
173 rate_iops_min += td->o.rate_iops_min[ddir];
174
175 /*
176 * if rate blocks is set, sample is running
177 */
178 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179 spent = mtime_since(&td->lastrate[ddir], now);
180 if (spent < td->o.ratecycle)
181 return false;
182
183 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184 /*
185 * check bandwidth specified rate
186 */
187 if (bytes < td->rate_bytes[ddir]) {
188 log_err("%s: min rate %u not met\n", td->o.name,
189 ratemin);
190 return true;
191 } else {
192 if (spent)
193 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194 else
195 rate = 0;
196
197 if (rate < ratemin ||
198 bytes < td->rate_bytes[ddir]) {
199 log_err("%s: min rate %u not met, got"
200 " %luKB/sec\n", td->o.name,
201 ratemin, rate);
202 return true;
203 }
204 }
205 } else {
206 /*
207 * checks iops specified rate
208 */
209 if (iops < rate_iops) {
210 log_err("%s: min iops rate %u not met\n",
211 td->o.name, rate_iops);
212 return true;
213 } else {
214 if (spent)
215 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216 else
217 rate = 0;
218
219 if (rate < rate_iops_min ||
220 iops < td->rate_blocks[ddir]) {
221 log_err("%s: min iops rate %u not met,"
222 " got %lu\n", td->o.name,
223 rate_iops_min, rate);
224 return true;
225 }
226 }
227 }
228 }
229
230 td->rate_bytes[ddir] = bytes;
231 td->rate_blocks[ddir] = iops;
232 memcpy(&td->lastrate[ddir], now, sizeof(*now));
233 return false;
234}
235
236static bool check_min_rate(struct thread_data *td, struct timeval *now)
237{
238 bool ret = false;
239
240 if (td->bytes_done[DDIR_READ])
241 ret |= __check_min_rate(td, now, DDIR_READ);
242 if (td->bytes_done[DDIR_WRITE])
243 ret |= __check_min_rate(td, now, DDIR_WRITE);
244 if (td->bytes_done[DDIR_TRIM])
245 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247 return ret;
248}
249
250/*
251 * When job exits, we can cancel the in-flight IO if we are using async
252 * io. Attempt to do so.
253 */
254static void cleanup_pending_aio(struct thread_data *td)
255{
256 int r;
257
258 /*
259 * get immediately available events, if any
260 */
261 r = io_u_queued_complete(td, 0);
262 if (r < 0)
263 return;
264
265 /*
266 * now cancel remaining active events
267 */
268 if (td->io_ops->cancel) {
269 struct io_u *io_u;
270 int i;
271
272 io_u_qiter(&td->io_u_all, io_u, i) {
273 if (io_u->flags & IO_U_F_FLIGHT) {
274 r = td->io_ops->cancel(td, io_u);
275 if (!r)
276 put_io_u(td, io_u);
277 }
278 }
279 }
280
281 if (td->cur_depth)
282 r = io_u_queued_complete(td, td->cur_depth);
283}
284
285/*
286 * Helper to handle the final sync of a file. Works just like the normal
287 * io path, just does everything sync.
288 */
289static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290{
291 struct io_u *io_u = __get_io_u(td);
292 int ret;
293
294 if (!io_u)
295 return true;
296
297 io_u->ddir = DDIR_SYNC;
298 io_u->file = f;
299
300 if (td_io_prep(td, io_u)) {
301 put_io_u(td, io_u);
302 return true;
303 }
304
305requeue:
306 ret = td_io_queue(td, io_u);
307 if (ret < 0) {
308 td_verror(td, io_u->error, "td_io_queue");
309 put_io_u(td, io_u);
310 return true;
311 } else if (ret == FIO_Q_QUEUED) {
312 if (io_u_queued_complete(td, 1) < 0)
313 return true;
314 } else if (ret == FIO_Q_COMPLETED) {
315 if (io_u->error) {
316 td_verror(td, io_u->error, "td_io_queue");
317 return true;
318 }
319
320 if (io_u_sync_complete(td, io_u) < 0)
321 return true;
322 } else if (ret == FIO_Q_BUSY) {
323 if (td_io_commit(td))
324 return true;
325 goto requeue;
326 }
327
328 return false;
329}
330
331static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332{
333 int ret;
334
335 if (fio_file_open(f))
336 return fio_io_sync(td, f);
337
338 if (td_io_open_file(td, f))
339 return 1;
340
341 ret = fio_io_sync(td, f);
342 td_io_close_file(td, f);
343 return ret;
344}
345
346static inline void __update_tv_cache(struct thread_data *td)
347{
348 fio_gettime(&td->tv_cache, NULL);
349}
350
351static inline void update_tv_cache(struct thread_data *td)
352{
353 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354 __update_tv_cache(td);
355}
356
357static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
358{
359 if (in_ramp_time(td))
360 return false;
361 if (!td->o.timeout)
362 return false;
363 if (utime_since(&td->epoch, t) >= td->o.timeout)
364 return true;
365
366 return false;
367}
368
369/*
370 * We need to update the runtime consistently in ms, but keep a running
371 * tally of the current elapsed time in microseconds for sub millisecond
372 * updates.
373 */
374static inline void update_runtime(struct thread_data *td,
375 unsigned long long *elapsed_us,
376 const enum fio_ddir ddir)
377{
378 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379 return;
380
381 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382 elapsed_us[ddir] += utime_since_now(&td->start);
383 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384}
385
386static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387 int *retptr)
388{
389 int ret = *retptr;
390
391 if (ret < 0 || td->error) {
392 int err = td->error;
393 enum error_type_bit eb;
394
395 if (ret < 0)
396 err = -ret;
397
398 eb = td_error_type(ddir, err);
399 if (!(td->o.continue_on_error & (1 << eb)))
400 return true;
401
402 if (td_non_fatal_error(td, eb, err)) {
403 /*
404 * Continue with the I/Os in case of
405 * a non fatal error.
406 */
407 update_error_count(td, err);
408 td_clear_error(td);
409 *retptr = 0;
410 return false;
411 } else if (td->o.fill_device && err == ENOSPC) {
412 /*
413 * We expect to hit this error if
414 * fill_device option is set.
415 */
416 td_clear_error(td);
417 fio_mark_td_terminate(td);
418 return true;
419 } else {
420 /*
421 * Stop the I/O in case of a fatal
422 * error.
423 */
424 update_error_count(td, err);
425 return true;
426 }
427 }
428
429 return false;
430}
431
432static void check_update_rusage(struct thread_data *td)
433{
434 if (td->update_rusage) {
435 td->update_rusage = 0;
436 update_rusage_stat(td);
437 fio_mutex_up(td->rusage_sem);
438 }
439}
440
441static int wait_for_completions(struct thread_data *td, struct timeval *time)
442{
443 const int full = queue_full(td);
444 int min_evts = 0;
445 int ret;
446
447 /*
448 * if the queue is full, we MUST reap at least 1 event
449 */
450 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452 min_evts = 1;
453
454 if (time && (__should_check_rate(td, DDIR_READ) ||
455 __should_check_rate(td, DDIR_WRITE) ||
456 __should_check_rate(td, DDIR_TRIM)))
457 fio_gettime(time, NULL);
458
459 do {
460 ret = io_u_queued_complete(td, min_evts);
461 if (ret < 0)
462 break;
463 } while (full && (td->cur_depth > td->o.iodepth_low));
464
465 return ret;
466}
467
468int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470 struct timeval *comp_time)
471{
472 int ret2;
473
474 switch (*ret) {
475 case FIO_Q_COMPLETED:
476 if (io_u->error) {
477 *ret = -io_u->error;
478 clear_io_u(td, io_u);
479 } else if (io_u->resid) {
480 int bytes = io_u->xfer_buflen - io_u->resid;
481 struct fio_file *f = io_u->file;
482
483 if (bytes_issued)
484 *bytes_issued += bytes;
485
486 if (!from_verify)
487 trim_io_piece(td, io_u);
488
489 /*
490 * zero read, fail
491 */
492 if (!bytes) {
493 if (!from_verify)
494 unlog_io_piece(td, io_u);
495 td_verror(td, EIO, "full resid");
496 put_io_u(td, io_u);
497 break;
498 }
499
500 io_u->xfer_buflen = io_u->resid;
501 io_u->xfer_buf += bytes;
502 io_u->offset += bytes;
503
504 if (ddir_rw(io_u->ddir))
505 td->ts.short_io_u[io_u->ddir]++;
506
507 f = io_u->file;
508 if (io_u->offset == f->real_file_size)
509 goto sync_done;
510
511 requeue_io_u(td, &io_u);
512 } else {
513sync_done:
514 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515 __should_check_rate(td, DDIR_WRITE) ||
516 __should_check_rate(td, DDIR_TRIM)))
517 fio_gettime(comp_time, NULL);
518
519 *ret = io_u_sync_complete(td, io_u);
520 if (*ret < 0)
521 break;
522 }
523 return 0;
524 case FIO_Q_QUEUED:
525 /*
526 * if the engine doesn't have a commit hook,
527 * the io_u is really queued. if it does have such
528 * a hook, it has to call io_u_queued() itself.
529 */
530 if (td->io_ops->commit == NULL)
531 io_u_queued(td, io_u);
532 if (bytes_issued)
533 *bytes_issued += io_u->xfer_buflen;
534 break;
535 case FIO_Q_BUSY:
536 if (!from_verify)
537 unlog_io_piece(td, io_u);
538 requeue_io_u(td, &io_u);
539 ret2 = td_io_commit(td);
540 if (ret2 < 0)
541 *ret = ret2;
542 break;
543 default:
544 assert(*ret < 0);
545 td_verror(td, -(*ret), "td_io_queue");
546 break;
547 }
548
549 if (break_on_this_error(td, ddir, ret))
550 return 1;
551
552 return 0;
553}
554
555static inline bool io_in_polling(struct thread_data *td)
556{
557 return !td->o.iodepth_batch_complete_min &&
558 !td->o.iodepth_batch_complete_max;
559}
560
561/*
562 * The main verify engine. Runs over the writes we previously submitted,
563 * reads the blocks back in, and checks the crc/md5 of the data.
564 */
565static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566{
567 struct fio_file *f;
568 struct io_u *io_u;
569 int ret, min_events;
570 unsigned int i;
571
572 dprint(FD_VERIFY, "starting loop\n");
573
574 /*
575 * sync io first and invalidate cache, to make sure we really
576 * read from disk.
577 */
578 for_each_file(td, f, i) {
579 if (!fio_file_open(f))
580 continue;
581 if (fio_io_sync(td, f))
582 break;
583 if (file_invalidate_cache(td, f))
584 break;
585 }
586
587 check_update_rusage(td);
588
589 if (td->error)
590 return;
591
592 td_set_runstate(td, TD_VERIFYING);
593
594 io_u = NULL;
595 while (!td->terminate) {
596 enum fio_ddir ddir;
597 int full;
598
599 update_tv_cache(td);
600 check_update_rusage(td);
601
602 if (runtime_exceeded(td, &td->tv_cache)) {
603 __update_tv_cache(td);
604 if (runtime_exceeded(td, &td->tv_cache)) {
605 fio_mark_td_terminate(td);
606 break;
607 }
608 }
609
610 if (flow_threshold_exceeded(td))
611 continue;
612
613 if (!td->o.experimental_verify) {
614 io_u = __get_io_u(td);
615 if (!io_u)
616 break;
617
618 if (get_next_verify(td, io_u)) {
619 put_io_u(td, io_u);
620 break;
621 }
622
623 if (td_io_prep(td, io_u)) {
624 put_io_u(td, io_u);
625 break;
626 }
627 } else {
628 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629 break;
630
631 while ((io_u = get_io_u(td)) != NULL) {
632 if (IS_ERR(io_u)) {
633 io_u = NULL;
634 ret = FIO_Q_BUSY;
635 goto reap;
636 }
637
638 /*
639 * We are only interested in the places where
640 * we wrote or trimmed IOs. Turn those into
641 * reads for verification purposes.
642 */
643 if (io_u->ddir == DDIR_READ) {
644 /*
645 * Pretend we issued it for rwmix
646 * accounting
647 */
648 td->io_issues[DDIR_READ]++;
649 put_io_u(td, io_u);
650 continue;
651 } else if (io_u->ddir == DDIR_TRIM) {
652 io_u->ddir = DDIR_READ;
653 io_u_set(io_u, IO_U_F_TRIMMED);
654 break;
655 } else if (io_u->ddir == DDIR_WRITE) {
656 io_u->ddir = DDIR_READ;
657 break;
658 } else {
659 put_io_u(td, io_u);
660 continue;
661 }
662 }
663
664 if (!io_u)
665 break;
666 }
667
668 if (verify_state_should_stop(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672
673 if (td->o.verify_async)
674 io_u->end_io = verify_io_u_async;
675 else
676 io_u->end_io = verify_io_u;
677
678 ddir = io_u->ddir;
679 if (!td->o.disable_slat)
680 fio_gettime(&io_u->start_time, NULL);
681
682 ret = td_io_queue(td, io_u);
683
684 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685 break;
686
687 /*
688 * if we can queue more, do so. but check if there are
689 * completed io_u's first. Note that we can get BUSY even
690 * without IO queued, if the system is resource starved.
691 */
692reap:
693 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694 if (full || io_in_polling(td))
695 ret = wait_for_completions(td, NULL);
696
697 if (ret < 0)
698 break;
699 }
700
701 check_update_rusage(td);
702
703 if (!td->error) {
704 min_events = td->cur_depth;
705
706 if (min_events)
707 ret = io_u_queued_complete(td, min_events);
708 } else
709 cleanup_pending_aio(td);
710
711 td_set_runstate(td, TD_RUNNING);
712
713 dprint(FD_VERIFY, "exiting loop\n");
714}
715
716static bool exceeds_number_ios(struct thread_data *td)
717{
718 unsigned long long number_ios;
719
720 if (!td->o.number_ios)
721 return false;
722
723 number_ios = ddir_rw_sum(td->io_blocks);
724 number_ios += td->io_u_queued + td->io_u_in_flight;
725
726 return number_ios >= (td->o.number_ios * td->loops);
727}
728
729static bool io_issue_bytes_exceeded(struct thread_data *td)
730{
731 unsigned long long bytes, limit;
732
733 if (td_rw(td))
734 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735 else if (td_write(td))
736 bytes = td->io_issue_bytes[DDIR_WRITE];
737 else if (td_read(td))
738 bytes = td->io_issue_bytes[DDIR_READ];
739 else
740 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742 if (td->o.io_limit)
743 limit = td->o.io_limit;
744 else
745 limit = td->o.size;
746
747 limit *= td->loops;
748 return bytes >= limit || exceeds_number_ios(td);
749}
750
751static bool io_complete_bytes_exceeded(struct thread_data *td)
752{
753 unsigned long long bytes, limit;
754
755 if (td_rw(td))
756 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757 else if (td_write(td))
758 bytes = td->this_io_bytes[DDIR_WRITE];
759 else if (td_read(td))
760 bytes = td->this_io_bytes[DDIR_READ];
761 else
762 bytes = td->this_io_bytes[DDIR_TRIM];
763
764 if (td->o.io_limit)
765 limit = td->o.io_limit;
766 else
767 limit = td->o.size;
768
769 limit *= td->loops;
770 return bytes >= limit || exceeds_number_ios(td);
771}
772
773/*
774 * used to calculate the next io time for rate control
775 *
776 */
777static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778{
779 uint64_t secs, remainder, bps, bytes, iops;
780
781 assert(!(td->flags & TD_F_CHILD));
782 bytes = td->rate_io_issue_bytes[ddir];
783 bps = td->rate_bps[ddir];
784
785 if (td->o.rate_process == RATE_PROCESS_POISSON) {
786 uint64_t val;
787 iops = bps / td->o.bs[ddir];
788 val = (int64_t) (1000000 / iops) *
789 -logf(__rand_0_1(&td->poisson_state));
790 if (val) {
791 dprint(FD_RATE, "poisson rate iops=%llu\n",
792 (unsigned long long) 1000000 / val);
793 }
794 td->last_usec += val;
795 return td->last_usec;
796 } else if (bps) {
797 secs = bytes / bps;
798 remainder = bytes % bps;
799 return remainder * 1000000 / bps + secs * 1000000;
800 }
801
802 return 0;
803}
804
805/*
806 * Main IO worker function. It retrieves io_u's to process and queues
807 * and reaps them, checking for rate and errors along the way.
808 *
809 * Returns number of bytes written and trimmed.
810 */
811static uint64_t do_io(struct thread_data *td)
812{
813 unsigned int i;
814 int ret = 0;
815 uint64_t total_bytes, bytes_issued = 0;
816
817 if (in_ramp_time(td))
818 td_set_runstate(td, TD_RAMP);
819 else
820 td_set_runstate(td, TD_RUNNING);
821
822 lat_target_init(td);
823
824 total_bytes = td->o.size;
825 /*
826 * Allow random overwrite workloads to write up to io_limit
827 * before starting verification phase as 'size' doesn't apply.
828 */
829 if (td_write(td) && td_random(td) && td->o.norandommap)
830 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
831 /*
832 * If verify_backlog is enabled, we'll run the verify in this
833 * handler as well. For that case, we may need up to twice the
834 * amount of bytes.
835 */
836 if (td->o.verify != VERIFY_NONE &&
837 (td_write(td) && td->o.verify_backlog))
838 total_bytes += td->o.size;
839
840 /* In trimwrite mode, each byte is trimmed and then written, so
841 * allow total_bytes to be twice as big */
842 if (td_trimwrite(td))
843 total_bytes += td->total_io_size;
844
845 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
846 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
847 td->o.time_based) {
848 struct timeval comp_time;
849 struct io_u *io_u;
850 int full;
851 enum fio_ddir ddir;
852
853 check_update_rusage(td);
854
855 if (td->terminate || td->done)
856 break;
857
858 update_tv_cache(td);
859
860 if (runtime_exceeded(td, &td->tv_cache)) {
861 __update_tv_cache(td);
862 if (runtime_exceeded(td, &td->tv_cache)) {
863 fio_mark_td_terminate(td);
864 break;
865 }
866 }
867
868 if (flow_threshold_exceeded(td))
869 continue;
870
871 if (!td->o.time_based && bytes_issued >= total_bytes)
872 break;
873
874 io_u = get_io_u(td);
875 if (IS_ERR_OR_NULL(io_u)) {
876 int err = PTR_ERR(io_u);
877
878 io_u = NULL;
879 if (err == -EBUSY) {
880 ret = FIO_Q_BUSY;
881 goto reap;
882 }
883 if (td->o.latency_target)
884 goto reap;
885 break;
886 }
887
888 ddir = io_u->ddir;
889
890 /*
891 * Add verification end_io handler if:
892 * - Asked to verify (!td_rw(td))
893 * - Or the io_u is from our verify list (mixed write/ver)
894 */
895 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
896 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
897
898 if (!td->o.verify_pattern_bytes) {
899 io_u->rand_seed = __rand(&td->verify_state);
900 if (sizeof(int) != sizeof(long *))
901 io_u->rand_seed *= __rand(&td->verify_state);
902 }
903
904 if (verify_state_should_stop(td, io_u)) {
905 put_io_u(td, io_u);
906 break;
907 }
908
909 if (td->o.verify_async)
910 io_u->end_io = verify_io_u_async;
911 else
912 io_u->end_io = verify_io_u;
913 td_set_runstate(td, TD_VERIFYING);
914 } else if (in_ramp_time(td))
915 td_set_runstate(td, TD_RAMP);
916 else
917 td_set_runstate(td, TD_RUNNING);
918
919 /*
920 * Always log IO before it's issued, so we know the specific
921 * order of it. The logged unit will track when the IO has
922 * completed.
923 */
924 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
925 td->o.do_verify &&
926 td->o.verify != VERIFY_NONE &&
927 !td->o.experimental_verify)
928 log_io_piece(td, io_u);
929
930 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
931 const unsigned long blen = io_u->xfer_buflen;
932 const enum fio_ddir ddir = acct_ddir(io_u);
933
934 if (td->error)
935 break;
936
937 ret = workqueue_enqueue(&td->io_wq, io_u);
938
939 if (ret == FIO_Q_QUEUED && ddir_rw(ddir)) {
940 td->io_issues[ddir]++;
941 td->io_issue_bytes[ddir] += blen;
942 td->rate_io_issue_bytes[ddir] += blen;
943 }
944
945 if (should_check_rate(td))
946 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
947
948 } else {
949 ret = td_io_queue(td, io_u);
950
951 if (should_check_rate(td))
952 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
953
954 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
955 break;
956
957 /*
958 * See if we need to complete some commands. Note that
959 * we can get BUSY even without IO queued, if the
960 * system is resource starved.
961 */
962reap:
963 full = queue_full(td) ||
964 (ret == FIO_Q_BUSY && td->cur_depth);
965 if (full || io_in_polling(td))
966 ret = wait_for_completions(td, &comp_time);
967 }
968 if (ret < 0)
969 break;
970 if (!ddir_rw_sum(td->bytes_done) &&
971 !(td->io_ops->flags & FIO_NOIO))
972 continue;
973
974 if (!in_ramp_time(td) && should_check_rate(td)) {
975 if (check_min_rate(td, &comp_time)) {
976 if (exitall_on_terminate)
977 fio_terminate_threads(td->groupid);
978 td_verror(td, EIO, "check_min_rate");
979 break;
980 }
981 }
982 if (!in_ramp_time(td) && td->o.latency_target)
983 lat_target_check(td);
984
985 if (td->o.thinktime) {
986 unsigned long long b;
987
988 b = ddir_rw_sum(td->io_blocks);
989 if (!(b % td->o.thinktime_blocks)) {
990 int left;
991
992 io_u_quiesce(td);
993
994 if (td->o.thinktime_spin)
995 usec_spin(td->o.thinktime_spin);
996
997 left = td->o.thinktime - td->o.thinktime_spin;
998 if (left)
999 usec_sleep(td, left);
1000 }
1001 }
1002 }
1003
1004 check_update_rusage(td);
1005
1006 if (td->trim_entries)
1007 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1008
1009 if (td->o.fill_device && td->error == ENOSPC) {
1010 td->error = 0;
1011 fio_mark_td_terminate(td);
1012 }
1013 if (!td->error) {
1014 struct fio_file *f;
1015
1016 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1017 workqueue_flush(&td->io_wq);
1018 i = 0;
1019 } else
1020 i = td->cur_depth;
1021
1022 if (i) {
1023 ret = io_u_queued_complete(td, i);
1024 if (td->o.fill_device && td->error == ENOSPC)
1025 td->error = 0;
1026 }
1027
1028 if (should_fsync(td) && td->o.end_fsync) {
1029 td_set_runstate(td, TD_FSYNCING);
1030
1031 for_each_file(td, f, i) {
1032 if (!fio_file_fsync(td, f))
1033 continue;
1034
1035 log_err("fio: end_fsync failed for file %s\n",
1036 f->file_name);
1037 }
1038 }
1039 } else
1040 cleanup_pending_aio(td);
1041
1042 /*
1043 * stop job if we failed doing any IO
1044 */
1045 if (!ddir_rw_sum(td->this_io_bytes))
1046 td->done = 1;
1047
1048 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1049}
1050
1051static void cleanup_io_u(struct thread_data *td)
1052{
1053 struct io_u *io_u;
1054
1055 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1056
1057 if (td->io_ops->io_u_free)
1058 td->io_ops->io_u_free(td, io_u);
1059
1060 fio_memfree(io_u, sizeof(*io_u));
1061 }
1062
1063 free_io_mem(td);
1064
1065 io_u_rexit(&td->io_u_requeues);
1066 io_u_qexit(&td->io_u_freelist);
1067 io_u_qexit(&td->io_u_all);
1068
1069 if (td->last_write_comp)
1070 sfree(td->last_write_comp);
1071}
1072
1073static int init_io_u(struct thread_data *td)
1074{
1075 struct io_u *io_u;
1076 unsigned int max_bs, min_write;
1077 int cl_align, i, max_units;
1078 int data_xfer = 1, err;
1079 char *p;
1080
1081 max_units = td->o.iodepth;
1082 max_bs = td_max_bs(td);
1083 min_write = td->o.min_bs[DDIR_WRITE];
1084 td->orig_buffer_size = (unsigned long long) max_bs
1085 * (unsigned long long) max_units;
1086
1087 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1088 data_xfer = 0;
1089
1090 err = 0;
1091 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1092 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1093 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1094
1095 if (err) {
1096 log_err("fio: failed setting up IO queues\n");
1097 return 1;
1098 }
1099
1100 /*
1101 * if we may later need to do address alignment, then add any
1102 * possible adjustment here so that we don't cause a buffer
1103 * overflow later. this adjustment may be too much if we get
1104 * lucky and the allocator gives us an aligned address.
1105 */
1106 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1107 (td->io_ops->flags & FIO_RAWIO))
1108 td->orig_buffer_size += page_mask + td->o.mem_align;
1109
1110 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1111 unsigned long bs;
1112
1113 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1114 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1115 }
1116
1117 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1118 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1119 return 1;
1120 }
1121
1122 if (data_xfer && allocate_io_mem(td))
1123 return 1;
1124
1125 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1126 (td->io_ops->flags & FIO_RAWIO))
1127 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1128 else
1129 p = td->orig_buffer;
1130
1131 cl_align = os_cache_line_size();
1132
1133 for (i = 0; i < max_units; i++) {
1134 void *ptr;
1135
1136 if (td->terminate)
1137 return 1;
1138
1139 ptr = fio_memalign(cl_align, sizeof(*io_u));
1140 if (!ptr) {
1141 log_err("fio: unable to allocate aligned memory\n");
1142 break;
1143 }
1144
1145 io_u = ptr;
1146 memset(io_u, 0, sizeof(*io_u));
1147 INIT_FLIST_HEAD(&io_u->verify_list);
1148 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1149
1150 if (data_xfer) {
1151 io_u->buf = p;
1152 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1153
1154 if (td_write(td))
1155 io_u_fill_buffer(td, io_u, min_write, max_bs);
1156 if (td_write(td) && td->o.verify_pattern_bytes) {
1157 /*
1158 * Fill the buffer with the pattern if we are
1159 * going to be doing writes.
1160 */
1161 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1162 }
1163 }
1164
1165 io_u->index = i;
1166 io_u->flags = IO_U_F_FREE;
1167 io_u_qpush(&td->io_u_freelist, io_u);
1168
1169 /*
1170 * io_u never leaves this stack, used for iteration of all
1171 * io_u buffers.
1172 */
1173 io_u_qpush(&td->io_u_all, io_u);
1174
1175 if (td->io_ops->io_u_init) {
1176 int ret = td->io_ops->io_u_init(td, io_u);
1177
1178 if (ret) {
1179 log_err("fio: failed to init engine data: %d\n", ret);
1180 return 1;
1181 }
1182 }
1183
1184 p += max_bs;
1185 }
1186
1187 if (td->o.verify != VERIFY_NONE) {
1188 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1189 if (!td->last_write_comp) {
1190 log_err("fio: failed to alloc write comp data\n");
1191 return 1;
1192 }
1193 }
1194
1195 return 0;
1196}
1197
1198static int switch_ioscheduler(struct thread_data *td)
1199{
1200 char tmp[256], tmp2[128];
1201 FILE *f;
1202 int ret;
1203
1204 if (td->io_ops->flags & FIO_DISKLESSIO)
1205 return 0;
1206
1207 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1208
1209 f = fopen(tmp, "r+");
1210 if (!f) {
1211 if (errno == ENOENT) {
1212 log_err("fio: os or kernel doesn't support IO scheduler"
1213 " switching\n");
1214 return 0;
1215 }
1216 td_verror(td, errno, "fopen iosched");
1217 return 1;
1218 }
1219
1220 /*
1221 * Set io scheduler.
1222 */
1223 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1224 if (ferror(f) || ret != 1) {
1225 td_verror(td, errno, "fwrite");
1226 fclose(f);
1227 return 1;
1228 }
1229
1230 rewind(f);
1231
1232 /*
1233 * Read back and check that the selected scheduler is now the default.
1234 */
1235 memset(tmp, 0, sizeof(tmp));
1236 ret = fread(tmp, sizeof(tmp), 1, f);
1237 if (ferror(f) || ret < 0) {
1238 td_verror(td, errno, "fread");
1239 fclose(f);
1240 return 1;
1241 }
1242 /*
1243 * either a list of io schedulers or "none\n" is expected.
1244 */
1245 tmp[strlen(tmp) - 1] = '\0';
1246
1247
1248 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1249 if (!strstr(tmp, tmp2)) {
1250 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1251 td_verror(td, EINVAL, "iosched_switch");
1252 fclose(f);
1253 return 1;
1254 }
1255
1256 fclose(f);
1257 return 0;
1258}
1259
1260static bool keep_running(struct thread_data *td)
1261{
1262 unsigned long long limit;
1263
1264 if (td->done)
1265 return false;
1266 if (td->o.time_based)
1267 return true;
1268 if (td->o.loops) {
1269 td->o.loops--;
1270 return true;
1271 }
1272 if (exceeds_number_ios(td))
1273 return false;
1274
1275 if (td->o.io_limit)
1276 limit = td->o.io_limit;
1277 else
1278 limit = td->o.size;
1279
1280 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1281 uint64_t diff;
1282
1283 /*
1284 * If the difference is less than the minimum IO size, we
1285 * are done.
1286 */
1287 diff = limit - ddir_rw_sum(td->io_bytes);
1288 if (diff < td_max_bs(td))
1289 return false;
1290
1291 if (fio_files_done(td))
1292 return false;
1293
1294 return true;
1295 }
1296
1297 return false;
1298}
1299
1300static int exec_string(struct thread_options *o, const char *string, const char *mode)
1301{
1302 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1303 int ret;
1304 char *str;
1305
1306 str = malloc(newlen);
1307 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1308
1309 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1310 ret = system(str);
1311 if (ret == -1)
1312 log_err("fio: exec of cmd <%s> failed\n", str);
1313
1314 free(str);
1315 return ret;
1316}
1317
1318/*
1319 * Dry run to compute correct state of numberio for verification.
1320 */
1321static uint64_t do_dry_run(struct thread_data *td)
1322{
1323 td_set_runstate(td, TD_RUNNING);
1324
1325 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1326 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1327 struct io_u *io_u;
1328 int ret;
1329
1330 if (td->terminate || td->done)
1331 break;
1332
1333 io_u = get_io_u(td);
1334 if (!io_u)
1335 break;
1336
1337 io_u_set(io_u, IO_U_F_FLIGHT);
1338 io_u->error = 0;
1339 io_u->resid = 0;
1340 if (ddir_rw(acct_ddir(io_u)))
1341 td->io_issues[acct_ddir(io_u)]++;
1342 if (ddir_rw(io_u->ddir)) {
1343 io_u_mark_depth(td, 1);
1344 td->ts.total_io_u[io_u->ddir]++;
1345 }
1346
1347 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1348 td->o.do_verify &&
1349 td->o.verify != VERIFY_NONE &&
1350 !td->o.experimental_verify)
1351 log_io_piece(td, io_u);
1352
1353 ret = io_u_sync_complete(td, io_u);
1354 (void) ret;
1355 }
1356
1357 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1358}
1359
1360static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1361{
1362 const enum fio_ddir ddir = io_u->ddir;
1363 int ret;
1364
1365 dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1366
1367 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1368
1369 td->cur_depth++;
1370
1371 do {
1372 ret = td_io_queue(td, io_u);
1373 if (ret != FIO_Q_BUSY)
1374 break;
1375 ret = io_u_queued_complete(td, 1);
1376 if (ret > 0)
1377 td->cur_depth -= ret;
1378 io_u_clear(io_u, IO_U_F_FLIGHT);
1379 } while (1);
1380
1381 dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1382
1383 io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1384
1385 if (ret == FIO_Q_COMPLETED)
1386 td->cur_depth--;
1387 else if (ret == FIO_Q_QUEUED) {
1388 unsigned int min_evts;
1389
1390 if (td->o.iodepth == 1)
1391 min_evts = 1;
1392 else
1393 min_evts = 0;
1394
1395 ret = io_u_queued_complete(td, min_evts);
1396 if (ret > 0)
1397 td->cur_depth -= ret;
1398 } else if (ret == FIO_Q_BUSY) {
1399 ret = io_u_queued_complete(td, td->cur_depth);
1400 if (ret > 0)
1401 td->cur_depth -= ret;
1402 }
1403}
1404
1405/*
1406 * Entry point for the thread based jobs. The process based jobs end up
1407 * here as well, after a little setup.
1408 */
1409static void *thread_main(void *data)
1410{
1411 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1412 struct thread_data *td = data;
1413 struct thread_options *o = &td->o;
1414 pthread_condattr_t attr;
1415 int clear_state;
1416 int ret;
1417
1418 if (!o->use_thread) {
1419 setsid();
1420 td->pid = getpid();
1421 } else
1422 td->pid = gettid();
1423
1424 fio_local_clock_init(o->use_thread);
1425
1426 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1427
1428 if (is_backend)
1429 fio_server_send_start(td);
1430
1431 INIT_FLIST_HEAD(&td->io_log_list);
1432 INIT_FLIST_HEAD(&td->io_hist_list);
1433 INIT_FLIST_HEAD(&td->verify_list);
1434 INIT_FLIST_HEAD(&td->trim_list);
1435 INIT_FLIST_HEAD(&td->next_rand_list);
1436 pthread_mutex_init(&td->io_u_lock, NULL);
1437 td->io_hist_tree = RB_ROOT;
1438
1439 pthread_condattr_init(&attr);
1440 pthread_cond_init(&td->verify_cond, &attr);
1441 pthread_cond_init(&td->free_cond, &attr);
1442
1443 td_set_runstate(td, TD_INITIALIZED);
1444 dprint(FD_MUTEX, "up startup_mutex\n");
1445 fio_mutex_up(startup_mutex);
1446 dprint(FD_MUTEX, "wait on td->mutex\n");
1447 fio_mutex_down(td->mutex);
1448 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1449
1450 /*
1451 * A new gid requires privilege, so we need to do this before setting
1452 * the uid.
1453 */
1454 if (o->gid != -1U && setgid(o->gid)) {
1455 td_verror(td, errno, "setgid");
1456 goto err;
1457 }
1458 if (o->uid != -1U && setuid(o->uid)) {
1459 td_verror(td, errno, "setuid");
1460 goto err;
1461 }
1462
1463 /*
1464 * If we have a gettimeofday() thread, make sure we exclude that
1465 * thread from this job
1466 */
1467 if (o->gtod_cpu)
1468 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1469
1470 /*
1471 * Set affinity first, in case it has an impact on the memory
1472 * allocations.
1473 */
1474 if (fio_option_is_set(o, cpumask)) {
1475 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1476 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1477 if (!ret) {
1478 log_err("fio: no CPUs set\n");
1479 log_err("fio: Try increasing number of available CPUs\n");
1480 td_verror(td, EINVAL, "cpus_split");
1481 goto err;
1482 }
1483 }
1484 ret = fio_setaffinity(td->pid, o->cpumask);
1485 if (ret == -1) {
1486 td_verror(td, errno, "cpu_set_affinity");
1487 goto err;
1488 }
1489 }
1490
1491#ifdef CONFIG_LIBNUMA
1492 /* numa node setup */
1493 if (fio_option_is_set(o, numa_cpunodes) ||
1494 fio_option_is_set(o, numa_memnodes)) {
1495 struct bitmask *mask;
1496
1497 if (numa_available() < 0) {
1498 td_verror(td, errno, "Does not support NUMA API\n");
1499 goto err;
1500 }
1501
1502 if (fio_option_is_set(o, numa_cpunodes)) {
1503 mask = numa_parse_nodestring(o->numa_cpunodes);
1504 ret = numa_run_on_node_mask(mask);
1505 numa_free_nodemask(mask);
1506 if (ret == -1) {
1507 td_verror(td, errno, \
1508 "numa_run_on_node_mask failed\n");
1509 goto err;
1510 }
1511 }
1512
1513 if (fio_option_is_set(o, numa_memnodes)) {
1514 mask = NULL;
1515 if (o->numa_memnodes)
1516 mask = numa_parse_nodestring(o->numa_memnodes);
1517
1518 switch (o->numa_mem_mode) {
1519 case MPOL_INTERLEAVE:
1520 numa_set_interleave_mask(mask);
1521 break;
1522 case MPOL_BIND:
1523 numa_set_membind(mask);
1524 break;
1525 case MPOL_LOCAL:
1526 numa_set_localalloc();
1527 break;
1528 case MPOL_PREFERRED:
1529 numa_set_preferred(o->numa_mem_prefer_node);
1530 break;
1531 case MPOL_DEFAULT:
1532 default:
1533 break;
1534 }
1535
1536 if (mask)
1537 numa_free_nodemask(mask);
1538
1539 }
1540 }
1541#endif
1542
1543 if (fio_pin_memory(td))
1544 goto err;
1545
1546 /*
1547 * May alter parameters that init_io_u() will use, so we need to
1548 * do this first.
1549 */
1550 if (init_iolog(td))
1551 goto err;
1552
1553 if (init_io_u(td))
1554 goto err;
1555
1556 if (o->verify_async && verify_async_init(td))
1557 goto err;
1558
1559 if (fio_option_is_set(o, ioprio) ||
1560 fio_option_is_set(o, ioprio_class)) {
1561 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1562 if (ret == -1) {
1563 td_verror(td, errno, "ioprio_set");
1564 goto err;
1565 }
1566 }
1567
1568 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1569 goto err;
1570
1571 errno = 0;
1572 if (nice(o->nice) == -1 && errno != 0) {
1573 td_verror(td, errno, "nice");
1574 goto err;
1575 }
1576
1577 if (o->ioscheduler && switch_ioscheduler(td))
1578 goto err;
1579
1580 if (!o->create_serialize && setup_files(td))
1581 goto err;
1582
1583 if (td_io_init(td))
1584 goto err;
1585
1586 if (init_random_map(td))
1587 goto err;
1588
1589 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1590 goto err;
1591
1592 if (o->pre_read) {
1593 if (pre_read_files(td) < 0)
1594 goto err;
1595 }
1596
1597 if (td->flags & TD_F_COMPRESS_LOG)
1598 tp_init(&td->tp_data);
1599
1600 fio_verify_init(td);
1601
1602 if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1603 workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1604 goto err;
1605
1606 fio_gettime(&td->epoch, NULL);
1607 fio_getrusage(&td->ru_start);
1608 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1609 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1610
1611 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1612 o->ratemin[DDIR_TRIM]) {
1613 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1614 sizeof(td->bw_sample_time));
1615 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1616 sizeof(td->bw_sample_time));
1617 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1618 sizeof(td->bw_sample_time));
1619 }
1620
1621 clear_state = 0;
1622 while (keep_running(td)) {
1623 uint64_t verify_bytes;
1624
1625 fio_gettime(&td->start, NULL);
1626 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1627
1628 if (clear_state)
1629 clear_io_state(td, 0);
1630
1631 prune_io_piece_log(td);
1632
1633 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1634 verify_bytes = do_dry_run(td);
1635 else
1636 verify_bytes = do_io(td);
1637
1638 clear_state = 1;
1639
1640 /*
1641 * Make sure we've successfully updated the rusage stats
1642 * before waiting on the stat mutex. Otherwise we could have
1643 * the stat thread holding stat mutex and waiting for
1644 * the rusage_sem, which would never get upped because
1645 * this thread is waiting for the stat mutex.
1646 */
1647 check_update_rusage(td);
1648
1649 fio_mutex_down(stat_mutex);
1650 if (td_read(td) && td->io_bytes[DDIR_READ])
1651 update_runtime(td, elapsed_us, DDIR_READ);
1652 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1653 update_runtime(td, elapsed_us, DDIR_WRITE);
1654 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1655 update_runtime(td, elapsed_us, DDIR_TRIM);
1656 fio_gettime(&td->start, NULL);
1657 fio_mutex_up(stat_mutex);
1658
1659 if (td->error || td->terminate)
1660 break;
1661
1662 if (!o->do_verify ||
1663 o->verify == VERIFY_NONE ||
1664 (td->io_ops->flags & FIO_UNIDIR))
1665 continue;
1666
1667 clear_io_state(td, 0);
1668
1669 fio_gettime(&td->start, NULL);
1670
1671 do_verify(td, verify_bytes);
1672
1673 /*
1674 * See comment further up for why this is done here.
1675 */
1676 check_update_rusage(td);
1677
1678 fio_mutex_down(stat_mutex);
1679 update_runtime(td, elapsed_us, DDIR_READ);
1680 fio_gettime(&td->start, NULL);
1681 fio_mutex_up(stat_mutex);
1682
1683 if (td->error || td->terminate)
1684 break;
1685 }
1686
1687 update_rusage_stat(td);
1688 td->ts.total_run_time = mtime_since_now(&td->epoch);
1689 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1690 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1691 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1692
1693 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1694 (td->o.verify != VERIFY_NONE && td_write(td)))
1695 verify_save_state(td->thread_number);
1696
1697 fio_unpin_memory(td);
1698
1699 fio_writeout_logs(td);
1700
1701 if (o->io_submit_mode == IO_MODE_OFFLOAD)
1702 workqueue_exit(&td->io_wq);
1703
1704 if (td->flags & TD_F_COMPRESS_LOG)
1705 tp_exit(&td->tp_data);
1706
1707 if (o->exec_postrun)
1708 exec_string(o, o->exec_postrun, (const char *)"postrun");
1709
1710 if (exitall_on_terminate)
1711 fio_terminate_threads(td->groupid);
1712
1713err:
1714 if (td->error)
1715 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1716 td->verror);
1717
1718 if (o->verify_async)
1719 verify_async_exit(td);
1720
1721 close_and_free_files(td);
1722 cleanup_io_u(td);
1723 close_ioengine(td);
1724 cgroup_shutdown(td, &cgroup_mnt);
1725 verify_free_state(td);
1726
1727 if (fio_option_is_set(o, cpumask)) {
1728 ret = fio_cpuset_exit(&o->cpumask);
1729 if (ret)
1730 td_verror(td, ret, "fio_cpuset_exit");
1731 }
1732
1733 /*
1734 * do this very late, it will log file closing as well
1735 */
1736 if (o->write_iolog_file)
1737 write_iolog_close(td);
1738
1739 fio_mutex_remove(td->mutex);
1740 td->mutex = NULL;
1741
1742 td_set_runstate(td, TD_EXITED);
1743
1744 /*
1745 * Do this last after setting our runstate to exited, so we
1746 * know that the stat thread is signaled.
1747 */
1748 check_update_rusage(td);
1749
1750 return (void *) (uintptr_t) td->error;
1751}
1752
1753
1754/*
1755 * We cannot pass the td data into a forked process, so attach the td and
1756 * pass it to the thread worker.
1757 */
1758static int fork_main(int shmid, int offset)
1759{
1760 struct thread_data *td;
1761 void *data, *ret;
1762
1763#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1764 data = shmat(shmid, NULL, 0);
1765 if (data == (void *) -1) {
1766 int __err = errno;
1767
1768 perror("shmat");
1769 return __err;
1770 }
1771#else
1772 /*
1773 * HP-UX inherits shm mappings?
1774 */
1775 data = threads;
1776#endif
1777
1778 td = data + offset * sizeof(struct thread_data);
1779 ret = thread_main(td);
1780 shmdt(data);
1781 return (int) (uintptr_t) ret;
1782}
1783
1784static void dump_td_info(struct thread_data *td)
1785{
1786 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1787 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1788 (unsigned long) time_since_now(&td->terminate_time));
1789}
1790
1791/*
1792 * Run over the job map and reap the threads that have exited, if any.
1793 */
1794static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1795 unsigned int *m_rate)
1796{
1797 struct thread_data *td;
1798 unsigned int cputhreads, realthreads, pending;
1799 int i, status, ret;
1800
1801 /*
1802 * reap exited threads (TD_EXITED -> TD_REAPED)
1803 */
1804 realthreads = pending = cputhreads = 0;
1805 for_each_td(td, i) {
1806 int flags = 0;
1807
1808 /*
1809 * ->io_ops is NULL for a thread that has closed its
1810 * io engine
1811 */
1812 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1813 cputhreads++;
1814 else
1815 realthreads++;
1816
1817 if (!td->pid) {
1818 pending++;
1819 continue;
1820 }
1821 if (td->runstate == TD_REAPED)
1822 continue;
1823 if (td->o.use_thread) {
1824 if (td->runstate == TD_EXITED) {
1825 td_set_runstate(td, TD_REAPED);
1826 goto reaped;
1827 }
1828 continue;
1829 }
1830
1831 flags = WNOHANG;
1832 if (td->runstate == TD_EXITED)
1833 flags = 0;
1834
1835 /*
1836 * check if someone quit or got killed in an unusual way
1837 */
1838 ret = waitpid(td->pid, &status, flags);
1839 if (ret < 0) {
1840 if (errno == ECHILD) {
1841 log_err("fio: pid=%d disappeared %d\n",
1842 (int) td->pid, td->runstate);
1843 td->sig = ECHILD;
1844 td_set_runstate(td, TD_REAPED);
1845 goto reaped;
1846 }
1847 perror("waitpid");
1848 } else if (ret == td->pid) {
1849 if (WIFSIGNALED(status)) {
1850 int sig = WTERMSIG(status);
1851
1852 if (sig != SIGTERM && sig != SIGUSR2)
1853 log_err("fio: pid=%d, got signal=%d\n",
1854 (int) td->pid, sig);
1855 td->sig = sig;
1856 td_set_runstate(td, TD_REAPED);
1857 goto reaped;
1858 }
1859 if (WIFEXITED(status)) {
1860 if (WEXITSTATUS(status) && !td->error)
1861 td->error = WEXITSTATUS(status);
1862
1863 td_set_runstate(td, TD_REAPED);
1864 goto reaped;
1865 }
1866 }
1867
1868 /*
1869 * If the job is stuck, do a forceful timeout of it and
1870 * move on.
1871 */
1872 if (td->terminate &&
1873 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1874 dump_td_info(td);
1875 td_set_runstate(td, TD_REAPED);
1876 goto reaped;
1877 }
1878
1879 /*
1880 * thread is not dead, continue
1881 */
1882 pending++;
1883 continue;
1884reaped:
1885 (*nr_running)--;
1886 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1887 (*t_rate) -= ddir_rw_sum(td->o.rate);
1888 if (!td->pid)
1889 pending--;
1890
1891 if (td->error)
1892 exit_value++;
1893
1894 done_secs += mtime_since_now(&td->epoch) / 1000;
1895 profile_td_exit(td);
1896 }
1897
1898 if (*nr_running == cputhreads && !pending && realthreads)
1899 fio_terminate_threads(TERMINATE_ALL);
1900}
1901
1902static bool __check_trigger_file(void)
1903{
1904 struct stat sb;
1905
1906 if (!trigger_file)
1907 return false;
1908
1909 if (stat(trigger_file, &sb))
1910 return false;
1911
1912 if (unlink(trigger_file) < 0)
1913 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1914 strerror(errno));
1915
1916 return true;
1917}
1918
1919static bool trigger_timedout(void)
1920{
1921 if (trigger_timeout)
1922 return time_since_genesis() >= trigger_timeout;
1923
1924 return false;
1925}
1926
1927void exec_trigger(const char *cmd)
1928{
1929 int ret;
1930
1931 if (!cmd)
1932 return;
1933
1934 ret = system(cmd);
1935 if (ret == -1)
1936 log_err("fio: failed executing %s trigger\n", cmd);
1937}
1938
1939void check_trigger_file(void)
1940{
1941 if (__check_trigger_file() || trigger_timedout()) {
1942 if (nr_clients)
1943 fio_clients_send_trigger(trigger_remote_cmd);
1944 else {
1945 verify_save_state(IO_LIST_ALL);
1946 fio_terminate_threads(TERMINATE_ALL);
1947 exec_trigger(trigger_cmd);
1948 }
1949 }
1950}
1951
1952static int fio_verify_load_state(struct thread_data *td)
1953{
1954 int ret;
1955
1956 if (!td->o.verify_state)
1957 return 0;
1958
1959 if (is_backend) {
1960 void *data;
1961 int ver;
1962
1963 ret = fio_server_get_verify_state(td->o.name,
1964 td->thread_number - 1, &data, &ver);
1965 if (!ret)
1966 verify_convert_assign_state(td, data, ver);
1967 } else
1968 ret = verify_load_state(td, "local");
1969
1970 return ret;
1971}
1972
1973static void do_usleep(unsigned int usecs)
1974{
1975 check_for_running_stats();
1976 check_trigger_file();
1977 usleep(usecs);
1978}
1979
1980static bool check_mount_writes(struct thread_data *td)
1981{
1982 struct fio_file *f;
1983 unsigned int i;
1984
1985 if (!td_write(td) || td->o.allow_mounted_write)
1986 return false;
1987
1988 for_each_file(td, f, i) {
1989 if (f->filetype != FIO_TYPE_BD)
1990 continue;
1991 if (device_is_mounted(f->file_name))
1992 goto mounted;
1993 }
1994
1995 return false;
1996mounted:
1997 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1998 return true;
1999}
2000
2001/*
2002 * Main function for kicking off and reaping jobs, as needed.
2003 */
2004static void run_threads(void)
2005{
2006 struct thread_data *td;
2007 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2008 uint64_t spent;
2009
2010 if (fio_gtod_offload && fio_start_gtod_thread())
2011 return;
2012
2013 fio_idle_prof_init();
2014
2015 set_sig_handlers();
2016
2017 nr_thread = nr_process = 0;
2018 for_each_td(td, i) {
2019 if (check_mount_writes(td))
2020 return;
2021 if (td->o.use_thread)
2022 nr_thread++;
2023 else
2024 nr_process++;
2025 }
2026
2027 if (output_format & FIO_OUTPUT_NORMAL) {
2028 log_info("Starting ");
2029 if (nr_thread)
2030 log_info("%d thread%s", nr_thread,
2031 nr_thread > 1 ? "s" : "");
2032 if (nr_process) {
2033 if (nr_thread)
2034 log_info(" and ");
2035 log_info("%d process%s", nr_process,
2036 nr_process > 1 ? "es" : "");
2037 }
2038 log_info("\n");
2039 log_info_flush();
2040 }
2041
2042 todo = thread_number;
2043 nr_running = 0;
2044 nr_started = 0;
2045 m_rate = t_rate = 0;
2046
2047 for_each_td(td, i) {
2048 print_status_init(td->thread_number - 1);
2049
2050 if (!td->o.create_serialize)
2051 continue;
2052
2053 if (fio_verify_load_state(td))
2054 goto reap;
2055
2056 /*
2057 * do file setup here so it happens sequentially,
2058 * we don't want X number of threads getting their
2059 * client data interspersed on disk
2060 */
2061 if (setup_files(td)) {
2062reap:
2063 exit_value++;
2064 if (td->error)
2065 log_err("fio: pid=%d, err=%d/%s\n",
2066 (int) td->pid, td->error, td->verror);
2067 td_set_runstate(td, TD_REAPED);
2068 todo--;
2069 } else {
2070 struct fio_file *f;
2071 unsigned int j;
2072
2073 /*
2074 * for sharing to work, each job must always open
2075 * its own files. so close them, if we opened them
2076 * for creation
2077 */
2078 for_each_file(td, f, j) {
2079 if (fio_file_open(f))
2080 td_io_close_file(td, f);
2081 }
2082 }
2083 }
2084
2085 /* start idle threads before io threads start to run */
2086 fio_idle_prof_start();
2087
2088 set_genesis_time();
2089
2090 while (todo) {
2091 struct thread_data *map[REAL_MAX_JOBS];
2092 struct timeval this_start;
2093 int this_jobs = 0, left;
2094
2095 /*
2096 * create threads (TD_NOT_CREATED -> TD_CREATED)
2097 */
2098 for_each_td(td, i) {
2099 if (td->runstate != TD_NOT_CREATED)
2100 continue;
2101
2102 /*
2103 * never got a chance to start, killed by other
2104 * thread for some reason
2105 */
2106 if (td->terminate) {
2107 todo--;
2108 continue;
2109 }
2110
2111 if (td->o.start_delay) {
2112 spent = utime_since_genesis();
2113
2114 if (td->o.start_delay > spent)
2115 continue;
2116 }
2117
2118 if (td->o.stonewall && (nr_started || nr_running)) {
2119 dprint(FD_PROCESS, "%s: stonewall wait\n",
2120 td->o.name);
2121 break;
2122 }
2123
2124 init_disk_util(td);
2125
2126 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2127 td->update_rusage = 0;
2128
2129 /*
2130 * Set state to created. Thread will transition
2131 * to TD_INITIALIZED when it's done setting up.
2132 */
2133 td_set_runstate(td, TD_CREATED);
2134 map[this_jobs++] = td;
2135 nr_started++;
2136
2137 if (td->o.use_thread) {
2138 int ret;
2139
2140 dprint(FD_PROCESS, "will pthread_create\n");
2141 ret = pthread_create(&td->thread, NULL,
2142 thread_main, td);
2143 if (ret) {
2144 log_err("pthread_create: %s\n",
2145 strerror(ret));
2146 nr_started--;
2147 break;
2148 }
2149 ret = pthread_detach(td->thread);
2150 if (ret)
2151 log_err("pthread_detach: %s",
2152 strerror(ret));
2153 } else {
2154 pid_t pid;
2155 dprint(FD_PROCESS, "will fork\n");
2156 pid = fork();
2157 if (!pid) {
2158 int ret = fork_main(shm_id, i);
2159
2160 _exit(ret);
2161 } else if (i == fio_debug_jobno)
2162 *fio_debug_jobp = pid;
2163 }
2164 dprint(FD_MUTEX, "wait on startup_mutex\n");
2165 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2166 log_err("fio: job startup hung? exiting.\n");
2167 fio_terminate_threads(TERMINATE_ALL);
2168 fio_abort = 1;
2169 nr_started--;
2170 break;
2171 }
2172 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2173 }
2174
2175 /*
2176 * Wait for the started threads to transition to
2177 * TD_INITIALIZED.
2178 */
2179 fio_gettime(&this_start, NULL);
2180 left = this_jobs;
2181 while (left && !fio_abort) {
2182 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2183 break;
2184
2185 do_usleep(100000);
2186
2187 for (i = 0; i < this_jobs; i++) {
2188 td = map[i];
2189 if (!td)
2190 continue;
2191 if (td->runstate == TD_INITIALIZED) {
2192 map[i] = NULL;
2193 left--;
2194 } else if (td->runstate >= TD_EXITED) {
2195 map[i] = NULL;
2196 left--;
2197 todo--;
2198 nr_running++; /* work-around... */
2199 }
2200 }
2201 }
2202
2203 if (left) {
2204 log_err("fio: %d job%s failed to start\n", left,
2205 left > 1 ? "s" : "");
2206 for (i = 0; i < this_jobs; i++) {
2207 td = map[i];
2208 if (!td)
2209 continue;
2210 kill(td->pid, SIGTERM);
2211 }
2212 break;
2213 }
2214
2215 /*
2216 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2217 */
2218 for_each_td(td, i) {
2219 if (td->runstate != TD_INITIALIZED)
2220 continue;
2221
2222 if (in_ramp_time(td))
2223 td_set_runstate(td, TD_RAMP);
2224 else
2225 td_set_runstate(td, TD_RUNNING);
2226 nr_running++;
2227 nr_started--;
2228 m_rate += ddir_rw_sum(td->o.ratemin);
2229 t_rate += ddir_rw_sum(td->o.rate);
2230 todo--;
2231 fio_mutex_up(td->mutex);
2232 }
2233
2234 reap_threads(&nr_running, &t_rate, &m_rate);
2235
2236 if (todo)
2237 do_usleep(100000);
2238 }
2239
2240 while (nr_running) {
2241 reap_threads(&nr_running, &t_rate, &m_rate);
2242 do_usleep(10000);
2243 }
2244
2245 fio_idle_prof_stop();
2246
2247 update_io_ticks();
2248}
2249
2250static void wait_for_helper_thread_exit(void)
2251{
2252 void *ret;
2253
2254 helper_exit = 1;
2255 pthread_cond_signal(&helper_cond);
2256 pthread_join(helper_thread, &ret);
2257}
2258
2259static void free_disk_util(void)
2260{
2261 disk_util_prune_entries();
2262
2263 pthread_cond_destroy(&helper_cond);
2264}
2265
2266static void *helper_thread_main(void *data)
2267{
2268 int ret = 0;
2269
2270 fio_mutex_up(startup_mutex);
2271
2272 while (!ret) {
2273 uint64_t sec = DISK_UTIL_MSEC / 1000;
2274 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2275 struct timespec ts;
2276 struct timeval tv;
2277
2278 gettimeofday(&tv, NULL);
2279 ts.tv_sec = tv.tv_sec + sec;
2280 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2281
2282 if (ts.tv_nsec >= 1000000000ULL) {
2283 ts.tv_nsec -= 1000000000ULL;
2284 ts.tv_sec++;
2285 }
2286
2287 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2288
2289 ret = update_io_ticks();
2290
2291 if (helper_do_stat) {
2292 helper_do_stat = 0;
2293 __show_running_run_stats();
2294 }
2295
2296 if (!is_backend)
2297 print_thread_status();
2298 }
2299
2300 return NULL;
2301}
2302
2303static int create_helper_thread(void)
2304{
2305 int ret;
2306
2307 setup_disk_util();
2308
2309 pthread_cond_init(&helper_cond, NULL);
2310 pthread_mutex_init(&helper_lock, NULL);
2311
2312 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2313 if (ret) {
2314 log_err("Can't create helper thread: %s\n", strerror(ret));
2315 return 1;
2316 }
2317
2318 dprint(FD_MUTEX, "wait on startup_mutex\n");
2319 fio_mutex_down(startup_mutex);
2320 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2321 return 0;
2322}
2323
2324int fio_backend(void)
2325{
2326 struct thread_data *td;
2327 int i;
2328
2329 if (exec_profile) {
2330 if (load_profile(exec_profile))
2331 return 1;
2332 free(exec_profile);
2333 exec_profile = NULL;
2334 }
2335 if (!thread_number)
2336 return 0;
2337
2338 if (write_bw_log) {
2339 struct log_params p = {
2340 .log_type = IO_LOG_TYPE_BW,
2341 };
2342
2343 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2344 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2345 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2346 }
2347
2348 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2349 if (startup_mutex == NULL)
2350 return 1;
2351
2352 set_genesis_time();
2353 stat_init();
2354 create_helper_thread();
2355
2356 cgroup_list = smalloc(sizeof(*cgroup_list));
2357 INIT_FLIST_HEAD(cgroup_list);
2358
2359 run_threads();
2360
2361 wait_for_helper_thread_exit();
2362
2363 if (!fio_abort) {
2364 __show_run_stats();
2365 if (write_bw_log) {
2366 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2367 struct io_log *log = agg_io_log[i];
2368
2369 flush_log(log, 0);
2370 free_log(log);
2371 }
2372 }
2373 }
2374
2375 for_each_td(td, i) {
2376 fio_options_free(td);
2377 if (td->rusage_sem) {
2378 fio_mutex_remove(td->rusage_sem);
2379 td->rusage_sem = NULL;
2380 }
2381 }
2382
2383 free_disk_util();
2384 cgroup_kill(cgroup_list);
2385 sfree(cgroup_list);
2386 sfree(cgroup_mnt);
2387
2388 fio_mutex_remove(startup_mutex);
2389 stat_exit();
2390 return exit_value;
2391}