Merge in zipf differences from gfio
[fio.git] / stat.h
CommitLineData
a64e88da
JA
1#ifndef FIO_STAT_H
2#define FIO_STAT_H
3
8062f527
JA
4#include "iolog.h"
5
a64e88da 6struct group_run_stats {
6eaf09d6
SL
7 uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
8 uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
9 uint64_t io_kb[DDIR_RWDIR_CNT];
10 uint64_t agg[DDIR_RWDIR_CNT];
a64e88da 11 uint32_t kb_base;
ad705bcb 12 uint32_t unit_base;
a64e88da 13 uint32_t groupid;
771e58be 14 uint32_t unified_rw_rep;
a64e88da
JA
15};
16
17/*
18 * How many depth levels to log
19 */
20#define FIO_IO_U_MAP_NR 7
21#define FIO_IO_U_LAT_U_NR 10
22#define FIO_IO_U_LAT_M_NR 12
23
24/*
25 * Aggregate clat samples to report percentile(s) of them.
26 *
27 * EXECUTIVE SUMMARY
28 *
29 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
30 * value of resulting percentiles. The error will be approximately
31 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
32 *
33 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
34 * range being tracked for latency samples. The maximum value tracked
35 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
36 *
37 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
38 * requirement of storing those aggregate counts. The memory used will
39 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
40 * bytes.
41 *
42 * FIO_IO_U_PLAT_NR is the total number of buckets.
43 *
44 * DETAILS
45 *
46 * Suppose the clat varies from 0 to 999 (usec), the straightforward
47 * method is to keep an array of (999 + 1) buckets, in which a counter
48 * keeps the count of samples which fall in the bucket, e.g.,
49 * {[0],[1],...,[999]}. However this consumes a huge amount of space,
50 * and can be avoided if an approximation is acceptable.
51 *
52 * One such method is to let the range of the bucket to be greater
53 * than one. This method has low accuracy when the value is small. For
54 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
55 * the represented value of each bucket be the mean of the range. Then
56 * a value 0 has an round-off error of 49.5. To improve on this, we
57 * use buckets with non-uniform ranges, while bounding the error of
58 * each bucket within a ratio of the sample value. A simple example
59 * would be when error_bound = 0.005, buckets are {
60 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
61 * {[900,909],[910,919]...} }. The total range is partitioned into
62 * groups with different ranges, then buckets with uniform ranges. An
63 * upper bound of the error is (range_of_bucket/2)/value_of_bucket
64 *
65 * For better efficiency, we implement this using base two. We group
66 * samples by their Most Significant Bit (MSB), extract the next M bit
67 * of them as an index within the group, and discard the rest of the
68 * bits.
69 *
70 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
71 * and use M bit for indexing
72 *
73 * | n | M bits | bit (n-M-1) ... bit 0 |
74 *
75 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
76 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
77 * error
78 *
79 * 2^(n-M)-1 2^(n-M) 1
80 * e <= --------- <= ------- = ---
81 * 2^n 2^n 2^M
82 *
83 * Furthermore, we use "mean" of the range to represent the bucket,
84 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
85 * as the index, each group must contains 2^M buckets.
86 *
87 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
88 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
89 *
90 * Group MSB #discarded range of #buckets
91 * error_bits value
92 * ----------------------------------------------------------------
93 * 0* 0~5 0 [0,63] 64
94 * 1* 6 0 [64,127] 64
95 * 2 7 1 [128,255] 64
96 * 3 8 2 [256,511] 64
97 * 4 9 3 [512,1023] 64
98 * ... ... ... [...,...] ...
99 * 18 23 17 [8838608,+inf]** 64
100 *
101 * * Special cases: when n < (M-1) or when n == (M-1), in both cases,
102 * the value cannot be rounded off. Use all bits of the sample as
103 * index.
104 *
105 * ** If a sample's MSB is greater than 23, it will be counted as 23.
106 */
107
108#define FIO_IO_U_PLAT_BITS 6
109#define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
110#define FIO_IO_U_PLAT_GROUP_NR 19
111#define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
112#define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
113 list of percentiles */
114
115#define MAX_PATTERN_SIZE 512
116#define FIO_JOBNAME_SIZE 128
117#define FIO_VERROR_SIZE 128
118
119struct thread_stat {
120 char name[FIO_JOBNAME_SIZE];
121 char verror[FIO_VERROR_SIZE];
ddcc0b69
JA
122 uint32_t error;
123 uint32_t groupid;
a64e88da
JA
124 uint32_t pid;
125 char description[FIO_JOBNAME_SIZE];
126 uint32_t members;
771e58be 127 uint32_t unified_rw_rep;
a64e88da
JA
128
129 /*
130 * bandwidth and latency stats
131 */
6eaf09d6
SL
132 struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
133 struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
134 struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
135 struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
136 struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
a64e88da
JA
137
138 /*
139 * fio system usage accounting
140 */
141 uint64_t usr_time;
142 uint64_t sys_time;
143 uint64_t ctx;
144 uint64_t minf, majf;
145
146 /*
147 * IO depth and latency stats
148 */
149 uint64_t clat_percentiles;
435d195a 150 uint64_t percentile_precision;
802ad4a8 151 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
a64e88da
JA
152
153 uint32_t io_u_map[FIO_IO_U_MAP_NR];
154 uint32_t io_u_submit[FIO_IO_U_MAP_NR];
155 uint32_t io_u_complete[FIO_IO_U_MAP_NR];
156 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
157 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
6eaf09d6 158 uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
a64e88da
JA
159 uint64_t total_io_u[3];
160 uint64_t short_io_u[3];
161 uint64_t total_submit;
162 uint64_t total_complete;
163
6eaf09d6
SL
164 uint64_t io_bytes[DDIR_RWDIR_CNT];
165 uint64_t runtime[DDIR_RWDIR_CNT];
a64e88da
JA
166 uint64_t total_run_time;
167
168 /*
169 * IO Error related stats
170 */
171 uint16_t continue_on_error;
172 uint64_t total_err_count;
ddcc0b69 173 uint32_t first_error;
a64e88da
JA
174
175 uint32_t kb_base;
ad705bcb 176 uint32_t unit_base;
a64e88da
JA
177};
178
b75a394f
JA
179struct jobs_eta {
180 uint32_t nr_running;
181 uint32_t nr_ramp;
182 uint32_t nr_pending;
183 uint32_t files_open;
184 uint32_t m_rate, t_rate;
185 uint32_t m_iops, t_iops;
6eaf09d6
SL
186 uint32_t rate[DDIR_RWDIR_CNT];
187 uint32_t iops[DDIR_RWDIR_CNT];
b75a394f
JA
188 uint64_t elapsed_sec;
189 uint64_t eta_sec;
b7f05eb0 190 uint32_t is_pow2;
ad705bcb 191 uint32_t unit_base;
1d1f45ae
JA
192
193 /*
194 * Network 'copy' of run_str[]
195 */
196 uint32_t nr_threads;
372aecb9 197 uint8_t run_str[];
b75a394f
JA
198};
199
a64e88da
JA
200extern void show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
201extern void show_group_stats(struct group_run_stats *rs);
af9c9fb3 202extern int calc_thread_status(struct jobs_eta *je, int force);
cf451d1e 203extern void display_thread_status(struct jobs_eta *je);
5b9babb7 204extern void show_run_stats(void);
4c6d91e8 205extern void show_running_run_stats(void);
5b9babb7 206extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
37f0c1ae
JA
207extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
208extern void init_thread_stat(struct thread_stat *ts);
209extern void init_group_run_stat(struct group_run_stats *gs);
a64e88da
JA
210
211#endif