Abstract out the thread_options structure
[fio.git] / stat.h
CommitLineData
a64e88da
JA
1#ifndef FIO_STAT_H
2#define FIO_STAT_H
3
ec41265e
JA
4#include "iolog.h"
5
a64e88da
JA
6struct group_run_stats {
7 uint64_t max_run[2], min_run[2];
8 uint64_t max_bw[2], min_bw[2];
9 uint64_t io_kb[2];
10 uint64_t agg[2];
11 uint32_t kb_base;
12 uint32_t groupid;
13};
14
15/*
16 * How many depth levels to log
17 */
18#define FIO_IO_U_MAP_NR 7
19#define FIO_IO_U_LAT_U_NR 10
20#define FIO_IO_U_LAT_M_NR 12
21
22/*
23 * Aggregate clat samples to report percentile(s) of them.
24 *
25 * EXECUTIVE SUMMARY
26 *
27 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
28 * value of resulting percentiles. The error will be approximately
29 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
30 *
31 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
32 * range being tracked for latency samples. The maximum value tracked
33 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
34 *
35 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
36 * requirement of storing those aggregate counts. The memory used will
37 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
38 * bytes.
39 *
40 * FIO_IO_U_PLAT_NR is the total number of buckets.
41 *
42 * DETAILS
43 *
44 * Suppose the clat varies from 0 to 999 (usec), the straightforward
45 * method is to keep an array of (999 + 1) buckets, in which a counter
46 * keeps the count of samples which fall in the bucket, e.g.,
47 * {[0],[1],...,[999]}. However this consumes a huge amount of space,
48 * and can be avoided if an approximation is acceptable.
49 *
50 * One such method is to let the range of the bucket to be greater
51 * than one. This method has low accuracy when the value is small. For
52 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
53 * the represented value of each bucket be the mean of the range. Then
54 * a value 0 has an round-off error of 49.5. To improve on this, we
55 * use buckets with non-uniform ranges, while bounding the error of
56 * each bucket within a ratio of the sample value. A simple example
57 * would be when error_bound = 0.005, buckets are {
58 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
59 * {[900,909],[910,919]...} }. The total range is partitioned into
60 * groups with different ranges, then buckets with uniform ranges. An
61 * upper bound of the error is (range_of_bucket/2)/value_of_bucket
62 *
63 * For better efficiency, we implement this using base two. We group
64 * samples by their Most Significant Bit (MSB), extract the next M bit
65 * of them as an index within the group, and discard the rest of the
66 * bits.
67 *
68 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
69 * and use M bit for indexing
70 *
71 * | n | M bits | bit (n-M-1) ... bit 0 |
72 *
73 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
74 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
75 * error
76 *
77 * 2^(n-M)-1 2^(n-M) 1
78 * e <= --------- <= ------- = ---
79 * 2^n 2^n 2^M
80 *
81 * Furthermore, we use "mean" of the range to represent the bucket,
82 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
83 * as the index, each group must contains 2^M buckets.
84 *
85 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
86 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
87 *
88 * Group MSB #discarded range of #buckets
89 * error_bits value
90 * ----------------------------------------------------------------
91 * 0* 0~5 0 [0,63] 64
92 * 1* 6 0 [64,127] 64
93 * 2 7 1 [128,255] 64
94 * 3 8 2 [256,511] 64
95 * 4 9 3 [512,1023] 64
96 * ... ... ... [...,...] ...
97 * 18 23 17 [8838608,+inf]** 64
98 *
99 * * Special cases: when n < (M-1) or when n == (M-1), in both cases,
100 * the value cannot be rounded off. Use all bits of the sample as
101 * index.
102 *
103 * ** If a sample's MSB is greater than 23, it will be counted as 23.
104 */
105
106#define FIO_IO_U_PLAT_BITS 6
107#define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
108#define FIO_IO_U_PLAT_GROUP_NR 19
109#define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
110#define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
111 list of percentiles */
112
113#define MAX_PATTERN_SIZE 512
114#define FIO_JOBNAME_SIZE 128
115#define FIO_VERROR_SIZE 128
116
117struct thread_stat {
118 char name[FIO_JOBNAME_SIZE];
119 char verror[FIO_VERROR_SIZE];
ddcc0b69
JA
120 uint32_t error;
121 uint32_t groupid;
a64e88da
JA
122 uint32_t pid;
123 char description[FIO_JOBNAME_SIZE];
124 uint32_t members;
125
126 /*
127 * bandwidth and latency stats
128 */
129 struct io_stat clat_stat[2]; /* completion latency */
130 struct io_stat slat_stat[2]; /* submission latency */
131 struct io_stat lat_stat[2]; /* total latency */
132 struct io_stat bw_stat[2]; /* bandwidth stats */
c8eeb9df 133 struct io_stat iops_stat[2]; /* IOPS stats */
a64e88da
JA
134
135 /*
136 * fio system usage accounting
137 */
138 uint64_t usr_time;
139 uint64_t sys_time;
140 uint64_t ctx;
141 uint64_t minf, majf;
142
143 /*
144 * IO depth and latency stats
145 */
146 uint64_t clat_percentiles;
802ad4a8 147 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
a64e88da
JA
148
149 uint32_t io_u_map[FIO_IO_U_MAP_NR];
150 uint32_t io_u_submit[FIO_IO_U_MAP_NR];
151 uint32_t io_u_complete[FIO_IO_U_MAP_NR];
152 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
153 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
154 uint32_t io_u_plat[2][FIO_IO_U_PLAT_NR];
155 uint64_t total_io_u[3];
156 uint64_t short_io_u[3];
157 uint64_t total_submit;
158 uint64_t total_complete;
159
160 uint64_t io_bytes[2];
161 uint64_t runtime[2];
162 uint64_t total_run_time;
163
164 /*
165 * IO Error related stats
166 */
167 uint16_t continue_on_error;
168 uint64_t total_err_count;
ddcc0b69 169 uint32_t first_error;
a64e88da
JA
170
171 uint32_t kb_base;
172};
173
b75a394f
JA
174struct jobs_eta {
175 uint32_t nr_running;
176 uint32_t nr_ramp;
177 uint32_t nr_pending;
178 uint32_t files_open;
3e47bd25
JA
179 uint32_t m_rate[2], t_rate[2];
180 uint32_t m_iops[2], t_iops[2];
b75a394f
JA
181 uint32_t rate[2];
182 uint32_t iops[2];
183 uint64_t elapsed_sec;
184 uint64_t eta_sec;
1d1f45ae
JA
185
186 /*
187 * Network 'copy' of run_str[]
188 */
189 uint32_t nr_threads;
190 uint8_t run_str[0];
b75a394f
JA
191};
192
a64e88da
JA
193extern void show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
194extern void show_group_stats(struct group_run_stats *rs);
af9c9fb3 195extern int calc_thread_status(struct jobs_eta *je, int force);
cf451d1e 196extern void display_thread_status(struct jobs_eta *je);
5b9babb7
JA
197extern void show_run_stats(void);
198extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
37f0c1ae
JA
199extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
200extern void init_thread_stat(struct thread_stat *ts);
201extern void init_group_run_stat(struct group_run_stats *gs);
3e47bd25 202extern void eta_to_str(char *str, unsigned long eta_sec);
b29ad562 203extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
a269790c 204extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
e5bd1347
JA
205extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
206extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
2e33101f
JA
207extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
208
209#define ts_total_io_u(ts) ((ts)->total_io_u[0] + (ts)->total_io_u[1])
b29ad562
JA
210
211static inline int usec_to_msec(unsigned long *min, unsigned long *max,
212 double *mean, double *dev)
213{
214 if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
215 *min /= 1000;
216 *max /= 1000;
217 *mean /= 1000.0;
218 *dev /= 1000.0;
219 return 0;
220 }
221
222 return 1;
223}
a64e88da
JA
224
225#endif