backend: cleanup overlap submission logic
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 f = io_u->file;
503 if (io_u->offset == f->real_file_size)
504 goto sync_done;
505
506 requeue_io_u(td, &io_u);
507 } else {
508sync_done:
509 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510 __should_check_rate(td, DDIR_WRITE) ||
511 __should_check_rate(td, DDIR_TRIM)))
512 fio_gettime(comp_time, NULL);
513
514 *ret = io_u_sync_complete(td, io_u);
515 if (*ret < 0)
516 break;
517 }
518
519 if (td->flags & TD_F_REGROW_LOGS)
520 regrow_logs(td);
521
522 /*
523 * when doing I/O (not when verifying),
524 * check for any errors that are to be ignored
525 */
526 if (!from_verify)
527 break;
528
529 return 0;
530 case FIO_Q_QUEUED:
531 /*
532 * if the engine doesn't have a commit hook,
533 * the io_u is really queued. if it does have such
534 * a hook, it has to call io_u_queued() itself.
535 */
536 if (td->io_ops->commit == NULL)
537 io_u_queued(td, io_u);
538 if (bytes_issued)
539 *bytes_issued += io_u->xfer_buflen;
540 break;
541 case FIO_Q_BUSY:
542 if (!from_verify)
543 unlog_io_piece(td, io_u);
544 requeue_io_u(td, &io_u);
545 ret2 = td_io_commit(td);
546 if (ret2 < 0)
547 *ret = ret2;
548 break;
549 default:
550 assert(*ret < 0);
551 td_verror(td, -(*ret), "td_io_queue");
552 break;
553 }
554
555 if (break_on_this_error(td, ddir, ret))
556 return 1;
557
558 return 0;
559}
560
561static inline bool io_in_polling(struct thread_data *td)
562{
563 return !td->o.iodepth_batch_complete_min &&
564 !td->o.iodepth_batch_complete_max;
565}
566/*
567 * Unlinks files from thread data fio_file structure
568 */
569static int unlink_all_files(struct thread_data *td)
570{
571 struct fio_file *f;
572 unsigned int i;
573 int ret = 0;
574
575 for_each_file(td, f, i) {
576 if (f->filetype != FIO_TYPE_FILE)
577 continue;
578 ret = td_io_unlink_file(td, f);
579 if (ret)
580 break;
581 }
582
583 if (ret)
584 td_verror(td, ret, "unlink_all_files");
585
586 return ret;
587}
588
589/*
590 * Check if io_u will overlap an in-flight IO in the queue
591 */
592static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
593{
594 bool overlap;
595 struct io_u *check_io_u;
596 unsigned long long x1, x2, y1, y2;
597 int i;
598
599 x1 = io_u->offset;
600 x2 = io_u->offset + io_u->buflen;
601 overlap = false;
602 io_u_qiter(q, check_io_u, i) {
603 if (check_io_u->flags & IO_U_F_FLIGHT) {
604 y1 = check_io_u->offset;
605 y2 = check_io_u->offset + check_io_u->buflen;
606
607 if (x1 < y2 && y1 < x2) {
608 overlap = true;
609 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
610 x1, io_u->buflen,
611 y1, check_io_u->buflen);
612 break;
613 }
614 }
615 }
616
617 return overlap;
618}
619
620static int io_u_submit(struct thread_data *td, struct io_u *io_u)
621{
622 /*
623 * Check for overlap if the user asked us to, and we have
624 * at least one IO in flight besides this one.
625 */
626 if (td->o.serialize_overlap && td->cur_depth > 1 &&
627 in_flight_overlap(&td->io_u_all, io_u))
628 return FIO_Q_BUSY;
629
630 return td_io_queue(td, io_u);
631}
632
633/*
634 * The main verify engine. Runs over the writes we previously submitted,
635 * reads the blocks back in, and checks the crc/md5 of the data.
636 */
637static void do_verify(struct thread_data *td, uint64_t verify_bytes)
638{
639 struct fio_file *f;
640 struct io_u *io_u;
641 int ret, min_events;
642 unsigned int i;
643
644 dprint(FD_VERIFY, "starting loop\n");
645
646 /*
647 * sync io first and invalidate cache, to make sure we really
648 * read from disk.
649 */
650 for_each_file(td, f, i) {
651 if (!fio_file_open(f))
652 continue;
653 if (fio_io_sync(td, f))
654 break;
655 if (file_invalidate_cache(td, f))
656 break;
657 }
658
659 check_update_rusage(td);
660
661 if (td->error)
662 return;
663
664 /*
665 * verify_state needs to be reset before verification
666 * proceeds so that expected random seeds match actual
667 * random seeds in headers. The main loop will reset
668 * all random number generators if randrepeat is set.
669 */
670 if (!td->o.rand_repeatable)
671 td_fill_verify_state_seed(td);
672
673 td_set_runstate(td, TD_VERIFYING);
674
675 io_u = NULL;
676 while (!td->terminate) {
677 enum fio_ddir ddir;
678 int full;
679
680 update_ts_cache(td);
681 check_update_rusage(td);
682
683 if (runtime_exceeded(td, &td->ts_cache)) {
684 __update_ts_cache(td);
685 if (runtime_exceeded(td, &td->ts_cache)) {
686 fio_mark_td_terminate(td);
687 break;
688 }
689 }
690
691 if (flow_threshold_exceeded(td))
692 continue;
693
694 if (!td->o.experimental_verify) {
695 io_u = __get_io_u(td);
696 if (!io_u)
697 break;
698
699 if (get_next_verify(td, io_u)) {
700 put_io_u(td, io_u);
701 break;
702 }
703
704 if (td_io_prep(td, io_u)) {
705 put_io_u(td, io_u);
706 break;
707 }
708 } else {
709 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
710 break;
711
712 while ((io_u = get_io_u(td)) != NULL) {
713 if (IS_ERR_OR_NULL(io_u)) {
714 io_u = NULL;
715 ret = FIO_Q_BUSY;
716 goto reap;
717 }
718
719 /*
720 * We are only interested in the places where
721 * we wrote or trimmed IOs. Turn those into
722 * reads for verification purposes.
723 */
724 if (io_u->ddir == DDIR_READ) {
725 /*
726 * Pretend we issued it for rwmix
727 * accounting
728 */
729 td->io_issues[DDIR_READ]++;
730 put_io_u(td, io_u);
731 continue;
732 } else if (io_u->ddir == DDIR_TRIM) {
733 io_u->ddir = DDIR_READ;
734 io_u_set(td, io_u, IO_U_F_TRIMMED);
735 break;
736 } else if (io_u->ddir == DDIR_WRITE) {
737 io_u->ddir = DDIR_READ;
738 break;
739 } else {
740 put_io_u(td, io_u);
741 continue;
742 }
743 }
744
745 if (!io_u)
746 break;
747 }
748
749 if (verify_state_should_stop(td, io_u)) {
750 put_io_u(td, io_u);
751 break;
752 }
753
754 if (td->o.verify_async)
755 io_u->end_io = verify_io_u_async;
756 else
757 io_u->end_io = verify_io_u;
758
759 ddir = io_u->ddir;
760 if (!td->o.disable_slat)
761 fio_gettime(&io_u->start_time, NULL);
762
763 ret = io_u_submit(td, io_u);
764
765 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
766 break;
767
768 /*
769 * if we can queue more, do so. but check if there are
770 * completed io_u's first. Note that we can get BUSY even
771 * without IO queued, if the system is resource starved.
772 */
773reap:
774 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
775 if (full || io_in_polling(td))
776 ret = wait_for_completions(td, NULL);
777
778 if (ret < 0)
779 break;
780 }
781
782 check_update_rusage(td);
783
784 if (!td->error) {
785 min_events = td->cur_depth;
786
787 if (min_events)
788 ret = io_u_queued_complete(td, min_events);
789 } else
790 cleanup_pending_aio(td);
791
792 td_set_runstate(td, TD_RUNNING);
793
794 dprint(FD_VERIFY, "exiting loop\n");
795}
796
797static bool exceeds_number_ios(struct thread_data *td)
798{
799 unsigned long long number_ios;
800
801 if (!td->o.number_ios)
802 return false;
803
804 number_ios = ddir_rw_sum(td->io_blocks);
805 number_ios += td->io_u_queued + td->io_u_in_flight;
806
807 return number_ios >= (td->o.number_ios * td->loops);
808}
809
810static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
811{
812 unsigned long long bytes, limit;
813
814 if (td_rw(td))
815 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
816 else if (td_write(td))
817 bytes = this_bytes[DDIR_WRITE];
818 else if (td_read(td))
819 bytes = this_bytes[DDIR_READ];
820 else
821 bytes = this_bytes[DDIR_TRIM];
822
823 if (td->o.io_size)
824 limit = td->o.io_size;
825 else
826 limit = td->o.size;
827
828 limit *= td->loops;
829 return bytes >= limit || exceeds_number_ios(td);
830}
831
832static bool io_issue_bytes_exceeded(struct thread_data *td)
833{
834 return io_bytes_exceeded(td, td->io_issue_bytes);
835}
836
837static bool io_complete_bytes_exceeded(struct thread_data *td)
838{
839 return io_bytes_exceeded(td, td->this_io_bytes);
840}
841
842/*
843 * used to calculate the next io time for rate control
844 *
845 */
846static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
847{
848 uint64_t secs, remainder, bps, bytes, iops;
849
850 assert(!(td->flags & TD_F_CHILD));
851 bytes = td->rate_io_issue_bytes[ddir];
852 bps = td->rate_bps[ddir];
853
854 if (td->o.rate_process == RATE_PROCESS_POISSON) {
855 uint64_t val;
856 iops = bps / td->o.bs[ddir];
857 val = (int64_t) (1000000 / iops) *
858 -logf(__rand_0_1(&td->poisson_state[ddir]));
859 if (val) {
860 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
861 (unsigned long long) 1000000 / val,
862 ddir);
863 }
864 td->last_usec[ddir] += val;
865 return td->last_usec[ddir];
866 } else if (bps) {
867 secs = bytes / bps;
868 remainder = bytes % bps;
869 return remainder * 1000000 / bps + secs * 1000000;
870 }
871
872 return 0;
873}
874
875/*
876 * Main IO worker function. It retrieves io_u's to process and queues
877 * and reaps them, checking for rate and errors along the way.
878 *
879 * Returns number of bytes written and trimmed.
880 */
881static void do_io(struct thread_data *td, uint64_t *bytes_done)
882{
883 unsigned int i;
884 int ret = 0;
885 uint64_t total_bytes, bytes_issued = 0;
886
887 for (i = 0; i < DDIR_RWDIR_CNT; i++)
888 bytes_done[i] = td->bytes_done[i];
889
890 if (in_ramp_time(td))
891 td_set_runstate(td, TD_RAMP);
892 else
893 td_set_runstate(td, TD_RUNNING);
894
895 lat_target_init(td);
896
897 total_bytes = td->o.size;
898 /*
899 * Allow random overwrite workloads to write up to io_size
900 * before starting verification phase as 'size' doesn't apply.
901 */
902 if (td_write(td) && td_random(td) && td->o.norandommap)
903 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
904 /*
905 * If verify_backlog is enabled, we'll run the verify in this
906 * handler as well. For that case, we may need up to twice the
907 * amount of bytes.
908 */
909 if (td->o.verify != VERIFY_NONE &&
910 (td_write(td) && td->o.verify_backlog))
911 total_bytes += td->o.size;
912
913 /* In trimwrite mode, each byte is trimmed and then written, so
914 * allow total_bytes to be twice as big */
915 if (td_trimwrite(td))
916 total_bytes += td->total_io_size;
917
918 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
919 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
920 td->o.time_based) {
921 struct timespec comp_time;
922 struct io_u *io_u;
923 int full;
924 enum fio_ddir ddir;
925
926 check_update_rusage(td);
927
928 if (td->terminate || td->done)
929 break;
930
931 update_ts_cache(td);
932
933 if (runtime_exceeded(td, &td->ts_cache)) {
934 __update_ts_cache(td);
935 if (runtime_exceeded(td, &td->ts_cache)) {
936 fio_mark_td_terminate(td);
937 break;
938 }
939 }
940
941 if (flow_threshold_exceeded(td))
942 continue;
943
944 /*
945 * Break if we exceeded the bytes. The exception is time
946 * based runs, but we still need to break out of the loop
947 * for those to run verification, if enabled.
948 */
949 if (bytes_issued >= total_bytes &&
950 (!td->o.time_based ||
951 (td->o.time_based && td->o.verify != VERIFY_NONE)))
952 break;
953
954 io_u = get_io_u(td);
955 if (IS_ERR_OR_NULL(io_u)) {
956 int err = PTR_ERR(io_u);
957
958 io_u = NULL;
959 if (err == -EBUSY) {
960 ret = FIO_Q_BUSY;
961 goto reap;
962 }
963 if (td->o.latency_target)
964 goto reap;
965 break;
966 }
967
968 ddir = io_u->ddir;
969
970 /*
971 * Add verification end_io handler if:
972 * - Asked to verify (!td_rw(td))
973 * - Or the io_u is from our verify list (mixed write/ver)
974 */
975 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
976 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
977
978 if (!td->o.verify_pattern_bytes) {
979 io_u->rand_seed = __rand(&td->verify_state);
980 if (sizeof(int) != sizeof(long *))
981 io_u->rand_seed *= __rand(&td->verify_state);
982 }
983
984 if (verify_state_should_stop(td, io_u)) {
985 put_io_u(td, io_u);
986 break;
987 }
988
989 if (td->o.verify_async)
990 io_u->end_io = verify_io_u_async;
991 else
992 io_u->end_io = verify_io_u;
993 td_set_runstate(td, TD_VERIFYING);
994 } else if (in_ramp_time(td))
995 td_set_runstate(td, TD_RAMP);
996 else
997 td_set_runstate(td, TD_RUNNING);
998
999 /*
1000 * Always log IO before it's issued, so we know the specific
1001 * order of it. The logged unit will track when the IO has
1002 * completed.
1003 */
1004 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1005 td->o.do_verify &&
1006 td->o.verify != VERIFY_NONE &&
1007 !td->o.experimental_verify)
1008 log_io_piece(td, io_u);
1009
1010 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1011 const unsigned long blen = io_u->xfer_buflen;
1012 const enum fio_ddir ddir = acct_ddir(io_u);
1013
1014 if (td->error)
1015 break;
1016
1017 workqueue_enqueue(&td->io_wq, &io_u->work);
1018 ret = FIO_Q_QUEUED;
1019
1020 if (ddir_rw(ddir)) {
1021 td->io_issues[ddir]++;
1022 td->io_issue_bytes[ddir] += blen;
1023 td->rate_io_issue_bytes[ddir] += blen;
1024 }
1025
1026 if (should_check_rate(td))
1027 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1028
1029 } else {
1030 ret = io_u_submit(td, io_u);
1031
1032 if (should_check_rate(td))
1033 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1034
1035 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1036 break;
1037
1038 /*
1039 * See if we need to complete some commands. Note that
1040 * we can get BUSY even without IO queued, if the
1041 * system is resource starved.
1042 */
1043reap:
1044 full = queue_full(td) ||
1045 (ret == FIO_Q_BUSY && td->cur_depth);
1046 if (full || io_in_polling(td))
1047 ret = wait_for_completions(td, &comp_time);
1048 }
1049 if (ret < 0)
1050 break;
1051 if (!ddir_rw_sum(td->bytes_done) &&
1052 !td_ioengine_flagged(td, FIO_NOIO))
1053 continue;
1054
1055 if (!in_ramp_time(td) && should_check_rate(td)) {
1056 if (check_min_rate(td, &comp_time)) {
1057 if (exitall_on_terminate || td->o.exitall_error)
1058 fio_terminate_threads(td->groupid);
1059 td_verror(td, EIO, "check_min_rate");
1060 break;
1061 }
1062 }
1063 if (!in_ramp_time(td) && td->o.latency_target)
1064 lat_target_check(td);
1065
1066 if (td->o.thinktime) {
1067 unsigned long long b;
1068
1069 b = ddir_rw_sum(td->io_blocks);
1070 if (!(b % td->o.thinktime_blocks)) {
1071 int left;
1072
1073 io_u_quiesce(td);
1074
1075 if (td->o.thinktime_spin)
1076 usec_spin(td->o.thinktime_spin);
1077
1078 left = td->o.thinktime - td->o.thinktime_spin;
1079 if (left)
1080 usec_sleep(td, left);
1081 }
1082 }
1083 }
1084
1085 check_update_rusage(td);
1086
1087 if (td->trim_entries)
1088 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1089
1090 if (td->o.fill_device && td->error == ENOSPC) {
1091 td->error = 0;
1092 fio_mark_td_terminate(td);
1093 }
1094 if (!td->error) {
1095 struct fio_file *f;
1096
1097 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1098 workqueue_flush(&td->io_wq);
1099 i = 0;
1100 } else
1101 i = td->cur_depth;
1102
1103 if (i) {
1104 ret = io_u_queued_complete(td, i);
1105 if (td->o.fill_device && td->error == ENOSPC)
1106 td->error = 0;
1107 }
1108
1109 if (should_fsync(td) && td->o.end_fsync) {
1110 td_set_runstate(td, TD_FSYNCING);
1111
1112 for_each_file(td, f, i) {
1113 if (!fio_file_fsync(td, f))
1114 continue;
1115
1116 log_err("fio: end_fsync failed for file %s\n",
1117 f->file_name);
1118 }
1119 }
1120 } else
1121 cleanup_pending_aio(td);
1122
1123 /*
1124 * stop job if we failed doing any IO
1125 */
1126 if (!ddir_rw_sum(td->this_io_bytes))
1127 td->done = 1;
1128
1129 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1130 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1131}
1132
1133static void free_file_completion_logging(struct thread_data *td)
1134{
1135 struct fio_file *f;
1136 unsigned int i;
1137
1138 for_each_file(td, f, i) {
1139 if (!f->last_write_comp)
1140 break;
1141 sfree(f->last_write_comp);
1142 }
1143}
1144
1145static int init_file_completion_logging(struct thread_data *td,
1146 unsigned int depth)
1147{
1148 struct fio_file *f;
1149 unsigned int i;
1150
1151 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1152 return 0;
1153
1154 for_each_file(td, f, i) {
1155 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1156 if (!f->last_write_comp)
1157 goto cleanup;
1158 }
1159
1160 return 0;
1161
1162cleanup:
1163 free_file_completion_logging(td);
1164 log_err("fio: failed to alloc write comp data\n");
1165 return 1;
1166}
1167
1168static void cleanup_io_u(struct thread_data *td)
1169{
1170 struct io_u *io_u;
1171
1172 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1173
1174 if (td->io_ops->io_u_free)
1175 td->io_ops->io_u_free(td, io_u);
1176
1177 fio_memfree(io_u, sizeof(*io_u));
1178 }
1179
1180 free_io_mem(td);
1181
1182 io_u_rexit(&td->io_u_requeues);
1183 io_u_qexit(&td->io_u_freelist);
1184 io_u_qexit(&td->io_u_all);
1185
1186 free_file_completion_logging(td);
1187}
1188
1189static int init_io_u(struct thread_data *td)
1190{
1191 struct io_u *io_u;
1192 unsigned int max_bs, min_write;
1193 int cl_align, i, max_units;
1194 int data_xfer = 1, err;
1195 char *p;
1196
1197 max_units = td->o.iodepth;
1198 max_bs = td_max_bs(td);
1199 min_write = td->o.min_bs[DDIR_WRITE];
1200 td->orig_buffer_size = (unsigned long long) max_bs
1201 * (unsigned long long) max_units;
1202
1203 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1204 data_xfer = 0;
1205
1206 err = 0;
1207 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1208 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1209 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1210
1211 if (err) {
1212 log_err("fio: failed setting up IO queues\n");
1213 return 1;
1214 }
1215
1216 /*
1217 * if we may later need to do address alignment, then add any
1218 * possible adjustment here so that we don't cause a buffer
1219 * overflow later. this adjustment may be too much if we get
1220 * lucky and the allocator gives us an aligned address.
1221 */
1222 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1223 td_ioengine_flagged(td, FIO_RAWIO))
1224 td->orig_buffer_size += page_mask + td->o.mem_align;
1225
1226 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1227 unsigned long bs;
1228
1229 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1230 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1231 }
1232
1233 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1234 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1235 return 1;
1236 }
1237
1238 if (data_xfer && allocate_io_mem(td))
1239 return 1;
1240
1241 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1242 td_ioengine_flagged(td, FIO_RAWIO))
1243 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1244 else
1245 p = td->orig_buffer;
1246
1247 cl_align = os_cache_line_size();
1248
1249 for (i = 0; i < max_units; i++) {
1250 void *ptr;
1251
1252 if (td->terminate)
1253 return 1;
1254
1255 ptr = fio_memalign(cl_align, sizeof(*io_u));
1256 if (!ptr) {
1257 log_err("fio: unable to allocate aligned memory\n");
1258 break;
1259 }
1260
1261 io_u = ptr;
1262 memset(io_u, 0, sizeof(*io_u));
1263 INIT_FLIST_HEAD(&io_u->verify_list);
1264 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1265
1266 if (data_xfer) {
1267 io_u->buf = p;
1268 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1269
1270 if (td_write(td))
1271 io_u_fill_buffer(td, io_u, min_write, max_bs);
1272 if (td_write(td) && td->o.verify_pattern_bytes) {
1273 /*
1274 * Fill the buffer with the pattern if we are
1275 * going to be doing writes.
1276 */
1277 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1278 }
1279 }
1280
1281 io_u->index = i;
1282 io_u->flags = IO_U_F_FREE;
1283 io_u_qpush(&td->io_u_freelist, io_u);
1284
1285 /*
1286 * io_u never leaves this stack, used for iteration of all
1287 * io_u buffers.
1288 */
1289 io_u_qpush(&td->io_u_all, io_u);
1290
1291 if (td->io_ops->io_u_init) {
1292 int ret = td->io_ops->io_u_init(td, io_u);
1293
1294 if (ret) {
1295 log_err("fio: failed to init engine data: %d\n", ret);
1296 return 1;
1297 }
1298 }
1299
1300 p += max_bs;
1301 }
1302
1303 if (init_file_completion_logging(td, max_units))
1304 return 1;
1305
1306 return 0;
1307}
1308
1309/*
1310 * This function is Linux specific.
1311 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1312 */
1313static int switch_ioscheduler(struct thread_data *td)
1314{
1315#ifdef FIO_HAVE_IOSCHED_SWITCH
1316 char tmp[256], tmp2[128];
1317 FILE *f;
1318 int ret;
1319
1320 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1321 return 0;
1322
1323 assert(td->files && td->files[0]);
1324 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1325
1326 f = fopen(tmp, "r+");
1327 if (!f) {
1328 if (errno == ENOENT) {
1329 log_err("fio: os or kernel doesn't support IO scheduler"
1330 " switching\n");
1331 return 0;
1332 }
1333 td_verror(td, errno, "fopen iosched");
1334 return 1;
1335 }
1336
1337 /*
1338 * Set io scheduler.
1339 */
1340 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1341 if (ferror(f) || ret != 1) {
1342 td_verror(td, errno, "fwrite");
1343 fclose(f);
1344 return 1;
1345 }
1346
1347 rewind(f);
1348
1349 /*
1350 * Read back and check that the selected scheduler is now the default.
1351 */
1352 memset(tmp, 0, sizeof(tmp));
1353 ret = fread(tmp, sizeof(tmp), 1, f);
1354 if (ferror(f) || ret < 0) {
1355 td_verror(td, errno, "fread");
1356 fclose(f);
1357 return 1;
1358 }
1359 /*
1360 * either a list of io schedulers or "none\n" is expected.
1361 */
1362 tmp[strlen(tmp) - 1] = '\0';
1363
1364 /*
1365 * Write to "none" entry doesn't fail, so check the result here.
1366 */
1367 if (!strcmp(tmp, "none")) {
1368 log_err("fio: io scheduler is not tunable\n");
1369 fclose(f);
1370 return 0;
1371 }
1372
1373 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1374 if (!strstr(tmp, tmp2)) {
1375 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1376 td_verror(td, EINVAL, "iosched_switch");
1377 fclose(f);
1378 return 1;
1379 }
1380
1381 fclose(f);
1382 return 0;
1383#else
1384 return 0;
1385#endif
1386}
1387
1388static bool keep_running(struct thread_data *td)
1389{
1390 unsigned long long limit;
1391
1392 if (td->done)
1393 return false;
1394 if (td->o.time_based)
1395 return true;
1396 if (td->o.loops) {
1397 td->o.loops--;
1398 return true;
1399 }
1400 if (exceeds_number_ios(td))
1401 return false;
1402
1403 if (td->o.io_size)
1404 limit = td->o.io_size;
1405 else
1406 limit = td->o.size;
1407
1408 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1409 uint64_t diff;
1410
1411 /*
1412 * If the difference is less than the maximum IO size, we
1413 * are done.
1414 */
1415 diff = limit - ddir_rw_sum(td->io_bytes);
1416 if (diff < td_max_bs(td))
1417 return false;
1418
1419 if (fio_files_done(td) && !td->o.io_size)
1420 return false;
1421
1422 return true;
1423 }
1424
1425 return false;
1426}
1427
1428static int exec_string(struct thread_options *o, const char *string, const char *mode)
1429{
1430 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1431 int ret;
1432 char *str;
1433
1434 str = malloc(newlen);
1435 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1436
1437 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1438 ret = system(str);
1439 if (ret == -1)
1440 log_err("fio: exec of cmd <%s> failed\n", str);
1441
1442 free(str);
1443 return ret;
1444}
1445
1446/*
1447 * Dry run to compute correct state of numberio for verification.
1448 */
1449static uint64_t do_dry_run(struct thread_data *td)
1450{
1451 td_set_runstate(td, TD_RUNNING);
1452
1453 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1454 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1455 struct io_u *io_u;
1456 int ret;
1457
1458 if (td->terminate || td->done)
1459 break;
1460
1461 io_u = get_io_u(td);
1462 if (IS_ERR_OR_NULL(io_u))
1463 break;
1464
1465 io_u_set(td, io_u, IO_U_F_FLIGHT);
1466 io_u->error = 0;
1467 io_u->resid = 0;
1468 if (ddir_rw(acct_ddir(io_u)))
1469 td->io_issues[acct_ddir(io_u)]++;
1470 if (ddir_rw(io_u->ddir)) {
1471 io_u_mark_depth(td, 1);
1472 td->ts.total_io_u[io_u->ddir]++;
1473 }
1474
1475 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1476 td->o.do_verify &&
1477 td->o.verify != VERIFY_NONE &&
1478 !td->o.experimental_verify)
1479 log_io_piece(td, io_u);
1480
1481 ret = io_u_sync_complete(td, io_u);
1482 (void) ret;
1483 }
1484
1485 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1486}
1487
1488struct fork_data {
1489 struct thread_data *td;
1490 struct sk_out *sk_out;
1491};
1492
1493/*
1494 * Entry point for the thread based jobs. The process based jobs end up
1495 * here as well, after a little setup.
1496 */
1497static void *thread_main(void *data)
1498{
1499 struct fork_data *fd = data;
1500 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1501 struct thread_data *td = fd->td;
1502 struct thread_options *o = &td->o;
1503 struct sk_out *sk_out = fd->sk_out;
1504 uint64_t bytes_done[DDIR_RWDIR_CNT];
1505 int deadlock_loop_cnt;
1506 int clear_state;
1507 int ret;
1508
1509 sk_out_assign(sk_out);
1510 free(fd);
1511
1512 if (!o->use_thread) {
1513 setsid();
1514 td->pid = getpid();
1515 } else
1516 td->pid = gettid();
1517
1518 fio_local_clock_init(o->use_thread);
1519
1520 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1521
1522 if (is_backend)
1523 fio_server_send_start(td);
1524
1525 INIT_FLIST_HEAD(&td->io_log_list);
1526 INIT_FLIST_HEAD(&td->io_hist_list);
1527 INIT_FLIST_HEAD(&td->verify_list);
1528 INIT_FLIST_HEAD(&td->trim_list);
1529 INIT_FLIST_HEAD(&td->next_rand_list);
1530 td->io_hist_tree = RB_ROOT;
1531
1532 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1533 if (ret) {
1534 td_verror(td, ret, "mutex_cond_init_pshared");
1535 goto err;
1536 }
1537 ret = cond_init_pshared(&td->verify_cond);
1538 if (ret) {
1539 td_verror(td, ret, "mutex_cond_pshared");
1540 goto err;
1541 }
1542
1543 td_set_runstate(td, TD_INITIALIZED);
1544 dprint(FD_MUTEX, "up startup_mutex\n");
1545 fio_mutex_up(startup_mutex);
1546 dprint(FD_MUTEX, "wait on td->mutex\n");
1547 fio_mutex_down(td->mutex);
1548 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1549
1550 /*
1551 * A new gid requires privilege, so we need to do this before setting
1552 * the uid.
1553 */
1554 if (o->gid != -1U && setgid(o->gid)) {
1555 td_verror(td, errno, "setgid");
1556 goto err;
1557 }
1558 if (o->uid != -1U && setuid(o->uid)) {
1559 td_verror(td, errno, "setuid");
1560 goto err;
1561 }
1562
1563 /*
1564 * Do this early, we don't want the compress threads to be limited
1565 * to the same CPUs as the IO workers. So do this before we set
1566 * any potential CPU affinity
1567 */
1568 if (iolog_compress_init(td, sk_out))
1569 goto err;
1570
1571 /*
1572 * If we have a gettimeofday() thread, make sure we exclude that
1573 * thread from this job
1574 */
1575 if (o->gtod_cpu)
1576 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1577
1578 /*
1579 * Set affinity first, in case it has an impact on the memory
1580 * allocations.
1581 */
1582 if (fio_option_is_set(o, cpumask)) {
1583 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1584 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1585 if (!ret) {
1586 log_err("fio: no CPUs set\n");
1587 log_err("fio: Try increasing number of available CPUs\n");
1588 td_verror(td, EINVAL, "cpus_split");
1589 goto err;
1590 }
1591 }
1592 ret = fio_setaffinity(td->pid, o->cpumask);
1593 if (ret == -1) {
1594 td_verror(td, errno, "cpu_set_affinity");
1595 goto err;
1596 }
1597 }
1598
1599#ifdef CONFIG_LIBNUMA
1600 /* numa node setup */
1601 if (fio_option_is_set(o, numa_cpunodes) ||
1602 fio_option_is_set(o, numa_memnodes)) {
1603 struct bitmask *mask;
1604
1605 if (numa_available() < 0) {
1606 td_verror(td, errno, "Does not support NUMA API\n");
1607 goto err;
1608 }
1609
1610 if (fio_option_is_set(o, numa_cpunodes)) {
1611 mask = numa_parse_nodestring(o->numa_cpunodes);
1612 ret = numa_run_on_node_mask(mask);
1613 numa_free_nodemask(mask);
1614 if (ret == -1) {
1615 td_verror(td, errno, \
1616 "numa_run_on_node_mask failed\n");
1617 goto err;
1618 }
1619 }
1620
1621 if (fio_option_is_set(o, numa_memnodes)) {
1622 mask = NULL;
1623 if (o->numa_memnodes)
1624 mask = numa_parse_nodestring(o->numa_memnodes);
1625
1626 switch (o->numa_mem_mode) {
1627 case MPOL_INTERLEAVE:
1628 numa_set_interleave_mask(mask);
1629 break;
1630 case MPOL_BIND:
1631 numa_set_membind(mask);
1632 break;
1633 case MPOL_LOCAL:
1634 numa_set_localalloc();
1635 break;
1636 case MPOL_PREFERRED:
1637 numa_set_preferred(o->numa_mem_prefer_node);
1638 break;
1639 case MPOL_DEFAULT:
1640 default:
1641 break;
1642 }
1643
1644 if (mask)
1645 numa_free_nodemask(mask);
1646
1647 }
1648 }
1649#endif
1650
1651 if (fio_pin_memory(td))
1652 goto err;
1653
1654 /*
1655 * May alter parameters that init_io_u() will use, so we need to
1656 * do this first.
1657 */
1658 if (init_iolog(td))
1659 goto err;
1660
1661 if (init_io_u(td))
1662 goto err;
1663
1664 if (o->verify_async && verify_async_init(td))
1665 goto err;
1666
1667 if (fio_option_is_set(o, ioprio) ||
1668 fio_option_is_set(o, ioprio_class)) {
1669 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1670 if (ret == -1) {
1671 td_verror(td, errno, "ioprio_set");
1672 goto err;
1673 }
1674 }
1675
1676 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1677 goto err;
1678
1679 errno = 0;
1680 if (nice(o->nice) == -1 && errno != 0) {
1681 td_verror(td, errno, "nice");
1682 goto err;
1683 }
1684
1685 if (o->ioscheduler && switch_ioscheduler(td))
1686 goto err;
1687
1688 if (!o->create_serialize && setup_files(td))
1689 goto err;
1690
1691 if (td_io_init(td))
1692 goto err;
1693
1694 if (init_random_map(td))
1695 goto err;
1696
1697 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1698 goto err;
1699
1700 if (o->pre_read) {
1701 if (pre_read_files(td) < 0)
1702 goto err;
1703 }
1704
1705 fio_verify_init(td);
1706
1707 if (rate_submit_init(td, sk_out))
1708 goto err;
1709
1710 set_epoch_time(td, o->log_unix_epoch);
1711 fio_getrusage(&td->ru_start);
1712 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1713 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1714 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1715
1716 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1717 o->ratemin[DDIR_TRIM]) {
1718 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1719 sizeof(td->bw_sample_time));
1720 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1721 sizeof(td->bw_sample_time));
1722 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1723 sizeof(td->bw_sample_time));
1724 }
1725
1726 memset(bytes_done, 0, sizeof(bytes_done));
1727 clear_state = 0;
1728
1729 while (keep_running(td)) {
1730 uint64_t verify_bytes;
1731
1732 fio_gettime(&td->start, NULL);
1733 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1734
1735 if (clear_state) {
1736 clear_io_state(td, 0);
1737
1738 if (o->unlink_each_loop && unlink_all_files(td))
1739 break;
1740 }
1741
1742 prune_io_piece_log(td);
1743
1744 if (td->o.verify_only && td_write(td))
1745 verify_bytes = do_dry_run(td);
1746 else {
1747 do_io(td, bytes_done);
1748
1749 if (!ddir_rw_sum(bytes_done)) {
1750 fio_mark_td_terminate(td);
1751 verify_bytes = 0;
1752 } else {
1753 verify_bytes = bytes_done[DDIR_WRITE] +
1754 bytes_done[DDIR_TRIM];
1755 }
1756 }
1757
1758 /*
1759 * If we took too long to shut down, the main thread could
1760 * already consider us reaped/exited. If that happens, break
1761 * out and clean up.
1762 */
1763 if (td->runstate >= TD_EXITED)
1764 break;
1765
1766 clear_state = 1;
1767
1768 /*
1769 * Make sure we've successfully updated the rusage stats
1770 * before waiting on the stat mutex. Otherwise we could have
1771 * the stat thread holding stat mutex and waiting for
1772 * the rusage_sem, which would never get upped because
1773 * this thread is waiting for the stat mutex.
1774 */
1775 deadlock_loop_cnt = 0;
1776 do {
1777 check_update_rusage(td);
1778 if (!fio_mutex_down_trylock(stat_mutex))
1779 break;
1780 usleep(1000);
1781 if (deadlock_loop_cnt++ > 5000) {
1782 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1783 td->error = EDEADLK;
1784 goto err;
1785 }
1786 } while (1);
1787
1788 if (td_read(td) && td->io_bytes[DDIR_READ])
1789 update_runtime(td, elapsed_us, DDIR_READ);
1790 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1791 update_runtime(td, elapsed_us, DDIR_WRITE);
1792 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1793 update_runtime(td, elapsed_us, DDIR_TRIM);
1794 fio_gettime(&td->start, NULL);
1795 fio_mutex_up(stat_mutex);
1796
1797 if (td->error || td->terminate)
1798 break;
1799
1800 if (!o->do_verify ||
1801 o->verify == VERIFY_NONE ||
1802 td_ioengine_flagged(td, FIO_UNIDIR))
1803 continue;
1804
1805 clear_io_state(td, 0);
1806
1807 fio_gettime(&td->start, NULL);
1808
1809 do_verify(td, verify_bytes);
1810
1811 /*
1812 * See comment further up for why this is done here.
1813 */
1814 check_update_rusage(td);
1815
1816 fio_mutex_down(stat_mutex);
1817 update_runtime(td, elapsed_us, DDIR_READ);
1818 fio_gettime(&td->start, NULL);
1819 fio_mutex_up(stat_mutex);
1820
1821 if (td->error || td->terminate)
1822 break;
1823 }
1824
1825 /*
1826 * If td ended up with no I/O when it should have had,
1827 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1828 * (Are we not missing other flags that can be ignored ?)
1829 */
1830 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1831 !(td_ioengine_flagged(td, FIO_NOIO) ||
1832 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1833 log_err("%s: No I/O performed by %s, "
1834 "perhaps try --debug=io option for details?\n",
1835 td->o.name, td->io_ops->name);
1836
1837 td_set_runstate(td, TD_FINISHING);
1838
1839 update_rusage_stat(td);
1840 td->ts.total_run_time = mtime_since_now(&td->epoch);
1841 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1842 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1843 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1844
1845 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1846 (td->o.verify != VERIFY_NONE && td_write(td)))
1847 verify_save_state(td->thread_number);
1848
1849 fio_unpin_memory(td);
1850
1851 td_writeout_logs(td, true);
1852
1853 iolog_compress_exit(td);
1854 rate_submit_exit(td);
1855
1856 if (o->exec_postrun)
1857 exec_string(o, o->exec_postrun, (const char *)"postrun");
1858
1859 if (exitall_on_terminate || (o->exitall_error && td->error))
1860 fio_terminate_threads(td->groupid);
1861
1862err:
1863 if (td->error)
1864 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1865 td->verror);
1866
1867 if (o->verify_async)
1868 verify_async_exit(td);
1869
1870 close_and_free_files(td);
1871 cleanup_io_u(td);
1872 close_ioengine(td);
1873 cgroup_shutdown(td, &cgroup_mnt);
1874 verify_free_state(td);
1875
1876 if (td->zone_state_index) {
1877 int i;
1878
1879 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1880 free(td->zone_state_index[i]);
1881 free(td->zone_state_index);
1882 td->zone_state_index = NULL;
1883 }
1884
1885 if (fio_option_is_set(o, cpumask)) {
1886 ret = fio_cpuset_exit(&o->cpumask);
1887 if (ret)
1888 td_verror(td, ret, "fio_cpuset_exit");
1889 }
1890
1891 /*
1892 * do this very late, it will log file closing as well
1893 */
1894 if (o->write_iolog_file)
1895 write_iolog_close(td);
1896
1897 td_set_runstate(td, TD_EXITED);
1898
1899 /*
1900 * Do this last after setting our runstate to exited, so we
1901 * know that the stat thread is signaled.
1902 */
1903 check_update_rusage(td);
1904
1905 sk_out_drop();
1906 return (void *) (uintptr_t) td->error;
1907}
1908
1909/*
1910 * Run over the job map and reap the threads that have exited, if any.
1911 */
1912static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1913 uint64_t *m_rate)
1914{
1915 struct thread_data *td;
1916 unsigned int cputhreads, realthreads, pending;
1917 int i, status, ret;
1918
1919 /*
1920 * reap exited threads (TD_EXITED -> TD_REAPED)
1921 */
1922 realthreads = pending = cputhreads = 0;
1923 for_each_td(td, i) {
1924 int flags = 0;
1925
1926 /*
1927 * ->io_ops is NULL for a thread that has closed its
1928 * io engine
1929 */
1930 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1931 cputhreads++;
1932 else
1933 realthreads++;
1934
1935 if (!td->pid) {
1936 pending++;
1937 continue;
1938 }
1939 if (td->runstate == TD_REAPED)
1940 continue;
1941 if (td->o.use_thread) {
1942 if (td->runstate == TD_EXITED) {
1943 td_set_runstate(td, TD_REAPED);
1944 goto reaped;
1945 }
1946 continue;
1947 }
1948
1949 flags = WNOHANG;
1950 if (td->runstate == TD_EXITED)
1951 flags = 0;
1952
1953 /*
1954 * check if someone quit or got killed in an unusual way
1955 */
1956 ret = waitpid(td->pid, &status, flags);
1957 if (ret < 0) {
1958 if (errno == ECHILD) {
1959 log_err("fio: pid=%d disappeared %d\n",
1960 (int) td->pid, td->runstate);
1961 td->sig = ECHILD;
1962 td_set_runstate(td, TD_REAPED);
1963 goto reaped;
1964 }
1965 perror("waitpid");
1966 } else if (ret == td->pid) {
1967 if (WIFSIGNALED(status)) {
1968 int sig = WTERMSIG(status);
1969
1970 if (sig != SIGTERM && sig != SIGUSR2)
1971 log_err("fio: pid=%d, got signal=%d\n",
1972 (int) td->pid, sig);
1973 td->sig = sig;
1974 td_set_runstate(td, TD_REAPED);
1975 goto reaped;
1976 }
1977 if (WIFEXITED(status)) {
1978 if (WEXITSTATUS(status) && !td->error)
1979 td->error = WEXITSTATUS(status);
1980
1981 td_set_runstate(td, TD_REAPED);
1982 goto reaped;
1983 }
1984 }
1985
1986 /*
1987 * If the job is stuck, do a forceful timeout of it and
1988 * move on.
1989 */
1990 if (td->terminate &&
1991 td->runstate < TD_FSYNCING &&
1992 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1993 log_err("fio: job '%s' (state=%d) hasn't exited in "
1994 "%lu seconds, it appears to be stuck. Doing "
1995 "forceful exit of this job.\n",
1996 td->o.name, td->runstate,
1997 (unsigned long) time_since_now(&td->terminate_time));
1998 td_set_runstate(td, TD_REAPED);
1999 goto reaped;
2000 }
2001
2002 /*
2003 * thread is not dead, continue
2004 */
2005 pending++;
2006 continue;
2007reaped:
2008 (*nr_running)--;
2009 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2010 (*t_rate) -= ddir_rw_sum(td->o.rate);
2011 if (!td->pid)
2012 pending--;
2013
2014 if (td->error)
2015 exit_value++;
2016
2017 done_secs += mtime_since_now(&td->epoch) / 1000;
2018 profile_td_exit(td);
2019 }
2020
2021 if (*nr_running == cputhreads && !pending && realthreads)
2022 fio_terminate_threads(TERMINATE_ALL);
2023}
2024
2025static bool __check_trigger_file(void)
2026{
2027 struct stat sb;
2028
2029 if (!trigger_file)
2030 return false;
2031
2032 if (stat(trigger_file, &sb))
2033 return false;
2034
2035 if (unlink(trigger_file) < 0)
2036 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2037 strerror(errno));
2038
2039 return true;
2040}
2041
2042static bool trigger_timedout(void)
2043{
2044 if (trigger_timeout)
2045 return time_since_genesis() >= trigger_timeout;
2046
2047 return false;
2048}
2049
2050void exec_trigger(const char *cmd)
2051{
2052 int ret;
2053
2054 if (!cmd)
2055 return;
2056
2057 ret = system(cmd);
2058 if (ret == -1)
2059 log_err("fio: failed executing %s trigger\n", cmd);
2060}
2061
2062void check_trigger_file(void)
2063{
2064 if (__check_trigger_file() || trigger_timedout()) {
2065 if (nr_clients)
2066 fio_clients_send_trigger(trigger_remote_cmd);
2067 else {
2068 verify_save_state(IO_LIST_ALL);
2069 fio_terminate_threads(TERMINATE_ALL);
2070 exec_trigger(trigger_cmd);
2071 }
2072 }
2073}
2074
2075static int fio_verify_load_state(struct thread_data *td)
2076{
2077 int ret;
2078
2079 if (!td->o.verify_state)
2080 return 0;
2081
2082 if (is_backend) {
2083 void *data;
2084
2085 ret = fio_server_get_verify_state(td->o.name,
2086 td->thread_number - 1, &data);
2087 if (!ret)
2088 verify_assign_state(td, data);
2089 } else
2090 ret = verify_load_state(td, "local");
2091
2092 return ret;
2093}
2094
2095static void do_usleep(unsigned int usecs)
2096{
2097 check_for_running_stats();
2098 check_trigger_file();
2099 usleep(usecs);
2100}
2101
2102static bool check_mount_writes(struct thread_data *td)
2103{
2104 struct fio_file *f;
2105 unsigned int i;
2106
2107 if (!td_write(td) || td->o.allow_mounted_write)
2108 return false;
2109
2110 /*
2111 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2112 * are mkfs'd and mounted.
2113 */
2114 for_each_file(td, f, i) {
2115#ifdef FIO_HAVE_CHARDEV_SIZE
2116 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2117#else
2118 if (f->filetype != FIO_TYPE_BLOCK)
2119#endif
2120 continue;
2121 if (device_is_mounted(f->file_name))
2122 goto mounted;
2123 }
2124
2125 return false;
2126mounted:
2127 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2128 return true;
2129}
2130
2131static bool waitee_running(struct thread_data *me)
2132{
2133 const char *waitee = me->o.wait_for;
2134 const char *self = me->o.name;
2135 struct thread_data *td;
2136 int i;
2137
2138 if (!waitee)
2139 return false;
2140
2141 for_each_td(td, i) {
2142 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2143 continue;
2144
2145 if (td->runstate < TD_EXITED) {
2146 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2147 self, td->o.name,
2148 runstate_to_name(td->runstate));
2149 return true;
2150 }
2151 }
2152
2153 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2154 return false;
2155}
2156
2157/*
2158 * Main function for kicking off and reaping jobs, as needed.
2159 */
2160static void run_threads(struct sk_out *sk_out)
2161{
2162 struct thread_data *td;
2163 unsigned int i, todo, nr_running, nr_started;
2164 uint64_t m_rate, t_rate;
2165 uint64_t spent;
2166
2167 if (fio_gtod_offload && fio_start_gtod_thread())
2168 return;
2169
2170 fio_idle_prof_init();
2171
2172 set_sig_handlers();
2173
2174 nr_thread = nr_process = 0;
2175 for_each_td(td, i) {
2176 if (check_mount_writes(td))
2177 return;
2178 if (td->o.use_thread)
2179 nr_thread++;
2180 else
2181 nr_process++;
2182 }
2183
2184 if (output_format & FIO_OUTPUT_NORMAL) {
2185 log_info("Starting ");
2186 if (nr_thread)
2187 log_info("%d thread%s", nr_thread,
2188 nr_thread > 1 ? "s" : "");
2189 if (nr_process) {
2190 if (nr_thread)
2191 log_info(" and ");
2192 log_info("%d process%s", nr_process,
2193 nr_process > 1 ? "es" : "");
2194 }
2195 log_info("\n");
2196 log_info_flush();
2197 }
2198
2199 todo = thread_number;
2200 nr_running = 0;
2201 nr_started = 0;
2202 m_rate = t_rate = 0;
2203
2204 for_each_td(td, i) {
2205 print_status_init(td->thread_number - 1);
2206
2207 if (!td->o.create_serialize)
2208 continue;
2209
2210 if (fio_verify_load_state(td))
2211 goto reap;
2212
2213 /*
2214 * do file setup here so it happens sequentially,
2215 * we don't want X number of threads getting their
2216 * client data interspersed on disk
2217 */
2218 if (setup_files(td)) {
2219reap:
2220 exit_value++;
2221 if (td->error)
2222 log_err("fio: pid=%d, err=%d/%s\n",
2223 (int) td->pid, td->error, td->verror);
2224 td_set_runstate(td, TD_REAPED);
2225 todo--;
2226 } else {
2227 struct fio_file *f;
2228 unsigned int j;
2229
2230 /*
2231 * for sharing to work, each job must always open
2232 * its own files. so close them, if we opened them
2233 * for creation
2234 */
2235 for_each_file(td, f, j) {
2236 if (fio_file_open(f))
2237 td_io_close_file(td, f);
2238 }
2239 }
2240 }
2241
2242 /* start idle threads before io threads start to run */
2243 fio_idle_prof_start();
2244
2245 set_genesis_time();
2246
2247 while (todo) {
2248 struct thread_data *map[REAL_MAX_JOBS];
2249 struct timespec this_start;
2250 int this_jobs = 0, left;
2251 struct fork_data *fd;
2252
2253 /*
2254 * create threads (TD_NOT_CREATED -> TD_CREATED)
2255 */
2256 for_each_td(td, i) {
2257 if (td->runstate != TD_NOT_CREATED)
2258 continue;
2259
2260 /*
2261 * never got a chance to start, killed by other
2262 * thread for some reason
2263 */
2264 if (td->terminate) {
2265 todo--;
2266 continue;
2267 }
2268
2269 if (td->o.start_delay) {
2270 spent = utime_since_genesis();
2271
2272 if (td->o.start_delay > spent)
2273 continue;
2274 }
2275
2276 if (td->o.stonewall && (nr_started || nr_running)) {
2277 dprint(FD_PROCESS, "%s: stonewall wait\n",
2278 td->o.name);
2279 break;
2280 }
2281
2282 if (waitee_running(td)) {
2283 dprint(FD_PROCESS, "%s: waiting for %s\n",
2284 td->o.name, td->o.wait_for);
2285 continue;
2286 }
2287
2288 init_disk_util(td);
2289
2290 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2291 td->update_rusage = 0;
2292
2293 /*
2294 * Set state to created. Thread will transition
2295 * to TD_INITIALIZED when it's done setting up.
2296 */
2297 td_set_runstate(td, TD_CREATED);
2298 map[this_jobs++] = td;
2299 nr_started++;
2300
2301 fd = calloc(1, sizeof(*fd));
2302 fd->td = td;
2303 fd->sk_out = sk_out;
2304
2305 if (td->o.use_thread) {
2306 int ret;
2307
2308 dprint(FD_PROCESS, "will pthread_create\n");
2309 ret = pthread_create(&td->thread, NULL,
2310 thread_main, fd);
2311 if (ret) {
2312 log_err("pthread_create: %s\n",
2313 strerror(ret));
2314 free(fd);
2315 nr_started--;
2316 break;
2317 }
2318 ret = pthread_detach(td->thread);
2319 if (ret)
2320 log_err("pthread_detach: %s",
2321 strerror(ret));
2322 } else {
2323 pid_t pid;
2324 dprint(FD_PROCESS, "will fork\n");
2325 pid = fork();
2326 if (!pid) {
2327 int ret;
2328
2329 ret = (int)(uintptr_t)thread_main(fd);
2330 _exit(ret);
2331 } else if (i == fio_debug_jobno)
2332 *fio_debug_jobp = pid;
2333 }
2334 dprint(FD_MUTEX, "wait on startup_mutex\n");
2335 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2336 log_err("fio: job startup hung? exiting.\n");
2337 fio_terminate_threads(TERMINATE_ALL);
2338 fio_abort = 1;
2339 nr_started--;
2340 break;
2341 }
2342 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2343 }
2344
2345 /*
2346 * Wait for the started threads to transition to
2347 * TD_INITIALIZED.
2348 */
2349 fio_gettime(&this_start, NULL);
2350 left = this_jobs;
2351 while (left && !fio_abort) {
2352 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2353 break;
2354
2355 do_usleep(100000);
2356
2357 for (i = 0; i < this_jobs; i++) {
2358 td = map[i];
2359 if (!td)
2360 continue;
2361 if (td->runstate == TD_INITIALIZED) {
2362 map[i] = NULL;
2363 left--;
2364 } else if (td->runstate >= TD_EXITED) {
2365 map[i] = NULL;
2366 left--;
2367 todo--;
2368 nr_running++; /* work-around... */
2369 }
2370 }
2371 }
2372
2373 if (left) {
2374 log_err("fio: %d job%s failed to start\n", left,
2375 left > 1 ? "s" : "");
2376 for (i = 0; i < this_jobs; i++) {
2377 td = map[i];
2378 if (!td)
2379 continue;
2380 kill(td->pid, SIGTERM);
2381 }
2382 break;
2383 }
2384
2385 /*
2386 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2387 */
2388 for_each_td(td, i) {
2389 if (td->runstate != TD_INITIALIZED)
2390 continue;
2391
2392 if (in_ramp_time(td))
2393 td_set_runstate(td, TD_RAMP);
2394 else
2395 td_set_runstate(td, TD_RUNNING);
2396 nr_running++;
2397 nr_started--;
2398 m_rate += ddir_rw_sum(td->o.ratemin);
2399 t_rate += ddir_rw_sum(td->o.rate);
2400 todo--;
2401 fio_mutex_up(td->mutex);
2402 }
2403
2404 reap_threads(&nr_running, &t_rate, &m_rate);
2405
2406 if (todo)
2407 do_usleep(100000);
2408 }
2409
2410 while (nr_running) {
2411 reap_threads(&nr_running, &t_rate, &m_rate);
2412 do_usleep(10000);
2413 }
2414
2415 fio_idle_prof_stop();
2416
2417 update_io_ticks();
2418}
2419
2420static void free_disk_util(void)
2421{
2422 disk_util_prune_entries();
2423 helper_thread_destroy();
2424}
2425
2426int fio_backend(struct sk_out *sk_out)
2427{
2428 struct thread_data *td;
2429 int i;
2430
2431 if (exec_profile) {
2432 if (load_profile(exec_profile))
2433 return 1;
2434 free(exec_profile);
2435 exec_profile = NULL;
2436 }
2437 if (!thread_number)
2438 return 0;
2439
2440 if (write_bw_log) {
2441 struct log_params p = {
2442 .log_type = IO_LOG_TYPE_BW,
2443 };
2444
2445 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2446 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2447 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2448 }
2449
2450 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2451 if (startup_mutex == NULL)
2452 return 1;
2453
2454 set_genesis_time();
2455 stat_init();
2456 helper_thread_create(startup_mutex, sk_out);
2457
2458 cgroup_list = smalloc(sizeof(*cgroup_list));
2459 INIT_FLIST_HEAD(cgroup_list);
2460
2461 run_threads(sk_out);
2462
2463 helper_thread_exit();
2464
2465 if (!fio_abort) {
2466 __show_run_stats();
2467 if (write_bw_log) {
2468 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2469 struct io_log *log = agg_io_log[i];
2470
2471 flush_log(log, false);
2472 free_log(log);
2473 }
2474 }
2475 }
2476
2477 for_each_td(td, i) {
2478 if (td->ss.dur) {
2479 if (td->ss.iops_data != NULL) {
2480 free(td->ss.iops_data);
2481 free(td->ss.bw_data);
2482 }
2483 }
2484 fio_options_free(td);
2485 if (td->rusage_sem) {
2486 fio_mutex_remove(td->rusage_sem);
2487 td->rusage_sem = NULL;
2488 }
2489 fio_mutex_remove(td->mutex);
2490 td->mutex = NULL;
2491 }
2492
2493 free_disk_util();
2494 cgroup_kill(cgroup_list);
2495 sfree(cgroup_list);
2496 sfree(cgroup_mnt);
2497
2498 fio_mutex_remove(startup_mutex);
2499 stat_exit();
2500 return exit_value;
2501}