HOWTO spelling
[fio.git] / HOWTO
... / ...
CommitLineData
1Table of contents
2-----------------
3
41. Overview
52. How fio works
63. Running fio
74. Job file format
85. Detailed list of parameters
96. Normal output
107. Terse output
11
12
131.0 Overview and history
14------------------------
15fio was originally written to save me the hassle of writing special test
16case programs when I wanted to test a specific workload, either for
17performance reasons or to find/reproduce a bug. The process of writing
18such a test app can be tiresome, especially if you have to do it often.
19Hence I needed a tool that would be able to simulate a given io workload
20without resorting to writing a tailored test case again and again.
21
22A test work load is difficult to define, though. There can be any number
23of processes or threads involved, and they can each be using their own
24way of generating io. You could have someone dirtying large amounts of
25memory in an memory mapped file, or maybe several threads issuing
26reads using asynchronous io. fio needed to be flexible enough to
27simulate both of these cases, and many more.
28
292.0 How fio works
30-----------------
31The first step in getting fio to simulate a desired io workload, is
32writing a job file describing that specific setup. A job file may contain
33any number of threads and/or files - the typical contents of the job file
34is a global section defining shared parameters, and one or more job
35sections describing the jobs involved. When run, fio parses this file
36and sets everything up as described. If we break down a job from top to
37bottom, it contains the following basic parameters:
38
39 IO type Defines the io pattern issued to the file(s).
40 We may only be reading sequentially from this
41 file(s), or we may be writing randomly. Or even
42 mixing reads and writes, sequentially or randomly.
43
44 Block size In how large chunks are we issuing io? This may be
45 a single value, or it may describe a range of
46 block sizes.
47
48 IO size How much data are we going to be reading/writing.
49
50 IO engine How do we issue io? We could be memory mapping the
51 file, we could be using regular read/write, we
52 could be using splice, async io, syslet, or even
53 SG (SCSI generic sg).
54
55 IO depth If the io engine is async, how large a queuing
56 depth do we want to maintain?
57
58 IO type Should we be doing buffered io, or direct/raw io?
59
60 Num files How many files are we spreading the workload over.
61
62 Num threads How many threads or processes should we spread
63 this workload over.
64
65The above are the basic parameters defined for a workload, in addition
66there's a multitude of parameters that modify other aspects of how this
67job behaves.
68
69
703.0 Running fio
71---------------
72See the README file for command line parameters, there are only a few
73of them.
74
75Running fio is normally the easiest part - you just give it the job file
76(or job files) as parameters:
77
78$ fio job_file
79
80and it will start doing what the job_file tells it to do. You can give
81more than one job file on the command line, fio will serialize the running
82of those files. Internally that is the same as using the 'stonewall'
83parameter described the the parameter section.
84
85If the job file contains only one job, you may as well just give the
86parameters on the command line. The command line parameters are identical
87to the job parameters, with a few extra that control global parameters
88(see README). For example, for the job file parameter iodepth=2, the
89mirror command line option would be --iodepth 2 or --iodepth=2. You can
90also use the command line for giving more than one job entry. For each
91--name option that fio sees, it will start a new job with that name.
92Command line entries following a --name entry will apply to that job,
93until there are no more entries or a new --name entry is seen. This is
94similar to the job file options, where each option applies to the current
95job until a new [] job entry is seen.
96
97fio does not need to run as root, except if the files or devices specified
98in the job section requires that. Some other options may also be restricted,
99such as memory locking, io scheduler switching, and decreasing the nice value.
100
101
1024.0 Job file format
103-------------------
104As previously described, fio accepts one or more job files describing
105what it is supposed to do. The job file format is the classic ini file,
106where the names enclosed in [] brackets define the job name. You are free
107to use any ascii name you want, except 'global' which has special meaning.
108A global section sets defaults for the jobs described in that file. A job
109may override a global section parameter, and a job file may even have
110several global sections if so desired. A job is only affected by a global
111section residing above it. If the first character in a line is a ';' or a
112'#', the entire line is discarded as a comment.
113
114So lets look at a really simple job file that define to threads, each
115randomly reading from a 128MiB file.
116
117; -- start job file --
118[global]
119rw=randread
120size=128m
121
122[job1]
123
124[job2]
125
126; -- end job file --
127
128As you can see, the job file sections themselves are empty as all the
129described parameters are shared. As no filename= option is given, fio
130makes up a filename for each of the jobs as it sees fit. On the command
131line, this job would look as follows:
132
133$ fio --name=global --rw=randread --size=128m --name=job1 --name=job2
134
135
136Lets look at an example that have a number of processes writing randomly
137to files.
138
139; -- start job file --
140[random-writers]
141ioengine=libaio
142iodepth=4
143rw=randwrite
144bs=32k
145direct=0
146size=64m
147numjobs=4
148
149; -- end job file --
150
151Here we have no global section, as we only have one job defined anyway.
152We want to use async io here, with a depth of 4 for each file. We also
153increased the buffer size used to 32KiB and define numjobs to 4 to
154fork 4 identical jobs. The result is 4 processes each randomly writing
155to their own 64MiB file. Instead of using the above job file, you could
156have given the parameters on the command line. For this case, you would
157specify:
158
159$ fio --name=random-writers --ioengine=libaio --iodepth=4 --rw=randwrite --bs=32k --direct=0 --size=64m --numjobs=4
160
161fio ships with a few example job files, you can also look there for
162inspiration.
163
164
1655.0 Detailed list of parameters
166-------------------------------
167
168This section describes in details each parameter associated with a job.
169Some parameters take an option of a given type, such as an integer or
170a string. The following types are used:
171
172str String. This is a sequence of alpha characters.
173int Integer. A whole number value, can be negative. If prefixed with
174 0x, the integer is assumed to be of base 16 (hexadecimal).
175siint SI integer. A whole number value, which may contain a postfix
176 describing the base of the number. Accepted postfixes are k/m/g,
177 meaning kilo, mega, and giga. So if you want to specify 4096,
178 you could either write out '4096' or just give 4k. The postfixes
179 signify base 2 values, so 1024 is 1k and 1024k is 1m and so on.
180 If the option accepts an upper and lower range, use a colon ':'
181 or minus '-' to separate such values. See irange.
182bool Boolean. Usually parsed as an integer, however only defined for
183 true and false (1 and 0).
184irange Integer range with postfix. Allows value range to be given, such
185 as 1024-4096. A colon may also be used as the separator, eg
186 1k:4k. If the option allows two sets of ranges, they can be
187 specified with a ',' or '/' delimiter: 1k-4k/8k-32k. Also see
188 siint.
189
190With the above in mind, here follows the complete list of fio job
191parameters.
192
193name=str ASCII name of the job. This may be used to override the
194 name printed by fio for this job. Otherwise the job
195 name is used. On the command line this parameter has the
196 special purpose of also signaling the start of a new
197 job.
198
199description=str Text description of the job. Doesn't do anything except
200 dump this text description when this job is run. It's
201 not parsed.
202
203directory=str Prefix filenames with this directory. Used to places files
204 in a different location than "./".
205
206filename=str Fio normally makes up a filename based on the job name,
207 thread number, and file number. If you want to share
208 files between threads in a job or several jobs, specify
209 a filename for each of them to override the default. If
210 the ioengine used is 'net', the filename is the host and
211 port to connect to in the format of =host/port. If the
212 ioengine is file based, you can specify a number of files
213 by separating the names with a ':' colon. So if you wanted
214 a job to open /dev/sda and /dev/sdb as the two working files,
215 you would use filename=/dev/sda:/dev/sdb. '-' is a reserved
216 name, meaning stdin or stdout. Which of the two depends
217 on the read/write direction set.
218
219opendir=str Tell fio to recursively add any file it can find in this
220 directory and down the file system tree.
221
222lockfile=str Fio defaults to not doing any locking files before it does
223 IO to them. If a file or file descriptor is shared, fio
224 can serialize IO to that file to make the end result
225 consistent. This is usual for emulating real workloads that
226 share files. The lock modes are:
227
228 none No locking. The default.
229 exclusive Only one thread/process may do IO,
230 excluding all others.
231 readwrite Read-write locking on the file. Many
232 readers may access the file at the
233 same time, but writes get exclusive
234 access.
235
236 The option may be post-fixed with a lock batch number. If
237 set, then each thread/process may do that amount of IOs to
238 the file before giving up the lock. Since lock acquisition is
239 expensive, batching the lock/unlocks will speed up IO.
240
241readwrite=str
242rw=str Type of io pattern. Accepted values are:
243
244 read Sequential reads
245 write Sequential writes
246 randwrite Random writes
247 randread Random reads
248 rw Sequential mixed reads and writes
249 randrw Random mixed reads and writes
250
251 For the mixed io types, the default is to split them 50/50.
252 For certain types of io the result may still be skewed a bit,
253 since the speed may be different. It is possible to specify
254 a number of IO's to do before getting a new offset - this
255 is only useful for random IO, where fio would normally
256 generate a new random offset for every IO. If you append
257 eg 8 to randread, you would get a new random offset for
258 every 8 IO's. The result would be a seek for only every 8
259 IO's, instead of for every IO. Use rw=randread:8 to specify
260 that.
261
262randrepeat=bool For random IO workloads, seed the generator in a predictable
263 way so that results are repeatable across repetitions.
264
265fadvise_hint=bool By default, fio will use fadvise() to advise the kernel
266 on what IO patterns it is likely to issue. Sometimes you
267 want to test specific IO patterns without telling the
268 kernel about it, in which case you can disable this option.
269 If set, fio will use POSIX_FADV_SEQUENTIAL for sequential
270 IO and POSIX_FADV_RANDOM for random IO.
271
272size=siint The total size of file io for this job. Fio will run until
273 this many bytes has been transferred, unless runtime is
274 limited by other options (such as 'runtime', for instance).
275 Unless specific nr_files and filesize options are given,
276 fio will divide this size between the available files
277 specified by the job.
278
279filesize=siint Individual file sizes. May be a range, in which case fio
280 will select sizes for files at random within the given range
281 and limited to 'size' in total (if that is given). If not
282 given, each created file is the same size.
283
284fill_device=bool Sets size to something really large and waits for ENOSPC (no
285 space left on device) as the terminating condition. Only makes
286 sense with sequential write.
287
288blocksize=siint
289bs=siint The block size used for the io units. Defaults to 4k. Values
290 can be given for both read and writes. If a single siint is
291 given, it will apply to both. If a second siint is specified
292 after a comma, it will apply to writes only. In other words,
293 the format is either bs=read_and_write or bs=read,write.
294 bs=4k,8k will thus use 4k blocks for reads, and 8k blocks
295 for writes. If you only wish to set the write size, you
296 can do so by passing an empty read size - bs=,8k will set
297 8k for writes and leave the read default value.
298
299blocksize_range=irange
300bsrange=irange Instead of giving a single block size, specify a range
301 and fio will mix the issued io block sizes. The issued
302 io unit will always be a multiple of the minimum value
303 given (also see bs_unaligned). Applies to both reads and
304 writes, however a second range can be given after a comma.
305 See bs=.
306
307bssplit=str Sometimes you want even finer grained control of the
308 block sizes issued, not just an even split between them.
309 This option allows you to weight various block sizes,
310 so that you are able to define a specific amount of
311 block sizes issued. The format for this option is:
312
313 bssplit=blocksize/percentage:blocksize/percentage
314
315 for as many block sizes as needed. So if you want to define
316 a workload that has 50% 64k blocks, 10% 4k blocks, and
317 40% 32k blocks, you would write:
318
319 bssplit=4k/10:64k/50:32k/40
320
321 Ordering does not matter. If the percentage is left blank,
322 fio will fill in the remaining values evenly. So a bssplit
323 option like this one:
324
325 bssplit=4k/50:1k/:32k/
326
327 would have 50% 4k ios, and 25% 1k and 32k ios. The percentages
328 always add up to 100, if bssplit is given a range that adds
329 up to more, it will error out.
330
331blocksize_unaligned
332bs_unaligned If this option is given, any byte size value within bsrange
333 may be used as a block range. This typically wont work with
334 direct IO, as that normally requires sector alignment.
335
336zero_buffers If this option is given, fio will init the IO buffers to
337 all zeroes. The default is to fill them with random data.
338
339refill_buffers If this option is given, fio will refill the IO buffers
340 on every submit. The default is to only fill it at init
341 time and reuse that data. Only makes sense if zero_buffers
342 isn't specified, naturally. If data verification is enabled,
343 refill_buffers is also automatically enabled.
344
345nrfiles=int Number of files to use for this job. Defaults to 1.
346
347openfiles=int Number of files to keep open at the same time. Defaults to
348 the same as nrfiles, can be set smaller to limit the number
349 simultaneous opens.
350
351file_service_type=str Defines how fio decides which file from a job to
352 service next. The following types are defined:
353
354 random Just choose a file at random.
355
356 roundrobin Round robin over open files. This
357 is the default.
358
359 The string can have a number appended, indicating how
360 often to switch to a new file. So if option random:4 is
361 given, fio will switch to a new random file after 4 ios
362 have been issued.
363
364ioengine=str Defines how the job issues io to the file. The following
365 types are defined:
366
367 sync Basic read(2) or write(2) io. lseek(2) is
368 used to position the io location.
369
370 psync Basic pread(2) or pwrite(2) io.
371
372 vsync Basic readv(2) or writev(2) IO.
373
374 libaio Linux native asynchronous io.
375
376 posixaio glibc posix asynchronous io.
377
378 solarisaio Solaris native asynchronous io.
379
380 mmap File is memory mapped and data copied
381 to/from using memcpy(3).
382
383 splice splice(2) is used to transfer the data and
384 vmsplice(2) to transfer data from user
385 space to the kernel.
386
387 syslet-rw Use the syslet system calls to make
388 regular read/write async.
389
390 sg SCSI generic sg v3 io. May either be
391 synchronous using the SG_IO ioctl, or if
392 the target is an sg character device
393 we use read(2) and write(2) for asynchronous
394 io.
395
396 null Doesn't transfer any data, just pretends
397 to. This is mainly used to exercise fio
398 itself and for debugging/testing purposes.
399
400 net Transfer over the network to given host:port.
401 'filename' must be set appropriately to
402 filename=host/port regardless of send
403 or receive, if the latter only the port
404 argument is used.
405
406 netsplice Like net, but uses splice/vmsplice to
407 map data and send/receive.
408
409 cpuio Doesn't transfer any data, but burns CPU
410 cycles according to the cpuload= and
411 cpucycle= options. Setting cpuload=85
412 will cause that job to do nothing but burn
413 85% of the CPU. In case of SMP machines,
414 use numjobs=<no_of_cpu> to get desired CPU
415 usage, as the cpuload only loads a single
416 CPU at the desired rate.
417
418 guasi The GUASI IO engine is the Generic Userspace
419 Asyncronous Syscall Interface approach
420 to async IO. See
421
422 http://www.xmailserver.org/guasi-lib.html
423
424 for more info on GUASI.
425
426 external Prefix to specify loading an external
427 IO engine object file. Append the engine
428 filename, eg ioengine=external:/tmp/foo.o
429 to load ioengine foo.o in /tmp.
430
431iodepth=int This defines how many io units to keep in flight against
432 the file. The default is 1 for each file defined in this
433 job, can be overridden with a larger value for higher
434 concurrency.
435
436iodepth_batch_submit=int
437iodepth_batch=int This defines how many pieces of IO to submit at once.
438 It defaults to 1 which means that we submit each IO
439 as soon as it is available, but can be raised to submit
440 bigger batches of IO at the time.
441
442iodepth_batch_complete=int This defines how many pieces of IO to retrieve
443 at once. It defaults to 1 which means that we'll ask
444 for a minimum of 1 IO in the retrieval process from
445 the kernel. The IO retrieval will go on until we
446 hit the limit set by iodepth_low. If this variable is
447 set to 0, then fio will always check for completed
448 events before queuing more IO. This helps reduce
449 IO latency, at the cost of more retrieval system calls.
450
451iodepth_low=int The low water mark indicating when to start filling
452 the queue again. Defaults to the same as iodepth, meaning
453 that fio will attempt to keep the queue full at all times.
454 If iodepth is set to eg 16 and iodepth_low is set to 4, then
455 after fio has filled the queue of 16 requests, it will let
456 the depth drain down to 4 before starting to fill it again.
457
458direct=bool If value is true, use non-buffered io. This is usually
459 O_DIRECT.
460
461buffered=bool If value is true, use buffered io. This is the opposite
462 of the 'direct' option. Defaults to true.
463
464offset=siint Start io at the given offset in the file. The data before
465 the given offset will not be touched. This effectively
466 caps the file size at real_size - offset.
467
468fsync=int If writing to a file, issue a sync of the dirty data
469 for every number of blocks given. For example, if you give
470 32 as a parameter, fio will sync the file for every 32
471 writes issued. If fio is using non-buffered io, we may
472 not sync the file. The exception is the sg io engine, which
473 synchronizes the disk cache anyway.
474
475overwrite=bool If true, writes to a file will always overwrite existing
476 data. If the file doesn't already exist, it will be
477 created before the write phase begins. If the file exists
478 and is large enough for the specified write phase, nothing
479 will be done.
480
481end_fsync=bool If true, fsync file contents when the job exits.
482
483fsync_on_close=bool If true, fio will fsync() a dirty file on close.
484 This differs from end_fsync in that it will happen on every
485 file close, not just at the end of the job.
486
487rwmixread=int How large a percentage of the mix should be reads.
488
489rwmixwrite=int How large a percentage of the mix should be writes. If both
490 rwmixread and rwmixwrite is given and the values do not add
491 up to 100%, the latter of the two will be used to override
492 the first.
493
494norandommap Normally fio will cover every block of the file when doing
495 random IO. If this option is given, fio will just get a
496 new random offset without looking at past io history. This
497 means that some blocks may not be read or written, and that
498 some blocks may be read/written more than once. This option
499 is mutually exclusive with verify= for that reason, since
500 fio doesn't track potential block rewrites which may alter
501 the calculated checksum for that block.
502
503softrandommap See norandommap. If fio runs with the random block map enabled
504 and it fails to allocate the map, if this option is set it
505 will continue without a random block map. As coverage will
506 not be as complete as with random maps, this option is
507 disabled by default.
508
509nice=int Run the job with the given nice value. See man nice(2).
510
511prio=int Set the io priority value of this job. Linux limits us to
512 a positive value between 0 and 7, with 0 being the highest.
513 See man ionice(1).
514
515prioclass=int Set the io priority class. See man ionice(1).
516
517thinktime=int Stall the job x microseconds after an io has completed before
518 issuing the next. May be used to simulate processing being
519 done by an application. See thinktime_blocks and
520 thinktime_spin.
521
522thinktime_spin=int
523 Only valid if thinktime is set - pretend to spend CPU time
524 doing something with the data received, before falling back
525 to sleeping for the rest of the period specified by
526 thinktime.
527
528thinktime_blocks
529 Only valid if thinktime is set - control how many blocks
530 to issue, before waiting 'thinktime' usecs. If not set,
531 defaults to 1 which will make fio wait 'thinktime' usecs
532 after every block.
533
534rate=int Cap the bandwidth used by this job to this number of KiB/sec.
535
536ratemin=int Tell fio to do whatever it can to maintain at least this
537 bandwidth. Failing to meet this requirement, will cause
538 the job to exit.
539
540rate_iops=int Cap the bandwidth to this number of IOPS. Basically the same
541 as rate, just specified independently of bandwidth. If the
542 job is given a block size range instead of a fixed value,
543 the smallest block size is used as the metric.
544
545rate_iops_min=int If fio doesn't meet this rate of IO, it will cause
546 the job to exit.
547
548ratecycle=int Average bandwidth for 'rate' and 'ratemin' over this number
549 of milliseconds.
550
551cpumask=int Set the CPU affinity of this job. The parameter given is a
552 bitmask of allowed CPU's the job may run on. So if you want
553 the allowed CPUs to be 1 and 5, you would pass the decimal
554 value of (1 << 1 | 1 << 5), or 34. See man
555 sched_setaffinity(2). This may not work on all supported
556 operating systems or kernel versions.
557
558cpus_allowed=str Controls the same options as cpumask, but it allows a text
559 setting of the permitted CPUs instead. So to use CPUs 1 and
560 5, you would specify cpus_allowed=1,5.
561
562startdelay=int Start this job the specified number of seconds after fio
563 has started. Only useful if the job file contains several
564 jobs, and you want to delay starting some jobs to a certain
565 time.
566
567runtime=int Tell fio to terminate processing after the specified number
568 of seconds. It can be quite hard to determine for how long
569 a specified job will run, so this parameter is handy to
570 cap the total runtime to a given time.
571
572time_based If set, fio will run for the duration of the runtime
573 specified even if the file(s) are completely read or
574 written. It will simply loop over the same workload
575 as many times as the runtime allows.
576
577invalidate=bool Invalidate the buffer/page cache parts for this file prior
578 to starting io. Defaults to true.
579
580sync=bool Use sync io for buffered writes. For the majority of the
581 io engines, this means using O_SYNC.
582
583iomem=str
584mem=str Fio can use various types of memory as the io unit buffer.
585 The allowed values are:
586
587 malloc Use memory from malloc(3) as the buffers.
588
589 shm Use shared memory as the buffers. Allocated
590 through shmget(2).
591
592 shmhuge Same as shm, but use huge pages as backing.
593
594 mmap Use mmap to allocate buffers. May either be
595 anonymous memory, or can be file backed if
596 a filename is given after the option. The
597 format is mem=mmap:/path/to/file.
598
599 mmaphuge Use a memory mapped huge file as the buffer
600 backing. Append filename after mmaphuge, ala
601 mem=mmaphuge:/hugetlbfs/file
602
603 The area allocated is a function of the maximum allowed
604 bs size for the job, multiplied by the io depth given. Note
605 that for shmhuge and mmaphuge to work, the system must have
606 free huge pages allocated. This can normally be checked
607 and set by reading/writing /proc/sys/vm/nr_hugepages on a
608 Linux system. Fio assumes a huge page is 4MiB in size. So
609 to calculate the number of huge pages you need for a given
610 job file, add up the io depth of all jobs (normally one unless
611 iodepth= is used) and multiply by the maximum bs set. Then
612 divide that number by the huge page size. You can see the
613 size of the huge pages in /proc/meminfo. If no huge pages
614 are allocated by having a non-zero number in nr_hugepages,
615 using mmaphuge or shmhuge will fail. Also see hugepage-size.
616
617 mmaphuge also needs to have hugetlbfs mounted and the file
618 location should point there. So if it's mounted in /huge,
619 you would use mem=mmaphuge:/huge/somefile.
620
621hugepage-size=siint
622 Defines the size of a huge page. Must at least be equal
623 to the system setting, see /proc/meminfo. Defaults to 4MiB.
624 Should probably always be a multiple of megabytes, so using
625 hugepage-size=Xm is the preferred way to set this to avoid
626 setting a non-pow-2 bad value.
627
628exitall When one job finishes, terminate the rest. The default is
629 to wait for each job to finish, sometimes that is not the
630 desired action.
631
632bwavgtime=int Average the calculated bandwidth over the given time. Value
633 is specified in milliseconds.
634
635create_serialize=bool If true, serialize the file creating for the jobs.
636 This may be handy to avoid interleaving of data
637 files, which may greatly depend on the filesystem
638 used and even the number of processors in the system.
639
640create_fsync=bool fsync the data file after creation. This is the
641 default.
642
643unlink=bool Unlink the job files when done. Not the default, as repeated
644 runs of that job would then waste time recreating the file
645 set again and again.
646
647loops=int Run the specified number of iterations of this job. Used
648 to repeat the same workload a given number of times. Defaults
649 to 1.
650
651do_verify=bool Run the verify phase after a write phase. Only makes sense if
652 verify is set. Defaults to 1.
653
654verify=str If writing to a file, fio can verify the file contents
655 after each iteration of the job. The allowed values are:
656
657 md5 Use an md5 sum of the data area and store
658 it in the header of each block.
659
660 crc64 Use an experimental crc64 sum of the data
661 area and store it in the header of each
662 block.
663
664 crc32 Use a crc32 sum of the data area and store
665 it in the header of each block.
666
667 crc16 Use a crc16 sum of the data area and store
668 it in the header of each block.
669
670 crc7 Use a crc7 sum of the data area and store
671 it in the header of each block.
672
673 sha512 Use sha512 as the checksum function.
674
675 sha256 Use sha256 as the checksum function.
676
677 meta Write extra information about each io
678 (timestamp, block number etc.). The block
679 number is verified.
680
681 null Only pretend to verify. Useful for testing
682 internals with ioengine=null, not for much
683 else.
684
685 This option can be used for repeated burn-in tests of a
686 system to make sure that the written data is also
687 correctly read back.
688
689verifysort=bool If set, fio will sort written verify blocks when it deems
690 it faster to read them back in a sorted manner. This is
691 often the case when overwriting an existing file, since
692 the blocks are already laid out in the file system. You
693 can ignore this option unless doing huge amounts of really
694 fast IO where the red-black tree sorting CPU time becomes
695 significant.
696
697verify_offset=siint Swap the verification header with data somewhere else
698 in the block before writing. Its swapped back before
699 verifying.
700
701verify_interval=siint Write the verification header at a finer granularity
702 than the blocksize. It will be written for chunks the
703 size of header_interval. blocksize should divide this
704 evenly.
705
706verify_pattern=int If set, fio will fill the io buffers with this
707 pattern. Fio defaults to filling with totally random
708 bytes, but sometimes it's interesting to fill with a known
709 pattern for io verification purposes. Depending on the
710 width of the pattern, fio will fill 1/2/3/4 bytes of the
711 buffer at the time. The verify_pattern cannot be larger than
712 a 32-bit quantity.
713
714verify_fatal=bool Normally fio will keep checking the entire contents
715 before quitting on a block verification failure. If this
716 option is set, fio will exit the job on the first observed
717 failure.
718
719stonewall Wait for preceeding jobs in the job file to exit, before
720 starting this one. Can be used to insert serialization
721 points in the job file. A stone wall also implies starting
722 a new reporting group.
723
724new_group Start a new reporting group. If this option isn't given,
725 jobs in a file will be part of the same reporting group
726 unless separated by a stone wall (or if it's a group
727 by itself, with the numjobs option).
728
729numjobs=int Create the specified number of clones of this job. May be
730 used to setup a larger number of threads/processes doing
731 the same thing. We regard that grouping of jobs as a
732 specific group.
733
734group_reporting If 'numjobs' is set, it may be interesting to display
735 statistics for the group as a whole instead of for each
736 individual job. This is especially true of 'numjobs' is
737 large, looking at individual thread/process output quickly
738 becomes unwieldy. If 'group_reporting' is specified, fio
739 will show the final report per-group instead of per-job.
740
741thread fio defaults to forking jobs, however if this option is
742 given, fio will use pthread_create(3) to create threads
743 instead.
744
745zonesize=siint Divide a file into zones of the specified size. See zoneskip.
746
747zoneskip=siint Skip the specified number of bytes when zonesize data has
748 been read. The two zone options can be used to only do
749 io on zones of a file.
750
751write_iolog=str Write the issued io patterns to the specified file. See
752 read_iolog.
753
754read_iolog=str Open an iolog with the specified file name and replay the
755 io patterns it contains. This can be used to store a
756 workload and replay it sometime later. The iolog given
757 may also be a blktrace binary file, which allows fio
758 to replay a workload captured by blktrace. See blktrace
759 for how to capture such logging data. For blktrace replay,
760 the file needs to be turned into a blkparse binary data
761 file first (blktrace <device> -d file_for_fio.bin).
762
763write_bw_log If given, write a bandwidth log of the jobs in this job
764 file. Can be used to store data of the bandwidth of the
765 jobs in their lifetime. The included fio_generate_plots
766 script uses gnuplot to turn these text files into nice
767 graphs.
768
769write_lat_log Same as write_bw_log, except that this option stores io
770 completion latencies instead.
771
772lockmem=siint Pin down the specified amount of memory with mlock(2). Can
773 potentially be used instead of removing memory or booting
774 with less memory to simulate a smaller amount of memory.
775
776exec_prerun=str Before running this job, issue the command specified
777 through system(3).
778
779exec_postrun=str After the job completes, issue the command specified
780 though system(3).
781
782ioscheduler=str Attempt to switch the device hosting the file to the specified
783 io scheduler before running.
784
785cpuload=int If the job is a CPU cycle eater, attempt to use the specified
786 percentage of CPU cycles.
787
788cpuchunks=int If the job is a CPU cycle eater, split the load into
789 cycles of the given time. In milliseconds.
790
791disk_util=bool Generate disk utilization statistics, if the platform
792 supports it. Defaults to on.
793
794
7956.0 Interpreting the output
796---------------------------
797
798fio spits out a lot of output. While running, fio will display the
799status of the jobs created. An example of that would be:
800
801Threads: 1: [_r] [24.8% done] [ 13509/ 8334 kb/s] [eta 00h:01m:31s]
802
803The characters inside the square brackets denote the current status of
804each thread. The possible values (in typical life cycle order) are:
805
806Idle Run
807---- ---
808P Thread setup, but not started.
809C Thread created.
810I Thread initialized, waiting.
811 R Running, doing sequential reads.
812 r Running, doing random reads.
813 W Running, doing sequential writes.
814 w Running, doing random writes.
815 M Running, doing mixed sequential reads/writes.
816 m Running, doing mixed random reads/writes.
817 F Running, currently waiting for fsync()
818V Running, doing verification of written data.
819E Thread exited, not reaped by main thread yet.
820_ Thread reaped.
821
822The other values are fairly self explanatory - number of threads
823currently running and doing io, rate of io since last check (read speed
824listed first, then write speed), and the estimated completion percentage
825and time for the running group. It's impossible to estimate runtime of
826the following groups (if any).
827
828When fio is done (or interrupted by ctrl-c), it will show the data for
829each thread, group of threads, and disks in that order. For each data
830direction, the output looks like:
831
832Client1 (g=0): err= 0:
833 write: io= 32MiB, bw= 666KiB/s, runt= 50320msec
834 slat (msec): min= 0, max= 136, avg= 0.03, stdev= 1.92
835 clat (msec): min= 0, max= 631, avg=48.50, stdev=86.82
836 bw (KiB/s) : min= 0, max= 1196, per=51.00%, avg=664.02, stdev=681.68
837 cpu : usr=1.49%, sys=0.25%, ctx=7969, majf=0, minf=17
838 IO depths : 1=0.1%, 2=0.3%, 4=0.5%, 8=99.0%, 16=0.0%, 32=0.0%, >32=0.0%
839 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
840 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
841 issued r/w: total=0/32768, short=0/0
842 lat (msec): 2=1.6%, 4=0.0%, 10=3.2%, 20=12.8%, 50=38.4%, 100=24.8%,
843 lat (msec): 250=15.2%, 500=0.0%, 750=0.0%, 1000=0.0%, >=2048=0.0%
844
845The client number is printed, along with the group id and error of that
846thread. Below is the io statistics, here for writes. In the order listed,
847they denote:
848
849io= Number of megabytes io performed
850bw= Average bandwidth rate
851runt= The runtime of that thread
852 slat= Submission latency (avg being the average, stdev being the
853 standard deviation). This is the time it took to submit
854 the io. For sync io, the slat is really the completion
855 latency, since queue/complete is one operation there. This
856 value can be in milliseconds or microseconds, fio will choose
857 the most appropriate base and print that. In the example
858 above, milliseconds is the best scale.
859 clat= Completion latency. Same names as slat, this denotes the
860 time from submission to completion of the io pieces. For
861 sync io, clat will usually be equal (or very close) to 0,
862 as the time from submit to complete is basically just
863 CPU time (io has already been done, see slat explanation).
864 bw= Bandwidth. Same names as the xlat stats, but also includes
865 an approximate percentage of total aggregate bandwidth
866 this thread received in this group. This last value is
867 only really useful if the threads in this group are on the
868 same disk, since they are then competing for disk access.
869cpu= CPU usage. User and system time, along with the number
870 of context switches this thread went through, usage of
871 system and user time, and finally the number of major
872 and minor page faults.
873IO depths= The distribution of io depths over the job life time. The
874 numbers are divided into powers of 2, so for example the
875 16= entries includes depths up to that value but higher
876 than the previous entry. In other words, it covers the
877 range from 16 to 31.
878IO submit= How many pieces of IO were submitting in a single submit
879 call. Each entry denotes that amount and below, until
880 the previous entry - eg, 8=100% mean that we submitted
881 anywhere in between 5-8 ios per submit call.
882IO complete= Like the above submit number, but for completions instead.
883IO issued= The number of read/write requests issued, and how many
884 of them were short.
885IO latencies= The distribution of IO completion latencies. This is the
886 time from when IO leaves fio and when it gets completed.
887 The numbers follow the same pattern as the IO depths,
888 meaning that 2=1.6% means that 1.6% of the IO completed
889 within 2 msecs, 20=12.8% means that 12.8% of the IO
890 took more than 10 msecs, but less than (or equal to) 20 msecs.
891
892After each client has been listed, the group statistics are printed. They
893will look like this:
894
895Run status group 0 (all jobs):
896 READ: io=64MiB, aggrb=22178, minb=11355, maxb=11814, mint=2840msec, maxt=2955msec
897 WRITE: io=64MiB, aggrb=1302, minb=666, maxb=669, mint=50093msec, maxt=50320msec
898
899For each data direction, it prints:
900
901io= Number of megabytes io performed.
902aggrb= Aggregate bandwidth of threads in this group.
903minb= The minimum average bandwidth a thread saw.
904maxb= The maximum average bandwidth a thread saw.
905mint= The smallest runtime of the threads in that group.
906maxt= The longest runtime of the threads in that group.
907
908And finally, the disk statistics are printed. They will look like this:
909
910Disk stats (read/write):
911 sda: ios=16398/16511, merge=30/162, ticks=6853/819634, in_queue=826487, util=100.00%
912
913Each value is printed for both reads and writes, with reads first. The
914numbers denote:
915
916ios= Number of ios performed by all groups.
917merge= Number of merges io the io scheduler.
918ticks= Number of ticks we kept the disk busy.
919io_queue= Total time spent in the disk queue.
920util= The disk utilization. A value of 100% means we kept the disk
921 busy constantly, 50% would be a disk idling half of the time.
922
923
9247.0 Terse output
925----------------
926
927For scripted usage where you typically want to generate tables or graphs
928of the results, fio can output the results in a semicolon separated format.
929The format is one long line of values, such as:
930
931client1;0;0;1906777;1090804;1790;0;0;0.000000;0.000000;0;0;0.000000;0.000000;929380;1152890;25.510151%;1078276.333333;128948.113404;0;0;0;0;0;0.000000;0.000000;0;0;0.000000;0.000000;0;0;0.000000%;0.000000;0.000000;100.000000%;0.000000%;324;100.0%;0.0%;0.0%;0.0%;0.0%;0.0%;0.0%;100.0%;0.0%;0.0%;0.0%;0.0%;0.0%
932;0.0%;0.0%;0.0%;0.0%;0.0%
933
934Split up, the format is as follows:
935
936 jobname, groupid, error
937 READ status:
938 KiB IO, bandwidth (KiB/sec), runtime (msec)
939 Submission latency: min, max, mean, deviation
940 Completion latency: min, max, mean, deviation
941 Bw: min, max, aggregate percentage of total, mean, deviation
942 WRITE status:
943 KiB IO, bandwidth (KiB/sec), runtime (msec)
944 Submission latency: min, max, mean, deviation
945 Completion latency: min, max, mean, deviation
946 Bw: min, max, aggregate percentage of total, mean, deviation
947 CPU usage: user, system, context switches, major faults, minor faults
948 IO depths: <=1, 2, 4, 8, 16, 32, >=64
949 IO latencies: <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, >=2000
950 Text description
951