An option need not include ->posval[] entries
[fio.git] / HOWTO
... / ...
CommitLineData
1Table of contents
2-----------------
3
41. Overview
52. How fio works
63. Running fio
74. Job file format
85. Detailed list of parameters
96. Normal output
107. Terse output
11
12
131.0 Overview and history
14------------------------
15fio was originally written to save me the hassle of writing special test
16case programs when I wanted to test a specific workload, either for
17performance reasons or to find/reproduce a bug. The process of writing
18such a test app can be tiresome, especially if you have to do it often.
19Hence I needed a tool that would be able to simulate a given io workload
20without resorting to writing a tailored test case again and again.
21
22A test work load is difficult to define, though. There can be any number
23of processes or threads involved, and they can each be using their own
24way of generating io. You could have someone dirtying large amounts of
25memory in an memory mapped file, or maybe several threads issuing
26reads using asynchronous io. fio needed to be flexible enough to
27simulate both of these cases, and many more.
28
292.0 How fio works
30-----------------
31The first step in getting fio to simulate a desired io workload, is
32writing a job file describing that specific setup. A job file may contain
33any number of threads and/or files - the typical contents of the job file
34is a global section defining shared parameters, and one or more job
35sections describing the jobs involved. When run, fio parses this file
36and sets everything up as described. If we break down a job from top to
37bottom, it contains the following basic parameters:
38
39 IO type Defines the io pattern issued to the file(s).
40 We may only be reading sequentially from this
41 file(s), or we may be writing randomly. Or even
42 mixing reads and writes, sequentially or randomly.
43
44 Block size In how large chunks are we issuing io? This may be
45 a single value, or it may describe a range of
46 block sizes.
47
48 IO size How much data are we going to be reading/writing.
49
50 IO engine How do we issue io? We could be memory mapping the
51 file, we could be using regular read/write, we
52 could be using splice, async io, syslet, or even
53 SG (SCSI generic sg).
54
55 IO depth If the io engine is async, how large a queuing
56 depth do we want to maintain?
57
58 IO type Should we be doing buffered io, or direct/raw io?
59
60 Num files How many files are we spreading the workload over.
61
62 Num threads How many threads or processes should we spread
63 this workload over.
64
65The above are the basic parameters defined for a workload, in addition
66there's a multitude of parameters that modify other aspects of how this
67job behaves.
68
69
703.0 Running fio
71---------------
72See the README file for command line parameters, there are only a few
73of them.
74
75Running fio is normally the easiest part - you just give it the job file
76(or job files) as parameters:
77
78$ fio job_file
79
80and it will start doing what the job_file tells it to do. You can give
81more than one job file on the command line, fio will serialize the running
82of those files. Internally that is the same as using the 'stonewall'
83parameter described the the parameter section.
84
85If the job file contains only one job, you may as well just give the
86parameters on the command line. The command line parameters are identical
87to the job parameters, with a few extra that control global parameters
88(see README). For example, for the job file parameter iodepth=2, the
89mirror command line option would be --iodepth 2 or --iodepth=2. You can
90also use the command line for giving more than one job entry. For each
91--name option that fio sees, it will start a new job with that name.
92Command line entries following a --name entry will apply to that job,
93until there are no more entries or a new --name entry is seen. This is
94similar to the job file options, where each option applies to the current
95job until a new [] job entry is seen.
96
97fio does not need to run as root, except if the files or devices specified
98in the job section requires that. Some other options may also be restricted,
99such as memory locking, io scheduler switching, and decreasing the nice value.
100
101
1024.0 Job file format
103-------------------
104As previously described, fio accepts one or more job files describing
105what it is supposed to do. The job file format is the classic ini file,
106where the names enclosed in [] brackets define the job name. You are free
107to use any ascii name you want, except 'global' which has special meaning.
108A global section sets defaults for the jobs described in that file. A job
109may override a global section parameter, and a job file may even have
110several global sections if so desired. A job is only affected by a global
111section residing above it. If the first character in a line is a ';' or a
112'#', the entire line is discarded as a comment.
113
114So lets look at a really simple job file that define to threads, each
115randomly reading from a 128MiB file.
116
117; -- start job file --
118[global]
119rw=randread
120size=128m
121
122[job1]
123
124[job2]
125
126; -- end job file --
127
128As you can see, the job file sections themselves are empty as all the
129described parameters are shared. As no filename= option is given, fio
130makes up a filename for each of the jobs as it sees fit. On the command
131line, this job would look as follows:
132
133$ fio --name=global --rw=randread --size=128m --name=job1 --name=job2
134
135
136Lets look at an example that have a number of processes writing randomly
137to files.
138
139; -- start job file --
140[random-writers]
141ioengine=libaio
142iodepth=4
143rw=randwrite
144bs=32k
145direct=0
146size=64m
147numjobs=4
148
149; -- end job file --
150
151Here we have no global section, as we only have one job defined anyway.
152We want to use async io here, with a depth of 4 for each file. We also
153increased the buffer size used to 32KiB and define numjobs to 4 to
154fork 4 identical jobs. The result is 4 processes each randomly writing
155to their own 64MiB file. Instead of using the above job file, you could
156have given the parameters on the command line. For this case, you would
157specify:
158
159$ fio --name=random-writers --ioengine=libaio --iodepth=4 --rw=randwrite --bs=32k --direct=0 --size=64m --numjobs=4
160
161fio ships with a few example job files, you can also look there for
162inspiration.
163
164
1655.0 Detailed list of parameters
166-------------------------------
167
168This section describes in details each parameter associated with a job.
169Some parameters take an option of a given type, such as an integer or
170a string. The following types are used:
171
172str String. This is a sequence of alpha characters.
173int Integer. A whole number value, may be negative.
174siint SI integer. A whole number value, which may contain a postfix
175 describing the base of the number. Accepted postfixes are k/m/g,
176 meaning kilo, mega, and giga. So if you want to specify 4096,
177 you could either write out '4096' or just give 4k. The postfixes
178 signify base 2 values, so 1024 is 1k and 1024k is 1m and so on.
179bool Boolean. Usually parsed as an integer, however only defined for
180 true and false (1 and 0).
181irange Integer range with postfix. Allows value range to be given, such
182 as 1024-4096. A colon may also be used as the seperator, eg
183 1k:4k. If the option allows two sets of ranges, they can be
184 specified with a ',' or '/' delimiter: 1k-4k/8k-32k. Also see
185 siint.
186
187With the above in mind, here follows the complete list of fio job
188parameters.
189
190name=str ASCII name of the job. This may be used to override the
191 name printed by fio for this job. Otherwise the job
192 name is used. On the command line this parameter has the
193 special purpose of also signaling the start of a new
194 job.
195
196description=str Text description of the job. Doesn't do anything except
197 dump this text description when this job is run. It's
198 not parsed.
199
200directory=str Prefix filenames with this directory. Used to places files
201 in a different location than "./".
202
203filename=str Fio normally makes up a filename based on the job name,
204 thread number, and file number. If you want to share
205 files between threads in a job or several jobs, specify
206 a filename for each of them to override the default. If
207 the ioengine used is 'net', the filename is the host and
208 port to connect to in the format of =host:port.
209
210rw=str Type of io pattern. Accepted values are:
211
212 read Sequential reads
213 write Sequential writes
214 randwrite Random writes
215 randread Random reads
216 rw Sequential mixed reads and writes
217 randrw Random mixed reads and writes
218
219 For the mixed io types, the default is to split them 50/50.
220 For certain types of io the result may still be skewed a bit,
221 since the speed may be different.
222
223randrepeat=bool For random IO workloads, seed the generator in a predictable
224 way so that results are repeatable across repetitions.
225
226size=siint The total size of file io for this job. This may describe
227 the size of the single file the job uses, or it may be
228 divided between the number of files in the job. If the
229 file already exists, the file size will be adjusted to this
230 size if larger than the current file size. If this parameter
231 is not given and the file exists, the file size will be used.
232
233bs=siint The block size used for the io units. Defaults to 4k. Values
234 can be given for both read and writes. If a single siint is
235 given, it will apply to both. If a second siint is specified
236 after a comma, it will apply to writes only. In other words,
237 the format is either bs=read_and_write or bs=read,write.
238 bs=4k,8k will thus use 4k blocks for reads, and 8k blocks
239 for writes. If you only wish to set the write size, you
240 can do so by passing an empty read size - bs=,8k will set
241 8k for writes and leave the read default value.
242
243bsrange=irange Instead of giving a single block size, specify a range
244 and fio will mix the issued io block sizes. The issued
245 io unit will always be a multiple of the minimum value
246 given (also see bs_unaligned). Applies to both reads and
247 writes, however a second range can be given after a comma.
248 See bs=.
249
250bs_unaligned If this option is given, any byte size value within bsrange
251 may be used as a block range. This typically wont work with
252 direct IO, as that normally requires sector alignment.
253
254nrfiles=int Number of files to use for this job. Defaults to 1.
255
256openfiles=int Number of files to keep open at the same time. Defaults to
257 the same as nrfiles, can be set smaller to limit the number
258 simultaneous opens.
259
260file_service_type=str Defines how fio decides which file from a job to
261 service next. The following types are defined:
262
263 random Just choose a file at random.
264
265 roundrobin Round robin over open files. This
266 is the default.
267
268 The string can have a number appended, indicating how
269 often to switch to a new file. So if option random:4 is
270 given, fio will switch to a new random file after 4 ios
271 have been issued.
272
273ioengine=str Defines how the job issues io to the file. The following
274 types are defined:
275
276 sync Basic read(2) or write(2) io. lseek(2) is
277 used to position the io location.
278
279 libaio Linux native asynchronous io.
280
281 posixaio glibc posix asynchronous io.
282
283 mmap File is memory mapped and data copied
284 to/from using memcpy(3).
285
286 splice splice(2) is used to transfer the data and
287 vmsplice(2) to transfer data from user
288 space to the kernel.
289
290 syslet-rw Use the syslet system calls to make
291 regular read/write async.
292
293 sg SCSI generic sg v3 io. May either be
294 synchronous using the SG_IO ioctl, or if
295 the target is an sg character device
296 we use read(2) and write(2) for asynchronous
297 io.
298
299 null Doesn't transfer any data, just pretends
300 to. This is mainly used to exercise fio
301 itself and for debugging/testing purposes.
302
303 net Transfer over the network to given host:port.
304 'filename' must be set appropriately to
305 filename=host:port regardless of send
306 or receive, if the latter only the port
307 argument is used.
308
309 cpu Doesn't transfer any data, but burns CPU
310 cycles according to the cpuload= and
311 cpucycle= options. Setting cpuload=85
312 will cause that job to do nothing but burn
313 85% of the CPU.
314
315 external Prefix to specify loading an external
316 IO engine object file. Append the engine
317 filename, eg ioengine=external:/tmp/foo.o
318 to load ioengine foo.o in /tmp.
319
320iodepth=int This defines how many io units to keep in flight against
321 the file. The default is 1 for each file defined in this
322 job, can be overridden with a larger value for higher
323 concurrency.
324
325iodepth_batch=int This defines how many pieces of IO to submit at once.
326 It defaults to the same as iodepth, but can be set lower
327 if one so desires.
328
329iodepth_low=int The low water mark indicating when to start filling
330 the queue again. Defaults to the same as iodepth, meaning
331 that fio will attempt to keep the queue full at all times.
332 If iodepth is set to eg 16 and iodepth_low is set to 4, then
333 after fio has filled the queue of 16 requests, it will let
334 the depth drain down to 4 before starting to fill it again.
335
336direct=bool If value is true, use non-buffered io. This is usually
337 O_DIRECT.
338
339buffered=bool If value is true, use buffered io. This is the opposite
340 of the 'direct' option. Defaults to true.
341
342offset=siint Start io at the given offset in the file. The data before
343 the given offset will not be touched. This effectively
344 caps the file size at real_size - offset.
345
346fsync=int If writing to a file, issue a sync of the dirty data
347 for every number of blocks given. For example, if you give
348 32 as a parameter, fio will sync the file for every 32
349 writes issued. If fio is using non-buffered io, we may
350 not sync the file. The exception is the sg io engine, which
351 synchronizes the disk cache anyway.
352
353overwrite=bool If writing to a file, setup the file first and do overwrites.
354
355end_fsync=bool If true, fsync file contents when the job exits.
356
357rwmixcycle=int Value in milliseconds describing how often to switch between
358 reads and writes for a mixed workload. The default is
359 500 msecs.
360
361rwmixread=int How large a percentage of the mix should be reads.
362
363rwmixwrite=int How large a percentage of the mix should be writes. If both
364 rwmixread and rwmixwrite is given and the values do not add
365 up to 100%, the latter of the two will be used to override
366 the first.
367
368norandommap Normally fio will cover every block of the file when doing
369 random IO. If this option is given, fio will just get a
370 new random offset without looking at past io history. This
371 means that some blocks may not be read or written, and that
372 some blocks may be read/written more than once. This option
373 is mutually exclusive with verify= for that reason.
374
375nice=int Run the job with the given nice value. See man nice(2).
376
377prio=int Set the io priority value of this job. Linux limits us to
378 a positive value between 0 and 7, with 0 being the highest.
379 See man ionice(1).
380
381prioclass=int Set the io priority class. See man ionice(1).
382
383thinktime=int Stall the job x microseconds after an io has completed before
384 issuing the next. May be used to simulate processing being
385 done by an application. See thinktime_blocks and
386 thinktime_spin.
387
388thinktime_spin=int
389 Only valid if thinktime is set - pretend to spend CPU time
390 doing something with the data received, before falling back
391 to sleeping for the rest of the period specified by
392 thinktime.
393
394thinktime_blocks
395 Only valid if thinktime is set - control how many blocks
396 to issue, before waiting 'thinktime' usecs. If not set,
397 defaults to 1 which will make fio wait 'thinktime' usecs
398 after every block.
399
400rate=int Cap the bandwidth used by this job to this number of KiB/sec.
401
402ratemin=int Tell fio to do whatever it can to maintain at least this
403 bandwidth.
404
405ratecycle=int Average bandwidth for 'rate' and 'ratemin' over this number
406 of milliseconds.
407
408cpumask=int Set the CPU affinity of this job. The parameter given is a
409 bitmask of allowed CPU's the job may run on. See man
410 sched_setaffinity(2).
411
412startdelay=int Start this job the specified number of seconds after fio
413 has started. Only useful if the job file contains several
414 jobs, and you want to delay starting some jobs to a certain
415 time.
416
417runtime=int Tell fio to terminate processing after the specified number
418 of seconds. It can be quite hard to determine for how long
419 a specified job will run, so this parameter is handy to
420 cap the total runtime to a given time.
421
422invalidate=bool Invalidate the buffer/page cache parts for this file prior
423 to starting io. Defaults to true.
424
425sync=bool Use sync io for buffered writes. For the majority of the
426 io engines, this means using O_SYNC.
427
428mem=str Fio can use various types of memory as the io unit buffer.
429 The allowed values are:
430
431 malloc Use memory from malloc(3) as the buffers.
432
433 shm Use shared memory as the buffers. Allocated
434 through shmget(2).
435
436 shmhuge Same as shm, but use huge pages as backing.
437
438 mmap Use mmap to allocate buffers. May either be
439 anonymous memory, or can be file backed if
440 a filename is given after the option. The
441 format is mem=mmap:/path/to/file.
442
443 mmaphuge Use a memory mapped huge file as the buffer
444 backing. Append filename after mmaphuge, ala
445 mem=mmaphuge:/hugetlbfs/file
446
447 The area allocated is a function of the maximum allowed
448 bs size for the job, multiplied by the io depth given. Note
449 that for shmhuge and mmaphuge to work, the system must have
450 free huge pages allocated. This can normally be checked
451 and set by reading/writing /proc/sys/vm/nr_hugepages on a
452 Linux system. Fio assumes a huge page is 4MiB in size. So
453 to calculate the number of huge pages you need for a given
454 job file, add up the io depth of all jobs (normally one unless
455 iodepth= is used) and multiply by the maximum bs set. Then
456 divide that number by the huge page size. You can see the
457 size of the huge pages in /proc/meminfo. If no huge pages
458 are allocated by having a non-zero number in nr_hugepages,
459 using mmaphuge or shmhuge will fail. Also see hugepage-size.
460
461 mmaphuge also needs to have hugetlbfs mounted and the file
462 location should point there. So if it's mounted in /huge,
463 you would use mem=mmaphuge:/huge/somefile.
464
465hugepage-size=siint
466 Defines the size of a huge page. Must at least be equal
467 to the system setting, see /proc/meminfo. Defaults to 4MiB.
468 Should probably always be a multiple of megabytes, so using
469 hugepage-size=Xm is the preferred way to set this to avoid
470 setting a non-pow-2 bad value.
471
472exitall When one job finishes, terminate the rest. The default is
473 to wait for each job to finish, sometimes that is not the
474 desired action.
475
476bwavgtime=int Average the calculated bandwidth over the given time. Value
477 is specified in milliseconds.
478
479create_serialize=bool If true, serialize the file creating for the jobs.
480 This may be handy to avoid interleaving of data
481 files, which may greatly depend on the filesystem
482 used and even the number of processors in the system.
483
484create_fsync=bool fsync the data file after creation. This is the
485 default.
486
487unlink=bool Unlink the job files when done. Not the default, as repeated
488 runs of that job would then waste time recreating the fileset
489 again and again.
490
491loops=int Run the specified number of iterations of this job. Used
492 to repeat the same workload a given number of times. Defaults
493 to 1.
494
495verify=str If writing to a file, fio can verify the file contents
496 after each iteration of the job. The allowed values are:
497
498 md5 Use an md5 sum of the data area and store
499 it in the header of each block.
500
501 crc32 Use a crc32 sum of the data area and store
502 it in the header of each block.
503
504 This option can be used for repeated burn-in tests of a
505 system to make sure that the written data is also
506 correctly read back.
507
508stonewall Wait for preceeding jobs in the job file to exit, before
509 starting this one. Can be used to insert serialization
510 points in the job file.
511
512numjobs=int Create the specified number of clones of this job. May be
513 used to setup a larger number of threads/processes doing
514 the same thing. We regard that grouping of jobs as a
515 specific group.
516
517group_reporting If 'numjobs' is set, it may be interesting to display
518 statistics for the group as a whole instead of for each
519 individual job. This is especially true of 'numjobs' is
520 large, looking at individual thread/process output quickly
521 becomes unwieldy. If 'group_reporting' is specified, fio
522 will show the final report per-group instead of per-job.
523
524thread fio defaults to forking jobs, however if this option is
525 given, fio will use pthread_create(3) to create threads
526 instead.
527
528zonesize=siint Divide a file into zones of the specified size. See zoneskip.
529
530zoneskip=siint Skip the specified number of bytes when zonesize data has
531 been read. The two zone options can be used to only do
532 io on zones of a file.
533
534write_iolog=str Write the issued io patterns to the specified file. See
535 read_iolog.
536
537read_iolog=str Open an iolog with the specified file name and replay the
538 io patterns it contains. This can be used to store a
539 workload and replay it sometime later.
540
541write_bw_log If given, write a bandwidth log of the jobs in this job
542 file. Can be used to store data of the bandwidth of the
543 jobs in their lifetime. The included fio_generate_plots
544 script uses gnuplot to turn these text files into nice
545 graphs.
546
547write_lat_log Same as write_bw_log, except that this option stores io
548 completion latencies instead.
549
550lockmem=siint Pin down the specified amount of memory with mlock(2). Can
551 potentially be used instead of removing memory or booting
552 with less memory to simulate a smaller amount of memory.
553
554exec_prerun=str Before running this job, issue the command specified
555 through system(3).
556
557exec_postrun=str After the job completes, issue the command specified
558 though system(3).
559
560ioscheduler=str Attempt to switch the device hosting the file to the specified
561 io scheduler before running.
562
563cpuload=int If the job is a CPU cycle eater, attempt to use the specified
564 percentage of CPU cycles.
565
566cpuchunks=int If the job is a CPU cycle eater, split the load into
567 cycles of the given time. In milliseconds.
568
569
5706.0 Interpreting the output
571---------------------------
572
573fio spits out a lot of output. While running, fio will display the
574status of the jobs created. An example of that would be:
575
576Threads: 1: [_r] [24.8% done] [ 13509/ 8334 kb/s] [eta 00h:01m:31s]
577
578The characters inside the square brackets denote the current status of
579each thread. The possible values (in typical life cycle order) are:
580
581Idle Run
582---- ---
583P Thread setup, but not started.
584C Thread created.
585I Thread initialized, waiting.
586 R Running, doing sequential reads.
587 r Running, doing random reads.
588 W Running, doing sequential writes.
589 w Running, doing random writes.
590 M Running, doing mixed sequential reads/writes.
591 m Running, doing mixed random reads/writes.
592 F Running, currently waiting for fsync()
593V Running, doing verification of written data.
594E Thread exited, not reaped by main thread yet.
595_ Thread reaped.
596
597The other values are fairly self explanatory - number of threads
598currently running and doing io, rate of io since last check, and the estimated
599completion percentage and time for the running group. It's impossible to
600estimate runtime of the following groups (if any).
601
602When fio is done (or interrupted by ctrl-c), it will show the data for
603each thread, group of threads, and disks in that order. For each data
604direction, the output looks like:
605
606Client1 (g=0): err= 0:
607 write: io= 32MiB, bw= 666KiB/s, runt= 50320msec
608 slat (msec): min= 0, max= 136, avg= 0.03, stdev= 1.92
609 clat (msec): min= 0, max= 631, avg=48.50, stdev=86.82
610 bw (KiB/s) : min= 0, max= 1196, per=51.00%, avg=664.02, stdev=681.68
611 cpu : usr=1.49%, sys=0.25%, ctx=7969
612 IO depths : 1=0.1%, 2=0.3%, 4=0.5%, 8=99.0%, 16=0.0%, 32=0.0%, >32=0.0%
613 lat (msec): 2=1.6%, 4=0.0%, 10=3.2%, 20=12.8%, 50=38.4%, 100=24.8%,
614 lat (msec): 250=15.2%, 500=0.0%, 750=0.0%, 1000=0.0%, >=2048=0.0%
615
616The client number is printed, along with the group id and error of that
617thread. Below is the io statistics, here for writes. In the order listed,
618they denote:
619
620io= Number of megabytes io performed
621bw= Average bandwidth rate
622runt= The runtime of that thread
623 slat= Submission latency (avg being the average, dev being the
624 standard deviation). This is the time it took to submit
625 the io. For sync io, the slat is really the completion
626 latency, since queue/complete is one operation there.
627 clat= Completion latency. Same names as slat, this denotes the
628 time from submission to completion of the io pieces. For
629 sync io, clat will usually be equal (or very close) to 0,
630 as the time from submit to complete is basically just
631 CPU time (io has already been done, see slat explanation).
632 bw= Bandwidth. Same names as the xlat stats, but also includes
633 an approximate percentage of total aggregate bandwidth
634 this thread received in this group. This last value is
635 only really useful if the threads in this group are on the
636 same disk, since they are then competing for disk access.
637cpu= CPU usage. User and system time, along with the number
638 of context switches this thread went through.
639IO depths= The distribution of io depths over the job life time. The
640 numbers are divided into powers of 2, so for example the
641 16= entries includes depths up to that value but higher
642 than the previous entry. In other words, it covers the
643 range from 16 to 31.
644IO latencies= The distribution of IO completion latencies. This is the
645 time from when IO leaves fio and when it gets completed.
646 The numbers follow the same pattern as the IO depths,
647 meaning that 2=1.6% means that 1.6% of the IO completed
648 within 2 msecs, 20=12.8% means that 12.8% of the IO
649 took more than 10 msecs, but less than (or equal to) 20 msecs.
650
651After each client has been listed, the group statistics are printed. They
652will look like this:
653
654Run status group 0 (all jobs):
655 READ: io=64MiB, aggrb=22178, minb=11355, maxb=11814, mint=2840msec, maxt=2955msec
656 WRITE: io=64MiB, aggrb=1302, minb=666, maxb=669, mint=50093msec, maxt=50320msec
657
658For each data direction, it prints:
659
660io= Number of megabytes io performed.
661aggrb= Aggregate bandwidth of threads in this group.
662minb= The minimum average bandwidth a thread saw.
663maxb= The maximum average bandwidth a thread saw.
664mint= The smallest runtime of the threads in that group.
665maxt= The longest runtime of the threads in that group.
666
667And finally, the disk statistics are printed. They will look like this:
668
669Disk stats (read/write):
670 sda: ios=16398/16511, merge=30/162, ticks=6853/819634, in_queue=826487, util=100.00%
671
672Each value is printed for both reads and writes, with reads first. The
673numbers denote:
674
675ios= Number of ios performed by all groups.
676merge= Number of merges io the io scheduler.
677ticks= Number of ticks we kept the disk busy.
678io_queue= Total time spent in the disk queue.
679util= The disk utilization. A value of 100% means we kept the disk
680 busy constantly, 50% would be a disk idling half of the time.
681
682
6837.0 Terse output
684----------------
685
686For scripted usage where you typically want to generate tables or graphs
687of the results, fio can output the results in a semicolon separated format.
688The format is one long line of values, such as:
689
690client1;0;0;1906777;1090804;1790;0;0;0.000000;0.000000;0;0;0.000000;0.000000;929380;1152890;25.510151%;1078276.333333;128948.113404;0;0;0;0;0;0.000000;0.000000;0;0;0.000000;0.000000;0;0;0.000000%;0.000000;0.000000;100.000000%;0.000000%;324;100.0%;0.0%;0.0%;0.0%;0.0%;0.0%;0.0%;100.0%;0.0%;0.0%;0.0%;0.0%;0.0%
691;0.0%;0.0%;0.0%;0.0%;0.0%
692
693Split up, the format is as follows:
694
695 jobname, groupid, error
696 READ status:
697 KiB IO, bandwidth (KiB/sec), runtime (msec)
698 Submission latency: min, max, mean, deviation
699 Completion latency: min, max, mean, deviation
700 Bw: min, max, aggregate percentage of total, mean, deviation
701 WRITE status:
702 KiB IO, bandwidth (KiB/sec), runtime (msec)
703 Submission latency: min, max, mean, deviation
704 Completion latency: min, max, mean, deviation
705 Bw: min, max, aggregate percentage of total, mean, deviation
706 CPU usage: user, system, context switches
707 IO depths: <=1, 2, 4, 8, 16, 32, >=64
708 IO latencies: <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, >=2000
709 Text description
710