use interpolation for more accurate percentile calculation
[fio.git] / tools / hist / fio-histo-log-pctiles.py
CommitLineData
d8296fdd
BE
1#!/usr/bin/env python
2
3# module to parse fio histogram log files, not using pandas
4# runs in python v2 or v3
5# to get help with the CLI: $ python fio-histo-log-pctiles.py -h
6# this can be run standalone as a script but is callable
7# assumes all threads run for same time duration
8# assumes all threads are doing the same thing for the entire run
9
10# percentiles:
11# 0 - min latency
12# 50 - median
13# 100 - max latency
14
15# TO-DO:
16# separate read and write stats for randrw mixed workload
17# report average latency if needed
18# prove that it works (partially done with unit tests)
19
20# to run unit tests, set UNITTEST environment variable to anything
21# if you do this, don't pass normal CLI parameters to it
22# otherwise it runs the CLI
23
24import sys, os, math, copy
25from copy import deepcopy
26
27import unittest2
28
29msec_per_sec = 1000
30nsec_per_usec = 1000
31
32class FioHistoLogExc(Exception):
33 pass
34
35# if there is an error, print message, print syntax, and exit with error status
36
37def usage(msg):
38 print('ERROR: ' + msg)
39 print('usage: fio-histo-log-pctiles.py ')
40 print(' [ --fio-version 2|3 (default 3) ]')
41 print(' [ --bucket-groups positive-int (default 29) ]')
42 print(' [ --bucket-bits small-positive-int (default 6) ]')
43 print(' [ --percentiles p1,p2,...,pN ] (default 0,50,95,99,100)')
44 print(' [ --time-quantum positive-int (default 1 sec) ]')
45 print(' [ --output-unit msec|usec|nsec (default msec) ]')
46 print(' log-file1 log-file2 ...')
47 sys.exit(1)
48
49
50# convert histogram log file into a list of
51# (time_ms, direction, bsz, buckets) tuples where
52# - time_ms is the time in msec at which the log record was written
53# - direction is 0 (read) or 1 (write)
54# - bsz is block size (not used)
55# - buckets is a CSV list of counters that make up the histogram
56# caller decides if the expected number of counters are present
57
58
59def exception_suffix( record_num, pathname ):
60 return 'in histogram record %d file %s' % (record_num+1, pathname)
61
62# log file parser raises FioHistoLogExc exceptions
63# it returns histogram buckets in whatever unit fio uses
64
65def parse_hist_file(logfn, buckets_per_interval):
66 max_timestamp_ms = 0.0
67
68 with open(logfn, 'r') as f:
69 records = [ l.strip() for l in f.readlines() ]
70 intervals = []
71 for k, r in enumerate(records):
72 if r == '':
73 continue
74 tokens = r.split(',')
75 try:
76 int_tokens = [ int(t) for t in tokens ]
77 except ValueError as e:
78 raise FioHistoLogExc('non-integer value %s' % exception_suffix(k+1, logfn))
79
80 neg_ints = list(filter( lambda tk : tk < 0, int_tokens ))
81 if len(neg_ints) > 0:
82 raise FioHistoLogExc('negative integer value %s' % exception_suffix(k+1, logfn))
83
84 if len(int_tokens) < 3:
85 raise FioHistoLogExc('too few numbers %s' % exception_suffix(k+1, logfn))
86
87 time_ms = int_tokens[0]
88 if time_ms > max_timestamp_ms:
89 max_timestamp_ms = time_ms
90
91 direction = int_tokens[1]
92 if direction != 0 and direction != 1:
93 raise FioHistoLogExc('invalid I/O direction %s' % exception_suffix(k+1, logfn))
94
95 bsz = int_tokens[2]
96 if bsz > (1 << 24):
97 raise FioHistoLogExc('block size too large %s' % exception_suffix(k+1, logfn))
98
99 buckets = int_tokens[3:]
100 if len(buckets) != buckets_per_interval:
101 raise FioHistoLogExc('%d buckets per interval but %d expected in %s' %
102 (len(buckets), buckets_per_interval, exception_suffix(k+1, logfn)))
103 intervals.append((time_ms, direction, bsz, buckets))
104 if len(intervals) == 0:
105 raise FioHistoLogExc('no records in %s' % logfn)
106 return (intervals, max_timestamp_ms)
107
108
109# compute time range for each bucket index in histogram record
110# see comments in https://github.com/axboe/fio/blob/master/stat.h
111# for description of bucket groups and buckets
112# fio v3 bucket ranges are in nanosec (since response times are measured in nanosec)
113# but we convert fio v3 nanosecs to floating-point microseconds
114
115def time_ranges(groups, counters_per_group, fio_version=3):
116 bucket_width = 1
117 bucket_base = 0
118 bucket_intervals = []
119 for g in range(0, groups):
120 for b in range(0, counters_per_group):
121 rmin = float(bucket_base)
122 rmax = rmin + bucket_width
123 if fio_version == 3:
124 rmin /= nsec_per_usec
125 rmax /= nsec_per_usec
126 bucket_intervals.append( [rmin, rmax] )
127 bucket_base += bucket_width
128 if g != 0:
129 bucket_width *= 2
130 return bucket_intervals
131
132
133# compute number of time quantum intervals in the test
134
135def get_time_intervals(time_quantum, max_timestamp_ms):
136 # round down to nearest second
137 max_timestamp = max_timestamp_ms // msec_per_sec
138 # round up to nearest whole multiple of time_quantum
139 time_interval_count = (max_timestamp + time_quantum) // time_quantum
140 end_time = time_interval_count * time_quantum
141 return (end_time, time_interval_count)
142
143# align raw histogram log data to time quantum so
144# we can then combine histograms from different threads with addition
145# for randrw workload we count both reads and writes in same output bucket
146# but we separate reads and writes for purposes of calculating
147# end time for histogram record.
148# this requires us to weight a raw histogram bucket by the
149# fraction of time quantum that the bucket overlaps the current
150# time quantum interval
151# for example, if we have a bucket with 515 samples for time interval
152# [ 1010, 2014 ] msec since start of test, and time quantum is 1 sec, then
153# for time quantum interval [ 1000, 2000 ] msec, the overlap is
154# (2000 - 1010) / (2000 - 1000) = 0.99
155# so the contribution of this bucket to this time quantum is
156# 515 x 0.99 = 509.85
157
158def align_histo_log(raw_histogram_log, time_quantum, bucket_count, max_timestamp_ms):
159
160 # slice up test time int intervals of time_quantum seconds
161
162 (end_time, time_interval_count) = get_time_intervals(time_quantum, max_timestamp_ms)
163 time_qtm_ms = time_quantum * msec_per_sec
164 end_time_ms = end_time * msec_per_sec
165 aligned_intervals = []
166 for j in range(0, time_interval_count):
167 aligned_intervals.append((
168 j * time_qtm_ms,
169 [ 0.0 for j in range(0, bucket_count) ] ))
170
171 log_record_count = len(raw_histogram_log)
172 for k, record in enumerate(raw_histogram_log):
173
174 # find next record with same direction to get end-time
175 # have to avoid going past end of array
176 # for fio randrw workload,
177 # we have read and write records on same time interval
178 # sometimes read and write records are in opposite order
179 # assertion checks that next read/write record
180 # can be separated by at most 2 other records
181
182 (time_msec, direction, sz, interval_buckets) = record
183 if k+1 < log_record_count:
184 (time_msec_end, direction2, _, _) = raw_histogram_log[k+1]
185 if direction2 != direction:
186 if k+2 < log_record_count:
187 (time_msec_end, direction2, _, _) = raw_histogram_log[k+2]
188 if direction2 != direction:
189 if k+3 < log_record_count:
190 (time_msec_end, direction2, _, _) = raw_histogram_log[k+3]
191 assert direction2 == direction
192 else:
193 time_msec_end = end_time_ms
194 else:
195 time_msec_end = end_time_ms
196 else:
197 time_msec_end = end_time_ms
198
199 # calculate first quantum that overlaps this histogram record
200
201 qtm_start_ms = (time_msec // time_qtm_ms) * time_qtm_ms
202 qtm_end_ms = ((time_msec + time_qtm_ms) // time_qtm_ms) * time_qtm_ms
203 qtm_index = qtm_start_ms // time_qtm_ms
204
205 # for each quantum that overlaps this histogram record's time interval
206
207 while qtm_start_ms < time_msec_end: # while quantum overlaps record
208
209 # calculate fraction of time that this quantum
210 # overlaps histogram record's time interval
211
212 overlap_start = max(qtm_start_ms, time_msec)
213 overlap_end = min(qtm_end_ms, time_msec_end)
214 weight = float(overlap_end - overlap_start)
215 weight /= (time_msec_end - time_msec)
216 (_,aligned_histogram) = aligned_intervals[qtm_index]
217 for bx, b in enumerate(interval_buckets):
218 weighted_bucket = weight * b
219 aligned_histogram[bx] += weighted_bucket
220
221 # advance to the next time quantum
222
223 qtm_start_ms += time_qtm_ms
224 qtm_end_ms += time_qtm_ms
225 qtm_index += 1
226
227 return aligned_intervals
228
229# add histogram in "source" to histogram in "target"
230# it is assumed that the 2 histograms are precisely time-aligned
231
232def add_to_histo_from( target, source ):
233 for b in range(0, len(source)):
234 target[b] += source[b]
235
236# compute percentiles
237# inputs:
238# buckets: histogram bucket array
239# wanted: list of floating-pt percentiles to calculate
240# time_ranges: [tmin,tmax) time interval for each bucket
241# returns None if no I/O reported.
242# otherwise we would be dividing by zero
243# think of buckets as probability distribution function
244# and this loop is integrating to get cumulative distribution function
245
246def get_pctiles(buckets, wanted, time_ranges):
247
248 # get total of IO requests done
249 total_ios = 0
250 for io_count in buckets:
251 total_ios += io_count
252
253 # don't return percentiles if no I/O was done during interval
254 if total_ios == 0.0:
255 return None
256
257 pctile_count = len(wanted)
258
259 # results returned as dictionary keyed by percentile
260 pctile_result = {}
261
262 # index of next percentile in list
263 pctile_index = 0
264
265 # next percentile
266 next_pctile = wanted[pctile_index]
267
268 # no one is interested in percentiles bigger than this but not 100.0
269 # this prevents floating-point error from preventing loop exit
270 almost_100 = 99.9999
271
0456267b
BE
272 # pct is the percentile corresponding to
273 # all I/O requests up through bucket b
274 pct = 0.0
d8296fdd
BE
275 total_so_far = 0
276 for b, io_count in enumerate(buckets):
0456267b
BE
277 if io_count == 0:
278 continue
d8296fdd 279 total_so_far += io_count
0456267b
BE
280 # last_pct_lt is the percentile corresponding to
281 # all I/O requests up to, but not including, bucket b
282 last_pct = pct
283 pct = 100.0 * float(total_so_far) / total_ios
d8296fdd
BE
284 # a single bucket could satisfy multiple pctiles
285 # so this must be a while loop
0456267b
BE
286 # for 100-percentile (max latency) case, no bucket exceeds it
287 # so we must stop there.
288 while ((next_pctile == 100.0 and pct >= almost_100) or
289 (next_pctile < 100.0 and pct > next_pctile)):
290 # interpolate between min and max time for bucket time interval
291 # we keep the time_ranges access inside this loop,
292 # even though it could be above the loop,
293 # because in many cases we will not be even entering
294 # the loop so we optimize out these accesses
d8296fdd 295 range_max_time = time_ranges[b][1]
0456267b
BE
296 range_min_time = time_ranges[b][0]
297 offset_frac = (next_pctile - last_pct)/(pct - last_pct)
298 interpolation = range_min_time + (offset_frac*(range_max_time - range_min_time))
299 pctile_result[next_pctile] = interpolation
d8296fdd
BE
300 pctile_index += 1
301 if pctile_index == pctile_count:
302 break
303 next_pctile = wanted[pctile_index]
304 if pctile_index == pctile_count:
305 break
306 assert pctile_index == pctile_count
307 return pctile_result
308
309
310# parse parameters
311# returns a tuple of command line parameters
312# parameters have default values unless otherwise shown
313
314def parse_cli_params():
315
316 # default values for input parameters
317
318 fio_version = 3 # we are using fio 3.x now
319 bucket_groups = None # defaulting comes later
320 bucket_bits = 6 # default in fio 3.x
321 pctiles_wanted = [ 0, 50, 90, 95, 99, 100 ]
322 time_quantum = 1
323 output_unit = 'usec'
324
325 # parse command line parameters and display them
326
327 argindex = 1
328 argct = len(sys.argv)
329 if argct < 2:
330 usage('must supply at least one histogram log file')
331 while argindex < argct:
332 if argct < argindex + 2:
333 break
334 pname = sys.argv[argindex]
335 pval = sys.argv[argindex+1]
336 if not pname.startswith('--'):
337 break
338 argindex += 2
339 pname = pname[2:]
340
341 if pname == 'bucket-groups':
342 bucket_groups = int(pval)
343 elif pname == 'bucket-bits':
344 bucket_bits = int(pval)
345 elif pname == 'time-quantum':
346 time_quantum = int(pval)
347 elif pname == 'percentiles':
348 pctiles_wanted = [ float(p) for p in pval.split(',') ]
349 elif pname == 'output-unit':
350 if pval == 'msec' or pval == 'usec':
351 output_unit = pval
352 else:
353 usage('output-unit must be usec (microseconds) or msec (milliseconds)')
354 elif pname == 'fio-version':
355 if pval != '2' and pval != '3':
356 usage('invalid fio version, must be 2 or 3')
357 fio_version = int(pval)
358 else:
359 usage('invalid parameter name --%s' % pname)
360
361 if not bucket_groups:
362 # default changes based on fio version
363 if fio_version == 2:
364 bucket_groups = 19
365 else:
366 # default in fio 3.x
367 bucket_groups = 29
368
369 filename_list = sys.argv[argindex:]
370 for f in filename_list:
371 if not os.path.exists(f):
372 usage('file %s does not exist' % f)
373 return (bucket_groups, bucket_bits, fio_version, pctiles_wanted,
374 filename_list, time_quantum, output_unit)
375
376
377# this is really the main program
378
379def compute_percentiles_from_logs():
380 (bucket_groups, bucket_bits, fio_version, pctiles_wanted,
381 file_list, time_quantum, output_unit) = parse_cli_params()
382
383 print('bucket groups = %d' % bucket_groups)
384 print('bucket bits = %d' % bucket_bits)
385 print('time quantum = %d sec' % time_quantum)
386 print('percentiles = %s' % ','.join([ str(p) for p in pctiles_wanted ]))
387 buckets_per_group = 1 << bucket_bits
388 print('buckets per group = %d' % buckets_per_group)
389 buckets_per_interval = buckets_per_group * bucket_groups
390 print('buckets per interval = %d ' % buckets_per_interval)
391 bucket_index_range = range(0, buckets_per_interval)
392 if time_quantum == 0:
393 usage('time-quantum must be a positive number of seconds')
394 print('output unit = ' + output_unit)
395 if output_unit == 'msec':
396 time_divisor = 1000.0
397 elif output_unit == 'usec':
398 time_divisor = 1.0
399
400 # calculate response time interval associated with each histogram bucket
401
402 bucket_times = time_ranges(bucket_groups, buckets_per_group, fio_version=fio_version)
403
404 # construct template for each histogram bucket array with buckets all zeroes
405 # we just copy this for each new histogram
406
407 zeroed_buckets = [ 0.0 for r in bucket_index_range ]
408
409 # print CSV header just like fiologparser_hist does
410
411 header = 'msec, '
412 for p in pctiles_wanted:
413 header += '%3.1f, ' % p
414 print('time (millisec), percentiles in increasing order with values in ' + output_unit)
415 print(header)
416
417 # parse the histogram logs
418 # assumption: each bucket has a monotonically increasing time
419 # assumption: time ranges do not overlap for a single thread's records
420 # (exception: if randrw workload, then there is a read and a write
421 # record for the same time interval)
422
423 max_timestamp_all_logs = 0
424 hist_files = {}
425 for fn in file_list:
426 try:
427 (hist_files[fn], max_timestamp_ms) = parse_hist_file(fn, buckets_per_interval)
428 except FioHistoLogExc as e:
429 usage(str(e))
430 max_timestamp_all_logs = max(max_timestamp_all_logs, max_timestamp_ms)
431
432 (end_time, time_interval_count) = get_time_intervals(time_quantum, max_timestamp_all_logs)
433 all_threads_histograms = [ ((j*time_quantum*msec_per_sec), deepcopy(zeroed_buckets))
434 for j in range(0, time_interval_count) ]
435
436 for logfn in hist_files.keys():
437 aligned_per_thread = align_histo_log(hist_files[logfn],
438 time_quantum,
439 buckets_per_interval,
440 max_timestamp_all_logs)
441 for t in range(0, time_interval_count):
442 (_, all_threads_histo_t) = all_threads_histograms[t]
443 (_, log_histo_t) = aligned_per_thread[t]
d8296fdd
BE
444 add_to_histo_from( all_threads_histo_t, log_histo_t )
445
446 print('percentiles for entire set of threads')
447 for (t_msec, all_threads_histo_t) in all_threads_histograms:
448 record = '%d, ' % t_msec
449 pct = get_pctiles(all_threads_histo_t, pctiles_wanted, bucket_times)
450 if not pct:
451 for w in pctiles_wanted:
452 record += ', '
453 else:
454 pct_keys = [ k for k in pct.keys() ]
455 pct_values = [ str(pct[wanted]/time_divisor) for wanted in sorted(pct_keys) ]
456 record += ', '.join(pct_values)
457 print(record)
458
459
460
461#end of MAIN PROGRAM
462
463
464
465##### below are unit tests ##############
466
467import tempfile, shutil
468from os.path import join
469should_not_get_here = False
470
471class Test(unittest2.TestCase):
472 tempdir = None
473
474 # a little less typing please
475 def A(self, boolean_val):
476 self.assertTrue(boolean_val)
477
478 # initialize unit test environment
479
480 @classmethod
481 def setUpClass(cls):
482 d = tempfile.mkdtemp()
483 Test.tempdir = d
484
485 # remove anything left by unit test environment
486 # unless user sets UNITTEST_LEAVE_FILES environment variable
487
488 @classmethod
489 def tearDownClass(cls):
490 if not os.getenv("UNITTEST_LEAVE_FILES"):
491 shutil.rmtree(cls.tempdir)
492
493 def setUp(self):
494 self.fn = join(Test.tempdir, self.id())
495
496 def test_a_add_histos(self):
497 a = [ 1.0, 2.0 ]
498 b = [ 1.5, 2.5 ]
499 add_to_histo_from( a, b )
500 self.A(a == [2.5, 4.5])
501 self.A(b == [1.5, 2.5])
502
503 def test_b1_parse_log(self):
504 with open(self.fn, 'w') as f:
505 f.write('1234, 0, 4096, 1, 2, 3, 4\n')
506 f.write('5678,1,16384,5,6,7,8 \n')
507 (raw_histo_log, max_timestamp) = parse_hist_file(self.fn, 4) # 4 buckets per interval
508 self.A(len(raw_histo_log) == 2 and max_timestamp == 5678)
509 (time_ms, direction, bsz, histo) = raw_histo_log[0]
510 self.A(time_ms == 1234 and direction == 0 and bsz == 4096 and histo == [ 1, 2, 3, 4 ])
511 (time_ms, direction, bsz, histo) = raw_histo_log[1]
512 self.A(time_ms == 5678 and direction == 1 and bsz == 16384 and histo == [ 5, 6, 7, 8 ])
513
514 def test_b2_parse_empty_log(self):
515 with open(self.fn, 'w') as f:
516 pass
517 try:
518 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
519 self.A(should_not_get_here)
520 except FioHistoLogExc as e:
521 self.A(str(e).startswith('no records'))
522
523 def test_b3_parse_empty_records(self):
524 with open(self.fn, 'w') as f:
525 f.write('\n')
526 f.write('1234, 0, 4096, 1, 2, 3, 4\n')
527 f.write('5678,1,16384,5,6,7,8 \n')
528 f.write('\n')
529 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
530 self.A(len(raw_histo_log) == 2 and max_timestamp_ms == 5678)
531 (time_ms, direction, bsz, histo) = raw_histo_log[0]
532 self.A(time_ms == 1234 and direction == 0 and bsz == 4096 and histo == [ 1, 2, 3, 4 ])
533 (time_ms, direction, bsz, histo) = raw_histo_log[1]
534 self.A(time_ms == 5678 and direction == 1 and bsz == 16384 and histo == [ 5, 6, 7, 8 ])
535
536 def test_b4_parse_non_int(self):
537 with open(self.fn, 'w') as f:
538 f.write('12, 0, 4096, 1a, 2, 3, 4\n')
539 try:
540 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
541 self.A(False)
542 except FioHistoLogExc as e:
543 self.A(str(e).startswith('non-integer'))
544
545 def test_b5_parse_neg_int(self):
546 with open(self.fn, 'w') as f:
547 f.write('-12, 0, 4096, 1, 2, 3, 4\n')
548 try:
549 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
550 self.A(False)
551 except FioHistoLogExc as e:
552 self.A(str(e).startswith('negative integer'))
553
554 def test_b6_parse_too_few_int(self):
555 with open(self.fn, 'w') as f:
556 f.write('0, 0\n')
557 try:
558 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
559 self.A(False)
560 except FioHistoLogExc as e:
561 self.A(str(e).startswith('too few numbers'))
562
563 def test_b7_parse_invalid_direction(self):
564 with open(self.fn, 'w') as f:
565 f.write('100, 2, 4096, 1, 2, 3, 4\n')
566 try:
567 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
568 self.A(False)
569 except FioHistoLogExc as e:
570 self.A(str(e).startswith('invalid I/O direction'))
571
572 def test_b8_parse_bsz_too_big(self):
573 with open(self.fn+'_good', 'w') as f:
574 f.write('100, 1, %d, 1, 2, 3, 4\n' % (1<<24))
575 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn+'_good', 4)
576 with open(self.fn+'_bad', 'w') as f:
577 f.write('100, 1, 20000000, 1, 2, 3, 4\n')
578 try:
579 (raw_histo_log, _) = parse_hist_file(self.fn+'_bad', 4)
580 self.A(False)
581 except FioHistoLogExc as e:
582 self.A(str(e).startswith('block size too large'))
583
584 def test_b9_parse_wrong_bucket_count(self):
585 with open(self.fn, 'w') as f:
586 f.write('100, 1, %d, 1, 2, 3, 4, 5\n' % (1<<24))
587 try:
588 (raw_histo_log, _) = parse_hist_file(self.fn, 4)
589 self.A(False)
590 except FioHistoLogExc as e:
591 self.A(str(e).__contains__('buckets per interval'))
592
593 def test_c1_time_ranges(self):
594 ranges = time_ranges(3, 2) # fio_version defaults to 3
595 expected_ranges = [ # fio_version 3 is in nanoseconds
596 [0.000, 0.001], [0.001, 0.002], # first group
597 [0.002, 0.003], [0.003, 0.004], # second group same width
598 [0.004, 0.006], [0.006, 0.008]] # subsequent groups double width
599 self.A(ranges == expected_ranges)
600 ranges = time_ranges(3, 2, fio_version=3)
601 self.A(ranges == expected_ranges)
602 ranges = time_ranges(3, 2, fio_version=2)
603 expected_ranges_v2 = [ [ 1000.0 * min_or_max for min_or_max in time_range ]
604 for time_range in expected_ranges ]
605 self.A(ranges == expected_ranges_v2)
606 # see fio V3 stat.h for why 29 groups and 2^6 buckets/group
607 normal_ranges_v3 = time_ranges(29, 64)
608 # for v3, bucket time intervals are measured in nanoseconds
609 self.A(len(normal_ranges_v3) == 29 * 64 and normal_ranges_v3[-1][1] == 64*(1<<(29-1))/1000.0)
610 normal_ranges_v2 = time_ranges(19, 64, fio_version=2)
611 # for v2, bucket time intervals are measured in microseconds so we have fewer buckets
612 self.A(len(normal_ranges_v2) == 19 * 64 and normal_ranges_v2[-1][1] == 64*(1<<(19-1)))
613
614 def test_d1_align_histo_log_1_quantum(self):
615 with open(self.fn, 'w') as f:
616 f.write('100, 1, 4096, 1, 2, 3, 4')
617 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
618 self.A(max_timestamp_ms == 100)
619 aligned_log = align_histo_log(raw_histo_log, 5, 4, max_timestamp_ms)
620 self.A(len(aligned_log) == 1)
621 (time_ms0, h) = aligned_log[0]
622 self.A(time_ms0 == 0 and h == [1.0, 2.0, 3.0, 4.0])
623
624 # we need this to compare 2 lists of floating point numbers for equality
625 # because of floating-point imprecision
626
627 def compare_2_floats(self, x, y):
628 if x == 0.0 or y == 0.0:
629 return (x+y) < 0.0000001
630 else:
631 return (math.fabs(x-y)/x) < 0.00001
632
633 def is_close(self, buckets, buckets_expected):
634 if len(buckets) != len(buckets_expected):
635 return False
636 compare_buckets = lambda k: self.compare_2_floats(buckets[k], buckets_expected[k])
637 indices_close = list(filter(compare_buckets, range(0, len(buckets))))
638 return len(indices_close) == len(buckets)
639
640 def test_d2_align_histo_log_2_quantum(self):
641 with open(self.fn, 'w') as f:
642 f.write('2000, 1, 4096, 1, 2, 3, 4\n')
643 f.write('7000, 1, 4096, 1, 2, 3, 4\n')
644 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4)
645 self.A(max_timestamp_ms == 7000)
646 (_, _, _, raw_buckets1) = raw_histo_log[0]
647 (_, _, _, raw_buckets2) = raw_histo_log[1]
648 aligned_log = align_histo_log(raw_histo_log, 5, 4, max_timestamp_ms)
649 self.A(len(aligned_log) == 2)
650 (time_ms1, h1) = aligned_log[0]
651 (time_ms2, h2) = aligned_log[1]
652 # because first record is from time interval [2000, 7000]
653 # we weight it according
654 expect1 = [float(b) * 0.6 for b in raw_buckets1]
655 expect2 = [float(b) * 0.4 for b in raw_buckets1]
656 for e in range(0, len(expect2)):
657 expect2[e] += raw_buckets2[e]
658 self.A(time_ms1 == 0 and self.is_close(h1, expect1))
659 self.A(time_ms2 == 5000 and self.is_close(h2, expect2))
660
0456267b
BE
661 # what to expect if histogram buckets are all equal
662 def test_e1_get_pctiles_flat_histo(self):
d8296fdd
BE
663 with open(self.fn, 'w') as f:
664 buckets = [ 100 for j in range(0, 128) ]
665 f.write('9000, 1, 4096, %s\n' % ', '.join([str(b) for b in buckets]))
666 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 128)
667 self.A(max_timestamp_ms == 9000)
668 aligned_log = align_histo_log(raw_histo_log, 5, 128, max_timestamp_ms)
669 time_intervals = time_ranges(4, 32)
670 # since buckets are all equal, then median is halfway through time_intervals
671 # and max latency interval is at end of time_intervals
672 self.A(time_intervals[64][1] == 0.066 and time_intervals[127][1] == 0.256)
673 pctiles_wanted = [ 0, 50, 100 ]
674 pct_vs_time = []
675 for (time_ms, histo) in aligned_log:
676 pct_vs_time.append(get_pctiles(histo, pctiles_wanted, time_intervals))
677 self.A(pct_vs_time[0] == None) # no I/O in this time interval
0456267b 678 expected_pctiles = { 0:0.000, 50:0.064, 100:0.256 }
d8296fdd
BE
679 self.A(pct_vs_time[1] == expected_pctiles)
680
0456267b
BE
681 # what to expect if just the highest histogram bucket is used
682 def test_e2_get_pctiles_highest_pct(self):
683 fio_v3_bucket_count = 29 * 64
684 with open(self.fn, 'w') as f:
685 # make a empty fio v3 histogram
686 buckets = [ 0 for j in range(0, fio_v3_bucket_count) ]
687 # add one I/O request to last bucket
688 buckets[-1] = 1
689 f.write('9000, 1, 4096, %s\n' % ', '.join([str(b) for b in buckets]))
690 (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, fio_v3_bucket_count)
691 self.A(max_timestamp_ms == 9000)
692 aligned_log = align_histo_log(raw_histo_log, 5, fio_v3_bucket_count, max_timestamp_ms)
693 (time_ms, histo) = aligned_log[1]
694 time_intervals = time_ranges(29, 64)
695 expected_pctiles = { 100.0:(64*(1<<28))/1000.0 }
696 pct = get_pctiles( histo, [ 100.0 ], time_intervals )
697 self.A(pct == expected_pctiles)
698
d8296fdd
BE
699# we are using this module as a standalone program
700
701if __name__ == '__main__':
702 if os.getenv('UNITTEST'):
703 sys.exit(unittest2.main())
704 else:
705 compute_percentiles_from_logs()
706