Categorize a few more options
[fio.git] / backend.c
CommitLineData
2e1df07d
JA
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
e43606c2 33#include <inttypes.h>
2e1df07d
JA
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/shm.h>
38#include <sys/mman.h>
39
40#include "fio.h"
41#include "hash.h"
42#include "smalloc.h"
43#include "verify.h"
44#include "trim.h"
45#include "diskutil.h"
46#include "cgroup.h"
47#include "profile.h"
48#include "lib/rand.h"
49#include "memalign.h"
50#include "server.h"
51
52static pthread_t disk_util_thread;
53static struct fio_mutex *startup_mutex;
54static struct fio_mutex *writeout_mutex;
55static struct flist_head *cgroup_list;
56static char *cgroup_mnt;
57static int exit_value;
58static volatile int fio_abort;
59
60struct io_log *agg_io_log[2];
61
a3efc919
JA
62int groupid = 0;
63unsigned int thread_number = 0;
64unsigned int nr_process = 0;
65unsigned int nr_thread = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69
2e1df07d 70#define PAGE_ALIGN(buf) \
e43606c2 71 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
2e1df07d
JA
72
73#define JOB_START_TIMEOUT (5 * 1000)
74
75static void sig_int(int sig)
76{
77 if (threads) {
78 if (is_backend)
79 fio_server_got_signal(sig);
80 else {
81 log_info("\nfio: terminating on signal %d\n", sig);
82 fflush(stdout);
83 exit_value = 128;
84 }
85
86 fio_terminate_threads(TERMINATE_ALL);
87 }
88}
89
90static void set_sig_handlers(void)
91{
92 struct sigaction act;
93
94 memset(&act, 0, sizeof(act));
95 act.sa_handler = sig_int;
96 act.sa_flags = SA_RESTART;
97 sigaction(SIGINT, &act, NULL);
98
99 memset(&act, 0, sizeof(act));
100 act.sa_handler = sig_int;
101 act.sa_flags = SA_RESTART;
102 sigaction(SIGTERM, &act, NULL);
103
104 if (is_backend) {
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGPIPE, &act, NULL);
109 }
110}
111
112/*
113 * Check if we are above the minimum rate given.
114 */
115static int __check_min_rate(struct thread_data *td, struct timeval *now,
116 enum fio_ddir ddir)
117{
118 unsigned long long bytes = 0;
119 unsigned long iops = 0;
120 unsigned long spent;
121 unsigned long rate;
122 unsigned int ratemin = 0;
123 unsigned int rate_iops = 0;
124 unsigned int rate_iops_min = 0;
125
126 assert(ddir_rw(ddir));
127
128 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
129 return 0;
130
131 /*
132 * allow a 2 second settle period in the beginning
133 */
134 if (mtime_since(&td->start, now) < 2000)
135 return 0;
136
137 iops += td->this_io_blocks[ddir];
138 bytes += td->this_io_bytes[ddir];
139 ratemin += td->o.ratemin[ddir];
140 rate_iops += td->o.rate_iops[ddir];
141 rate_iops_min += td->o.rate_iops_min[ddir];
142
143 /*
144 * if rate blocks is set, sample is running
145 */
146 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
147 spent = mtime_since(&td->lastrate[ddir], now);
148 if (spent < td->o.ratecycle)
149 return 0;
150
151 if (td->o.rate[ddir]) {
152 /*
153 * check bandwidth specified rate
154 */
155 if (bytes < td->rate_bytes[ddir]) {
156 log_err("%s: min rate %u not met\n", td->o.name,
157 ratemin);
158 return 1;
159 } else {
160 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
161 if (rate < ratemin ||
162 bytes < td->rate_bytes[ddir]) {
163 log_err("%s: min rate %u not met, got"
164 " %luKB/sec\n", td->o.name,
165 ratemin, rate);
166 return 1;
167 }
168 }
169 } else {
170 /*
171 * checks iops specified rate
172 */
173 if (iops < rate_iops) {
174 log_err("%s: min iops rate %u not met\n",
175 td->o.name, rate_iops);
176 return 1;
177 } else {
178 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
179 if (rate < rate_iops_min ||
180 iops < td->rate_blocks[ddir]) {
181 log_err("%s: min iops rate %u not met,"
182 " got %lu\n", td->o.name,
183 rate_iops_min, rate);
184 }
185 }
186 }
187 }
188
189 td->rate_bytes[ddir] = bytes;
190 td->rate_blocks[ddir] = iops;
191 memcpy(&td->lastrate[ddir], now, sizeof(*now));
192 return 0;
193}
194
195static int check_min_rate(struct thread_data *td, struct timeval *now,
196 unsigned long *bytes_done)
197{
198 int ret = 0;
199
200 if (bytes_done[0])
201 ret |= __check_min_rate(td, now, 0);
202 if (bytes_done[1])
203 ret |= __check_min_rate(td, now, 1);
204
205 return ret;
206}
207
208/*
209 * When job exits, we can cancel the in-flight IO if we are using async
210 * io. Attempt to do so.
211 */
212static void cleanup_pending_aio(struct thread_data *td)
213{
214 struct flist_head *entry, *n;
215 struct io_u *io_u;
216 int r;
217
218 /*
219 * get immediately available events, if any
220 */
221 r = io_u_queued_complete(td, 0, NULL);
222 if (r < 0)
223 return;
224
225 /*
226 * now cancel remaining active events
227 */
228 if (td->io_ops->cancel) {
229 flist_for_each_safe(entry, n, &td->io_u_busylist) {
230 io_u = flist_entry(entry, struct io_u, list);
231
232 /*
233 * if the io_u isn't in flight, then that generally
234 * means someone leaked an io_u. complain but fix
235 * it up, so we don't stall here.
236 */
237 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
238 log_err("fio: non-busy IO on busy list\n");
239 put_io_u(td, io_u);
240 } else {
241 r = td->io_ops->cancel(td, io_u);
242 if (!r)
243 put_io_u(td, io_u);
244 }
245 }
246 }
247
248 if (td->cur_depth)
249 r = io_u_queued_complete(td, td->cur_depth, NULL);
250}
251
252/*
253 * Helper to handle the final sync of a file. Works just like the normal
254 * io path, just does everything sync.
255 */
256static int fio_io_sync(struct thread_data *td, struct fio_file *f)
257{
258 struct io_u *io_u = __get_io_u(td);
259 int ret;
260
261 if (!io_u)
262 return 1;
263
264 io_u->ddir = DDIR_SYNC;
265 io_u->file = f;
266
267 if (td_io_prep(td, io_u)) {
268 put_io_u(td, io_u);
269 return 1;
270 }
271
272requeue:
273 ret = td_io_queue(td, io_u);
274 if (ret < 0) {
275 td_verror(td, io_u->error, "td_io_queue");
276 put_io_u(td, io_u);
277 return 1;
278 } else if (ret == FIO_Q_QUEUED) {
279 if (io_u_queued_complete(td, 1, NULL) < 0)
280 return 1;
281 } else if (ret == FIO_Q_COMPLETED) {
282 if (io_u->error) {
283 td_verror(td, io_u->error, "td_io_queue");
284 return 1;
285 }
286
287 if (io_u_sync_complete(td, io_u, NULL) < 0)
288 return 1;
289 } else if (ret == FIO_Q_BUSY) {
290 if (td_io_commit(td))
291 return 1;
292 goto requeue;
293 }
294
295 return 0;
296}
a3efc919 297
2e1df07d
JA
298static inline void __update_tv_cache(struct thread_data *td)
299{
300 fio_gettime(&td->tv_cache, NULL);
301}
302
303static inline void update_tv_cache(struct thread_data *td)
304{
305 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
306 __update_tv_cache(td);
307}
308
309static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
310{
311 if (in_ramp_time(td))
312 return 0;
313 if (!td->o.timeout)
314 return 0;
315 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
316 return 1;
317
318 return 0;
319}
320
321static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
322 int *retptr)
323{
324 int ret = *retptr;
325
326 if (ret < 0 || td->error) {
327 int err;
328
329 if (ret < 0)
330 err = -ret;
331 else
332 err = td->error;
333
334 if (!(td->o.continue_on_error & td_error_type(ddir, err)))
335 return 1;
336
337 if (td_non_fatal_error(err)) {
338 /*
339 * Continue with the I/Os in case of
340 * a non fatal error.
341 */
342 update_error_count(td, err);
343 td_clear_error(td);
344 *retptr = 0;
345 return 0;
346 } else if (td->o.fill_device && err == ENOSPC) {
347 /*
348 * We expect to hit this error if
349 * fill_device option is set.
350 */
351 td_clear_error(td);
352 td->terminate = 1;
353 return 1;
354 } else {
355 /*
356 * Stop the I/O in case of a fatal
357 * error.
358 */
359 update_error_count(td, err);
360 return 1;
361 }
362 }
363
364 return 0;
365}
366
2e1df07d
JA
367/*
368 * The main verify engine. Runs over the writes we previously submitted,
369 * reads the blocks back in, and checks the crc/md5 of the data.
370 */
371static void do_verify(struct thread_data *td)
372{
373 struct fio_file *f;
374 struct io_u *io_u;
375 int ret, min_events;
376 unsigned int i;
377
378 dprint(FD_VERIFY, "starting loop\n");
379
380 /*
381 * sync io first and invalidate cache, to make sure we really
382 * read from disk.
383 */
384 for_each_file(td, f, i) {
385 if (!fio_file_open(f))
386 continue;
387 if (fio_io_sync(td, f))
388 break;
389 if (file_invalidate_cache(td, f))
390 break;
391 }
392
393 if (td->error)
394 return;
395
396 td_set_runstate(td, TD_VERIFYING);
397
398 io_u = NULL;
399 while (!td->terminate) {
400 int ret2, full;
401
402 update_tv_cache(td);
403
404 if (runtime_exceeded(td, &td->tv_cache)) {
405 __update_tv_cache(td);
406 if (runtime_exceeded(td, &td->tv_cache)) {
407 td->terminate = 1;
408 break;
409 }
410 }
411
9e684a49
DE
412 if (flow_threshold_exceeded(td))
413 continue;
414
2e1df07d
JA
415 io_u = __get_io_u(td);
416 if (!io_u)
417 break;
418
419 if (get_next_verify(td, io_u)) {
420 put_io_u(td, io_u);
421 break;
422 }
423
424 if (td_io_prep(td, io_u)) {
425 put_io_u(td, io_u);
426 break;
427 }
428
429 if (td->o.verify_async)
430 io_u->end_io = verify_io_u_async;
431 else
432 io_u->end_io = verify_io_u;
433
434 ret = td_io_queue(td, io_u);
435 switch (ret) {
436 case FIO_Q_COMPLETED:
437 if (io_u->error) {
438 ret = -io_u->error;
439 clear_io_u(td, io_u);
440 } else if (io_u->resid) {
441 int bytes = io_u->xfer_buflen - io_u->resid;
442
443 /*
444 * zero read, fail
445 */
446 if (!bytes) {
447 td_verror(td, EIO, "full resid");
448 put_io_u(td, io_u);
449 break;
450 }
451
452 io_u->xfer_buflen = io_u->resid;
453 io_u->xfer_buf += bytes;
454 io_u->offset += bytes;
455
456 if (ddir_rw(io_u->ddir))
457 td->ts.short_io_u[io_u->ddir]++;
458
459 f = io_u->file;
460 if (io_u->offset == f->real_file_size)
461 goto sync_done;
462
463 requeue_io_u(td, &io_u);
464 } else {
465sync_done:
466 ret = io_u_sync_complete(td, io_u, NULL);
467 if (ret < 0)
468 break;
469 }
470 continue;
471 case FIO_Q_QUEUED:
472 break;
473 case FIO_Q_BUSY:
474 requeue_io_u(td, &io_u);
475 ret2 = td_io_commit(td);
476 if (ret2 < 0)
477 ret = ret2;
478 break;
479 default:
480 assert(ret < 0);
481 td_verror(td, -ret, "td_io_queue");
482 break;
483 }
484
485 if (break_on_this_error(td, io_u->ddir, &ret))
486 break;
487
488 /*
489 * if we can queue more, do so. but check if there are
490 * completed io_u's first. Note that we can get BUSY even
491 * without IO queued, if the system is resource starved.
492 */
493 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
494 if (full || !td->o.iodepth_batch_complete) {
495 min_events = min(td->o.iodepth_batch_complete,
496 td->cur_depth);
8a74b56d
JA
497 /*
498 * if the queue is full, we MUST reap at least 1 event
499 */
500 if (full && !min_events)
2e1df07d
JA
501 min_events = 1;
502
503 do {
504 /*
505 * Reap required number of io units, if any,
506 * and do the verification on them through
507 * the callback handler
508 */
509 if (io_u_queued_complete(td, min_events, NULL) < 0) {
510 ret = -1;
511 break;
512 }
513 } while (full && (td->cur_depth > td->o.iodepth_low));
514 }
515 if (ret < 0)
516 break;
517 }
518
519 if (!td->error) {
520 min_events = td->cur_depth;
521
522 if (min_events)
523 ret = io_u_queued_complete(td, min_events, NULL);
524 } else
525 cleanup_pending_aio(td);
526
527 td_set_runstate(td, TD_RUNNING);
528
529 dprint(FD_VERIFY, "exiting loop\n");
530}
531
f7078f7b
JA
532static int io_bytes_exceeded(struct thread_data *td)
533{
534 unsigned long long bytes;
535
536 if (td_rw(td))
537 bytes = td->this_io_bytes[0] + td->this_io_bytes[1];
538 else if (td_write(td))
539 bytes = td->this_io_bytes[1];
540 else
541 bytes = td->this_io_bytes[0];
542
543 return bytes >= td->o.size;
544}
545
2e1df07d
JA
546/*
547 * Main IO worker function. It retrieves io_u's to process and queues
548 * and reaps them, checking for rate and errors along the way.
549 */
550static void do_io(struct thread_data *td)
551{
552 unsigned int i;
553 int ret = 0;
554
555 if (in_ramp_time(td))
556 td_set_runstate(td, TD_RAMP);
557 else
558 td_set_runstate(td, TD_RUNNING);
559
f7078f7b 560 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
c04e4661
DE
561 (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
562 td->o.time_based) {
2e1df07d
JA
563 struct timeval comp_time;
564 unsigned long bytes_done[2] = { 0, 0 };
565 int min_evts = 0;
566 struct io_u *io_u;
567 int ret2, full;
568 enum fio_ddir ddir;
569
570 if (td->terminate)
571 break;
572
573 update_tv_cache(td);
574
575 if (runtime_exceeded(td, &td->tv_cache)) {
576 __update_tv_cache(td);
577 if (runtime_exceeded(td, &td->tv_cache)) {
578 td->terminate = 1;
579 break;
580 }
581 }
582
9e684a49
DE
583 if (flow_threshold_exceeded(td))
584 continue;
585
2e1df07d
JA
586 io_u = get_io_u(td);
587 if (!io_u)
588 break;
589
590 ddir = io_u->ddir;
591
592 /*
82af2a7c
JA
593 * Add verification end_io handler if:
594 * - Asked to verify (!td_rw(td))
595 * - Or the io_u is from our verify list (mixed write/ver)
2e1df07d
JA
596 */
597 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
82af2a7c 598 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
2e1df07d
JA
599 if (td->o.verify_async)
600 io_u->end_io = verify_io_u_async;
601 else
602 io_u->end_io = verify_io_u;
603 td_set_runstate(td, TD_VERIFYING);
604 } else if (in_ramp_time(td))
605 td_set_runstate(td, TD_RAMP);
606 else
607 td_set_runstate(td, TD_RUNNING);
608
609 ret = td_io_queue(td, io_u);
610 switch (ret) {
611 case FIO_Q_COMPLETED:
612 if (io_u->error) {
613 ret = -io_u->error;
614 clear_io_u(td, io_u);
615 } else if (io_u->resid) {
616 int bytes = io_u->xfer_buflen - io_u->resid;
617 struct fio_file *f = io_u->file;
618
619 /*
620 * zero read, fail
621 */
622 if (!bytes) {
623 td_verror(td, EIO, "full resid");
624 put_io_u(td, io_u);
625 break;
626 }
627
628 io_u->xfer_buflen = io_u->resid;
629 io_u->xfer_buf += bytes;
630 io_u->offset += bytes;
631
632 if (ddir_rw(io_u->ddir))
633 td->ts.short_io_u[io_u->ddir]++;
634
635 if (io_u->offset == f->real_file_size)
636 goto sync_done;
637
638 requeue_io_u(td, &io_u);
639 } else {
640sync_done:
641 if (__should_check_rate(td, 0) ||
642 __should_check_rate(td, 1))
643 fio_gettime(&comp_time, NULL);
644
645 ret = io_u_sync_complete(td, io_u, bytes_done);
646 if (ret < 0)
647 break;
648 }
649 break;
650 case FIO_Q_QUEUED:
651 /*
652 * if the engine doesn't have a commit hook,
653 * the io_u is really queued. if it does have such
654 * a hook, it has to call io_u_queued() itself.
655 */
656 if (td->io_ops->commit == NULL)
657 io_u_queued(td, io_u);
658 break;
659 case FIO_Q_BUSY:
660 requeue_io_u(td, &io_u);
661 ret2 = td_io_commit(td);
662 if (ret2 < 0)
663 ret = ret2;
664 break;
665 default:
666 assert(ret < 0);
667 put_io_u(td, io_u);
668 break;
669 }
670
671 if (break_on_this_error(td, ddir, &ret))
672 break;
673
674 /*
675 * See if we need to complete some commands. Note that we
676 * can get BUSY even without IO queued, if the system is
677 * resource starved.
678 */
679 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
680 if (full || !td->o.iodepth_batch_complete) {
681 min_evts = min(td->o.iodepth_batch_complete,
682 td->cur_depth);
8a74b56d
JA
683 /*
684 * if the queue is full, we MUST reap at least 1 event
685 */
686 if (full && !min_evts)
2e1df07d
JA
687 min_evts = 1;
688
689 if (__should_check_rate(td, 0) ||
690 __should_check_rate(td, 1))
691 fio_gettime(&comp_time, NULL);
692
693 do {
694 ret = io_u_queued_complete(td, min_evts, bytes_done);
695 if (ret < 0)
696 break;
697
698 } while (full && (td->cur_depth > td->o.iodepth_low));
699 }
700
701 if (ret < 0)
702 break;
703 if (!(bytes_done[0] + bytes_done[1]))
704 continue;
705
706 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
707 if (check_min_rate(td, &comp_time, bytes_done)) {
708 if (exitall_on_terminate)
709 fio_terminate_threads(td->groupid);
710 td_verror(td, EIO, "check_min_rate");
711 break;
712 }
713 }
714
715 if (td->o.thinktime) {
716 unsigned long long b;
717
718 b = td->io_blocks[0] + td->io_blocks[1];
719 if (!(b % td->o.thinktime_blocks)) {
720 int left;
721
722 if (td->o.thinktime_spin)
723 usec_spin(td->o.thinktime_spin);
724
725 left = td->o.thinktime - td->o.thinktime_spin;
726 if (left)
727 usec_sleep(td, left);
728 }
729 }
730 }
731
732 if (td->trim_entries)
733 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
734
735 if (td->o.fill_device && td->error == ENOSPC) {
736 td->error = 0;
737 td->terminate = 1;
738 }
739 if (!td->error) {
740 struct fio_file *f;
741
742 i = td->cur_depth;
743 if (i) {
744 ret = io_u_queued_complete(td, i, NULL);
745 if (td->o.fill_device && td->error == ENOSPC)
746 td->error = 0;
747 }
748
749 if (should_fsync(td) && td->o.end_fsync) {
750 td_set_runstate(td, TD_FSYNCING);
751
752 for_each_file(td, f, i) {
753 if (!fio_file_open(f))
754 continue;
755 fio_io_sync(td, f);
756 }
757 }
758 } else
759 cleanup_pending_aio(td);
760
761 /*
762 * stop job if we failed doing any IO
763 */
764 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
765 td->done = 1;
766}
767
768static void cleanup_io_u(struct thread_data *td)
769{
770 struct flist_head *entry, *n;
771 struct io_u *io_u;
772
773 flist_for_each_safe(entry, n, &td->io_u_freelist) {
774 io_u = flist_entry(entry, struct io_u, list);
775
776 flist_del(&io_u->list);
777 fio_memfree(io_u, sizeof(*io_u));
778 }
779
780 free_io_mem(td);
781}
782
783static int init_io_u(struct thread_data *td)
784{
785 struct io_u *io_u;
9c42684e 786 unsigned int max_bs, min_write;
2e1df07d
JA
787 int cl_align, i, max_units;
788 char *p;
789
790 max_units = td->o.iodepth;
791 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
9c42684e 792 min_write = td->o.min_bs[DDIR_WRITE];
2e1df07d
JA
793 td->orig_buffer_size = (unsigned long long) max_bs
794 * (unsigned long long) max_units;
795
796 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
797 unsigned long bs;
798
799 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
800 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
801 }
802
803 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
804 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
805 return 1;
806 }
807
808 if (allocate_io_mem(td))
809 return 1;
810
811 if (td->o.odirect || td->o.mem_align ||
812 (td->io_ops->flags & FIO_RAWIO))
813 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
814 else
815 p = td->orig_buffer;
816
817 cl_align = os_cache_line_size();
818
819 for (i = 0; i < max_units; i++) {
820 void *ptr;
821
822 if (td->terminate)
823 return 1;
824
825 ptr = fio_memalign(cl_align, sizeof(*io_u));
826 if (!ptr) {
827 log_err("fio: unable to allocate aligned memory\n");
828 break;
829 }
830
831 io_u = ptr;
832 memset(io_u, 0, sizeof(*io_u));
833 INIT_FLIST_HEAD(&io_u->list);
834 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
835
836 if (!(td->io_ops->flags & FIO_NOIO)) {
837 io_u->buf = p;
838 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
839
840 if (td_write(td))
9c42684e 841 io_u_fill_buffer(td, io_u, min_write, max_bs);
2e1df07d
JA
842 if (td_write(td) && td->o.verify_pattern_bytes) {
843 /*
844 * Fill the buffer with the pattern if we are
845 * going to be doing writes.
846 */
847 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
848 }
849 }
850
851 io_u->index = i;
852 io_u->flags = IO_U_F_FREE;
853 flist_add(&io_u->list, &td->io_u_freelist);
854 p += max_bs;
855 }
856
857 return 0;
858}
859
860static int switch_ioscheduler(struct thread_data *td)
861{
862 char tmp[256], tmp2[128];
863 FILE *f;
864 int ret;
865
866 if (td->io_ops->flags & FIO_DISKLESSIO)
867 return 0;
868
869 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
870
871 f = fopen(tmp, "r+");
872 if (!f) {
873 if (errno == ENOENT) {
874 log_err("fio: os or kernel doesn't support IO scheduler"
875 " switching\n");
876 return 0;
877 }
878 td_verror(td, errno, "fopen iosched");
879 return 1;
880 }
881
882 /*
883 * Set io scheduler.
884 */
885 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
886 if (ferror(f) || ret != 1) {
887 td_verror(td, errno, "fwrite");
888 fclose(f);
889 return 1;
890 }
891
892 rewind(f);
893
894 /*
895 * Read back and check that the selected scheduler is now the default.
896 */
897 ret = fread(tmp, 1, sizeof(tmp), f);
898 if (ferror(f) || ret < 0) {
899 td_verror(td, errno, "fread");
900 fclose(f);
901 return 1;
902 }
903
904 sprintf(tmp2, "[%s]", td->o.ioscheduler);
905 if (!strstr(tmp, tmp2)) {
906 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
907 td_verror(td, EINVAL, "iosched_switch");
908 fclose(f);
909 return 1;
910 }
911
912 fclose(f);
913 return 0;
914}
915
916static int keep_running(struct thread_data *td)
917{
918 unsigned long long io_done;
919
920 if (td->done)
921 return 0;
922 if (td->o.time_based)
923 return 1;
924 if (td->o.loops) {
925 td->o.loops--;
926 return 1;
927 }
928
929 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
930 + td->io_skip_bytes;
931 if (io_done < td->o.size)
932 return 1;
933
934 return 0;
935}
936
937static int exec_string(const char *string)
938{
939 int ret, newlen = strlen(string) + 1 + 8;
940 char *str;
941
942 str = malloc(newlen);
943 sprintf(str, "sh -c %s", string);
944
945 ret = system(str);
946 if (ret == -1)
947 log_err("fio: exec of cmd <%s> failed\n", str);
948
949 free(str);
950 return ret;
951}
952
953/*
954 * Entry point for the thread based jobs. The process based jobs end up
955 * here as well, after a little setup.
956 */
957static void *thread_main(void *data)
958{
959 unsigned long long elapsed;
960 struct thread_data *td = data;
961 pthread_condattr_t attr;
962 int clear_state;
963
964 if (!td->o.use_thread) {
965 setsid();
966 td->pid = getpid();
967 } else
968 td->pid = gettid();
969
970 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
971
122c7725
JA
972 if (is_backend)
973 fio_server_send_start(td);
974
2e1df07d
JA
975 INIT_FLIST_HEAD(&td->io_u_freelist);
976 INIT_FLIST_HEAD(&td->io_u_busylist);
977 INIT_FLIST_HEAD(&td->io_u_requeues);
978 INIT_FLIST_HEAD(&td->io_log_list);
979 INIT_FLIST_HEAD(&td->io_hist_list);
980 INIT_FLIST_HEAD(&td->verify_list);
981 INIT_FLIST_HEAD(&td->trim_list);
982 pthread_mutex_init(&td->io_u_lock, NULL);
983 td->io_hist_tree = RB_ROOT;
984
985 pthread_condattr_init(&attr);
986 pthread_cond_init(&td->verify_cond, &attr);
987 pthread_cond_init(&td->free_cond, &attr);
988
989 td_set_runstate(td, TD_INITIALIZED);
990 dprint(FD_MUTEX, "up startup_mutex\n");
991 fio_mutex_up(startup_mutex);
992 dprint(FD_MUTEX, "wait on td->mutex\n");
993 fio_mutex_down(td->mutex);
994 dprint(FD_MUTEX, "done waiting on td->mutex\n");
995
996 /*
997 * the ->mutex mutex is now no longer used, close it to avoid
998 * eating a file descriptor
999 */
1000 fio_mutex_remove(td->mutex);
1001
1002 /*
1003 * A new gid requires privilege, so we need to do this before setting
1004 * the uid.
1005 */
1006 if (td->o.gid != -1U && setgid(td->o.gid)) {
1007 td_verror(td, errno, "setgid");
1008 goto err;
1009 }
1010 if (td->o.uid != -1U && setuid(td->o.uid)) {
1011 td_verror(td, errno, "setuid");
1012 goto err;
1013 }
1014
1015 /*
1016 * If we have a gettimeofday() thread, make sure we exclude that
1017 * thread from this job
1018 */
1019 if (td->o.gtod_cpu)
1020 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1021
1022 /*
1023 * Set affinity first, in case it has an impact on the memory
1024 * allocations.
1025 */
1026 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1027 td_verror(td, errno, "cpu_set_affinity");
1028 goto err;
1029 }
1030
1031 /*
1032 * May alter parameters that init_io_u() will use, so we need to
1033 * do this first.
1034 */
1035 if (init_iolog(td))
1036 goto err;
1037
1038 if (init_io_u(td))
1039 goto err;
1040
1041 if (td->o.verify_async && verify_async_init(td))
1042 goto err;
1043
1044 if (td->ioprio_set) {
1045 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1046 td_verror(td, errno, "ioprio_set");
1047 goto err;
1048 }
1049 }
1050
1051 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1052 goto err;
1053
649c10c5
BC
1054 errno = 0;
1055 if (nice(td->o.nice) == -1 && errno != 0) {
2e1df07d
JA
1056 td_verror(td, errno, "nice");
1057 goto err;
1058 }
1059
1060 if (td->o.ioscheduler && switch_ioscheduler(td))
1061 goto err;
1062
1063 if (!td->o.create_serialize && setup_files(td))
1064 goto err;
1065
1066 if (td_io_init(td))
1067 goto err;
1068
1069 if (init_random_map(td))
1070 goto err;
1071
1072 if (td->o.exec_prerun) {
1073 if (exec_string(td->o.exec_prerun))
1074 goto err;
1075 }
1076
1077 if (td->o.pre_read) {
1078 if (pre_read_files(td) < 0)
1079 goto err;
1080 }
1081
1082 fio_gettime(&td->epoch, NULL);
1083 getrusage(RUSAGE_SELF, &td->ru_start);
1084
1085 clear_state = 0;
1086 while (keep_running(td)) {
1087 fio_gettime(&td->start, NULL);
1088 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1089 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1090 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1091
1092 if (td->o.ratemin[0] || td->o.ratemin[1]) {
1093 memcpy(&td->lastrate[0], &td->bw_sample_time,
1094 sizeof(td->bw_sample_time));
1095 memcpy(&td->lastrate[1], &td->bw_sample_time,
1096 sizeof(td->bw_sample_time));
1097 }
1098
1099 if (clear_state)
1100 clear_io_state(td);
1101
1102 prune_io_piece_log(td);
1103
1104 do_io(td);
1105
1106 clear_state = 1;
1107
1108 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1109 elapsed = utime_since_now(&td->start);
1110 td->ts.runtime[DDIR_READ] += elapsed;
1111 }
1112 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1113 elapsed = utime_since_now(&td->start);
1114 td->ts.runtime[DDIR_WRITE] += elapsed;
1115 }
1116
1117 if (td->error || td->terminate)
1118 break;
1119
1120 if (!td->o.do_verify ||
1121 td->o.verify == VERIFY_NONE ||
1122 (td->io_ops->flags & FIO_UNIDIR))
1123 continue;
1124
1125 clear_io_state(td);
1126
1127 fio_gettime(&td->start, NULL);
1128
1129 do_verify(td);
1130
1131 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1132
1133 if (td->error || td->terminate)
1134 break;
1135 }
1136
1137 update_rusage_stat(td);
1138 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1139 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1140 td->ts.total_run_time = mtime_since_now(&td->epoch);
1141 td->ts.io_bytes[0] = td->io_bytes[0];
1142 td->ts.io_bytes[1] = td->io_bytes[1];
1143
1144 fio_mutex_down(writeout_mutex);
1145 if (td->bw_log) {
1146 if (td->o.bw_log_file) {
1147 finish_log_named(td, td->bw_log,
1148 td->o.bw_log_file, "bw");
1149 } else
1150 finish_log(td, td->bw_log, "bw");
1151 }
1152 if (td->lat_log) {
1153 if (td->o.lat_log_file) {
1154 finish_log_named(td, td->lat_log,
1155 td->o.lat_log_file, "lat");
1156 } else
1157 finish_log(td, td->lat_log, "lat");
1158 }
1159 if (td->slat_log) {
1160 if (td->o.lat_log_file) {
1161 finish_log_named(td, td->slat_log,
1162 td->o.lat_log_file, "slat");
1163 } else
1164 finish_log(td, td->slat_log, "slat");
1165 }
1166 if (td->clat_log) {
1167 if (td->o.lat_log_file) {
1168 finish_log_named(td, td->clat_log,
1169 td->o.lat_log_file, "clat");
1170 } else
1171 finish_log(td, td->clat_log, "clat");
1172 }
1173 if (td->iops_log) {
1174 if (td->o.iops_log_file) {
1175 finish_log_named(td, td->iops_log,
1176 td->o.iops_log_file, "iops");
1177 } else
1178 finish_log(td, td->iops_log, "iops");
1179 }
1180
1181 fio_mutex_up(writeout_mutex);
1182 if (td->o.exec_postrun)
1183 exec_string(td->o.exec_postrun);
1184
1185 if (exitall_on_terminate)
1186 fio_terminate_threads(td->groupid);
1187
1188err:
1189 if (td->error)
1190 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1191 td->verror);
1192
1193 if (td->o.verify_async)
1194 verify_async_exit(td);
1195
1196 close_and_free_files(td);
1197 close_ioengine(td);
1198 cleanup_io_u(td);
1199 cgroup_shutdown(td, &cgroup_mnt);
1200
1201 if (td->o.cpumask_set) {
1202 int ret = fio_cpuset_exit(&td->o.cpumask);
1203
1204 td_verror(td, ret, "fio_cpuset_exit");
1205 }
1206
1207 /*
1208 * do this very late, it will log file closing as well
1209 */
1210 if (td->o.write_iolog_file)
1211 write_iolog_close(td);
1212
1213 td_set_runstate(td, TD_EXITED);
e43606c2 1214 return (void *) (uintptr_t) td->error;
2e1df07d
JA
1215}
1216
1217
1218/*
1219 * We cannot pass the td data into a forked process, so attach the td and
1220 * pass it to the thread worker.
1221 */
1222static int fork_main(int shmid, int offset)
1223{
1224 struct thread_data *td;
1225 void *data, *ret;
1226
1227#ifndef __hpux
1228 data = shmat(shmid, NULL, 0);
1229 if (data == (void *) -1) {
1230 int __err = errno;
1231
1232 perror("shmat");
1233 return __err;
1234 }
1235#else
1236 /*
1237 * HP-UX inherits shm mappings?
1238 */
1239 data = threads;
1240#endif
1241
1242 td = data + offset * sizeof(struct thread_data);
1243 ret = thread_main(td);
1244 shmdt(data);
e43606c2 1245 return (int) (uintptr_t) ret;
2e1df07d
JA
1246}
1247
1248/*
1249 * Run over the job map and reap the threads that have exited, if any.
1250 */
1251static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1252 unsigned int *m_rate)
1253{
1254 struct thread_data *td;
1255 unsigned int cputhreads, realthreads, pending;
1256 int i, status, ret;
1257
1258 /*
1259 * reap exited threads (TD_EXITED -> TD_REAPED)
1260 */
1261 realthreads = pending = cputhreads = 0;
1262 for_each_td(td, i) {
1263 int flags = 0;
1264
1265 /*
1266 * ->io_ops is NULL for a thread that has closed its
1267 * io engine
1268 */
1269 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1270 cputhreads++;
1271 else
1272 realthreads++;
1273
1274 if (!td->pid) {
1275 pending++;
1276 continue;
1277 }
1278 if (td->runstate == TD_REAPED)
1279 continue;
1280 if (td->o.use_thread) {
1281 if (td->runstate == TD_EXITED) {
1282 td_set_runstate(td, TD_REAPED);
1283 goto reaped;
1284 }
1285 continue;
1286 }
1287
1288 flags = WNOHANG;
1289 if (td->runstate == TD_EXITED)
1290 flags = 0;
1291
1292 /*
1293 * check if someone quit or got killed in an unusual way
1294 */
1295 ret = waitpid(td->pid, &status, flags);
1296 if (ret < 0) {
1297 if (errno == ECHILD) {
1298 log_err("fio: pid=%d disappeared %d\n",
1299 (int) td->pid, td->runstate);
1300 td_set_runstate(td, TD_REAPED);
1301 goto reaped;
1302 }
1303 perror("waitpid");
1304 } else if (ret == td->pid) {
1305 if (WIFSIGNALED(status)) {
1306 int sig = WTERMSIG(status);
1307
1308 if (sig != SIGTERM)
1309 log_err("fio: pid=%d, got signal=%d\n",
1310 (int) td->pid, sig);
1311 td_set_runstate(td, TD_REAPED);
1312 goto reaped;
1313 }
1314 if (WIFEXITED(status)) {
1315 if (WEXITSTATUS(status) && !td->error)
1316 td->error = WEXITSTATUS(status);
1317
1318 td_set_runstate(td, TD_REAPED);
1319 goto reaped;
1320 }
1321 }
1322
1323 /*
1324 * thread is not dead, continue
1325 */
1326 pending++;
1327 continue;
1328reaped:
1329 (*nr_running)--;
1330 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1331 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1332 if (!td->pid)
1333 pending--;
1334
1335 if (td->error)
1336 exit_value++;
1337
1338 done_secs += mtime_since_now(&td->epoch) / 1000;
1339 }
1340
1341 if (*nr_running == cputhreads && !pending && realthreads)
1342 fio_terminate_threads(TERMINATE_ALL);
1343}
1344
2e1df07d
JA
1345/*
1346 * Main function for kicking off and reaping jobs, as needed.
1347 */
1348static void run_threads(void)
1349{
1350 struct thread_data *td;
1351 unsigned long spent;
1352 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1353
1354 if (fio_pin_memory())
1355 return;
1356
1357 if (fio_gtod_offload && fio_start_gtod_thread())
1358 return;
1359
1360 set_sig_handlers();
1361
1362 if (!terse_output) {
1363 log_info("Starting ");
1364 if (nr_thread)
1365 log_info("%d thread%s", nr_thread,
1366 nr_thread > 1 ? "s" : "");
1367 if (nr_process) {
1368 if (nr_thread)
1369 log_info(" and ");
1370 log_info("%d process%s", nr_process,
1371 nr_process > 1 ? "es" : "");
1372 }
1373 log_info("\n");
1374 fflush(stdout);
1375 }
1376
1377 todo = thread_number;
1378 nr_running = 0;
1379 nr_started = 0;
1380 m_rate = t_rate = 0;
1381
1382 for_each_td(td, i) {
1383 print_status_init(td->thread_number - 1);
1384
1385 if (!td->o.create_serialize)
1386 continue;
1387
1388 /*
1389 * do file setup here so it happens sequentially,
1390 * we don't want X number of threads getting their
1391 * client data interspersed on disk
1392 */
1393 if (setup_files(td)) {
1394 exit_value++;
1395 if (td->error)
1396 log_err("fio: pid=%d, err=%d/%s\n",
1397 (int) td->pid, td->error, td->verror);
1398 td_set_runstate(td, TD_REAPED);
1399 todo--;
1400 } else {
1401 struct fio_file *f;
1402 unsigned int j;
1403
1404 /*
1405 * for sharing to work, each job must always open
1406 * its own files. so close them, if we opened them
1407 * for creation
1408 */
1409 for_each_file(td, f, j) {
1410 if (fio_file_open(f))
1411 td_io_close_file(td, f);
1412 }
1413 }
1414 }
1415
1416 set_genesis_time();
1417
1418 while (todo) {
1419 struct thread_data *map[REAL_MAX_JOBS];
1420 struct timeval this_start;
1421 int this_jobs = 0, left;
1422
1423 /*
1424 * create threads (TD_NOT_CREATED -> TD_CREATED)
1425 */
1426 for_each_td(td, i) {
1427 if (td->runstate != TD_NOT_CREATED)
1428 continue;
1429
1430 /*
1431 * never got a chance to start, killed by other
1432 * thread for some reason
1433 */
1434 if (td->terminate) {
1435 todo--;
1436 continue;
1437 }
1438
1439 if (td->o.start_delay) {
1440 spent = mtime_since_genesis();
1441
1442 if (td->o.start_delay * 1000 > spent)
1443 continue;
1444 }
1445
1446 if (td->o.stonewall && (nr_started || nr_running)) {
1447 dprint(FD_PROCESS, "%s: stonewall wait\n",
1448 td->o.name);
1449 break;
1450 }
1451
1452 init_disk_util(td);
1453
1454 /*
1455 * Set state to created. Thread will transition
1456 * to TD_INITIALIZED when it's done setting up.
1457 */
1458 td_set_runstate(td, TD_CREATED);
1459 map[this_jobs++] = td;
1460 nr_started++;
1461
1462 if (td->o.use_thread) {
1463 int ret;
1464
1465 dprint(FD_PROCESS, "will pthread_create\n");
1466 ret = pthread_create(&td->thread, NULL,
1467 thread_main, td);
1468 if (ret) {
1469 log_err("pthread_create: %s\n",
1470 strerror(ret));
1471 nr_started--;
1472 break;
1473 }
1474 ret = pthread_detach(td->thread);
1475 if (ret)
1476 log_err("pthread_detach: %s",
1477 strerror(ret));
1478 } else {
1479 pid_t pid;
1480 dprint(FD_PROCESS, "will fork\n");
1481 pid = fork();
1482 if (!pid) {
1483 int ret = fork_main(shm_id, i);
1484
1485 _exit(ret);
1486 } else if (i == fio_debug_jobno)
1487 *fio_debug_jobp = pid;
1488 }
1489 dprint(FD_MUTEX, "wait on startup_mutex\n");
1490 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1491 log_err("fio: job startup hung? exiting.\n");
1492 fio_terminate_threads(TERMINATE_ALL);
1493 fio_abort = 1;
1494 nr_started--;
1495 break;
1496 }
1497 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1498 }
1499
1500 /*
1501 * Wait for the started threads to transition to
1502 * TD_INITIALIZED.
1503 */
1504 fio_gettime(&this_start, NULL);
1505 left = this_jobs;
1506 while (left && !fio_abort) {
1507 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1508 break;
1509
1510 usleep(100000);
1511
1512 for (i = 0; i < this_jobs; i++) {
1513 td = map[i];
1514 if (!td)
1515 continue;
1516 if (td->runstate == TD_INITIALIZED) {
1517 map[i] = NULL;
1518 left--;
1519 } else if (td->runstate >= TD_EXITED) {
1520 map[i] = NULL;
1521 left--;
1522 todo--;
1523 nr_running++; /* work-around... */
1524 }
1525 }
1526 }
1527
1528 if (left) {
4e87c37a
JA
1529 log_err("fio: %d job%s failed to start\n", left,
1530 left > 1 ? "s" : "");
2e1df07d
JA
1531 for (i = 0; i < this_jobs; i++) {
1532 td = map[i];
1533 if (!td)
1534 continue;
1535 kill(td->pid, SIGTERM);
1536 }
1537 break;
1538 }
1539
1540 /*
1541 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1542 */
1543 for_each_td(td, i) {
1544 if (td->runstate != TD_INITIALIZED)
1545 continue;
1546
1547 if (in_ramp_time(td))
1548 td_set_runstate(td, TD_RAMP);
1549 else
1550 td_set_runstate(td, TD_RUNNING);
1551 nr_running++;
1552 nr_started--;
1553 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1554 t_rate += td->o.rate[0] + td->o.rate[1];
1555 todo--;
1556 fio_mutex_up(td->mutex);
1557 }
1558
1559 reap_threads(&nr_running, &t_rate, &m_rate);
1560
122c7725
JA
1561 if (todo)
1562 usleep(100000);
2e1df07d
JA
1563 }
1564
1565 while (nr_running) {
1566 reap_threads(&nr_running, &t_rate, &m_rate);
122c7725 1567 usleep(10000);
2e1df07d
JA
1568 }
1569
1570 update_io_ticks();
1571 fio_unpin_memory();
1572}
1573
1574static void *disk_thread_main(void *data)
1575{
1576 fio_mutex_up(startup_mutex);
1577
1578 while (threads) {
1579 usleep(DISK_UTIL_MSEC * 1000);
1580 if (!threads)
1581 break;
1582 update_io_ticks();
1583
1584 if (!is_backend)
1585 print_thread_status();
1586 }
1587
1588 return NULL;
1589}
1590
1591static int create_disk_util_thread(void)
1592{
1593 int ret;
1594
1595 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1596 if (ret) {
1597 log_err("Can't create disk util thread: %s\n", strerror(ret));
1598 return 1;
1599 }
1600
1601 ret = pthread_detach(disk_util_thread);
1602 if (ret) {
1603 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1604 return 1;
1605 }
1606
1607 dprint(FD_MUTEX, "wait on startup_mutex\n");
1608 fio_mutex_down(startup_mutex);
1609 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1610 return 0;
1611}
1612
2e1df07d
JA
1613int fio_backend(void)
1614{
1615 struct thread_data *td;
1616 int i;
1617
1618 if (exec_profile) {
1619 if (load_profile(exec_profile))
1620 return 1;
1621 free(exec_profile);
1622 exec_profile = NULL;
1623 }
1624 if (!thread_number)
1625 return 0;
1626
1627 if (write_bw_log) {
ea51b956
JA
1628 setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1629 setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
2e1df07d
JA
1630 }
1631
1632 startup_mutex = fio_mutex_init(0);
1633 if (startup_mutex == NULL)
1634 return 1;
1635 writeout_mutex = fio_mutex_init(1);
1636 if (writeout_mutex == NULL)
1637 return 1;
1638
1639 set_genesis_time();
1640 create_disk_util_thread();
1641
1642 cgroup_list = smalloc(sizeof(*cgroup_list));
1643 INIT_FLIST_HEAD(cgroup_list);
1644
1645 run_threads();
1646
1647 if (!fio_abort) {
1648 show_run_stats();
1649 if (write_bw_log) {
1650 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1651 __finish_log(agg_io_log[DDIR_WRITE],
1652 "agg-write_bw.log");
1653 }
1654 }
1655
1656 for_each_td(td, i)
1657 fio_options_free(td);
1658
1659 cgroup_kill(cgroup_list);
1660 sfree(cgroup_list);
1661 sfree(cgroup_mnt);
1662
1663 fio_mutex_remove(startup_mutex);
1664 fio_mutex_remove(writeout_mutex);
1665 return exit_value;
1666}