Fix Windows CPU count
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int stat_number = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
70
71#define JOB_START_TIMEOUT (5 * 1000)
72
73static void sig_int(int sig)
74{
75 if (threads) {
76 if (is_backend)
77 fio_server_got_signal(sig);
78 else {
79 log_info("\nfio: terminating on signal %d\n", sig);
80 log_info_flush();
81 exit_value = 128;
82 }
83
84 fio_terminate_threads(TERMINATE_ALL);
85 }
86}
87
88void sig_show_status(int sig)
89{
90 show_running_run_stats();
91}
92
93static void set_sig_handlers(void)
94{
95 struct sigaction act;
96
97 memset(&act, 0, sizeof(act));
98 act.sa_handler = sig_int;
99 act.sa_flags = SA_RESTART;
100 sigaction(SIGINT, &act, NULL);
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGTERM, &act, NULL);
106
107/* Windows uses SIGBREAK as a quit signal from other applications */
108#ifdef WIN32
109 memset(&act, 0, sizeof(act));
110 act.sa_handler = sig_int;
111 act.sa_flags = SA_RESTART;
112 sigaction(SIGBREAK, &act, NULL);
113#endif
114
115 memset(&act, 0, sizeof(act));
116 act.sa_handler = sig_show_status;
117 act.sa_flags = SA_RESTART;
118 sigaction(SIGUSR1, &act, NULL);
119
120 if (is_backend) {
121 memset(&act, 0, sizeof(act));
122 act.sa_handler = sig_int;
123 act.sa_flags = SA_RESTART;
124 sigaction(SIGPIPE, &act, NULL);
125 }
126}
127
128/*
129 * Check if we are above the minimum rate given.
130 */
131static bool __check_min_rate(struct thread_data *td, struct timespec *now,
132 enum fio_ddir ddir)
133{
134 unsigned long long bytes = 0;
135 unsigned long iops = 0;
136 unsigned long spent;
137 unsigned long rate;
138 unsigned int ratemin = 0;
139 unsigned int rate_iops = 0;
140 unsigned int rate_iops_min = 0;
141
142 assert(ddir_rw(ddir));
143
144 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
145 return false;
146
147 /*
148 * allow a 2 second settle period in the beginning
149 */
150 if (mtime_since(&td->start, now) < 2000)
151 return false;
152
153 iops += td->this_io_blocks[ddir];
154 bytes += td->this_io_bytes[ddir];
155 ratemin += td->o.ratemin[ddir];
156 rate_iops += td->o.rate_iops[ddir];
157 rate_iops_min += td->o.rate_iops_min[ddir];
158
159 /*
160 * if rate blocks is set, sample is running
161 */
162 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
163 spent = mtime_since(&td->lastrate[ddir], now);
164 if (spent < td->o.ratecycle)
165 return false;
166
167 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
168 /*
169 * check bandwidth specified rate
170 */
171 if (bytes < td->rate_bytes[ddir]) {
172 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
173 td->o.name, ratemin, bytes);
174 return true;
175 } else {
176 if (spent)
177 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
178 else
179 rate = 0;
180
181 if (rate < ratemin ||
182 bytes < td->rate_bytes[ddir]) {
183 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
184 td->o.name, ratemin, rate);
185 return true;
186 }
187 }
188 } else {
189 /*
190 * checks iops specified rate
191 */
192 if (iops < rate_iops) {
193 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
194 td->o.name, rate_iops, iops);
195 return true;
196 } else {
197 if (spent)
198 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
199 else
200 rate = 0;
201
202 if (rate < rate_iops_min ||
203 iops < td->rate_blocks[ddir]) {
204 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
205 td->o.name, rate_iops_min, rate);
206 return true;
207 }
208 }
209 }
210 }
211
212 td->rate_bytes[ddir] = bytes;
213 td->rate_blocks[ddir] = iops;
214 memcpy(&td->lastrate[ddir], now, sizeof(*now));
215 return false;
216}
217
218static bool check_min_rate(struct thread_data *td, struct timespec *now)
219{
220 bool ret = false;
221
222 if (td->bytes_done[DDIR_READ])
223 ret |= __check_min_rate(td, now, DDIR_READ);
224 if (td->bytes_done[DDIR_WRITE])
225 ret |= __check_min_rate(td, now, DDIR_WRITE);
226 if (td->bytes_done[DDIR_TRIM])
227 ret |= __check_min_rate(td, now, DDIR_TRIM);
228
229 return ret;
230}
231
232/*
233 * When job exits, we can cancel the in-flight IO if we are using async
234 * io. Attempt to do so.
235 */
236static void cleanup_pending_aio(struct thread_data *td)
237{
238 int r;
239
240 /*
241 * get immediately available events, if any
242 */
243 r = io_u_queued_complete(td, 0);
244 if (r < 0)
245 return;
246
247 /*
248 * now cancel remaining active events
249 */
250 if (td->io_ops->cancel) {
251 struct io_u *io_u;
252 int i;
253
254 io_u_qiter(&td->io_u_all, io_u, i) {
255 if (io_u->flags & IO_U_F_FLIGHT) {
256 r = td->io_ops->cancel(td, io_u);
257 if (!r)
258 put_io_u(td, io_u);
259 }
260 }
261 }
262
263 if (td->cur_depth)
264 r = io_u_queued_complete(td, td->cur_depth);
265}
266
267/*
268 * Helper to handle the final sync of a file. Works just like the normal
269 * io path, just does everything sync.
270 */
271static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
272{
273 struct io_u *io_u = __get_io_u(td);
274 enum fio_q_status ret;
275
276 if (!io_u)
277 return true;
278
279 io_u->ddir = DDIR_SYNC;
280 io_u->file = f;
281
282 if (td_io_prep(td, io_u)) {
283 put_io_u(td, io_u);
284 return true;
285 }
286
287requeue:
288 ret = td_io_queue(td, io_u);
289 switch (ret) {
290 case FIO_Q_QUEUED:
291 td_io_commit(td);
292 if (io_u_queued_complete(td, 1) < 0)
293 return true;
294 break;
295 case FIO_Q_COMPLETED:
296 if (io_u->error) {
297 td_verror(td, io_u->error, "td_io_queue");
298 return true;
299 }
300
301 if (io_u_sync_complete(td, io_u) < 0)
302 return true;
303 break;
304 case FIO_Q_BUSY:
305 td_io_commit(td);
306 goto requeue;
307 }
308
309 return false;
310}
311
312static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
313{
314 int ret;
315
316 if (fio_file_open(f))
317 return fio_io_sync(td, f);
318
319 if (td_io_open_file(td, f))
320 return 1;
321
322 ret = fio_io_sync(td, f);
323 td_io_close_file(td, f);
324 return ret;
325}
326
327static inline void __update_ts_cache(struct thread_data *td)
328{
329 fio_gettime(&td->ts_cache, NULL);
330}
331
332static inline void update_ts_cache(struct thread_data *td)
333{
334 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
335 __update_ts_cache(td);
336}
337
338static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
339{
340 if (in_ramp_time(td))
341 return false;
342 if (!td->o.timeout)
343 return false;
344 if (utime_since(&td->epoch, t) >= td->o.timeout)
345 return true;
346
347 return false;
348}
349
350/*
351 * We need to update the runtime consistently in ms, but keep a running
352 * tally of the current elapsed time in microseconds for sub millisecond
353 * updates.
354 */
355static inline void update_runtime(struct thread_data *td,
356 unsigned long long *elapsed_us,
357 const enum fio_ddir ddir)
358{
359 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
360 return;
361
362 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
363 elapsed_us[ddir] += utime_since_now(&td->start);
364 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
365}
366
367static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
368 int *retptr)
369{
370 int ret = *retptr;
371
372 if (ret < 0 || td->error) {
373 int err = td->error;
374 enum error_type_bit eb;
375
376 if (ret < 0)
377 err = -ret;
378
379 eb = td_error_type(ddir, err);
380 if (!(td->o.continue_on_error & (1 << eb)))
381 return true;
382
383 if (td_non_fatal_error(td, eb, err)) {
384 /*
385 * Continue with the I/Os in case of
386 * a non fatal error.
387 */
388 update_error_count(td, err);
389 td_clear_error(td);
390 *retptr = 0;
391 return false;
392 } else if (td->o.fill_device && err == ENOSPC) {
393 /*
394 * We expect to hit this error if
395 * fill_device option is set.
396 */
397 td_clear_error(td);
398 fio_mark_td_terminate(td);
399 return true;
400 } else {
401 /*
402 * Stop the I/O in case of a fatal
403 * error.
404 */
405 update_error_count(td, err);
406 return true;
407 }
408 }
409
410 return false;
411}
412
413static void check_update_rusage(struct thread_data *td)
414{
415 if (td->update_rusage) {
416 td->update_rusage = 0;
417 update_rusage_stat(td);
418 fio_sem_up(td->rusage_sem);
419 }
420}
421
422static int wait_for_completions(struct thread_data *td, struct timespec *time)
423{
424 const int full = queue_full(td);
425 int min_evts = 0;
426 int ret;
427
428 if (td->flags & TD_F_REGROW_LOGS)
429 return io_u_quiesce(td);
430
431 /*
432 * if the queue is full, we MUST reap at least 1 event
433 */
434 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
435 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
436 min_evts = 1;
437
438 if (time && __should_check_rate(td))
439 fio_gettime(time, NULL);
440
441 do {
442 ret = io_u_queued_complete(td, min_evts);
443 if (ret < 0)
444 break;
445 } while (full && (td->cur_depth > td->o.iodepth_low));
446
447 return ret;
448}
449
450int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
451 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
452 struct timespec *comp_time)
453{
454 switch (*ret) {
455 case FIO_Q_COMPLETED:
456 if (io_u->error) {
457 *ret = -io_u->error;
458 clear_io_u(td, io_u);
459 } else if (io_u->resid) {
460 long long bytes = io_u->xfer_buflen - io_u->resid;
461 struct fio_file *f = io_u->file;
462
463 if (bytes_issued)
464 *bytes_issued += bytes;
465
466 if (!from_verify)
467 trim_io_piece(io_u);
468
469 /*
470 * zero read, fail
471 */
472 if (!bytes) {
473 if (!from_verify)
474 unlog_io_piece(td, io_u);
475 td_verror(td, EIO, "full resid");
476 put_io_u(td, io_u);
477 break;
478 }
479
480 io_u->xfer_buflen = io_u->resid;
481 io_u->xfer_buf += bytes;
482 io_u->offset += bytes;
483
484 if (ddir_rw(io_u->ddir))
485 td->ts.short_io_u[io_u->ddir]++;
486
487 if (io_u->offset == f->real_file_size)
488 goto sync_done;
489
490 requeue_io_u(td, &io_u);
491 } else {
492sync_done:
493 if (comp_time && __should_check_rate(td))
494 fio_gettime(comp_time, NULL);
495
496 *ret = io_u_sync_complete(td, io_u);
497 if (*ret < 0)
498 break;
499 }
500
501 if (td->flags & TD_F_REGROW_LOGS)
502 regrow_logs(td);
503
504 /*
505 * when doing I/O (not when verifying),
506 * check for any errors that are to be ignored
507 */
508 if (!from_verify)
509 break;
510
511 return 0;
512 case FIO_Q_QUEUED:
513 /*
514 * if the engine doesn't have a commit hook,
515 * the io_u is really queued. if it does have such
516 * a hook, it has to call io_u_queued() itself.
517 */
518 if (td->io_ops->commit == NULL)
519 io_u_queued(td, io_u);
520 if (bytes_issued)
521 *bytes_issued += io_u->xfer_buflen;
522 break;
523 case FIO_Q_BUSY:
524 if (!from_verify)
525 unlog_io_piece(td, io_u);
526 requeue_io_u(td, &io_u);
527 td_io_commit(td);
528 break;
529 default:
530 assert(*ret < 0);
531 td_verror(td, -(*ret), "td_io_queue");
532 break;
533 }
534
535 if (break_on_this_error(td, ddir, ret))
536 return 1;
537
538 return 0;
539}
540
541static inline bool io_in_polling(struct thread_data *td)
542{
543 return !td->o.iodepth_batch_complete_min &&
544 !td->o.iodepth_batch_complete_max;
545}
546/*
547 * Unlinks files from thread data fio_file structure
548 */
549static int unlink_all_files(struct thread_data *td)
550{
551 struct fio_file *f;
552 unsigned int i;
553 int ret = 0;
554
555 for_each_file(td, f, i) {
556 if (f->filetype != FIO_TYPE_FILE)
557 continue;
558 ret = td_io_unlink_file(td, f);
559 if (ret)
560 break;
561 }
562
563 if (ret)
564 td_verror(td, ret, "unlink_all_files");
565
566 return ret;
567}
568
569/*
570 * Check if io_u will overlap an in-flight IO in the queue
571 */
572bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
573{
574 bool overlap;
575 struct io_u *check_io_u;
576 unsigned long long x1, x2, y1, y2;
577 int i;
578
579 x1 = io_u->offset;
580 x2 = io_u->offset + io_u->buflen;
581 overlap = false;
582 io_u_qiter(q, check_io_u, i) {
583 if (check_io_u->flags & IO_U_F_FLIGHT) {
584 y1 = check_io_u->offset;
585 y2 = check_io_u->offset + check_io_u->buflen;
586
587 if (x1 < y2 && y1 < x2) {
588 overlap = true;
589 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
590 x1, io_u->buflen,
591 y1, check_io_u->buflen);
592 break;
593 }
594 }
595 }
596
597 return overlap;
598}
599
600static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
601{
602 /*
603 * Check for overlap if the user asked us to, and we have
604 * at least one IO in flight besides this one.
605 */
606 if (td->o.serialize_overlap && td->cur_depth > 1 &&
607 in_flight_overlap(&td->io_u_all, io_u))
608 return FIO_Q_BUSY;
609
610 return td_io_queue(td, io_u);
611}
612
613/*
614 * The main verify engine. Runs over the writes we previously submitted,
615 * reads the blocks back in, and checks the crc/md5 of the data.
616 */
617static void do_verify(struct thread_data *td, uint64_t verify_bytes)
618{
619 struct fio_file *f;
620 struct io_u *io_u;
621 int ret, min_events;
622 unsigned int i;
623
624 dprint(FD_VERIFY, "starting loop\n");
625
626 /*
627 * sync io first and invalidate cache, to make sure we really
628 * read from disk.
629 */
630 for_each_file(td, f, i) {
631 if (!fio_file_open(f))
632 continue;
633 if (fio_io_sync(td, f))
634 break;
635 if (file_invalidate_cache(td, f))
636 break;
637 }
638
639 check_update_rusage(td);
640
641 if (td->error)
642 return;
643
644 /*
645 * verify_state needs to be reset before verification
646 * proceeds so that expected random seeds match actual
647 * random seeds in headers. The main loop will reset
648 * all random number generators if randrepeat is set.
649 */
650 if (!td->o.rand_repeatable)
651 td_fill_verify_state_seed(td);
652
653 td_set_runstate(td, TD_VERIFYING);
654
655 io_u = NULL;
656 while (!td->terminate) {
657 enum fio_ddir ddir;
658 int full;
659
660 update_ts_cache(td);
661 check_update_rusage(td);
662
663 if (runtime_exceeded(td, &td->ts_cache)) {
664 __update_ts_cache(td);
665 if (runtime_exceeded(td, &td->ts_cache)) {
666 fio_mark_td_terminate(td);
667 break;
668 }
669 }
670
671 if (flow_threshold_exceeded(td))
672 continue;
673
674 if (!td->o.experimental_verify) {
675 io_u = __get_io_u(td);
676 if (!io_u)
677 break;
678
679 if (get_next_verify(td, io_u)) {
680 put_io_u(td, io_u);
681 break;
682 }
683
684 if (td_io_prep(td, io_u)) {
685 put_io_u(td, io_u);
686 break;
687 }
688 } else {
689 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
690 break;
691
692 while ((io_u = get_io_u(td)) != NULL) {
693 if (IS_ERR_OR_NULL(io_u)) {
694 io_u = NULL;
695 ret = FIO_Q_BUSY;
696 goto reap;
697 }
698
699 /*
700 * We are only interested in the places where
701 * we wrote or trimmed IOs. Turn those into
702 * reads for verification purposes.
703 */
704 if (io_u->ddir == DDIR_READ) {
705 /*
706 * Pretend we issued it for rwmix
707 * accounting
708 */
709 td->io_issues[DDIR_READ]++;
710 put_io_u(td, io_u);
711 continue;
712 } else if (io_u->ddir == DDIR_TRIM) {
713 io_u->ddir = DDIR_READ;
714 io_u_set(td, io_u, IO_U_F_TRIMMED);
715 break;
716 } else if (io_u->ddir == DDIR_WRITE) {
717 io_u->ddir = DDIR_READ;
718 populate_verify_io_u(td, io_u);
719 break;
720 } else {
721 put_io_u(td, io_u);
722 continue;
723 }
724 }
725
726 if (!io_u)
727 break;
728 }
729
730 if (verify_state_should_stop(td, io_u)) {
731 put_io_u(td, io_u);
732 break;
733 }
734
735 if (td->o.verify_async)
736 io_u->end_io = verify_io_u_async;
737 else
738 io_u->end_io = verify_io_u;
739
740 ddir = io_u->ddir;
741 if (!td->o.disable_slat)
742 fio_gettime(&io_u->start_time, NULL);
743
744 ret = io_u_submit(td, io_u);
745
746 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
747 break;
748
749 /*
750 * if we can queue more, do so. but check if there are
751 * completed io_u's first. Note that we can get BUSY even
752 * without IO queued, if the system is resource starved.
753 */
754reap:
755 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
756 if (full || io_in_polling(td))
757 ret = wait_for_completions(td, NULL);
758
759 if (ret < 0)
760 break;
761 }
762
763 check_update_rusage(td);
764
765 if (!td->error) {
766 min_events = td->cur_depth;
767
768 if (min_events)
769 ret = io_u_queued_complete(td, min_events);
770 } else
771 cleanup_pending_aio(td);
772
773 td_set_runstate(td, TD_RUNNING);
774
775 dprint(FD_VERIFY, "exiting loop\n");
776}
777
778static bool exceeds_number_ios(struct thread_data *td)
779{
780 unsigned long long number_ios;
781
782 if (!td->o.number_ios)
783 return false;
784
785 number_ios = ddir_rw_sum(td->io_blocks);
786 number_ios += td->io_u_queued + td->io_u_in_flight;
787
788 return number_ios >= (td->o.number_ios * td->loops);
789}
790
791static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
792{
793 unsigned long long bytes, limit;
794
795 if (td_rw(td))
796 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
797 else if (td_write(td))
798 bytes = this_bytes[DDIR_WRITE];
799 else if (td_read(td))
800 bytes = this_bytes[DDIR_READ];
801 else
802 bytes = this_bytes[DDIR_TRIM];
803
804 if (td->o.io_size)
805 limit = td->o.io_size;
806 else
807 limit = td->o.size;
808
809 limit *= td->loops;
810 return bytes >= limit || exceeds_number_ios(td);
811}
812
813static bool io_issue_bytes_exceeded(struct thread_data *td)
814{
815 return io_bytes_exceeded(td, td->io_issue_bytes);
816}
817
818static bool io_complete_bytes_exceeded(struct thread_data *td)
819{
820 return io_bytes_exceeded(td, td->this_io_bytes);
821}
822
823/*
824 * used to calculate the next io time for rate control
825 *
826 */
827static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
828{
829 uint64_t bps = td->rate_bps[ddir];
830
831 assert(!(td->flags & TD_F_CHILD));
832
833 if (td->o.rate_process == RATE_PROCESS_POISSON) {
834 uint64_t val, iops;
835
836 iops = bps / td->o.bs[ddir];
837 val = (int64_t) (1000000 / iops) *
838 -logf(__rand_0_1(&td->poisson_state[ddir]));
839 if (val) {
840 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
841 (unsigned long long) 1000000 / val,
842 ddir);
843 }
844 td->last_usec[ddir] += val;
845 return td->last_usec[ddir];
846 } else if (bps) {
847 uint64_t bytes = td->rate_io_issue_bytes[ddir];
848 uint64_t secs = bytes / bps;
849 uint64_t remainder = bytes % bps;
850
851 return remainder * 1000000 / bps + secs * 1000000;
852 }
853
854 return 0;
855}
856
857static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
858{
859 unsigned long long b;
860 uint64_t total;
861 int left;
862
863 b = ddir_rw_sum(td->io_blocks);
864 if (b % td->o.thinktime_blocks)
865 return;
866
867 io_u_quiesce(td);
868
869 total = 0;
870 if (td->o.thinktime_spin)
871 total = usec_spin(td->o.thinktime_spin);
872
873 left = td->o.thinktime - total;
874 if (left)
875 total += usec_sleep(td, left);
876
877 /*
878 * If we're ignoring thinktime for the rate, add the number of bytes
879 * we would have done while sleeping, minus one block to ensure we
880 * start issuing immediately after the sleep.
881 */
882 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
883 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
884 uint64_t bs = td->o.min_bs[ddir];
885 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
886 uint64_t over;
887
888 if (usperop <= total)
889 over = bs;
890 else
891 over = (usperop - total) / usperop * -bs;
892
893 td->rate_io_issue_bytes[ddir] += (missed - over);
894 /* adjust for rate_process=poisson */
895 td->last_usec[ddir] += total;
896 }
897}
898
899/*
900 * Main IO worker function. It retrieves io_u's to process and queues
901 * and reaps them, checking for rate and errors along the way.
902 *
903 * Returns number of bytes written and trimmed.
904 */
905static void do_io(struct thread_data *td, uint64_t *bytes_done)
906{
907 unsigned int i;
908 int ret = 0;
909 uint64_t total_bytes, bytes_issued = 0;
910
911 for (i = 0; i < DDIR_RWDIR_CNT; i++)
912 bytes_done[i] = td->bytes_done[i];
913
914 if (in_ramp_time(td))
915 td_set_runstate(td, TD_RAMP);
916 else
917 td_set_runstate(td, TD_RUNNING);
918
919 lat_target_init(td);
920
921 total_bytes = td->o.size;
922 /*
923 * Allow random overwrite workloads to write up to io_size
924 * before starting verification phase as 'size' doesn't apply.
925 */
926 if (td_write(td) && td_random(td) && td->o.norandommap)
927 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
928 /*
929 * If verify_backlog is enabled, we'll run the verify in this
930 * handler as well. For that case, we may need up to twice the
931 * amount of bytes.
932 */
933 if (td->o.verify != VERIFY_NONE &&
934 (td_write(td) && td->o.verify_backlog))
935 total_bytes += td->o.size;
936
937 /* In trimwrite mode, each byte is trimmed and then written, so
938 * allow total_bytes to be twice as big */
939 if (td_trimwrite(td))
940 total_bytes += td->total_io_size;
941
942 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
943 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
944 td->o.time_based) {
945 struct timespec comp_time;
946 struct io_u *io_u;
947 int full;
948 enum fio_ddir ddir;
949
950 check_update_rusage(td);
951
952 if (td->terminate || td->done)
953 break;
954
955 update_ts_cache(td);
956
957 if (runtime_exceeded(td, &td->ts_cache)) {
958 __update_ts_cache(td);
959 if (runtime_exceeded(td, &td->ts_cache)) {
960 fio_mark_td_terminate(td);
961 break;
962 }
963 }
964
965 if (flow_threshold_exceeded(td))
966 continue;
967
968 /*
969 * Break if we exceeded the bytes. The exception is time
970 * based runs, but we still need to break out of the loop
971 * for those to run verification, if enabled.
972 * Jobs read from iolog do not use this stop condition.
973 */
974 if (bytes_issued >= total_bytes &&
975 !td->o.read_iolog_file &&
976 (!td->o.time_based ||
977 (td->o.time_based && td->o.verify != VERIFY_NONE)))
978 break;
979
980 io_u = get_io_u(td);
981 if (IS_ERR_OR_NULL(io_u)) {
982 int err = PTR_ERR(io_u);
983
984 io_u = NULL;
985 ddir = DDIR_INVAL;
986 if (err == -EBUSY) {
987 ret = FIO_Q_BUSY;
988 goto reap;
989 }
990 if (td->o.latency_target)
991 goto reap;
992 break;
993 }
994
995 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
996 populate_verify_io_u(td, io_u);
997
998 ddir = io_u->ddir;
999
1000 /*
1001 * Add verification end_io handler if:
1002 * - Asked to verify (!td_rw(td))
1003 * - Or the io_u is from our verify list (mixed write/ver)
1004 */
1005 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1006 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1007
1008 if (!td->o.verify_pattern_bytes) {
1009 io_u->rand_seed = __rand(&td->verify_state);
1010 if (sizeof(int) != sizeof(long *))
1011 io_u->rand_seed *= __rand(&td->verify_state);
1012 }
1013
1014 if (verify_state_should_stop(td, io_u)) {
1015 put_io_u(td, io_u);
1016 break;
1017 }
1018
1019 if (td->o.verify_async)
1020 io_u->end_io = verify_io_u_async;
1021 else
1022 io_u->end_io = verify_io_u;
1023 td_set_runstate(td, TD_VERIFYING);
1024 } else if (in_ramp_time(td))
1025 td_set_runstate(td, TD_RAMP);
1026 else
1027 td_set_runstate(td, TD_RUNNING);
1028
1029 /*
1030 * Always log IO before it's issued, so we know the specific
1031 * order of it. The logged unit will track when the IO has
1032 * completed.
1033 */
1034 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1035 td->o.do_verify &&
1036 td->o.verify != VERIFY_NONE &&
1037 !td->o.experimental_verify)
1038 log_io_piece(td, io_u);
1039
1040 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1041 const unsigned long long blen = io_u->xfer_buflen;
1042 const enum fio_ddir __ddir = acct_ddir(io_u);
1043
1044 if (td->error)
1045 break;
1046
1047 workqueue_enqueue(&td->io_wq, &io_u->work);
1048 ret = FIO_Q_QUEUED;
1049
1050 if (ddir_rw(__ddir)) {
1051 td->io_issues[__ddir]++;
1052 td->io_issue_bytes[__ddir] += blen;
1053 td->rate_io_issue_bytes[__ddir] += blen;
1054 }
1055
1056 if (should_check_rate(td))
1057 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1058
1059 } else {
1060 ret = io_u_submit(td, io_u);
1061
1062 if (should_check_rate(td))
1063 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1064
1065 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1066 break;
1067
1068 /*
1069 * See if we need to complete some commands. Note that
1070 * we can get BUSY even without IO queued, if the
1071 * system is resource starved.
1072 */
1073reap:
1074 full = queue_full(td) ||
1075 (ret == FIO_Q_BUSY && td->cur_depth);
1076 if (full || io_in_polling(td))
1077 ret = wait_for_completions(td, &comp_time);
1078 }
1079 if (ret < 0)
1080 break;
1081 if (!ddir_rw_sum(td->bytes_done) &&
1082 !td_ioengine_flagged(td, FIO_NOIO))
1083 continue;
1084
1085 if (!in_ramp_time(td) && should_check_rate(td)) {
1086 if (check_min_rate(td, &comp_time)) {
1087 if (exitall_on_terminate || td->o.exitall_error)
1088 fio_terminate_threads(td->groupid);
1089 td_verror(td, EIO, "check_min_rate");
1090 break;
1091 }
1092 }
1093 if (!in_ramp_time(td) && td->o.latency_target)
1094 lat_target_check(td);
1095
1096 if (ddir_rw(ddir) && td->o.thinktime)
1097 handle_thinktime(td, ddir);
1098 }
1099
1100 check_update_rusage(td);
1101
1102 if (td->trim_entries)
1103 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1104
1105 if (td->o.fill_device && td->error == ENOSPC) {
1106 td->error = 0;
1107 fio_mark_td_terminate(td);
1108 }
1109 if (!td->error) {
1110 struct fio_file *f;
1111
1112 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1113 workqueue_flush(&td->io_wq);
1114 i = 0;
1115 } else
1116 i = td->cur_depth;
1117
1118 if (i) {
1119 ret = io_u_queued_complete(td, i);
1120 if (td->o.fill_device && td->error == ENOSPC)
1121 td->error = 0;
1122 }
1123
1124 if (should_fsync(td) && td->o.end_fsync) {
1125 td_set_runstate(td, TD_FSYNCING);
1126
1127 for_each_file(td, f, i) {
1128 if (!fio_file_fsync(td, f))
1129 continue;
1130
1131 log_err("fio: end_fsync failed for file %s\n",
1132 f->file_name);
1133 }
1134 }
1135 } else
1136 cleanup_pending_aio(td);
1137
1138 /*
1139 * stop job if we failed doing any IO
1140 */
1141 if (!ddir_rw_sum(td->this_io_bytes))
1142 td->done = 1;
1143
1144 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1145 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1146}
1147
1148static void free_file_completion_logging(struct thread_data *td)
1149{
1150 struct fio_file *f;
1151 unsigned int i;
1152
1153 for_each_file(td, f, i) {
1154 if (!f->last_write_comp)
1155 break;
1156 sfree(f->last_write_comp);
1157 }
1158}
1159
1160static int init_file_completion_logging(struct thread_data *td,
1161 unsigned int depth)
1162{
1163 struct fio_file *f;
1164 unsigned int i;
1165
1166 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1167 return 0;
1168
1169 for_each_file(td, f, i) {
1170 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1171 if (!f->last_write_comp)
1172 goto cleanup;
1173 }
1174
1175 return 0;
1176
1177cleanup:
1178 free_file_completion_logging(td);
1179 log_err("fio: failed to alloc write comp data\n");
1180 return 1;
1181}
1182
1183static void cleanup_io_u(struct thread_data *td)
1184{
1185 struct io_u *io_u;
1186
1187 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1188
1189 if (td->io_ops->io_u_free)
1190 td->io_ops->io_u_free(td, io_u);
1191
1192 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1193 }
1194
1195 free_io_mem(td);
1196
1197 io_u_rexit(&td->io_u_requeues);
1198 io_u_qexit(&td->io_u_freelist, false);
1199 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1200
1201 free_file_completion_logging(td);
1202}
1203
1204static int init_io_u(struct thread_data *td)
1205{
1206 struct io_u *io_u;
1207 int cl_align, i, max_units;
1208 int err;
1209
1210 max_units = td->o.iodepth;
1211
1212 err = 0;
1213 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1214 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1215 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1216
1217 if (err) {
1218 log_err("fio: failed setting up IO queues\n");
1219 return 1;
1220 }
1221
1222 cl_align = os_cache_line_size();
1223
1224 for (i = 0; i < max_units; i++) {
1225 void *ptr;
1226
1227 if (td->terminate)
1228 return 1;
1229
1230 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1231 if (!ptr) {
1232 log_err("fio: unable to allocate aligned memory\n");
1233 break;
1234 }
1235
1236 io_u = ptr;
1237 memset(io_u, 0, sizeof(*io_u));
1238 INIT_FLIST_HEAD(&io_u->verify_list);
1239 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1240
1241 io_u->index = i;
1242 io_u->flags = IO_U_F_FREE;
1243 io_u_qpush(&td->io_u_freelist, io_u);
1244
1245 /*
1246 * io_u never leaves this stack, used for iteration of all
1247 * io_u buffers.
1248 */
1249 io_u_qpush(&td->io_u_all, io_u);
1250
1251 if (td->io_ops->io_u_init) {
1252 int ret = td->io_ops->io_u_init(td, io_u);
1253
1254 if (ret) {
1255 log_err("fio: failed to init engine data: %d\n", ret);
1256 return 1;
1257 }
1258 }
1259 }
1260
1261 init_io_u_buffers(td);
1262
1263 if (init_file_completion_logging(td, max_units))
1264 return 1;
1265
1266 return 0;
1267}
1268
1269int init_io_u_buffers(struct thread_data *td)
1270{
1271 struct io_u *io_u;
1272 unsigned long long max_bs, min_write;
1273 int i, max_units;
1274 int data_xfer = 1;
1275 char *p;
1276
1277 max_units = td->o.iodepth;
1278 max_bs = td_max_bs(td);
1279 min_write = td->o.min_bs[DDIR_WRITE];
1280 td->orig_buffer_size = (unsigned long long) max_bs
1281 * (unsigned long long) max_units;
1282
1283 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1284 data_xfer = 0;
1285
1286 /*
1287 * if we may later need to do address alignment, then add any
1288 * possible adjustment here so that we don't cause a buffer
1289 * overflow later. this adjustment may be too much if we get
1290 * lucky and the allocator gives us an aligned address.
1291 */
1292 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1293 td_ioengine_flagged(td, FIO_RAWIO))
1294 td->orig_buffer_size += page_mask + td->o.mem_align;
1295
1296 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1297 unsigned long long bs;
1298
1299 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1300 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1301 }
1302
1303 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1304 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1305 return 1;
1306 }
1307
1308 if (data_xfer && allocate_io_mem(td))
1309 return 1;
1310
1311 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1312 td_ioengine_flagged(td, FIO_RAWIO))
1313 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1314 else
1315 p = td->orig_buffer;
1316
1317 for (i = 0; i < max_units; i++) {
1318 io_u = td->io_u_all.io_us[i];
1319 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1320
1321 if (data_xfer) {
1322 io_u->buf = p;
1323 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1324
1325 if (td_write(td))
1326 io_u_fill_buffer(td, io_u, min_write, max_bs);
1327 if (td_write(td) && td->o.verify_pattern_bytes) {
1328 /*
1329 * Fill the buffer with the pattern if we are
1330 * going to be doing writes.
1331 */
1332 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1333 }
1334 }
1335 p += max_bs;
1336 }
1337
1338 return 0;
1339}
1340
1341/*
1342 * This function is Linux specific.
1343 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1344 */
1345static int switch_ioscheduler(struct thread_data *td)
1346{
1347#ifdef FIO_HAVE_IOSCHED_SWITCH
1348 char tmp[256], tmp2[128], *p;
1349 FILE *f;
1350 int ret;
1351
1352 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1353 return 0;
1354
1355 assert(td->files && td->files[0]);
1356 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1357
1358 f = fopen(tmp, "r+");
1359 if (!f) {
1360 if (errno == ENOENT) {
1361 log_err("fio: os or kernel doesn't support IO scheduler"
1362 " switching\n");
1363 return 0;
1364 }
1365 td_verror(td, errno, "fopen iosched");
1366 return 1;
1367 }
1368
1369 /*
1370 * Set io scheduler.
1371 */
1372 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1373 if (ferror(f) || ret != 1) {
1374 td_verror(td, errno, "fwrite");
1375 fclose(f);
1376 return 1;
1377 }
1378
1379 rewind(f);
1380
1381 /*
1382 * Read back and check that the selected scheduler is now the default.
1383 */
1384 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1385 if (ferror(f) || ret < 0) {
1386 td_verror(td, errno, "fread");
1387 fclose(f);
1388 return 1;
1389 }
1390 tmp[ret] = '\0';
1391 /*
1392 * either a list of io schedulers or "none\n" is expected. Strip the
1393 * trailing newline.
1394 */
1395 p = tmp;
1396 strsep(&p, "\n");
1397
1398 /*
1399 * Write to "none" entry doesn't fail, so check the result here.
1400 */
1401 if (!strcmp(tmp, "none")) {
1402 log_err("fio: io scheduler is not tunable\n");
1403 fclose(f);
1404 return 0;
1405 }
1406
1407 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1408 if (!strstr(tmp, tmp2)) {
1409 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1410 td_verror(td, EINVAL, "iosched_switch");
1411 fclose(f);
1412 return 1;
1413 }
1414
1415 fclose(f);
1416 return 0;
1417#else
1418 return 0;
1419#endif
1420}
1421
1422static bool keep_running(struct thread_data *td)
1423{
1424 unsigned long long limit;
1425
1426 if (td->done)
1427 return false;
1428 if (td->terminate)
1429 return false;
1430 if (td->o.time_based)
1431 return true;
1432 if (td->o.loops) {
1433 td->o.loops--;
1434 return true;
1435 }
1436 if (exceeds_number_ios(td))
1437 return false;
1438
1439 if (td->o.io_size)
1440 limit = td->o.io_size;
1441 else
1442 limit = td->o.size;
1443
1444 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1445 uint64_t diff;
1446
1447 /*
1448 * If the difference is less than the maximum IO size, we
1449 * are done.
1450 */
1451 diff = limit - ddir_rw_sum(td->io_bytes);
1452 if (diff < td_max_bs(td))
1453 return false;
1454
1455 if (fio_files_done(td) && !td->o.io_size)
1456 return false;
1457
1458 return true;
1459 }
1460
1461 return false;
1462}
1463
1464static int exec_string(struct thread_options *o, const char *string, const char *mode)
1465{
1466 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1467 int ret;
1468 char *str;
1469
1470 str = malloc(newlen);
1471 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1472
1473 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1474 ret = system(str);
1475 if (ret == -1)
1476 log_err("fio: exec of cmd <%s> failed\n", str);
1477
1478 free(str);
1479 return ret;
1480}
1481
1482/*
1483 * Dry run to compute correct state of numberio for verification.
1484 */
1485static uint64_t do_dry_run(struct thread_data *td)
1486{
1487 td_set_runstate(td, TD_RUNNING);
1488
1489 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1490 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1491 struct io_u *io_u;
1492 int ret;
1493
1494 if (td->terminate || td->done)
1495 break;
1496
1497 io_u = get_io_u(td);
1498 if (IS_ERR_OR_NULL(io_u))
1499 break;
1500
1501 io_u_set(td, io_u, IO_U_F_FLIGHT);
1502 io_u->error = 0;
1503 io_u->resid = 0;
1504 if (ddir_rw(acct_ddir(io_u)))
1505 td->io_issues[acct_ddir(io_u)]++;
1506 if (ddir_rw(io_u->ddir)) {
1507 io_u_mark_depth(td, 1);
1508 td->ts.total_io_u[io_u->ddir]++;
1509 }
1510
1511 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1512 td->o.do_verify &&
1513 td->o.verify != VERIFY_NONE &&
1514 !td->o.experimental_verify)
1515 log_io_piece(td, io_u);
1516
1517 ret = io_u_sync_complete(td, io_u);
1518 (void) ret;
1519 }
1520
1521 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1522}
1523
1524struct fork_data {
1525 struct thread_data *td;
1526 struct sk_out *sk_out;
1527};
1528
1529/*
1530 * Entry point for the thread based jobs. The process based jobs end up
1531 * here as well, after a little setup.
1532 */
1533static void *thread_main(void *data)
1534{
1535 struct fork_data *fd = data;
1536 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1537 struct thread_data *td = fd->td;
1538 struct thread_options *o = &td->o;
1539 struct sk_out *sk_out = fd->sk_out;
1540 uint64_t bytes_done[DDIR_RWDIR_CNT];
1541 int deadlock_loop_cnt;
1542 bool clear_state, did_some_io;
1543 int ret;
1544
1545 sk_out_assign(sk_out);
1546 free(fd);
1547
1548 if (!o->use_thread) {
1549 setsid();
1550 td->pid = getpid();
1551 } else
1552 td->pid = gettid();
1553
1554 fio_local_clock_init();
1555
1556 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1557
1558 if (is_backend)
1559 fio_server_send_start(td);
1560
1561 INIT_FLIST_HEAD(&td->io_log_list);
1562 INIT_FLIST_HEAD(&td->io_hist_list);
1563 INIT_FLIST_HEAD(&td->verify_list);
1564 INIT_FLIST_HEAD(&td->trim_list);
1565 td->io_hist_tree = RB_ROOT;
1566
1567 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1568 if (ret) {
1569 td_verror(td, ret, "mutex_cond_init_pshared");
1570 goto err;
1571 }
1572 ret = cond_init_pshared(&td->verify_cond);
1573 if (ret) {
1574 td_verror(td, ret, "mutex_cond_pshared");
1575 goto err;
1576 }
1577
1578 td_set_runstate(td, TD_INITIALIZED);
1579 dprint(FD_MUTEX, "up startup_sem\n");
1580 fio_sem_up(startup_sem);
1581 dprint(FD_MUTEX, "wait on td->sem\n");
1582 fio_sem_down(td->sem);
1583 dprint(FD_MUTEX, "done waiting on td->sem\n");
1584
1585 /*
1586 * A new gid requires privilege, so we need to do this before setting
1587 * the uid.
1588 */
1589 if (o->gid != -1U && setgid(o->gid)) {
1590 td_verror(td, errno, "setgid");
1591 goto err;
1592 }
1593 if (o->uid != -1U && setuid(o->uid)) {
1594 td_verror(td, errno, "setuid");
1595 goto err;
1596 }
1597
1598 td_zone_gen_index(td);
1599
1600 /*
1601 * Do this early, we don't want the compress threads to be limited
1602 * to the same CPUs as the IO workers. So do this before we set
1603 * any potential CPU affinity
1604 */
1605 if (iolog_compress_init(td, sk_out))
1606 goto err;
1607
1608 /*
1609 * If we have a gettimeofday() thread, make sure we exclude that
1610 * thread from this job
1611 */
1612 if (o->gtod_cpu)
1613 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1614
1615 /*
1616 * Set affinity first, in case it has an impact on the memory
1617 * allocations.
1618 */
1619 if (fio_option_is_set(o, cpumask)) {
1620 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1621 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1622 if (!ret) {
1623 log_err("fio: no CPUs set\n");
1624 log_err("fio: Try increasing number of available CPUs\n");
1625 td_verror(td, EINVAL, "cpus_split");
1626 goto err;
1627 }
1628 }
1629 ret = fio_setaffinity(td->pid, o->cpumask);
1630 if (ret == -1) {
1631 td_verror(td, errno, "cpu_set_affinity");
1632 goto err;
1633 }
1634 }
1635
1636#ifdef CONFIG_LIBNUMA
1637 /* numa node setup */
1638 if (fio_option_is_set(o, numa_cpunodes) ||
1639 fio_option_is_set(o, numa_memnodes)) {
1640 struct bitmask *mask;
1641
1642 if (numa_available() < 0) {
1643 td_verror(td, errno, "Does not support NUMA API\n");
1644 goto err;
1645 }
1646
1647 if (fio_option_is_set(o, numa_cpunodes)) {
1648 mask = numa_parse_nodestring(o->numa_cpunodes);
1649 ret = numa_run_on_node_mask(mask);
1650 numa_free_nodemask(mask);
1651 if (ret == -1) {
1652 td_verror(td, errno, \
1653 "numa_run_on_node_mask failed\n");
1654 goto err;
1655 }
1656 }
1657
1658 if (fio_option_is_set(o, numa_memnodes)) {
1659 mask = NULL;
1660 if (o->numa_memnodes)
1661 mask = numa_parse_nodestring(o->numa_memnodes);
1662
1663 switch (o->numa_mem_mode) {
1664 case MPOL_INTERLEAVE:
1665 numa_set_interleave_mask(mask);
1666 break;
1667 case MPOL_BIND:
1668 numa_set_membind(mask);
1669 break;
1670 case MPOL_LOCAL:
1671 numa_set_localalloc();
1672 break;
1673 case MPOL_PREFERRED:
1674 numa_set_preferred(o->numa_mem_prefer_node);
1675 break;
1676 case MPOL_DEFAULT:
1677 default:
1678 break;
1679 }
1680
1681 if (mask)
1682 numa_free_nodemask(mask);
1683
1684 }
1685 }
1686#endif
1687
1688 if (fio_pin_memory(td))
1689 goto err;
1690
1691 /*
1692 * May alter parameters that init_io_u() will use, so we need to
1693 * do this first.
1694 */
1695 if (!init_iolog(td))
1696 goto err;
1697
1698 if (init_io_u(td))
1699 goto err;
1700
1701 if (o->verify_async && verify_async_init(td))
1702 goto err;
1703
1704 if (fio_option_is_set(o, ioprio) ||
1705 fio_option_is_set(o, ioprio_class)) {
1706 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1707 if (ret == -1) {
1708 td_verror(td, errno, "ioprio_set");
1709 goto err;
1710 }
1711 }
1712
1713 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1714 goto err;
1715
1716 errno = 0;
1717 if (nice(o->nice) == -1 && errno != 0) {
1718 td_verror(td, errno, "nice");
1719 goto err;
1720 }
1721
1722 if (o->ioscheduler && switch_ioscheduler(td))
1723 goto err;
1724
1725 if (!o->create_serialize && setup_files(td))
1726 goto err;
1727
1728 if (td_io_init(td))
1729 goto err;
1730
1731 if (!init_random_map(td))
1732 goto err;
1733
1734 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1735 goto err;
1736
1737 if (o->pre_read && !pre_read_files(td))
1738 goto err;
1739
1740 fio_verify_init(td);
1741
1742 if (rate_submit_init(td, sk_out))
1743 goto err;
1744
1745 set_epoch_time(td, o->log_unix_epoch);
1746 fio_getrusage(&td->ru_start);
1747 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1748 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1749 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1750
1751 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1752 o->ratemin[DDIR_TRIM]) {
1753 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1754 sizeof(td->bw_sample_time));
1755 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1756 sizeof(td->bw_sample_time));
1757 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1758 sizeof(td->bw_sample_time));
1759 }
1760
1761 memset(bytes_done, 0, sizeof(bytes_done));
1762 clear_state = false;
1763 did_some_io = false;
1764
1765 while (keep_running(td)) {
1766 uint64_t verify_bytes;
1767
1768 fio_gettime(&td->start, NULL);
1769 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1770
1771 if (clear_state) {
1772 clear_io_state(td, 0);
1773
1774 if (o->unlink_each_loop && unlink_all_files(td))
1775 break;
1776 }
1777
1778 prune_io_piece_log(td);
1779
1780 if (td->o.verify_only && td_write(td))
1781 verify_bytes = do_dry_run(td);
1782 else {
1783 do_io(td, bytes_done);
1784
1785 if (!ddir_rw_sum(bytes_done)) {
1786 fio_mark_td_terminate(td);
1787 verify_bytes = 0;
1788 } else {
1789 verify_bytes = bytes_done[DDIR_WRITE] +
1790 bytes_done[DDIR_TRIM];
1791 }
1792 }
1793
1794 /*
1795 * If we took too long to shut down, the main thread could
1796 * already consider us reaped/exited. If that happens, break
1797 * out and clean up.
1798 */
1799 if (td->runstate >= TD_EXITED)
1800 break;
1801
1802 clear_state = true;
1803
1804 /*
1805 * Make sure we've successfully updated the rusage stats
1806 * before waiting on the stat mutex. Otherwise we could have
1807 * the stat thread holding stat mutex and waiting for
1808 * the rusage_sem, which would never get upped because
1809 * this thread is waiting for the stat mutex.
1810 */
1811 deadlock_loop_cnt = 0;
1812 do {
1813 check_update_rusage(td);
1814 if (!fio_sem_down_trylock(stat_sem))
1815 break;
1816 usleep(1000);
1817 if (deadlock_loop_cnt++ > 5000) {
1818 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1819 td->error = EDEADLK;
1820 goto err;
1821 }
1822 } while (1);
1823
1824 if (td_read(td) && td->io_bytes[DDIR_READ])
1825 update_runtime(td, elapsed_us, DDIR_READ);
1826 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1827 update_runtime(td, elapsed_us, DDIR_WRITE);
1828 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1829 update_runtime(td, elapsed_us, DDIR_TRIM);
1830 fio_gettime(&td->start, NULL);
1831 fio_sem_up(stat_sem);
1832
1833 if (td->error || td->terminate)
1834 break;
1835
1836 if (!o->do_verify ||
1837 o->verify == VERIFY_NONE ||
1838 td_ioengine_flagged(td, FIO_UNIDIR))
1839 continue;
1840
1841 if (ddir_rw_sum(bytes_done))
1842 did_some_io = true;
1843
1844 clear_io_state(td, 0);
1845
1846 fio_gettime(&td->start, NULL);
1847
1848 do_verify(td, verify_bytes);
1849
1850 /*
1851 * See comment further up for why this is done here.
1852 */
1853 check_update_rusage(td);
1854
1855 fio_sem_down(stat_sem);
1856 update_runtime(td, elapsed_us, DDIR_READ);
1857 fio_gettime(&td->start, NULL);
1858 fio_sem_up(stat_sem);
1859
1860 if (td->error || td->terminate)
1861 break;
1862 }
1863
1864 /*
1865 * If td ended up with no I/O when it should have had,
1866 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1867 * (Are we not missing other flags that can be ignored ?)
1868 */
1869 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1870 !did_some_io && !td->o.create_only &&
1871 !(td_ioengine_flagged(td, FIO_NOIO) ||
1872 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1873 log_err("%s: No I/O performed by %s, "
1874 "perhaps try --debug=io option for details?\n",
1875 td->o.name, td->io_ops->name);
1876
1877 /*
1878 * Acquire this lock if we were doing overlap checking in
1879 * offload mode so that we don't clean up this job while
1880 * another thread is checking its io_u's for overlap
1881 */
1882 if (td_offload_overlap(td))
1883 pthread_mutex_lock(&overlap_check);
1884 td_set_runstate(td, TD_FINISHING);
1885 if (td_offload_overlap(td))
1886 pthread_mutex_unlock(&overlap_check);
1887
1888 update_rusage_stat(td);
1889 td->ts.total_run_time = mtime_since_now(&td->epoch);
1890 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1891 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1892 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1893
1894 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1895 (td->o.verify != VERIFY_NONE && td_write(td)))
1896 verify_save_state(td->thread_number);
1897
1898 fio_unpin_memory(td);
1899
1900 td_writeout_logs(td, true);
1901
1902 iolog_compress_exit(td);
1903 rate_submit_exit(td);
1904
1905 if (o->exec_postrun)
1906 exec_string(o, o->exec_postrun, (const char *)"postrun");
1907
1908 if (exitall_on_terminate || (o->exitall_error && td->error))
1909 fio_terminate_threads(td->groupid);
1910
1911err:
1912 if (td->error)
1913 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1914 td->verror);
1915
1916 if (o->verify_async)
1917 verify_async_exit(td);
1918
1919 close_and_free_files(td);
1920 cleanup_io_u(td);
1921 close_ioengine(td);
1922 cgroup_shutdown(td, cgroup_mnt);
1923 verify_free_state(td);
1924 td_zone_free_index(td);
1925
1926 if (fio_option_is_set(o, cpumask)) {
1927 ret = fio_cpuset_exit(&o->cpumask);
1928 if (ret)
1929 td_verror(td, ret, "fio_cpuset_exit");
1930 }
1931
1932 /*
1933 * do this very late, it will log file closing as well
1934 */
1935 if (o->write_iolog_file)
1936 write_iolog_close(td);
1937 if (td->io_log_rfile)
1938 fclose(td->io_log_rfile);
1939
1940 td_set_runstate(td, TD_EXITED);
1941
1942 /*
1943 * Do this last after setting our runstate to exited, so we
1944 * know that the stat thread is signaled.
1945 */
1946 check_update_rusage(td);
1947
1948 sk_out_drop();
1949 return (void *) (uintptr_t) td->error;
1950}
1951
1952/*
1953 * Run over the job map and reap the threads that have exited, if any.
1954 */
1955static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1956 uint64_t *m_rate)
1957{
1958 struct thread_data *td;
1959 unsigned int cputhreads, realthreads, pending;
1960 int i, status, ret;
1961
1962 /*
1963 * reap exited threads (TD_EXITED -> TD_REAPED)
1964 */
1965 realthreads = pending = cputhreads = 0;
1966 for_each_td(td, i) {
1967 int flags = 0;
1968
1969 if (!strcmp(td->o.ioengine, "cpuio"))
1970 cputhreads++;
1971 else
1972 realthreads++;
1973
1974 if (!td->pid) {
1975 pending++;
1976 continue;
1977 }
1978 if (td->runstate == TD_REAPED)
1979 continue;
1980 if (td->o.use_thread) {
1981 if (td->runstate == TD_EXITED) {
1982 td_set_runstate(td, TD_REAPED);
1983 goto reaped;
1984 }
1985 continue;
1986 }
1987
1988 flags = WNOHANG;
1989 if (td->runstate == TD_EXITED)
1990 flags = 0;
1991
1992 /*
1993 * check if someone quit or got killed in an unusual way
1994 */
1995 ret = waitpid(td->pid, &status, flags);
1996 if (ret < 0) {
1997 if (errno == ECHILD) {
1998 log_err("fio: pid=%d disappeared %d\n",
1999 (int) td->pid, td->runstate);
2000 td->sig = ECHILD;
2001 td_set_runstate(td, TD_REAPED);
2002 goto reaped;
2003 }
2004 perror("waitpid");
2005 } else if (ret == td->pid) {
2006 if (WIFSIGNALED(status)) {
2007 int sig = WTERMSIG(status);
2008
2009 if (sig != SIGTERM && sig != SIGUSR2)
2010 log_err("fio: pid=%d, got signal=%d\n",
2011 (int) td->pid, sig);
2012 td->sig = sig;
2013 td_set_runstate(td, TD_REAPED);
2014 goto reaped;
2015 }
2016 if (WIFEXITED(status)) {
2017 if (WEXITSTATUS(status) && !td->error)
2018 td->error = WEXITSTATUS(status);
2019
2020 td_set_runstate(td, TD_REAPED);
2021 goto reaped;
2022 }
2023 }
2024
2025 /*
2026 * If the job is stuck, do a forceful timeout of it and
2027 * move on.
2028 */
2029 if (td->terminate &&
2030 td->runstate < TD_FSYNCING &&
2031 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2032 log_err("fio: job '%s' (state=%d) hasn't exited in "
2033 "%lu seconds, it appears to be stuck. Doing "
2034 "forceful exit of this job.\n",
2035 td->o.name, td->runstate,
2036 (unsigned long) time_since_now(&td->terminate_time));
2037 td_set_runstate(td, TD_REAPED);
2038 goto reaped;
2039 }
2040
2041 /*
2042 * thread is not dead, continue
2043 */
2044 pending++;
2045 continue;
2046reaped:
2047 (*nr_running)--;
2048 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2049 (*t_rate) -= ddir_rw_sum(td->o.rate);
2050 if (!td->pid)
2051 pending--;
2052
2053 if (td->error)
2054 exit_value++;
2055
2056 done_secs += mtime_since_now(&td->epoch) / 1000;
2057 profile_td_exit(td);
2058 }
2059
2060 if (*nr_running == cputhreads && !pending && realthreads)
2061 fio_terminate_threads(TERMINATE_ALL);
2062}
2063
2064static bool __check_trigger_file(void)
2065{
2066 struct stat sb;
2067
2068 if (!trigger_file)
2069 return false;
2070
2071 if (stat(trigger_file, &sb))
2072 return false;
2073
2074 if (unlink(trigger_file) < 0)
2075 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2076 strerror(errno));
2077
2078 return true;
2079}
2080
2081static bool trigger_timedout(void)
2082{
2083 if (trigger_timeout)
2084 if (time_since_genesis() >= trigger_timeout) {
2085 trigger_timeout = 0;
2086 return true;
2087 }
2088
2089 return false;
2090}
2091
2092void exec_trigger(const char *cmd)
2093{
2094 int ret;
2095
2096 if (!cmd || cmd[0] == '\0')
2097 return;
2098
2099 ret = system(cmd);
2100 if (ret == -1)
2101 log_err("fio: failed executing %s trigger\n", cmd);
2102}
2103
2104void check_trigger_file(void)
2105{
2106 if (__check_trigger_file() || trigger_timedout()) {
2107 if (nr_clients)
2108 fio_clients_send_trigger(trigger_remote_cmd);
2109 else {
2110 verify_save_state(IO_LIST_ALL);
2111 fio_terminate_threads(TERMINATE_ALL);
2112 exec_trigger(trigger_cmd);
2113 }
2114 }
2115}
2116
2117static int fio_verify_load_state(struct thread_data *td)
2118{
2119 int ret;
2120
2121 if (!td->o.verify_state)
2122 return 0;
2123
2124 if (is_backend) {
2125 void *data;
2126
2127 ret = fio_server_get_verify_state(td->o.name,
2128 td->thread_number - 1, &data);
2129 if (!ret)
2130 verify_assign_state(td, data);
2131 } else
2132 ret = verify_load_state(td, "local");
2133
2134 return ret;
2135}
2136
2137static void do_usleep(unsigned int usecs)
2138{
2139 check_for_running_stats();
2140 check_trigger_file();
2141 usleep(usecs);
2142}
2143
2144static bool check_mount_writes(struct thread_data *td)
2145{
2146 struct fio_file *f;
2147 unsigned int i;
2148
2149 if (!td_write(td) || td->o.allow_mounted_write)
2150 return false;
2151
2152 /*
2153 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2154 * are mkfs'd and mounted.
2155 */
2156 for_each_file(td, f, i) {
2157#ifdef FIO_HAVE_CHARDEV_SIZE
2158 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2159#else
2160 if (f->filetype != FIO_TYPE_BLOCK)
2161#endif
2162 continue;
2163 if (device_is_mounted(f->file_name))
2164 goto mounted;
2165 }
2166
2167 return false;
2168mounted:
2169 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2170 return true;
2171}
2172
2173static bool waitee_running(struct thread_data *me)
2174{
2175 const char *waitee = me->o.wait_for;
2176 const char *self = me->o.name;
2177 struct thread_data *td;
2178 int i;
2179
2180 if (!waitee)
2181 return false;
2182
2183 for_each_td(td, i) {
2184 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2185 continue;
2186
2187 if (td->runstate < TD_EXITED) {
2188 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2189 self, td->o.name,
2190 runstate_to_name(td->runstate));
2191 return true;
2192 }
2193 }
2194
2195 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2196 return false;
2197}
2198
2199/*
2200 * Main function for kicking off and reaping jobs, as needed.
2201 */
2202static void run_threads(struct sk_out *sk_out)
2203{
2204 struct thread_data *td;
2205 unsigned int i, todo, nr_running, nr_started;
2206 uint64_t m_rate, t_rate;
2207 uint64_t spent;
2208
2209 if (fio_gtod_offload && fio_start_gtod_thread())
2210 return;
2211
2212 fio_idle_prof_init();
2213
2214 set_sig_handlers();
2215
2216 nr_thread = nr_process = 0;
2217 for_each_td(td, i) {
2218 if (check_mount_writes(td))
2219 return;
2220 if (td->o.use_thread)
2221 nr_thread++;
2222 else
2223 nr_process++;
2224 }
2225
2226 if (output_format & FIO_OUTPUT_NORMAL) {
2227 struct buf_output out;
2228
2229 buf_output_init(&out);
2230 __log_buf(&out, "Starting ");
2231 if (nr_thread)
2232 __log_buf(&out, "%d thread%s", nr_thread,
2233 nr_thread > 1 ? "s" : "");
2234 if (nr_process) {
2235 if (nr_thread)
2236 __log_buf(&out, " and ");
2237 __log_buf(&out, "%d process%s", nr_process,
2238 nr_process > 1 ? "es" : "");
2239 }
2240 __log_buf(&out, "\n");
2241 log_info_buf(out.buf, out.buflen);
2242 buf_output_free(&out);
2243 }
2244
2245 todo = thread_number;
2246 nr_running = 0;
2247 nr_started = 0;
2248 m_rate = t_rate = 0;
2249
2250 for_each_td(td, i) {
2251 print_status_init(td->thread_number - 1);
2252
2253 if (!td->o.create_serialize)
2254 continue;
2255
2256 if (fio_verify_load_state(td))
2257 goto reap;
2258
2259 /*
2260 * do file setup here so it happens sequentially,
2261 * we don't want X number of threads getting their
2262 * client data interspersed on disk
2263 */
2264 if (setup_files(td)) {
2265reap:
2266 exit_value++;
2267 if (td->error)
2268 log_err("fio: pid=%d, err=%d/%s\n",
2269 (int) td->pid, td->error, td->verror);
2270 td_set_runstate(td, TD_REAPED);
2271 todo--;
2272 } else {
2273 struct fio_file *f;
2274 unsigned int j;
2275
2276 /*
2277 * for sharing to work, each job must always open
2278 * its own files. so close them, if we opened them
2279 * for creation
2280 */
2281 for_each_file(td, f, j) {
2282 if (fio_file_open(f))
2283 td_io_close_file(td, f);
2284 }
2285 }
2286 }
2287
2288 /* start idle threads before io threads start to run */
2289 fio_idle_prof_start();
2290
2291 set_genesis_time();
2292
2293 while (todo) {
2294 struct thread_data *map[REAL_MAX_JOBS];
2295 struct timespec this_start;
2296 int this_jobs = 0, left;
2297 struct fork_data *fd;
2298
2299 /*
2300 * create threads (TD_NOT_CREATED -> TD_CREATED)
2301 */
2302 for_each_td(td, i) {
2303 if (td->runstate != TD_NOT_CREATED)
2304 continue;
2305
2306 /*
2307 * never got a chance to start, killed by other
2308 * thread for some reason
2309 */
2310 if (td->terminate) {
2311 todo--;
2312 continue;
2313 }
2314
2315 if (td->o.start_delay) {
2316 spent = utime_since_genesis();
2317
2318 if (td->o.start_delay > spent)
2319 continue;
2320 }
2321
2322 if (td->o.stonewall && (nr_started || nr_running)) {
2323 dprint(FD_PROCESS, "%s: stonewall wait\n",
2324 td->o.name);
2325 break;
2326 }
2327
2328 if (waitee_running(td)) {
2329 dprint(FD_PROCESS, "%s: waiting for %s\n",
2330 td->o.name, td->o.wait_for);
2331 continue;
2332 }
2333
2334 init_disk_util(td);
2335
2336 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2337 td->update_rusage = 0;
2338
2339 /*
2340 * Set state to created. Thread will transition
2341 * to TD_INITIALIZED when it's done setting up.
2342 */
2343 td_set_runstate(td, TD_CREATED);
2344 map[this_jobs++] = td;
2345 nr_started++;
2346
2347 fd = calloc(1, sizeof(*fd));
2348 fd->td = td;
2349 fd->sk_out = sk_out;
2350
2351 if (td->o.use_thread) {
2352 int ret;
2353
2354 dprint(FD_PROCESS, "will pthread_create\n");
2355 ret = pthread_create(&td->thread, NULL,
2356 thread_main, fd);
2357 if (ret) {
2358 log_err("pthread_create: %s\n",
2359 strerror(ret));
2360 free(fd);
2361 nr_started--;
2362 break;
2363 }
2364 fd = NULL;
2365 ret = pthread_detach(td->thread);
2366 if (ret)
2367 log_err("pthread_detach: %s",
2368 strerror(ret));
2369 } else {
2370 pid_t pid;
2371 dprint(FD_PROCESS, "will fork\n");
2372 pid = fork();
2373 if (!pid) {
2374 int ret;
2375
2376 ret = (int)(uintptr_t)thread_main(fd);
2377 _exit(ret);
2378 } else if (i == fio_debug_jobno)
2379 *fio_debug_jobp = pid;
2380 }
2381 dprint(FD_MUTEX, "wait on startup_sem\n");
2382 if (fio_sem_down_timeout(startup_sem, 10000)) {
2383 log_err("fio: job startup hung? exiting.\n");
2384 fio_terminate_threads(TERMINATE_ALL);
2385 fio_abort = true;
2386 nr_started--;
2387 free(fd);
2388 break;
2389 }
2390 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2391 }
2392
2393 /*
2394 * Wait for the started threads to transition to
2395 * TD_INITIALIZED.
2396 */
2397 fio_gettime(&this_start, NULL);
2398 left = this_jobs;
2399 while (left && !fio_abort) {
2400 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2401 break;
2402
2403 do_usleep(100000);
2404
2405 for (i = 0; i < this_jobs; i++) {
2406 td = map[i];
2407 if (!td)
2408 continue;
2409 if (td->runstate == TD_INITIALIZED) {
2410 map[i] = NULL;
2411 left--;
2412 } else if (td->runstate >= TD_EXITED) {
2413 map[i] = NULL;
2414 left--;
2415 todo--;
2416 nr_running++; /* work-around... */
2417 }
2418 }
2419 }
2420
2421 if (left) {
2422 log_err("fio: %d job%s failed to start\n", left,
2423 left > 1 ? "s" : "");
2424 for (i = 0; i < this_jobs; i++) {
2425 td = map[i];
2426 if (!td)
2427 continue;
2428 kill(td->pid, SIGTERM);
2429 }
2430 break;
2431 }
2432
2433 /*
2434 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2435 */
2436 for_each_td(td, i) {
2437 if (td->runstate != TD_INITIALIZED)
2438 continue;
2439
2440 if (in_ramp_time(td))
2441 td_set_runstate(td, TD_RAMP);
2442 else
2443 td_set_runstate(td, TD_RUNNING);
2444 nr_running++;
2445 nr_started--;
2446 m_rate += ddir_rw_sum(td->o.ratemin);
2447 t_rate += ddir_rw_sum(td->o.rate);
2448 todo--;
2449 fio_sem_up(td->sem);
2450 }
2451
2452 reap_threads(&nr_running, &t_rate, &m_rate);
2453
2454 if (todo)
2455 do_usleep(100000);
2456 }
2457
2458 while (nr_running) {
2459 reap_threads(&nr_running, &t_rate, &m_rate);
2460 do_usleep(10000);
2461 }
2462
2463 fio_idle_prof_stop();
2464
2465 update_io_ticks();
2466}
2467
2468static void free_disk_util(void)
2469{
2470 disk_util_prune_entries();
2471 helper_thread_destroy();
2472}
2473
2474int fio_backend(struct sk_out *sk_out)
2475{
2476 struct thread_data *td;
2477 int i;
2478
2479 if (exec_profile) {
2480 if (load_profile(exec_profile))
2481 return 1;
2482 free(exec_profile);
2483 exec_profile = NULL;
2484 }
2485 if (!thread_number)
2486 return 0;
2487
2488 if (write_bw_log) {
2489 struct log_params p = {
2490 .log_type = IO_LOG_TYPE_BW,
2491 };
2492
2493 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2494 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2495 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2496 }
2497
2498 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2499 if (!sk_out)
2500 is_local_backend = true;
2501 if (startup_sem == NULL)
2502 return 1;
2503
2504 set_genesis_time();
2505 stat_init();
2506 helper_thread_create(startup_sem, sk_out);
2507
2508 cgroup_list = smalloc(sizeof(*cgroup_list));
2509 if (cgroup_list)
2510 INIT_FLIST_HEAD(cgroup_list);
2511
2512 run_threads(sk_out);
2513
2514 helper_thread_exit();
2515
2516 if (!fio_abort) {
2517 __show_run_stats();
2518 if (write_bw_log) {
2519 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2520 struct io_log *log = agg_io_log[i];
2521
2522 flush_log(log, false);
2523 free_log(log);
2524 }
2525 }
2526 }
2527
2528 for_each_td(td, i) {
2529 steadystate_free(td);
2530 fio_options_free(td);
2531 if (td->rusage_sem) {
2532 fio_sem_remove(td->rusage_sem);
2533 td->rusage_sem = NULL;
2534 }
2535 fio_sem_remove(td->sem);
2536 td->sem = NULL;
2537 }
2538
2539 free_disk_util();
2540 if (cgroup_list) {
2541 cgroup_kill(cgroup_list);
2542 sfree(cgroup_list);
2543 }
2544
2545 fio_sem_remove(startup_sem);
2546 stat_exit();
2547 return exit_value;
2548}