gfio: initial support for hiding child options
[fio.git] / backend.c
CommitLineData
2e1df07d
JA
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
e43606c2 33#include <inttypes.h>
2e1df07d
JA
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/shm.h>
38#include <sys/mman.h>
39
40#include "fio.h"
41#include "hash.h"
42#include "smalloc.h"
43#include "verify.h"
44#include "trim.h"
45#include "diskutil.h"
46#include "cgroup.h"
47#include "profile.h"
48#include "lib/rand.h"
49#include "memalign.h"
50#include "server.h"
51
52static pthread_t disk_util_thread;
53static struct fio_mutex *startup_mutex;
54static struct fio_mutex *writeout_mutex;
55static struct flist_head *cgroup_list;
56static char *cgroup_mnt;
57static int exit_value;
58static volatile int fio_abort;
59
60struct io_log *agg_io_log[2];
61
a3efc919
JA
62int groupid = 0;
63unsigned int thread_number = 0;
64unsigned int nr_process = 0;
65unsigned int nr_thread = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69
2e1df07d 70#define PAGE_ALIGN(buf) \
e43606c2 71 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
2e1df07d
JA
72
73#define JOB_START_TIMEOUT (5 * 1000)
74
75static void sig_int(int sig)
76{
77 if (threads) {
78 if (is_backend)
79 fio_server_got_signal(sig);
80 else {
81 log_info("\nfio: terminating on signal %d\n", sig);
82 fflush(stdout);
83 exit_value = 128;
84 }
85
86 fio_terminate_threads(TERMINATE_ALL);
87 }
88}
89
90static void set_sig_handlers(void)
91{
92 struct sigaction act;
93
94 memset(&act, 0, sizeof(act));
95 act.sa_handler = sig_int;
96 act.sa_flags = SA_RESTART;
97 sigaction(SIGINT, &act, NULL);
98
99 memset(&act, 0, sizeof(act));
100 act.sa_handler = sig_int;
101 act.sa_flags = SA_RESTART;
102 sigaction(SIGTERM, &act, NULL);
103
104 if (is_backend) {
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGPIPE, &act, NULL);
109 }
110}
111
112/*
113 * Check if we are above the minimum rate given.
114 */
115static int __check_min_rate(struct thread_data *td, struct timeval *now,
116 enum fio_ddir ddir)
117{
118 unsigned long long bytes = 0;
119 unsigned long iops = 0;
120 unsigned long spent;
121 unsigned long rate;
122 unsigned int ratemin = 0;
123 unsigned int rate_iops = 0;
124 unsigned int rate_iops_min = 0;
125
126 assert(ddir_rw(ddir));
127
128 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
129 return 0;
130
131 /*
132 * allow a 2 second settle period in the beginning
133 */
134 if (mtime_since(&td->start, now) < 2000)
135 return 0;
136
137 iops += td->this_io_blocks[ddir];
138 bytes += td->this_io_bytes[ddir];
139 ratemin += td->o.ratemin[ddir];
140 rate_iops += td->o.rate_iops[ddir];
141 rate_iops_min += td->o.rate_iops_min[ddir];
142
143 /*
144 * if rate blocks is set, sample is running
145 */
146 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
147 spent = mtime_since(&td->lastrate[ddir], now);
148 if (spent < td->o.ratecycle)
149 return 0;
150
151 if (td->o.rate[ddir]) {
152 /*
153 * check bandwidth specified rate
154 */
155 if (bytes < td->rate_bytes[ddir]) {
156 log_err("%s: min rate %u not met\n", td->o.name,
157 ratemin);
158 return 1;
159 } else {
160 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
161 if (rate < ratemin ||
162 bytes < td->rate_bytes[ddir]) {
163 log_err("%s: min rate %u not met, got"
164 " %luKB/sec\n", td->o.name,
165 ratemin, rate);
166 return 1;
167 }
168 }
169 } else {
170 /*
171 * checks iops specified rate
172 */
173 if (iops < rate_iops) {
174 log_err("%s: min iops rate %u not met\n",
175 td->o.name, rate_iops);
176 return 1;
177 } else {
178 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
179 if (rate < rate_iops_min ||
180 iops < td->rate_blocks[ddir]) {
181 log_err("%s: min iops rate %u not met,"
182 " got %lu\n", td->o.name,
183 rate_iops_min, rate);
184 }
185 }
186 }
187 }
188
189 td->rate_bytes[ddir] = bytes;
190 td->rate_blocks[ddir] = iops;
191 memcpy(&td->lastrate[ddir], now, sizeof(*now));
192 return 0;
193}
194
195static int check_min_rate(struct thread_data *td, struct timeval *now,
196 unsigned long *bytes_done)
197{
198 int ret = 0;
199
200 if (bytes_done[0])
201 ret |= __check_min_rate(td, now, 0);
202 if (bytes_done[1])
203 ret |= __check_min_rate(td, now, 1);
204
205 return ret;
206}
207
208/*
209 * When job exits, we can cancel the in-flight IO if we are using async
210 * io. Attempt to do so.
211 */
212static void cleanup_pending_aio(struct thread_data *td)
213{
214 struct flist_head *entry, *n;
215 struct io_u *io_u;
216 int r;
217
218 /*
219 * get immediately available events, if any
220 */
221 r = io_u_queued_complete(td, 0, NULL);
222 if (r < 0)
223 return;
224
225 /*
226 * now cancel remaining active events
227 */
228 if (td->io_ops->cancel) {
229 flist_for_each_safe(entry, n, &td->io_u_busylist) {
230 io_u = flist_entry(entry, struct io_u, list);
231
232 /*
233 * if the io_u isn't in flight, then that generally
234 * means someone leaked an io_u. complain but fix
235 * it up, so we don't stall here.
236 */
237 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
238 log_err("fio: non-busy IO on busy list\n");
239 put_io_u(td, io_u);
240 } else {
241 r = td->io_ops->cancel(td, io_u);
242 if (!r)
243 put_io_u(td, io_u);
244 }
245 }
246 }
247
248 if (td->cur_depth)
249 r = io_u_queued_complete(td, td->cur_depth, NULL);
250}
251
252/*
253 * Helper to handle the final sync of a file. Works just like the normal
254 * io path, just does everything sync.
255 */
256static int fio_io_sync(struct thread_data *td, struct fio_file *f)
257{
258 struct io_u *io_u = __get_io_u(td);
259 int ret;
260
261 if (!io_u)
262 return 1;
263
264 io_u->ddir = DDIR_SYNC;
265 io_u->file = f;
266
267 if (td_io_prep(td, io_u)) {
268 put_io_u(td, io_u);
269 return 1;
270 }
271
272requeue:
273 ret = td_io_queue(td, io_u);
274 if (ret < 0) {
275 td_verror(td, io_u->error, "td_io_queue");
276 put_io_u(td, io_u);
277 return 1;
278 } else if (ret == FIO_Q_QUEUED) {
279 if (io_u_queued_complete(td, 1, NULL) < 0)
280 return 1;
281 } else if (ret == FIO_Q_COMPLETED) {
282 if (io_u->error) {
283 td_verror(td, io_u->error, "td_io_queue");
284 return 1;
285 }
286
287 if (io_u_sync_complete(td, io_u, NULL) < 0)
288 return 1;
289 } else if (ret == FIO_Q_BUSY) {
290 if (td_io_commit(td))
291 return 1;
292 goto requeue;
293 }
294
295 return 0;
296}
a3efc919 297
2e1df07d
JA
298static inline void __update_tv_cache(struct thread_data *td)
299{
300 fio_gettime(&td->tv_cache, NULL);
301}
302
303static inline void update_tv_cache(struct thread_data *td)
304{
305 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
306 __update_tv_cache(td);
307}
308
309static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
310{
311 if (in_ramp_time(td))
312 return 0;
313 if (!td->o.timeout)
314 return 0;
315 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
316 return 1;
317
318 return 0;
319}
320
321static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
322 int *retptr)
323{
324 int ret = *retptr;
325
326 if (ret < 0 || td->error) {
327 int err;
328
329 if (ret < 0)
330 err = -ret;
331 else
332 err = td->error;
333
334 if (!(td->o.continue_on_error & td_error_type(ddir, err)))
335 return 1;
336
337 if (td_non_fatal_error(err)) {
338 /*
339 * Continue with the I/Os in case of
340 * a non fatal error.
341 */
342 update_error_count(td, err);
343 td_clear_error(td);
344 *retptr = 0;
345 return 0;
346 } else if (td->o.fill_device && err == ENOSPC) {
347 /*
348 * We expect to hit this error if
349 * fill_device option is set.
350 */
351 td_clear_error(td);
352 td->terminate = 1;
353 return 1;
354 } else {
355 /*
356 * Stop the I/O in case of a fatal
357 * error.
358 */
359 update_error_count(td, err);
360 return 1;
361 }
362 }
363
364 return 0;
365}
366
2e1df07d
JA
367/*
368 * The main verify engine. Runs over the writes we previously submitted,
369 * reads the blocks back in, and checks the crc/md5 of the data.
370 */
371static void do_verify(struct thread_data *td)
372{
373 struct fio_file *f;
374 struct io_u *io_u;
375 int ret, min_events;
376 unsigned int i;
377
378 dprint(FD_VERIFY, "starting loop\n");
379
380 /*
381 * sync io first and invalidate cache, to make sure we really
382 * read from disk.
383 */
384 for_each_file(td, f, i) {
385 if (!fio_file_open(f))
386 continue;
387 if (fio_io_sync(td, f))
388 break;
389 if (file_invalidate_cache(td, f))
390 break;
391 }
392
393 if (td->error)
394 return;
395
396 td_set_runstate(td, TD_VERIFYING);
397
398 io_u = NULL;
399 while (!td->terminate) {
400 int ret2, full;
401
402 update_tv_cache(td);
403
404 if (runtime_exceeded(td, &td->tv_cache)) {
405 __update_tv_cache(td);
406 if (runtime_exceeded(td, &td->tv_cache)) {
407 td->terminate = 1;
408 break;
409 }
410 }
411
9e684a49
DE
412 if (flow_threshold_exceeded(td))
413 continue;
414
2e1df07d
JA
415 io_u = __get_io_u(td);
416 if (!io_u)
417 break;
418
419 if (get_next_verify(td, io_u)) {
420 put_io_u(td, io_u);
421 break;
422 }
423
424 if (td_io_prep(td, io_u)) {
425 put_io_u(td, io_u);
426 break;
427 }
428
429 if (td->o.verify_async)
430 io_u->end_io = verify_io_u_async;
431 else
432 io_u->end_io = verify_io_u;
433
434 ret = td_io_queue(td, io_u);
435 switch (ret) {
436 case FIO_Q_COMPLETED:
437 if (io_u->error) {
438 ret = -io_u->error;
439 clear_io_u(td, io_u);
440 } else if (io_u->resid) {
441 int bytes = io_u->xfer_buflen - io_u->resid;
442
443 /*
444 * zero read, fail
445 */
446 if (!bytes) {
447 td_verror(td, EIO, "full resid");
448 put_io_u(td, io_u);
449 break;
450 }
451
452 io_u->xfer_buflen = io_u->resid;
453 io_u->xfer_buf += bytes;
454 io_u->offset += bytes;
455
456 if (ddir_rw(io_u->ddir))
457 td->ts.short_io_u[io_u->ddir]++;
458
459 f = io_u->file;
460 if (io_u->offset == f->real_file_size)
461 goto sync_done;
462
463 requeue_io_u(td, &io_u);
464 } else {
465sync_done:
466 ret = io_u_sync_complete(td, io_u, NULL);
467 if (ret < 0)
468 break;
469 }
470 continue;
471 case FIO_Q_QUEUED:
472 break;
473 case FIO_Q_BUSY:
474 requeue_io_u(td, &io_u);
475 ret2 = td_io_commit(td);
476 if (ret2 < 0)
477 ret = ret2;
478 break;
479 default:
480 assert(ret < 0);
481 td_verror(td, -ret, "td_io_queue");
482 break;
483 }
484
485 if (break_on_this_error(td, io_u->ddir, &ret))
486 break;
487
488 /*
489 * if we can queue more, do so. but check if there are
490 * completed io_u's first. Note that we can get BUSY even
491 * without IO queued, if the system is resource starved.
492 */
493 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
494 if (full || !td->o.iodepth_batch_complete) {
495 min_events = min(td->o.iodepth_batch_complete,
496 td->cur_depth);
8a74b56d
JA
497 /*
498 * if the queue is full, we MUST reap at least 1 event
499 */
500 if (full && !min_events)
2e1df07d
JA
501 min_events = 1;
502
503 do {
504 /*
505 * Reap required number of io units, if any,
506 * and do the verification on them through
507 * the callback handler
508 */
509 if (io_u_queued_complete(td, min_events, NULL) < 0) {
510 ret = -1;
511 break;
512 }
513 } while (full && (td->cur_depth > td->o.iodepth_low));
514 }
515 if (ret < 0)
516 break;
517 }
518
519 if (!td->error) {
520 min_events = td->cur_depth;
521
522 if (min_events)
523 ret = io_u_queued_complete(td, min_events, NULL);
524 } else
525 cleanup_pending_aio(td);
526
527 td_set_runstate(td, TD_RUNNING);
528
529 dprint(FD_VERIFY, "exiting loop\n");
530}
531
f7078f7b
JA
532static int io_bytes_exceeded(struct thread_data *td)
533{
534 unsigned long long bytes;
535
536 if (td_rw(td))
537 bytes = td->this_io_bytes[0] + td->this_io_bytes[1];
538 else if (td_write(td))
539 bytes = td->this_io_bytes[1];
540 else
541 bytes = td->this_io_bytes[0];
542
543 return bytes >= td->o.size;
544}
545
2e1df07d
JA
546/*
547 * Main IO worker function. It retrieves io_u's to process and queues
548 * and reaps them, checking for rate and errors along the way.
549 */
550static void do_io(struct thread_data *td)
551{
552 unsigned int i;
553 int ret = 0;
554
555 if (in_ramp_time(td))
556 td_set_runstate(td, TD_RAMP);
557 else
558 td_set_runstate(td, TD_RUNNING);
559
f7078f7b
JA
560 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
561 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
2e1df07d
JA
562 struct timeval comp_time;
563 unsigned long bytes_done[2] = { 0, 0 };
564 int min_evts = 0;
565 struct io_u *io_u;
566 int ret2, full;
567 enum fio_ddir ddir;
568
569 if (td->terminate)
570 break;
571
572 update_tv_cache(td);
573
574 if (runtime_exceeded(td, &td->tv_cache)) {
575 __update_tv_cache(td);
576 if (runtime_exceeded(td, &td->tv_cache)) {
577 td->terminate = 1;
578 break;
579 }
580 }
581
9e684a49
DE
582 if (flow_threshold_exceeded(td))
583 continue;
584
2e1df07d
JA
585 io_u = get_io_u(td);
586 if (!io_u)
587 break;
588
589 ddir = io_u->ddir;
590
591 /*
82af2a7c
JA
592 * Add verification end_io handler if:
593 * - Asked to verify (!td_rw(td))
594 * - Or the io_u is from our verify list (mixed write/ver)
2e1df07d
JA
595 */
596 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
82af2a7c 597 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
2e1df07d
JA
598 if (td->o.verify_async)
599 io_u->end_io = verify_io_u_async;
600 else
601 io_u->end_io = verify_io_u;
602 td_set_runstate(td, TD_VERIFYING);
603 } else if (in_ramp_time(td))
604 td_set_runstate(td, TD_RAMP);
605 else
606 td_set_runstate(td, TD_RUNNING);
607
608 ret = td_io_queue(td, io_u);
609 switch (ret) {
610 case FIO_Q_COMPLETED:
611 if (io_u->error) {
612 ret = -io_u->error;
613 clear_io_u(td, io_u);
614 } else if (io_u->resid) {
615 int bytes = io_u->xfer_buflen - io_u->resid;
616 struct fio_file *f = io_u->file;
617
618 /*
619 * zero read, fail
620 */
621 if (!bytes) {
622 td_verror(td, EIO, "full resid");
623 put_io_u(td, io_u);
624 break;
625 }
626
627 io_u->xfer_buflen = io_u->resid;
628 io_u->xfer_buf += bytes;
629 io_u->offset += bytes;
630
631 if (ddir_rw(io_u->ddir))
632 td->ts.short_io_u[io_u->ddir]++;
633
634 if (io_u->offset == f->real_file_size)
635 goto sync_done;
636
637 requeue_io_u(td, &io_u);
638 } else {
639sync_done:
640 if (__should_check_rate(td, 0) ||
641 __should_check_rate(td, 1))
642 fio_gettime(&comp_time, NULL);
643
644 ret = io_u_sync_complete(td, io_u, bytes_done);
645 if (ret < 0)
646 break;
647 }
648 break;
649 case FIO_Q_QUEUED:
650 /*
651 * if the engine doesn't have a commit hook,
652 * the io_u is really queued. if it does have such
653 * a hook, it has to call io_u_queued() itself.
654 */
655 if (td->io_ops->commit == NULL)
656 io_u_queued(td, io_u);
657 break;
658 case FIO_Q_BUSY:
659 requeue_io_u(td, &io_u);
660 ret2 = td_io_commit(td);
661 if (ret2 < 0)
662 ret = ret2;
663 break;
664 default:
665 assert(ret < 0);
666 put_io_u(td, io_u);
667 break;
668 }
669
670 if (break_on_this_error(td, ddir, &ret))
671 break;
672
673 /*
674 * See if we need to complete some commands. Note that we
675 * can get BUSY even without IO queued, if the system is
676 * resource starved.
677 */
678 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
679 if (full || !td->o.iodepth_batch_complete) {
680 min_evts = min(td->o.iodepth_batch_complete,
681 td->cur_depth);
8a74b56d
JA
682 /*
683 * if the queue is full, we MUST reap at least 1 event
684 */
685 if (full && !min_evts)
2e1df07d
JA
686 min_evts = 1;
687
688 if (__should_check_rate(td, 0) ||
689 __should_check_rate(td, 1))
690 fio_gettime(&comp_time, NULL);
691
692 do {
693 ret = io_u_queued_complete(td, min_evts, bytes_done);
694 if (ret < 0)
695 break;
696
697 } while (full && (td->cur_depth > td->o.iodepth_low));
698 }
699
700 if (ret < 0)
701 break;
702 if (!(bytes_done[0] + bytes_done[1]))
703 continue;
704
705 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
706 if (check_min_rate(td, &comp_time, bytes_done)) {
707 if (exitall_on_terminate)
708 fio_terminate_threads(td->groupid);
709 td_verror(td, EIO, "check_min_rate");
710 break;
711 }
712 }
713
714 if (td->o.thinktime) {
715 unsigned long long b;
716
717 b = td->io_blocks[0] + td->io_blocks[1];
718 if (!(b % td->o.thinktime_blocks)) {
719 int left;
720
721 if (td->o.thinktime_spin)
722 usec_spin(td->o.thinktime_spin);
723
724 left = td->o.thinktime - td->o.thinktime_spin;
725 if (left)
726 usec_sleep(td, left);
727 }
728 }
729 }
730
731 if (td->trim_entries)
732 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
733
734 if (td->o.fill_device && td->error == ENOSPC) {
735 td->error = 0;
736 td->terminate = 1;
737 }
738 if (!td->error) {
739 struct fio_file *f;
740
741 i = td->cur_depth;
742 if (i) {
743 ret = io_u_queued_complete(td, i, NULL);
744 if (td->o.fill_device && td->error == ENOSPC)
745 td->error = 0;
746 }
747
748 if (should_fsync(td) && td->o.end_fsync) {
749 td_set_runstate(td, TD_FSYNCING);
750
751 for_each_file(td, f, i) {
752 if (!fio_file_open(f))
753 continue;
754 fio_io_sync(td, f);
755 }
756 }
757 } else
758 cleanup_pending_aio(td);
759
760 /*
761 * stop job if we failed doing any IO
762 */
763 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
764 td->done = 1;
765}
766
767static void cleanup_io_u(struct thread_data *td)
768{
769 struct flist_head *entry, *n;
770 struct io_u *io_u;
771
772 flist_for_each_safe(entry, n, &td->io_u_freelist) {
773 io_u = flist_entry(entry, struct io_u, list);
774
775 flist_del(&io_u->list);
776 fio_memfree(io_u, sizeof(*io_u));
777 }
778
779 free_io_mem(td);
780}
781
782static int init_io_u(struct thread_data *td)
783{
784 struct io_u *io_u;
9c42684e 785 unsigned int max_bs, min_write;
2e1df07d
JA
786 int cl_align, i, max_units;
787 char *p;
788
789 max_units = td->o.iodepth;
790 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
9c42684e 791 min_write = td->o.min_bs[DDIR_WRITE];
2e1df07d
JA
792 td->orig_buffer_size = (unsigned long long) max_bs
793 * (unsigned long long) max_units;
794
795 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
796 unsigned long bs;
797
798 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
799 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
800 }
801
802 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
803 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
804 return 1;
805 }
806
807 if (allocate_io_mem(td))
808 return 1;
809
810 if (td->o.odirect || td->o.mem_align ||
811 (td->io_ops->flags & FIO_RAWIO))
812 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
813 else
814 p = td->orig_buffer;
815
816 cl_align = os_cache_line_size();
817
818 for (i = 0; i < max_units; i++) {
819 void *ptr;
820
821 if (td->terminate)
822 return 1;
823
824 ptr = fio_memalign(cl_align, sizeof(*io_u));
825 if (!ptr) {
826 log_err("fio: unable to allocate aligned memory\n");
827 break;
828 }
829
830 io_u = ptr;
831 memset(io_u, 0, sizeof(*io_u));
832 INIT_FLIST_HEAD(&io_u->list);
833 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
834
835 if (!(td->io_ops->flags & FIO_NOIO)) {
836 io_u->buf = p;
837 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
838
839 if (td_write(td))
9c42684e 840 io_u_fill_buffer(td, io_u, min_write, max_bs);
2e1df07d
JA
841 if (td_write(td) && td->o.verify_pattern_bytes) {
842 /*
843 * Fill the buffer with the pattern if we are
844 * going to be doing writes.
845 */
846 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
847 }
848 }
849
850 io_u->index = i;
851 io_u->flags = IO_U_F_FREE;
852 flist_add(&io_u->list, &td->io_u_freelist);
853 p += max_bs;
854 }
855
856 return 0;
857}
858
859static int switch_ioscheduler(struct thread_data *td)
860{
861 char tmp[256], tmp2[128];
862 FILE *f;
863 int ret;
864
865 if (td->io_ops->flags & FIO_DISKLESSIO)
866 return 0;
867
868 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
869
870 f = fopen(tmp, "r+");
871 if (!f) {
872 if (errno == ENOENT) {
873 log_err("fio: os or kernel doesn't support IO scheduler"
874 " switching\n");
875 return 0;
876 }
877 td_verror(td, errno, "fopen iosched");
878 return 1;
879 }
880
881 /*
882 * Set io scheduler.
883 */
884 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
885 if (ferror(f) || ret != 1) {
886 td_verror(td, errno, "fwrite");
887 fclose(f);
888 return 1;
889 }
890
891 rewind(f);
892
893 /*
894 * Read back and check that the selected scheduler is now the default.
895 */
896 ret = fread(tmp, 1, sizeof(tmp), f);
897 if (ferror(f) || ret < 0) {
898 td_verror(td, errno, "fread");
899 fclose(f);
900 return 1;
901 }
902
903 sprintf(tmp2, "[%s]", td->o.ioscheduler);
904 if (!strstr(tmp, tmp2)) {
905 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
906 td_verror(td, EINVAL, "iosched_switch");
907 fclose(f);
908 return 1;
909 }
910
911 fclose(f);
912 return 0;
913}
914
915static int keep_running(struct thread_data *td)
916{
917 unsigned long long io_done;
918
919 if (td->done)
920 return 0;
921 if (td->o.time_based)
922 return 1;
923 if (td->o.loops) {
924 td->o.loops--;
925 return 1;
926 }
927
928 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
929 + td->io_skip_bytes;
930 if (io_done < td->o.size)
931 return 1;
932
933 return 0;
934}
935
936static int exec_string(const char *string)
937{
938 int ret, newlen = strlen(string) + 1 + 8;
939 char *str;
940
941 str = malloc(newlen);
942 sprintf(str, "sh -c %s", string);
943
944 ret = system(str);
945 if (ret == -1)
946 log_err("fio: exec of cmd <%s> failed\n", str);
947
948 free(str);
949 return ret;
950}
951
952/*
953 * Entry point for the thread based jobs. The process based jobs end up
954 * here as well, after a little setup.
955 */
956static void *thread_main(void *data)
957{
958 unsigned long long elapsed;
959 struct thread_data *td = data;
960 pthread_condattr_t attr;
961 int clear_state;
962
963 if (!td->o.use_thread) {
964 setsid();
965 td->pid = getpid();
966 } else
967 td->pid = gettid();
968
969 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
970
971 INIT_FLIST_HEAD(&td->io_u_freelist);
972 INIT_FLIST_HEAD(&td->io_u_busylist);
973 INIT_FLIST_HEAD(&td->io_u_requeues);
974 INIT_FLIST_HEAD(&td->io_log_list);
975 INIT_FLIST_HEAD(&td->io_hist_list);
976 INIT_FLIST_HEAD(&td->verify_list);
977 INIT_FLIST_HEAD(&td->trim_list);
978 pthread_mutex_init(&td->io_u_lock, NULL);
979 td->io_hist_tree = RB_ROOT;
980
981 pthread_condattr_init(&attr);
982 pthread_cond_init(&td->verify_cond, &attr);
983 pthread_cond_init(&td->free_cond, &attr);
984
985 td_set_runstate(td, TD_INITIALIZED);
986 dprint(FD_MUTEX, "up startup_mutex\n");
987 fio_mutex_up(startup_mutex);
988 dprint(FD_MUTEX, "wait on td->mutex\n");
989 fio_mutex_down(td->mutex);
990 dprint(FD_MUTEX, "done waiting on td->mutex\n");
991
992 /*
993 * the ->mutex mutex is now no longer used, close it to avoid
994 * eating a file descriptor
995 */
996 fio_mutex_remove(td->mutex);
997
998 /*
999 * A new gid requires privilege, so we need to do this before setting
1000 * the uid.
1001 */
1002 if (td->o.gid != -1U && setgid(td->o.gid)) {
1003 td_verror(td, errno, "setgid");
1004 goto err;
1005 }
1006 if (td->o.uid != -1U && setuid(td->o.uid)) {
1007 td_verror(td, errno, "setuid");
1008 goto err;
1009 }
1010
1011 /*
1012 * If we have a gettimeofday() thread, make sure we exclude that
1013 * thread from this job
1014 */
1015 if (td->o.gtod_cpu)
1016 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1017
1018 /*
1019 * Set affinity first, in case it has an impact on the memory
1020 * allocations.
1021 */
1022 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1023 td_verror(td, errno, "cpu_set_affinity");
1024 goto err;
1025 }
1026
1027 /*
1028 * May alter parameters that init_io_u() will use, so we need to
1029 * do this first.
1030 */
1031 if (init_iolog(td))
1032 goto err;
1033
1034 if (init_io_u(td))
1035 goto err;
1036
1037 if (td->o.verify_async && verify_async_init(td))
1038 goto err;
1039
1040 if (td->ioprio_set) {
1041 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1042 td_verror(td, errno, "ioprio_set");
1043 goto err;
1044 }
1045 }
1046
1047 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1048 goto err;
1049
649c10c5
BC
1050 errno = 0;
1051 if (nice(td->o.nice) == -1 && errno != 0) {
2e1df07d
JA
1052 td_verror(td, errno, "nice");
1053 goto err;
1054 }
1055
1056 if (td->o.ioscheduler && switch_ioscheduler(td))
1057 goto err;
1058
1059 if (!td->o.create_serialize && setup_files(td))
1060 goto err;
1061
1062 if (td_io_init(td))
1063 goto err;
1064
1065 if (init_random_map(td))
1066 goto err;
1067
1068 if (td->o.exec_prerun) {
1069 if (exec_string(td->o.exec_prerun))
1070 goto err;
1071 }
1072
1073 if (td->o.pre_read) {
1074 if (pre_read_files(td) < 0)
1075 goto err;
1076 }
1077
1078 fio_gettime(&td->epoch, NULL);
1079 getrusage(RUSAGE_SELF, &td->ru_start);
1080
1081 clear_state = 0;
1082 while (keep_running(td)) {
1083 fio_gettime(&td->start, NULL);
1084 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1085 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1086 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1087
1088 if (td->o.ratemin[0] || td->o.ratemin[1]) {
1089 memcpy(&td->lastrate[0], &td->bw_sample_time,
1090 sizeof(td->bw_sample_time));
1091 memcpy(&td->lastrate[1], &td->bw_sample_time,
1092 sizeof(td->bw_sample_time));
1093 }
1094
1095 if (clear_state)
1096 clear_io_state(td);
1097
1098 prune_io_piece_log(td);
1099
1100 do_io(td);
1101
1102 clear_state = 1;
1103
1104 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1105 elapsed = utime_since_now(&td->start);
1106 td->ts.runtime[DDIR_READ] += elapsed;
1107 }
1108 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1109 elapsed = utime_since_now(&td->start);
1110 td->ts.runtime[DDIR_WRITE] += elapsed;
1111 }
1112
1113 if (td->error || td->terminate)
1114 break;
1115
1116 if (!td->o.do_verify ||
1117 td->o.verify == VERIFY_NONE ||
1118 (td->io_ops->flags & FIO_UNIDIR))
1119 continue;
1120
1121 clear_io_state(td);
1122
1123 fio_gettime(&td->start, NULL);
1124
1125 do_verify(td);
1126
1127 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1128
1129 if (td->error || td->terminate)
1130 break;
1131 }
1132
1133 update_rusage_stat(td);
1134 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1135 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1136 td->ts.total_run_time = mtime_since_now(&td->epoch);
1137 td->ts.io_bytes[0] = td->io_bytes[0];
1138 td->ts.io_bytes[1] = td->io_bytes[1];
1139
1140 fio_mutex_down(writeout_mutex);
1141 if (td->bw_log) {
1142 if (td->o.bw_log_file) {
1143 finish_log_named(td, td->bw_log,
1144 td->o.bw_log_file, "bw");
1145 } else
1146 finish_log(td, td->bw_log, "bw");
1147 }
1148 if (td->lat_log) {
1149 if (td->o.lat_log_file) {
1150 finish_log_named(td, td->lat_log,
1151 td->o.lat_log_file, "lat");
1152 } else
1153 finish_log(td, td->lat_log, "lat");
1154 }
1155 if (td->slat_log) {
1156 if (td->o.lat_log_file) {
1157 finish_log_named(td, td->slat_log,
1158 td->o.lat_log_file, "slat");
1159 } else
1160 finish_log(td, td->slat_log, "slat");
1161 }
1162 if (td->clat_log) {
1163 if (td->o.lat_log_file) {
1164 finish_log_named(td, td->clat_log,
1165 td->o.lat_log_file, "clat");
1166 } else
1167 finish_log(td, td->clat_log, "clat");
1168 }
1169 if (td->iops_log) {
1170 if (td->o.iops_log_file) {
1171 finish_log_named(td, td->iops_log,
1172 td->o.iops_log_file, "iops");
1173 } else
1174 finish_log(td, td->iops_log, "iops");
1175 }
1176
1177 fio_mutex_up(writeout_mutex);
1178 if (td->o.exec_postrun)
1179 exec_string(td->o.exec_postrun);
1180
1181 if (exitall_on_terminate)
1182 fio_terminate_threads(td->groupid);
1183
1184err:
1185 if (td->error)
1186 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1187 td->verror);
1188
1189 if (td->o.verify_async)
1190 verify_async_exit(td);
1191
1192 close_and_free_files(td);
1193 close_ioengine(td);
1194 cleanup_io_u(td);
1195 cgroup_shutdown(td, &cgroup_mnt);
1196
1197 if (td->o.cpumask_set) {
1198 int ret = fio_cpuset_exit(&td->o.cpumask);
1199
1200 td_verror(td, ret, "fio_cpuset_exit");
1201 }
1202
1203 /*
1204 * do this very late, it will log file closing as well
1205 */
1206 if (td->o.write_iolog_file)
1207 write_iolog_close(td);
1208
1209 td_set_runstate(td, TD_EXITED);
e43606c2 1210 return (void *) (uintptr_t) td->error;
2e1df07d
JA
1211}
1212
1213
1214/*
1215 * We cannot pass the td data into a forked process, so attach the td and
1216 * pass it to the thread worker.
1217 */
1218static int fork_main(int shmid, int offset)
1219{
1220 struct thread_data *td;
1221 void *data, *ret;
1222
1223#ifndef __hpux
1224 data = shmat(shmid, NULL, 0);
1225 if (data == (void *) -1) {
1226 int __err = errno;
1227
1228 perror("shmat");
1229 return __err;
1230 }
1231#else
1232 /*
1233 * HP-UX inherits shm mappings?
1234 */
1235 data = threads;
1236#endif
1237
1238 td = data + offset * sizeof(struct thread_data);
1239 ret = thread_main(td);
1240 shmdt(data);
e43606c2 1241 return (int) (uintptr_t) ret;
2e1df07d
JA
1242}
1243
1244/*
1245 * Run over the job map and reap the threads that have exited, if any.
1246 */
1247static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1248 unsigned int *m_rate)
1249{
1250 struct thread_data *td;
1251 unsigned int cputhreads, realthreads, pending;
1252 int i, status, ret;
1253
1254 /*
1255 * reap exited threads (TD_EXITED -> TD_REAPED)
1256 */
1257 realthreads = pending = cputhreads = 0;
1258 for_each_td(td, i) {
1259 int flags = 0;
1260
1261 /*
1262 * ->io_ops is NULL for a thread that has closed its
1263 * io engine
1264 */
1265 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1266 cputhreads++;
1267 else
1268 realthreads++;
1269
1270 if (!td->pid) {
1271 pending++;
1272 continue;
1273 }
1274 if (td->runstate == TD_REAPED)
1275 continue;
1276 if (td->o.use_thread) {
1277 if (td->runstate == TD_EXITED) {
1278 td_set_runstate(td, TD_REAPED);
1279 goto reaped;
1280 }
1281 continue;
1282 }
1283
1284 flags = WNOHANG;
1285 if (td->runstate == TD_EXITED)
1286 flags = 0;
1287
1288 /*
1289 * check if someone quit or got killed in an unusual way
1290 */
1291 ret = waitpid(td->pid, &status, flags);
1292 if (ret < 0) {
1293 if (errno == ECHILD) {
1294 log_err("fio: pid=%d disappeared %d\n",
1295 (int) td->pid, td->runstate);
1296 td_set_runstate(td, TD_REAPED);
1297 goto reaped;
1298 }
1299 perror("waitpid");
1300 } else if (ret == td->pid) {
1301 if (WIFSIGNALED(status)) {
1302 int sig = WTERMSIG(status);
1303
1304 if (sig != SIGTERM)
1305 log_err("fio: pid=%d, got signal=%d\n",
1306 (int) td->pid, sig);
1307 td_set_runstate(td, TD_REAPED);
1308 goto reaped;
1309 }
1310 if (WIFEXITED(status)) {
1311 if (WEXITSTATUS(status) && !td->error)
1312 td->error = WEXITSTATUS(status);
1313
1314 td_set_runstate(td, TD_REAPED);
1315 goto reaped;
1316 }
1317 }
1318
1319 /*
1320 * thread is not dead, continue
1321 */
1322 pending++;
1323 continue;
1324reaped:
1325 (*nr_running)--;
1326 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1327 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1328 if (!td->pid)
1329 pending--;
1330
1331 if (td->error)
1332 exit_value++;
1333
1334 done_secs += mtime_since_now(&td->epoch) / 1000;
1335 }
1336
1337 if (*nr_running == cputhreads && !pending && realthreads)
1338 fio_terminate_threads(TERMINATE_ALL);
1339}
1340
2e1df07d
JA
1341/*
1342 * Main function for kicking off and reaping jobs, as needed.
1343 */
1344static void run_threads(void)
1345{
1346 struct thread_data *td;
1347 unsigned long spent;
1348 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1349
1350 if (fio_pin_memory())
1351 return;
1352
1353 if (fio_gtod_offload && fio_start_gtod_thread())
1354 return;
1355
1356 set_sig_handlers();
1357
1358 if (!terse_output) {
1359 log_info("Starting ");
1360 if (nr_thread)
1361 log_info("%d thread%s", nr_thread,
1362 nr_thread > 1 ? "s" : "");
1363 if (nr_process) {
1364 if (nr_thread)
1365 log_info(" and ");
1366 log_info("%d process%s", nr_process,
1367 nr_process > 1 ? "es" : "");
1368 }
1369 log_info("\n");
1370 fflush(stdout);
1371 }
1372
1373 todo = thread_number;
1374 nr_running = 0;
1375 nr_started = 0;
1376 m_rate = t_rate = 0;
1377
1378 for_each_td(td, i) {
1379 print_status_init(td->thread_number - 1);
1380
1381 if (!td->o.create_serialize)
1382 continue;
1383
1384 /*
1385 * do file setup here so it happens sequentially,
1386 * we don't want X number of threads getting their
1387 * client data interspersed on disk
1388 */
1389 if (setup_files(td)) {
1390 exit_value++;
1391 if (td->error)
1392 log_err("fio: pid=%d, err=%d/%s\n",
1393 (int) td->pid, td->error, td->verror);
1394 td_set_runstate(td, TD_REAPED);
1395 todo--;
1396 } else {
1397 struct fio_file *f;
1398 unsigned int j;
1399
1400 /*
1401 * for sharing to work, each job must always open
1402 * its own files. so close them, if we opened them
1403 * for creation
1404 */
1405 for_each_file(td, f, j) {
1406 if (fio_file_open(f))
1407 td_io_close_file(td, f);
1408 }
1409 }
1410 }
1411
1412 set_genesis_time();
1413
1414 while (todo) {
1415 struct thread_data *map[REAL_MAX_JOBS];
1416 struct timeval this_start;
1417 int this_jobs = 0, left;
1418
1419 /*
1420 * create threads (TD_NOT_CREATED -> TD_CREATED)
1421 */
1422 for_each_td(td, i) {
1423 if (td->runstate != TD_NOT_CREATED)
1424 continue;
1425
1426 /*
1427 * never got a chance to start, killed by other
1428 * thread for some reason
1429 */
1430 if (td->terminate) {
1431 todo--;
1432 continue;
1433 }
1434
1435 if (td->o.start_delay) {
1436 spent = mtime_since_genesis();
1437
1438 if (td->o.start_delay * 1000 > spent)
1439 continue;
1440 }
1441
1442 if (td->o.stonewall && (nr_started || nr_running)) {
1443 dprint(FD_PROCESS, "%s: stonewall wait\n",
1444 td->o.name);
1445 break;
1446 }
1447
1448 init_disk_util(td);
1449
1450 /*
1451 * Set state to created. Thread will transition
1452 * to TD_INITIALIZED when it's done setting up.
1453 */
1454 td_set_runstate(td, TD_CREATED);
1455 map[this_jobs++] = td;
1456 nr_started++;
1457
1458 if (td->o.use_thread) {
1459 int ret;
1460
1461 dprint(FD_PROCESS, "will pthread_create\n");
1462 ret = pthread_create(&td->thread, NULL,
1463 thread_main, td);
1464 if (ret) {
1465 log_err("pthread_create: %s\n",
1466 strerror(ret));
1467 nr_started--;
1468 break;
1469 }
1470 ret = pthread_detach(td->thread);
1471 if (ret)
1472 log_err("pthread_detach: %s",
1473 strerror(ret));
1474 } else {
1475 pid_t pid;
1476 dprint(FD_PROCESS, "will fork\n");
1477 pid = fork();
1478 if (!pid) {
1479 int ret = fork_main(shm_id, i);
1480
1481 _exit(ret);
1482 } else if (i == fio_debug_jobno)
1483 *fio_debug_jobp = pid;
1484 }
1485 dprint(FD_MUTEX, "wait on startup_mutex\n");
1486 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1487 log_err("fio: job startup hung? exiting.\n");
1488 fio_terminate_threads(TERMINATE_ALL);
1489 fio_abort = 1;
1490 nr_started--;
1491 break;
1492 }
1493 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1494 }
1495
1496 /*
1497 * Wait for the started threads to transition to
1498 * TD_INITIALIZED.
1499 */
1500 fio_gettime(&this_start, NULL);
1501 left = this_jobs;
1502 while (left && !fio_abort) {
1503 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1504 break;
1505
1506 usleep(100000);
1507
1508 for (i = 0; i < this_jobs; i++) {
1509 td = map[i];
1510 if (!td)
1511 continue;
1512 if (td->runstate == TD_INITIALIZED) {
1513 map[i] = NULL;
1514 left--;
1515 } else if (td->runstate >= TD_EXITED) {
1516 map[i] = NULL;
1517 left--;
1518 todo--;
1519 nr_running++; /* work-around... */
1520 }
1521 }
1522 }
1523
1524 if (left) {
4e87c37a
JA
1525 log_err("fio: %d job%s failed to start\n", left,
1526 left > 1 ? "s" : "");
2e1df07d
JA
1527 for (i = 0; i < this_jobs; i++) {
1528 td = map[i];
1529 if (!td)
1530 continue;
1531 kill(td->pid, SIGTERM);
1532 }
1533 break;
1534 }
1535
1536 /*
1537 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1538 */
1539 for_each_td(td, i) {
1540 if (td->runstate != TD_INITIALIZED)
1541 continue;
1542
1543 if (in_ramp_time(td))
1544 td_set_runstate(td, TD_RAMP);
1545 else
1546 td_set_runstate(td, TD_RUNNING);
1547 nr_running++;
1548 nr_started--;
1549 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1550 t_rate += td->o.rate[0] + td->o.rate[1];
1551 todo--;
1552 fio_mutex_up(td->mutex);
1553 }
1554
1555 reap_threads(&nr_running, &t_rate, &m_rate);
1556
1557 if (todo) {
1558 if (is_backend)
1559 fio_server_idle_loop();
1560 else
1561 usleep(100000);
1562 }
1563 }
1564
1565 while (nr_running) {
1566 reap_threads(&nr_running, &t_rate, &m_rate);
1567
1568 if (is_backend)
1569 fio_server_idle_loop();
1570 else
1571 usleep(10000);
1572 }
1573
1574 update_io_ticks();
1575 fio_unpin_memory();
1576}
1577
1578static void *disk_thread_main(void *data)
1579{
1580 fio_mutex_up(startup_mutex);
1581
1582 while (threads) {
1583 usleep(DISK_UTIL_MSEC * 1000);
1584 if (!threads)
1585 break;
1586 update_io_ticks();
1587
1588 if (!is_backend)
1589 print_thread_status();
1590 }
1591
1592 return NULL;
1593}
1594
1595static int create_disk_util_thread(void)
1596{
1597 int ret;
1598
1599 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1600 if (ret) {
1601 log_err("Can't create disk util thread: %s\n", strerror(ret));
1602 return 1;
1603 }
1604
1605 ret = pthread_detach(disk_util_thread);
1606 if (ret) {
1607 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1608 return 1;
1609 }
1610
1611 dprint(FD_MUTEX, "wait on startup_mutex\n");
1612 fio_mutex_down(startup_mutex);
1613 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1614 return 0;
1615}
1616
2e1df07d
JA
1617int fio_backend(void)
1618{
1619 struct thread_data *td;
1620 int i;
1621
1622 if (exec_profile) {
1623 if (load_profile(exec_profile))
1624 return 1;
1625 free(exec_profile);
1626 exec_profile = NULL;
1627 }
1628 if (!thread_number)
1629 return 0;
1630
1631 if (write_bw_log) {
ea51b956
JA
1632 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1633 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
2e1df07d
JA
1634 }
1635
1636 startup_mutex = fio_mutex_init(0);
1637 if (startup_mutex == NULL)
1638 return 1;
1639 writeout_mutex = fio_mutex_init(1);
1640 if (writeout_mutex == NULL)
1641 return 1;
1642
1643 set_genesis_time();
1644 create_disk_util_thread();
1645
1646 cgroup_list = smalloc(sizeof(*cgroup_list));
1647 INIT_FLIST_HEAD(cgroup_list);
1648
1649 run_threads();
1650
1651 if (!fio_abort) {
1652 show_run_stats();
1653 if (write_bw_log) {
1654 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1655 __finish_log(agg_io_log[DDIR_WRITE],
1656 "agg-write_bw.log");
1657 }
1658 }
1659
1660 for_each_td(td, i)
1661 fio_options_free(td);
1662
1663 cgroup_kill(cgroup_list);
1664 sfree(cgroup_list);
1665 sfree(cgroup_mnt);
1666
1667 fio_mutex_remove(startup_mutex);
1668 fio_mutex_remove(writeout_mutex);
1669 return exit_value;
1670}