
Previous Article
Complex dynamics of a simple epidemic model with a nonlinear incidence
 DCDSB Home
 This Issue

Next Article
The dynamics of bacterial infection, innate immune response, and antibiotic treatment
Allee effects in a discretetime hostparasitoid model with stage structure in the host
1.  Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504 
[1] 
Eduardo Liz, Alfonso RuizHerrera. Delayed population models with Allee effects and exploitation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 8397. doi: 10.3934/mbe.2015.12.83 
[2] 
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predatorprey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 26512667. doi: 10.3934/dcdsb.2017129 
[3] 
Sophia R.J. Jang. Allee effects in an iteroparous host population and in hostparasitoid interactions. Discrete & Continuous Dynamical Systems  B, 2011, 15 (1) : 113135. doi: 10.3934/dcdsb.2011.15.113 
[4] 
Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with interstage interaction. Discrete & Continuous Dynamical Systems  B, 2018, 23 (2) : 731747. doi: 10.3934/dcdsb.2018040 
[5] 
Jia Li. Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects. Mathematical Biosciences & Engineering, 2010, 7 (1) : 99121. doi: 10.3934/mbe.2010.7.99 
[6] 
Erika T. Camacho, Christopher M. KribsZaleta, Stephen Wirkus. Metering effects in population systems. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 13651379. doi: 10.3934/mbe.2013.10.1365 
[7] 
Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643660. doi: 10.3934/mbe.2015.12.643 
[8] 
Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 629634. doi: 10.3934/dcdsb.2004.4.629 
[9] 
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 447470. doi: 10.3934/dcdsb.2016.21.447 
[10] 
J. Leonel Rocha, Danièle FournierPrunaret, AbdelKaddous Taha. Strong and weak Allee effects and chaotic dynamics in Richards' growths. Discrete & Continuous Dynamical Systems  B, 2013, 18 (9) : 23972425. doi: 10.3934/dcdsb.2013.18.2397 
[11] 
Sophia R.J. Jang. Discrete hostparasitoid models with Allee effects and age structure in the host. Mathematical Biosciences & Engineering, 2010, 7 (1) : 6781. doi: 10.3934/mbe.2010.7.67 
[12] 
Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predatorprey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 12471274. doi: 10.3934/mbe.2014.11.1247 
[13] 
Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predatorprey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877918. doi: 10.3934/mbe.2014.11.877 
[14] 
J. Leonel Rocha, AbdelKaddous Taha, Danièle FournierPrunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in TsoularisWallace's growth models. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 31313163. doi: 10.3934/dcdsb.2015.20.3131 
[15] 
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems  S, 2017, 10 (5) : 973993. doi: 10.3934/dcdss.2017051 
[16] 
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a sizestructured population model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 831840. doi: 10.3934/dcdsb.2017041 
[17] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[18] 
Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1941. doi: 10.3934/mbe.2016.13.19 
[19] 
DongMei Zhu, WaiKi Ching, Robert J. Elliott, TakKuen Siu, Lianmin Zhang. Hidden Markov models with threshold effects and their applications to oil price forecasting. Journal of Industrial & Management Optimization, 2017, 13 (2) : 757773. doi: 10.3934/jimo.2016045 
[20] 
Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems  B, 2015, 20 (4) : 12771295. doi: 10.3934/dcdsb.2015.20.1277 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]