Update the Windows section of the README file.
[fio.git] / stat.h
CommitLineData
a64e88da
JA
1#ifndef FIO_STAT_H
2#define FIO_STAT_H
3
4struct group_run_stats {
6eaf09d6
SL
5 uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
6 uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
7 uint64_t io_kb[DDIR_RWDIR_CNT];
8 uint64_t agg[DDIR_RWDIR_CNT];
a64e88da
JA
9 uint32_t kb_base;
10 uint32_t groupid;
771e58be 11 uint32_t unified_rw_rep;
a64e88da
JA
12};
13
14/*
15 * How many depth levels to log
16 */
17#define FIO_IO_U_MAP_NR 7
18#define FIO_IO_U_LAT_U_NR 10
19#define FIO_IO_U_LAT_M_NR 12
20
21/*
22 * Aggregate clat samples to report percentile(s) of them.
23 *
24 * EXECUTIVE SUMMARY
25 *
26 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
27 * value of resulting percentiles. The error will be approximately
28 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
29 *
30 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
31 * range being tracked for latency samples. The maximum value tracked
32 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
33 *
34 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
35 * requirement of storing those aggregate counts. The memory used will
36 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
37 * bytes.
38 *
39 * FIO_IO_U_PLAT_NR is the total number of buckets.
40 *
41 * DETAILS
42 *
43 * Suppose the clat varies from 0 to 999 (usec), the straightforward
44 * method is to keep an array of (999 + 1) buckets, in which a counter
45 * keeps the count of samples which fall in the bucket, e.g.,
46 * {[0],[1],...,[999]}. However this consumes a huge amount of space,
47 * and can be avoided if an approximation is acceptable.
48 *
49 * One such method is to let the range of the bucket to be greater
50 * than one. This method has low accuracy when the value is small. For
51 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
52 * the represented value of each bucket be the mean of the range. Then
53 * a value 0 has an round-off error of 49.5. To improve on this, we
54 * use buckets with non-uniform ranges, while bounding the error of
55 * each bucket within a ratio of the sample value. A simple example
56 * would be when error_bound = 0.005, buckets are {
57 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
58 * {[900,909],[910,919]...} }. The total range is partitioned into
59 * groups with different ranges, then buckets with uniform ranges. An
60 * upper bound of the error is (range_of_bucket/2)/value_of_bucket
61 *
62 * For better efficiency, we implement this using base two. We group
63 * samples by their Most Significant Bit (MSB), extract the next M bit
64 * of them as an index within the group, and discard the rest of the
65 * bits.
66 *
67 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
68 * and use M bit for indexing
69 *
70 * | n | M bits | bit (n-M-1) ... bit 0 |
71 *
72 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
73 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
74 * error
75 *
76 * 2^(n-M)-1 2^(n-M) 1
77 * e <= --------- <= ------- = ---
78 * 2^n 2^n 2^M
79 *
80 * Furthermore, we use "mean" of the range to represent the bucket,
81 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
82 * as the index, each group must contains 2^M buckets.
83 *
84 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
85 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
86 *
87 * Group MSB #discarded range of #buckets
88 * error_bits value
89 * ----------------------------------------------------------------
90 * 0* 0~5 0 [0,63] 64
91 * 1* 6 0 [64,127] 64
92 * 2 7 1 [128,255] 64
93 * 3 8 2 [256,511] 64
94 * 4 9 3 [512,1023] 64
95 * ... ... ... [...,...] ...
96 * 18 23 17 [8838608,+inf]** 64
97 *
98 * * Special cases: when n < (M-1) or when n == (M-1), in both cases,
99 * the value cannot be rounded off. Use all bits of the sample as
100 * index.
101 *
102 * ** If a sample's MSB is greater than 23, it will be counted as 23.
103 */
104
105#define FIO_IO_U_PLAT_BITS 6
106#define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
107#define FIO_IO_U_PLAT_GROUP_NR 19
108#define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
109#define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
110 list of percentiles */
111
112#define MAX_PATTERN_SIZE 512
113#define FIO_JOBNAME_SIZE 128
114#define FIO_VERROR_SIZE 128
115
116struct thread_stat {
117 char name[FIO_JOBNAME_SIZE];
118 char verror[FIO_VERROR_SIZE];
ddcc0b69
JA
119 uint32_t error;
120 uint32_t groupid;
a64e88da
JA
121 uint32_t pid;
122 char description[FIO_JOBNAME_SIZE];
123 uint32_t members;
771e58be 124 uint32_t unified_rw_rep;
a64e88da
JA
125
126 /*
127 * bandwidth and latency stats
128 */
6eaf09d6
SL
129 struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
130 struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
131 struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
132 struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
133 struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
a64e88da
JA
134
135 /*
136 * fio system usage accounting
137 */
138 uint64_t usr_time;
139 uint64_t sys_time;
140 uint64_t ctx;
141 uint64_t minf, majf;
142
143 /*
144 * IO depth and latency stats
145 */
146 uint64_t clat_percentiles;
802ad4a8 147 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
a64e88da
JA
148
149 uint32_t io_u_map[FIO_IO_U_MAP_NR];
150 uint32_t io_u_submit[FIO_IO_U_MAP_NR];
151 uint32_t io_u_complete[FIO_IO_U_MAP_NR];
152 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
153 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
6eaf09d6 154 uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
a64e88da
JA
155 uint64_t total_io_u[3];
156 uint64_t short_io_u[3];
157 uint64_t total_submit;
158 uint64_t total_complete;
159
6eaf09d6
SL
160 uint64_t io_bytes[DDIR_RWDIR_CNT];
161 uint64_t runtime[DDIR_RWDIR_CNT];
a64e88da
JA
162 uint64_t total_run_time;
163
164 /*
165 * IO Error related stats
166 */
167 uint16_t continue_on_error;
168 uint64_t total_err_count;
ddcc0b69 169 uint32_t first_error;
a64e88da
JA
170
171 uint32_t kb_base;
172};
173
b75a394f
JA
174struct jobs_eta {
175 uint32_t nr_running;
176 uint32_t nr_ramp;
177 uint32_t nr_pending;
178 uint32_t files_open;
179 uint32_t m_rate, t_rate;
180 uint32_t m_iops, t_iops;
6eaf09d6
SL
181 uint32_t rate[DDIR_RWDIR_CNT];
182 uint32_t iops[DDIR_RWDIR_CNT];
b75a394f
JA
183 uint64_t elapsed_sec;
184 uint64_t eta_sec;
b7f05eb0 185 uint32_t is_pow2;
1d1f45ae
JA
186
187 /*
188 * Network 'copy' of run_str[]
189 */
190 uint32_t nr_threads;
372aecb9 191 uint8_t run_str[];
b75a394f
JA
192};
193
a64e88da
JA
194extern void show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
195extern void show_group_stats(struct group_run_stats *rs);
af9c9fb3 196extern int calc_thread_status(struct jobs_eta *je, int force);
cf451d1e 197extern void display_thread_status(struct jobs_eta *je);
5b9babb7 198extern void show_run_stats(void);
4c6d91e8 199extern void show_running_run_stats(void);
5b9babb7 200extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
37f0c1ae
JA
201extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
202extern void init_thread_stat(struct thread_stat *ts);
203extern void init_group_run_stat(struct group_run_stats *gs);
a64e88da
JA
204
205#endif