HOWTO: remove unnecessary escaping
[fio.git] / HOWTO
CommitLineData
f80dba8d
MT
1How fio works
2-------------
3
4The first step in getting fio to simulate a desired I/O workload, is writing a
5job file describing that specific setup. A job file may contain any number of
6threads and/or files -- the typical contents of the job file is a *global*
7section defining shared parameters, and one or more job sections describing the
8jobs involved. When run, fio parses this file and sets everything up as
9described. If we break down a job from top to bottom, it contains the following
10basic parameters:
11
12`I/O type`_
13
14 Defines the I/O pattern issued to the file(s). We may only be reading
15 sequentially from this file(s), or we may be writing randomly. Or even
16 mixing reads and writes, sequentially or randomly.
17 Should we be doing buffered I/O, or direct/raw I/O?
18
19`Block size`_
20
21 In how large chunks are we issuing I/O? This may be a single value,
22 or it may describe a range of block sizes.
23
24`I/O size`_
25
26 How much data are we going to be reading/writing.
27
28`I/O engine`_
29
30 How do we issue I/O? We could be memory mapping the file, we could be
31 using regular read/write, we could be using splice, async I/O, or even
32 SG (SCSI generic sg).
33
34`I/O depth`_
35
36 If the I/O engine is async, how large a queuing depth do we want to
37 maintain?
38
39
40`Target file/device`_
41
42 How many files are we spreading the workload over.
43
44`Threads, processes and job synchronization`_
45
46 How many threads or processes should we spread this workload over.
47
48The above are the basic parameters defined for a workload, in addition there's a
49multitude of parameters that modify other aspects of how this job behaves.
50
51
52Command line options
53--------------------
54
55.. option:: --debug=type
56
b034c0dd
TK
57 Enable verbose tracing of various fio actions. May be ``all`` for all types
58 or individual types separated by a comma (e.g. ``--debug=file,mem`` will
59 enable file and memory debugging). Currently, additional logging is
60 available for:
f80dba8d 61
b034c0dd 62 *process*
f80dba8d 63 Dump info related to processes.
b034c0dd 64 *file*
f80dba8d 65 Dump info related to file actions.
b034c0dd 66 *io*
f80dba8d 67 Dump info related to I/O queuing.
b034c0dd 68 *mem*
f80dba8d 69 Dump info related to memory allocations.
b034c0dd 70 *blktrace*
f80dba8d 71 Dump info related to blktrace setup.
b034c0dd 72 *verify*
f80dba8d 73 Dump info related to I/O verification.
b034c0dd 74 *all*
f80dba8d 75 Enable all debug options.
b034c0dd 76 *random*
f80dba8d 77 Dump info related to random offset generation.
b034c0dd 78 *parse*
f80dba8d 79 Dump info related to option matching and parsing.
b034c0dd 80 *diskutil*
f80dba8d 81 Dump info related to disk utilization updates.
b034c0dd 82 *job:x*
f80dba8d 83 Dump info only related to job number x.
b034c0dd 84 *mutex*
f80dba8d 85 Dump info only related to mutex up/down ops.
b034c0dd 86 *profile*
f80dba8d 87 Dump info related to profile extensions.
b034c0dd 88 *time*
f80dba8d 89 Dump info related to internal time keeping.
b034c0dd 90 *net*
f80dba8d 91 Dump info related to networking connections.
b034c0dd 92 *rate*
f80dba8d 93 Dump info related to I/O rate switching.
b034c0dd 94 *compress*
f80dba8d 95 Dump info related to log compress/decompress.
b034c0dd 96 *?* or *help*
f80dba8d
MT
97 Show available debug options.
98
99.. option:: --parse-only
100
25cd4b95 101 Parse options only, don't start any I/O.
f80dba8d
MT
102
103.. option:: --output=filename
104
105 Write output to file `filename`.
106
b8f7e412
TK
107.. option:: --output-format=type
108
109 Set the reporting format to `normal`, `terse`, `json`, or `json+`. Multiple
110 formats can be selected, separated by a comma. `terse` is a CSV based
111 format. `json+` is like `json`, except it adds a full dump of the latency
112 buckets.
113
114.. option:: --runtime
115 Limit run time to runtime seconds.
116
f80dba8d
MT
117.. option:: --bandwidth-log
118
119 Generate aggregate bandwidth logs.
120
121.. option:: --minimal
122
123 Print statistics in a terse, semicolon-delimited format.
124
125.. option:: --append-terse
126
b034c0dd
TK
127 Print statistics in selected mode AND terse, semicolon-delimited format.
128 **Deprecated**, use :option:`--output-format` instead to select multiple
129 formats.
f80dba8d 130
f80dba8d
MT
131.. option:: --terse-version=type
132
a2c95580 133 Set terse version output format (default 3, or 2 or 4 or 5).
f80dba8d
MT
134
135.. option:: --version
136
b8f7e412 137 Print version information and exit.
f80dba8d
MT
138
139.. option:: --help
140
113f0e7c 141 Print a summary of the command line options and exit.
f80dba8d
MT
142
143.. option:: --cpuclock-test
144
145 Perform test and validation of internal CPU clock.
146
113f0e7c 147.. option:: --crctest=[test]
f80dba8d 148
b034c0dd
TK
149 Test the speed of the built-in checksumming functions. If no argument is
150 given, all of them are tested. Alternatively, a comma separated list can
151 be passed, in which case the given ones are tested.
f80dba8d
MT
152
153.. option:: --cmdhelp=command
154
155 Print help information for `command`. May be ``all`` for all commands.
156
157.. option:: --enghelp=[ioengine[,command]]
158
b034c0dd
TK
159 List all commands defined by :option:`ioengine`, or print help for `command`
160 defined by :option:`ioengine`. If no :option:`ioengine` is given, list all
161 available ioengines.
f80dba8d
MT
162
163.. option:: --showcmd=jobfile
164
b8f7e412 165 Convert `jobfile` to a set of command-line options.
f80dba8d
MT
166
167.. option:: --readonly
168
b034c0dd
TK
169 Turn on safety read-only checks, preventing writes. The ``--readonly``
170 option is an extra safety guard to prevent users from accidentally starting
171 a write workload when that is not desired. Fio will only write if
172 `rw=write/randwrite/rw/randrw` is given. This extra safety net can be used
173 as an extra precaution as ``--readonly`` will also enable a write check in
174 the I/O engine core to prevent writes due to unknown user space bug(s).
f80dba8d
MT
175
176.. option:: --eta=when
177
b8f7e412
TK
178 Specifies when real-time ETA estimate should be printed. `when` may be
179 `always`, `never` or `auto`.
f80dba8d
MT
180
181.. option:: --eta-newline=time
182
947e0fe0
SW
183 Force a new line for every `time` period passed. When the unit is omitted,
184 the value is interpreted in seconds.
f80dba8d
MT
185
186.. option:: --status-interval=time
187
947e0fe0
SW
188 Force full status dump every `time` period passed. When the unit is
189 omitted, the value is interpreted in seconds.
f80dba8d
MT
190
191.. option:: --section=name
192
b034c0dd
TK
193 Only run specified section `name` in job file. Multiple sections can be specified.
194 The ``--section`` option allows one to combine related jobs into one file.
195 E.g. one job file could define light, moderate, and heavy sections. Tell
196 fio to run only the "heavy" section by giving ``--section=heavy``
197 command line option. One can also specify the "write" operations in one
198 section and "verify" operation in another section. The ``--section`` option
199 only applies to job sections. The reserved *global* section is always
200 parsed and used.
f80dba8d
MT
201
202.. option:: --alloc-size=kb
203
b034c0dd
TK
204 Set the internal smalloc pool size to `kb` in KiB. The
205 ``--alloc-size`` switch allows one to use a larger pool size for smalloc.
206 If running large jobs with randommap enabled, fio can run out of memory.
207 Smalloc is an internal allocator for shared structures from a fixed size
208 memory pool and can grow to 16 pools. The pool size defaults to 16MiB.
f80dba8d 209
b034c0dd
TK
210 NOTE: While running :file:`.fio_smalloc.*` backing store files are visible
211 in :file:`/tmp`.
f80dba8d
MT
212
213.. option:: --warnings-fatal
214
b034c0dd
TK
215 All fio parser warnings are fatal, causing fio to exit with an
216 error.
f80dba8d
MT
217
218.. option:: --max-jobs=nr
219
b8f7e412 220 Set the maximum number of threads/processes to support.
f80dba8d
MT
221
222.. option:: --server=args
223
b034c0dd
TK
224 Start a backend server, with `args` specifying what to listen to.
225 See `Client/Server`_ section.
f80dba8d
MT
226
227.. option:: --daemonize=pidfile
228
b034c0dd 229 Background a fio server, writing the pid to the given `pidfile` file.
f80dba8d
MT
230
231.. option:: --client=hostname
232
b034c0dd
TK
233 Instead of running the jobs locally, send and run them on the given host or
234 set of hosts. See `Client/Server`_ section.
f80dba8d
MT
235
236.. option:: --remote-config=file
237
238 Tell fio server to load this local file.
239
240.. option:: --idle-prof=option
241
b8f7e412 242 Report CPU idleness. `option` is one of the following:
113f0e7c
SW
243
244 **calibrate**
245 Run unit work calibration only and exit.
246
247 **system**
248 Show aggregate system idleness and unit work.
249
250 **percpu**
251 As **system** but also show per CPU idleness.
f80dba8d
MT
252
253.. option:: --inflate-log=log
254
255 Inflate and output compressed log.
256
257.. option:: --trigger-file=file
258
259 Execute trigger cmd when file exists.
260
261.. option:: --trigger-timeout=t
262
263 Execute trigger at this time.
264
265.. option:: --trigger=cmd
266
267 Set this command as local trigger.
268
269.. option:: --trigger-remote=cmd
270
271 Set this command as remote trigger.
272
273.. option:: --aux-path=path
274
275 Use this path for fio state generated files.
276
277Any parameters following the options will be assumed to be job files, unless
278they match a job file parameter. Multiple job files can be listed and each job
279file will be regarded as a separate group. Fio will :option:`stonewall`
280execution between each group.
281
282
283Job file format
284---------------
285
286As previously described, fio accepts one or more job files describing what it is
287supposed to do. The job file format is the classic ini file, where the names
c60ebc45 288enclosed in [] brackets define the job name. You are free to use any ASCII name
f80dba8d
MT
289you want, except *global* which has special meaning. Following the job name is
290a sequence of zero or more parameters, one per line, that define the behavior of
291the job. If the first character in a line is a ';' or a '#', the entire line is
292discarded as a comment.
293
294A *global* section sets defaults for the jobs described in that file. A job may
295override a *global* section parameter, and a job file may even have several
296*global* sections if so desired. A job is only affected by a *global* section
297residing above it.
298
299The :option:`--cmdhelp` option also lists all options. If used with an `option`
300argument, :option:`--cmdhelp` will detail the given `option`.
301
302See the `examples/` directory for inspiration on how to write job files. Note
303the copyright and license requirements currently apply to `examples/` files.
304
305So let's look at a really simple job file that defines two processes, each
306randomly reading from a 128MiB file:
307
308.. code-block:: ini
309
310 ; -- start job file --
311 [global]
312 rw=randread
313 size=128m
314
315 [job1]
316
317 [job2]
318
319 ; -- end job file --
320
321As you can see, the job file sections themselves are empty as all the described
322parameters are shared. As no :option:`filename` option is given, fio makes up a
323`filename` for each of the jobs as it sees fit. On the command line, this job
324would look as follows::
325
326$ fio --name=global --rw=randread --size=128m --name=job1 --name=job2
327
328
329Let's look at an example that has a number of processes writing randomly to
330files:
331
332.. code-block:: ini
333
334 ; -- start job file --
335 [random-writers]
336 ioengine=libaio
337 iodepth=4
338 rw=randwrite
339 bs=32k
340 direct=0
341 size=64m
342 numjobs=4
343 ; -- end job file --
344
345Here we have no *global* section, as we only have one job defined anyway. We
346want to use async I/O here, with a depth of 4 for each file. We also increased
347the buffer size used to 32KiB and define numjobs to 4 to fork 4 identical
348jobs. The result is 4 processes each randomly writing to their own 64MiB
349file. Instead of using the above job file, you could have given the parameters
350on the command line. For this case, you would specify::
351
352$ fio --name=random-writers --ioengine=libaio --iodepth=4 --rw=randwrite --bs=32k --direct=0 --size=64m --numjobs=4
353
354When fio is utilized as a basis of any reasonably large test suite, it might be
355desirable to share a set of standardized settings across multiple job files.
356Instead of copy/pasting such settings, any section may pull in an external
357:file:`filename.fio` file with *include filename* directive, as in the following
358example::
359
360 ; -- start job file including.fio --
361 [global]
362 filename=/tmp/test
363 filesize=1m
364 include glob-include.fio
365
366 [test]
367 rw=randread
368 bs=4k
369 time_based=1
370 runtime=10
371 include test-include.fio
372 ; -- end job file including.fio --
373
374.. code-block:: ini
375
376 ; -- start job file glob-include.fio --
377 thread=1
378 group_reporting=1
379 ; -- end job file glob-include.fio --
380
381.. code-block:: ini
382
383 ; -- start job file test-include.fio --
384 ioengine=libaio
385 iodepth=4
386 ; -- end job file test-include.fio --
387
388Settings pulled into a section apply to that section only (except *global*
389section). Include directives may be nested in that any included file may contain
390further include directive(s). Include files may not contain [] sections.
391
392
393Environment variables
394~~~~~~~~~~~~~~~~~~~~~
395
396Fio also supports environment variable expansion in job files. Any sub-string of
397the form ``${VARNAME}`` as part of an option value (in other words, on the right
398of the '='), will be expanded to the value of the environment variable called
399`VARNAME`. If no such environment variable is defined, or `VARNAME` is the
400empty string, the empty string will be substituted.
401
402As an example, let's look at a sample fio invocation and job file::
403
404$ SIZE=64m NUMJOBS=4 fio jobfile.fio
405
406.. code-block:: ini
407
408 ; -- start job file --
409 [random-writers]
410 rw=randwrite
411 size=${SIZE}
412 numjobs=${NUMJOBS}
413 ; -- end job file --
414
415This will expand to the following equivalent job file at runtime:
416
417.. code-block:: ini
418
419 ; -- start job file --
420 [random-writers]
421 rw=randwrite
422 size=64m
423 numjobs=4
424 ; -- end job file --
425
426Fio ships with a few example job files, you can also look there for inspiration.
427
428Reserved keywords
429~~~~~~~~~~~~~~~~~
430
431Additionally, fio has a set of reserved keywords that will be replaced
432internally with the appropriate value. Those keywords are:
433
434**$pagesize**
435
436 The architecture page size of the running system.
437
438**$mb_memory**
439
440 Megabytes of total memory in the system.
441
442**$ncpus**
443
444 Number of online available CPUs.
445
446These can be used on the command line or in the job file, and will be
447automatically substituted with the current system values when the job is
448run. Simple math is also supported on these keywords, so you can perform actions
449like::
450
b034c0dd 451 size=8*$mb_memory
f80dba8d
MT
452
453and get that properly expanded to 8 times the size of memory in the machine.
454
455
456Job file parameters
457-------------------
458
459This section describes in details each parameter associated with a job. Some
460parameters take an option of a given type, such as an integer or a
461string. Anywhere a numeric value is required, an arithmetic expression may be
462used, provided it is surrounded by parentheses. Supported operators are:
463
464 - addition (+)
465 - subtraction (-)
466 - multiplication (*)
467 - division (/)
468 - modulus (%)
469 - exponentiation (^)
470
471For time values in expressions, units are microseconds by default. This is
472different than for time values not in expressions (not enclosed in
473parentheses). The following types are used:
474
475
476Parameter types
477~~~~~~~~~~~~~~~
478
479**str**
b034c0dd 480 String: A sequence of alphanumeric characters.
f80dba8d
MT
481
482**time**
008d0feb
SW
483 Integer with possible time suffix. Without a unit value is interpreted as
484 seconds unless otherwise specified. Accepts a suffix of 'd' for days, 'h' for
485 hours, 'm' for minutes, 's' for seconds, 'ms' (or 'msec') for milliseconds and
486 'us' (or 'usec') for microseconds. For example, use 10m for 10 minutes.
f80dba8d
MT
487
488.. _int:
489
490**int**
491 Integer. A whole number value, which may contain an integer prefix
492 and an integer suffix:
493
b034c0dd 494 [*integer prefix*] **number** [*integer suffix*]
f80dba8d
MT
495
496 The optional *integer prefix* specifies the number's base. The default
497 is decimal. *0x* specifies hexadecimal.
498
499 The optional *integer suffix* specifies the number's units, and includes an
500 optional unit prefix and an optional unit. For quantities of data, the
947e0fe0
SW
501 default unit is bytes. For quantities of time, the default unit is seconds
502 unless otherwise specified.
f80dba8d 503
9207a0cb 504 With :option:`kb_base`\=1000, fio follows international standards for unit
f80dba8d
MT
505 prefixes. To specify power-of-10 decimal values defined in the
506 International System of Units (SI):
507
508 * *Ki* -- means kilo (K) or 1000
509 * *Mi* -- means mega (M) or 1000**2
510 * *Gi* -- means giga (G) or 1000**3
511 * *Ti* -- means tera (T) or 1000**4
512 * *Pi* -- means peta (P) or 1000**5
513
514 To specify power-of-2 binary values defined in IEC 80000-13:
515
516 * *k* -- means kibi (Ki) or 1024
517 * *M* -- means mebi (Mi) or 1024**2
518 * *G* -- means gibi (Gi) or 1024**3
519 * *T* -- means tebi (Ti) or 1024**4
520 * *P* -- means pebi (Pi) or 1024**5
521
9207a0cb 522 With :option:`kb_base`\=1024 (the default), the unit prefixes are opposite
f80dba8d
MT
523 from those specified in the SI and IEC 80000-13 standards to provide
524 compatibility with old scripts. For example, 4k means 4096.
525
526 For quantities of data, an optional unit of 'B' may be included
b8f7e412 527 (e.g., 'kB' is the same as 'k').
f80dba8d
MT
528
529 The *integer suffix* is not case sensitive (e.g., m/mi mean mebi/mega,
530 not milli). 'b' and 'B' both mean byte, not bit.
531
9207a0cb 532 Examples with :option:`kb_base`\=1000:
f80dba8d
MT
533
534 * *4 KiB*: 4096, 4096b, 4096B, 4ki, 4kib, 4kiB, 4Ki, 4KiB
535 * *1 MiB*: 1048576, 1mi, 1024ki
536 * *1 MB*: 1000000, 1m, 1000k
537 * *1 TiB*: 1099511627776, 1ti, 1024gi, 1048576mi
538 * *1 TB*: 1000000000, 1t, 1000m, 1000000k
539
9207a0cb 540 Examples with :option:`kb_base`\=1024 (default):
f80dba8d
MT
541
542 * *4 KiB*: 4096, 4096b, 4096B, 4k, 4kb, 4kB, 4K, 4KB
543 * *1 MiB*: 1048576, 1m, 1024k
544 * *1 MB*: 1000000, 1mi, 1000ki
545 * *1 TiB*: 1099511627776, 1t, 1024g, 1048576m
546 * *1 TB*: 1000000000, 1ti, 1000mi, 1000000ki
547
548 To specify times (units are not case sensitive):
549
550 * *D* -- means days
551 * *H* -- means hours
4502cb42 552 * *M* -- means minutes
f80dba8d
MT
553 * *s* -- or sec means seconds (default)
554 * *ms* -- or *msec* means milliseconds
555 * *us* -- or *usec* means microseconds
556
557 If the option accepts an upper and lower range, use a colon ':' or
558 minus '-' to separate such values. See :ref:`irange <irange>`.
4502cb42
SW
559 If the lower value specified happens to be larger than the upper value
560 the two values are swapped.
f80dba8d
MT
561
562.. _bool:
563
564**bool**
565 Boolean. Usually parsed as an integer, however only defined for
566 true and false (1 and 0).
567
568.. _irange:
569
570**irange**
571 Integer range with suffix. Allows value range to be given, such as
c60ebc45 572 1024-4096. A colon may also be used as the separator, e.g. 1k:4k. If the
f80dba8d
MT
573 option allows two sets of ranges, they can be specified with a ',' or '/'
574 delimiter: 1k-4k/8k-32k. Also see :ref:`int <int>`.
575
576**float_list**
577 A list of floating point numbers, separated by a ':' character.
578
579
580Units
581~~~~~
582
583.. option:: kb_base=int
584
585 Select the interpretation of unit prefixes in input parameters.
586
587 **1000**
588 Inputs comply with IEC 80000-13 and the International
589 System of Units (SI). Use:
590
591 - power-of-2 values with IEC prefixes (e.g., KiB)
592 - power-of-10 values with SI prefixes (e.g., kB)
593
594 **1024**
595 Compatibility mode (default). To avoid breaking old scripts:
596
597 - power-of-2 values with SI prefixes
598 - power-of-10 values with IEC prefixes
599
600 See :option:`bs` for more details on input parameters.
601
602 Outputs always use correct prefixes. Most outputs include both
603 side-by-side, like::
604
605 bw=2383.3kB/s (2327.4KiB/s)
606
607 If only one value is reported, then kb_base selects the one to use:
608
609 **1000** -- SI prefixes
610
611 **1024** -- IEC prefixes
612
613.. option:: unit_base=int
614
615 Base unit for reporting. Allowed values are:
616
617 **0**
618 Use auto-detection (default).
619 **8**
620 Byte based.
621 **1**
622 Bit based.
623
624
625With the above in mind, here follows the complete list of fio job parameters.
626
627
628Job description
629~~~~~~~~~~~~~~~
630
631.. option:: name=str
632
633 ASCII name of the job. This may be used to override the name printed by fio
634 for this job. Otherwise the job name is used. On the command line this
635 parameter has the special purpose of also signaling the start of a new job.
636
637.. option:: description=str
638
639 Text description of the job. Doesn't do anything except dump this text
640 description when this job is run. It's not parsed.
641
642.. option:: loops=int
643
644 Run the specified number of iterations of this job. Used to repeat the same
645 workload a given number of times. Defaults to 1.
646
647.. option:: numjobs=int
648
79591fa9
TK
649 Create the specified number of clones of this job. Each clone of job
650 is spawned as an independent thread or process. May be used to setup a
f80dba8d
MT
651 larger number of threads/processes doing the same thing. Each thread is
652 reported separately; to see statistics for all clones as a whole, use
653 :option:`group_reporting` in conjunction with :option:`new_group`.
a47b697c 654 See :option:`--max-jobs`. Default: 1.
f80dba8d
MT
655
656
657Time related parameters
658~~~~~~~~~~~~~~~~~~~~~~~
659
660.. option:: runtime=time
661
f75ede1d 662 Tell fio to terminate processing after the specified period of time. It
f80dba8d 663 can be quite hard to determine for how long a specified job will run, so
f75ede1d 664 this parameter is handy to cap the total runtime to a given time. When
947e0fe0 665 the unit is omitted, the value is intepreted in seconds.
f80dba8d
MT
666
667.. option:: time_based
668
669 If set, fio will run for the duration of the :option:`runtime` specified
670 even if the file(s) are completely read or written. It will simply loop over
671 the same workload as many times as the :option:`runtime` allows.
672
a881438b 673.. option:: startdelay=irange(time)
f80dba8d 674
947e0fe0
SW
675 Delay the start of job for the specified amount of time. Can be a single
676 value or a range. When given as a range, each thread will choose a value
677 randomly from within the range. Value is in seconds if a unit is omitted.
f80dba8d
MT
678
679.. option:: ramp_time=time
680
681 If set, fio will run the specified workload for this amount of time before
682 logging any performance numbers. Useful for letting performance settle
683 before logging results, thus minimizing the runtime required for stable
684 results. Note that the ``ramp_time`` is considered lead in time for a job,
685 thus it will increase the total runtime if a special timeout or
f75ede1d
SW
686 :option:`runtime` is specified. When the unit is omitted, the value is
687 given in seconds.
f80dba8d
MT
688
689.. option:: clocksource=str
690
691 Use the given clocksource as the base of timing. The supported options are:
692
693 **gettimeofday**
694 :manpage:`gettimeofday(2)`
695
696 **clock_gettime**
697 :manpage:`clock_gettime(2)`
698
699 **cpu**
700 Internal CPU clock source
701
702 cpu is the preferred clocksource if it is reliable, as it is very fast (and
703 fio is heavy on time calls). Fio will automatically use this clocksource if
704 it's supported and considered reliable on the system it is running on,
705 unless another clocksource is specifically set. For x86/x86-64 CPUs, this
706 means supporting TSC Invariant.
707
708.. option:: gtod_reduce=bool
709
710 Enable all of the :manpage:`gettimeofday(2)` reducing options
f75ede1d 711 (:option:`disable_clat`, :option:`disable_slat`, :option:`disable_bw_measurement`) plus
f80dba8d
MT
712 reduce precision of the timeout somewhat to really shrink the
713 :manpage:`gettimeofday(2)` call count. With this option enabled, we only do
714 about 0.4% of the :manpage:`gettimeofday(2)` calls we would have done if all
715 time keeping was enabled.
716
717.. option:: gtod_cpu=int
718
719 Sometimes it's cheaper to dedicate a single thread of execution to just
720 getting the current time. Fio (and databases, for instance) are very
721 intensive on :manpage:`gettimeofday(2)` calls. With this option, you can set
722 one CPU aside for doing nothing but logging current time to a shared memory
723 location. Then the other threads/processes that run I/O workloads need only
724 copy that segment, instead of entering the kernel with a
725 :manpage:`gettimeofday(2)` call. The CPU set aside for doing these time
726 calls will be excluded from other uses. Fio will manually clear it from the
727 CPU mask of other jobs.
728
729
730Target file/device
731~~~~~~~~~~~~~~~~~~
732
733.. option:: directory=str
734
735 Prefix filenames with this directory. Used to place files in a different
736 location than :file:`./`. You can specify a number of directories by
737 separating the names with a ':' character. These directories will be
02dd2689 738 assigned equally distributed to job clones created by :option:`numjobs` as
f80dba8d
MT
739 long as they are using generated filenames. If specific `filename(s)` are
740 set fio will use the first listed directory, and thereby matching the
741 `filename` semantic which generates a file each clone if not specified, but
742 let all clones use the same if set.
743
02dd2689
SW
744 See the :option:`filename` option for information on how to escape "``:``" and
745 "``\``" characters within the directory path itself.
f80dba8d
MT
746
747.. option:: filename=str
748
749 Fio normally makes up a `filename` based on the job name, thread number, and
02dd2689
SW
750 file number (see :option:`filename_format`). If you want to share files
751 between threads in a job or several
79591fa9
TK
752 jobs with fixed file paths, specify a `filename` for each of them to override
753 the default. If the ioengine is file based, you can specify a number of files
754 by separating the names with a ':' colon. So if you wanted a job to open
755 :file:`/dev/sda` and :file:`/dev/sdb` as the two working files, you would use
756 ``filename=/dev/sda:/dev/sdb``. This also means that whenever this option is
757 specified, :option:`nrfiles` is ignored. The size of regular files specified
02dd2689 758 by this option will be :option:`size` divided by number of files unless an
79591fa9
TK
759 explicit size is specified by :option:`filesize`.
760
02dd2689
SW
761 Each colon and backslash in the wanted path must be escaped with a ``\``
762 character. For instance, if the path is :file:`/dev/dsk/foo@3,0:c` then you
763 would use ``filename=/dev/dsk/foo@3,0\:c`` and if the path is
764 :file:`F:\\filename` then you would use ``filename=F\:\\filename``.
765
f80dba8d
MT
766 On Windows, disk devices are accessed as :file:`\\\\.\\PhysicalDrive0` for
767 the first device, :file:`\\\\.\\PhysicalDrive1` for the second etc.
768 Note: Windows and FreeBSD prevent write access to areas
02dd2689
SW
769 of the disk containing in-use data (e.g. filesystems).
770
771 The filename "`-`" is a reserved name, meaning *stdin* or *stdout*. Which
772 of the two depends on the read/write direction set.
f80dba8d
MT
773
774.. option:: filename_format=str
775
776 If sharing multiple files between jobs, it is usually necessary to have fio
777 generate the exact names that you want. By default, fio will name a file
778 based on the default file format specification of
779 :file:`jobname.jobnumber.filenumber`. With this option, that can be
780 customized. Fio will recognize and replace the following keywords in this
781 string:
782
783 **$jobname**
784 The name of the worker thread or process.
785 **$jobnum**
786 The incremental number of the worker thread or process.
787 **$filenum**
788 The incremental number of the file for that worker thread or
789 process.
790
791 To have dependent jobs share a set of files, this option can be set to have
792 fio generate filenames that are shared between the two. For instance, if
793 :file:`testfiles.$filenum` is specified, file number 4 for any job will be
794 named :file:`testfiles.4`. The default of :file:`$jobname.$jobnum.$filenum`
795 will be used if no other format specifier is given.
796
797.. option:: unique_filename=bool
798
799 To avoid collisions between networked clients, fio defaults to prefixing any
800 generated filenames (with a directory specified) with the source of the
801 client connecting. To disable this behavior, set this option to 0.
802
803.. option:: opendir=str
804
805 Recursively open any files below directory `str`.
806
807.. option:: lockfile=str
808
809 Fio defaults to not locking any files before it does I/O to them. If a file
810 or file descriptor is shared, fio can serialize I/O to that file to make the
811 end result consistent. This is usual for emulating real workloads that share
812 files. The lock modes are:
813
814 **none**
815 No locking. The default.
816 **exclusive**
817 Only one thread or process may do I/O at a time, excluding all
818 others.
819 **readwrite**
820 Read-write locking on the file. Many readers may
821 access the file at the same time, but writes get exclusive access.
822
823.. option:: nrfiles=int
824
79591fa9
TK
825 Number of files to use for this job. Defaults to 1. The size of files
826 will be :option:`size` divided by this unless explicit size is specified by
827 :option:`filesize`. Files are created for each thread separately, and each
828 file will have a file number within its name by default, as explained in
829 :option:`filename` section.
830
f80dba8d
MT
831
832.. option:: openfiles=int
833
834 Number of files to keep open at the same time. Defaults to the same as
835 :option:`nrfiles`, can be set smaller to limit the number simultaneous
836 opens.
837
838.. option:: file_service_type=str
839
840 Defines how fio decides which file from a job to service next. The following
841 types are defined:
842
843 **random**
844 Choose a file at random.
845
846 **roundrobin**
847 Round robin over opened files. This is the default.
848
849 **sequential**
850 Finish one file before moving on to the next. Multiple files can
851 still be open depending on 'openfiles'.
852
853 **zipf**
c60ebc45 854 Use a *Zipf* distribution to decide what file to access.
f80dba8d
MT
855
856 **pareto**
c60ebc45 857 Use a *Pareto* distribution to decide what file to access.
f80dba8d 858
dd3503d3 859 **normal**
c60ebc45 860 Use a *Gaussian* (normal) distribution to decide what file to
f80dba8d
MT
861 access.
862
dd3503d3
SW
863 **gauss**
864 Alias for normal.
865
f80dba8d
MT
866 For *random*, *roundrobin*, and *sequential*, a postfix can be appended to
867 tell fio how many I/Os to issue before switching to a new file. For example,
868 specifying ``file_service_type=random:8`` would cause fio to issue
869 8 I/Os before selecting a new file at random. For the non-uniform
870 distributions, a floating point postfix can be given to influence how the
871 distribution is skewed. See :option:`random_distribution` for a description
872 of how that would work.
873
874.. option:: ioscheduler=str
875
876 Attempt to switch the device hosting the file to the specified I/O scheduler
877 before running.
878
879.. option:: create_serialize=bool
880
881 If true, serialize the file creation for the jobs. This may be handy to
882 avoid interleaving of data files, which may greatly depend on the filesystem
a47b697c 883 used and even the number of processors in the system. Default: true.
f80dba8d
MT
884
885.. option:: create_fsync=bool
886
22413915 887 :manpage:`fsync(2)` the data file after creation. This is the default.
f80dba8d
MT
888
889.. option:: create_on_open=bool
890
730bd7d9
SW
891 If true, don't pre-create files but allow the job's open() to create a file
892 when it's time to do I/O. Default: false -- pre-create all necessary files
893 when the job starts.
f80dba8d
MT
894
895.. option:: create_only=bool
896
897 If true, fio will only run the setup phase of the job. If files need to be
4502cb42 898 laid out or updated on disk, only that will be done -- the actual job contents
a47b697c 899 are not executed. Default: false.
f80dba8d
MT
900
901.. option:: allow_file_create=bool
902
730bd7d9
SW
903 If true, fio is permitted to create files as part of its workload. If this
904 option is false, then fio will error out if
f80dba8d
MT
905 the files it needs to use don't already exist. Default: true.
906
907.. option:: allow_mounted_write=bool
908
c60ebc45 909 If this isn't set, fio will abort jobs that are destructive (e.g. that write)
f80dba8d
MT
910 to what appears to be a mounted device or partition. This should help catch
911 creating inadvertently destructive tests, not realizing that the test will
b1db0375
TK
912 destroy data on the mounted file system. Note that some platforms don't allow
913 writing against a mounted device regardless of this option. Default: false.
f80dba8d
MT
914
915.. option:: pre_read=bool
916
917 If this is given, files will be pre-read into memory before starting the
918 given I/O operation. This will also clear the :option:`invalidate` flag,
919 since it is pointless to pre-read and then drop the cache. This will only
920 work for I/O engines that are seek-able, since they allow you to read the
a47b697c
SW
921 same data multiple times. Thus it will not work on non-seekable I/O engines
922 (e.g. network, splice). Default: false.
f80dba8d
MT
923
924.. option:: unlink=bool
925
926 Unlink the job files when done. Not the default, as repeated runs of that
a47b697c
SW
927 job would then waste time recreating the file set again and again. Default:
928 false.
f80dba8d
MT
929
930.. option:: unlink_each_loop=bool
931
a47b697c 932 Unlink job files after each iteration or loop. Default: false.
f80dba8d
MT
933
934.. option:: zonesize=int
935
936 Divide a file into zones of the specified size. See :option:`zoneskip`.
937
938.. option:: zonerange=int
939
940 Give size of an I/O zone. See :option:`zoneskip`.
941
942.. option:: zoneskip=int
943
944 Skip the specified number of bytes when :option:`zonesize` data has been
945 read. The two zone options can be used to only do I/O on zones of a file.
946
947
948I/O type
949~~~~~~~~
950
951.. option:: direct=bool
952
953 If value is true, use non-buffered I/O. This is usually O_DIRECT. Note that
954 ZFS on Solaris doesn't support direct I/O. On Windows the synchronous
955 ioengines don't support direct I/O. Default: false.
956
957.. option:: atomic=bool
958
959 If value is true, attempt to use atomic direct I/O. Atomic writes are
960 guaranteed to be stable once acknowledged by the operating system. Only
961 Linux supports O_ATOMIC right now.
962
963.. option:: buffered=bool
964
965 If value is true, use buffered I/O. This is the opposite of the
966 :option:`direct` option. Defaults to true.
967
968.. option:: readwrite=str, rw=str
969
970 Type of I/O pattern. Accepted values are:
971
972 **read**
973 Sequential reads.
974 **write**
975 Sequential writes.
976 **trim**
977 Sequential trims (Linux block devices only).
f80dba8d
MT
978 **randread**
979 Random reads.
2831be97
SW
980 **randwrite**
981 Random writes.
f80dba8d
MT
982 **randtrim**
983 Random trims (Linux block devices only).
984 **rw,readwrite**
985 Sequential mixed reads and writes.
986 **randrw**
987 Random mixed reads and writes.
988 **trimwrite**
989 Sequential trim+write sequences. Blocks will be trimmed first,
990 then the same blocks will be written to.
991
992 Fio defaults to read if the option is not specified. For the mixed I/O
993 types, the default is to split them 50/50. For certain types of I/O the
730bd7d9
SW
994 result may still be skewed a bit, since the speed may be different.
995
996 It is possible to specify the number of I/Os to do before getting a new
997 offset by appending ``:<nr>`` to the end of the string given. For a
f80dba8d
MT
998 random read, it would look like ``rw=randread:8`` for passing in an offset
999 modifier with a value of 8. If the suffix is used with a sequential I/O
730bd7d9
SW
1000 pattern, then the *<nr>* value specified will be **added** to the generated
1001 offset for each I/O turning sequential I/O into sequential I/O with holes.
1002 For instance, using ``rw=write:4k`` will skip 4k for every write. Also see
1003 the :option:`rw_sequencer` option.
f80dba8d
MT
1004
1005.. option:: rw_sequencer=str
1006
1007 If an offset modifier is given by appending a number to the ``rw=<str>``
1008 line, then this option controls how that number modifies the I/O offset
1009 being generated. Accepted values are:
1010
1011 **sequential**
1012 Generate sequential offset.
1013 **identical**
1014 Generate the same offset.
1015
1016 ``sequential`` is only useful for random I/O, where fio would normally
c60ebc45 1017 generate a new random offset for every I/O. If you append e.g. 8 to randread,
f80dba8d
MT
1018 you would get a new random offset for every 8 I/O's. The result would be a
1019 seek for only every 8 I/O's, instead of for every I/O. Use ``rw=randread:8``
1020 to specify that. As sequential I/O is already sequential, setting
1021 ``sequential`` for that would not result in any differences. ``identical``
1022 behaves in a similar fashion, except it sends the same offset 8 number of
1023 times before generating a new offset.
1024
1025.. option:: unified_rw_reporting=bool
1026
1027 Fio normally reports statistics on a per data direction basis, meaning that
1028 reads, writes, and trims are accounted and reported separately. If this
1029 option is set fio sums the results and report them as "mixed" instead.
1030
1031.. option:: randrepeat=bool
1032
1033 Seed the random number generator used for random I/O patterns in a
1034 predictable way so the pattern is repeatable across runs. Default: true.
1035
1036.. option:: allrandrepeat=bool
1037
1038 Seed all random number generators in a predictable way so results are
1039 repeatable across runs. Default: false.
1040
1041.. option:: randseed=int
1042
1043 Seed the random number generators based on this seed value, to be able to
1044 control what sequence of output is being generated. If not set, the random
1045 sequence depends on the :option:`randrepeat` setting.
1046
1047.. option:: fallocate=str
1048
1049 Whether pre-allocation is performed when laying down files.
1050 Accepted values are:
1051
1052 **none**
1053 Do not pre-allocate space.
1054
2c3e17be
SW
1055 **native**
1056 Use a platform's native pre-allocation call but fall back to
1057 **none** behavior if it fails/is not implemented.
1058
f80dba8d
MT
1059 **posix**
1060 Pre-allocate via :manpage:`posix_fallocate(3)`.
1061
1062 **keep**
1063 Pre-allocate via :manpage:`fallocate(2)` with
1064 FALLOC_FL_KEEP_SIZE set.
1065
1066 **0**
1067 Backward-compatible alias for **none**.
1068
1069 **1**
1070 Backward-compatible alias for **posix**.
1071
1072 May not be available on all supported platforms. **keep** is only available
2c3e17be
SW
1073 on Linux. If using ZFS on Solaris this cannot be set to **posix**
1074 because ZFS doesn't support pre-allocation. Default: **native** if any
1075 pre-allocation methods are available, **none** if not.
f80dba8d
MT
1076
1077.. option:: fadvise_hint=str
1078
1079 Use :manpage:`posix_fadvise(2)` to advise the kernel on what I/O patterns
1080 are likely to be issued. Accepted values are:
1081
1082 **0**
1083 Backwards-compatible hint for "no hint".
1084
1085 **1**
1086 Backwards compatible hint for "advise with fio workload type". This
1087 uses **FADV_RANDOM** for a random workload, and **FADV_SEQUENTIAL**
1088 for a sequential workload.
1089
1090 **sequential**
1091 Advise using **FADV_SEQUENTIAL**.
1092
1093 **random**
1094 Advise using **FADV_RANDOM**.
1095
8f4b9f24 1096.. option:: write_hint=str
f80dba8d 1097
8f4b9f24
JA
1098 Use :manpage:`fcntl(2)` to advise the kernel what life time to expect
1099 from a write. Only supported on Linux, as of version 4.13. Accepted
1100 values are:
1101
1102 **none**
1103 No particular life time associated with this file.
1104
1105 **short**
1106 Data written to this file has a short life time.
1107
1108 **medium**
1109 Data written to this file has a medium life time.
1110
1111 **long**
1112 Data written to this file has a long life time.
1113
1114 **extreme**
1115 Data written to this file has a very long life time.
1116
1117 The values are all relative to each other, and no absolute meaning
1118 should be associated with them.
f80dba8d
MT
1119
1120.. option:: offset=int
1121
82dbb8cb
TK
1122 Start I/O at the provided offset in the file, given as either a fixed size in
1123 bytes or a percentage. If a percentage is given, the next ``blockalign``-ed
1124 offset will be used. Data before the given offset will not be touched. This
89978a6b
BW
1125 effectively caps the file size at `real_size - offset`. Can be combined with
1126 :option:`size` to constrain the start and end range of the I/O workload.
44bb1142
TK
1127 A percentage can be specified by a number between 1 and 100 followed by '%',
1128 for example, ``offset=20%`` to specify 20%.
f80dba8d
MT
1129
1130.. option:: offset_increment=int
1131
1132 If this is provided, then the real offset becomes `offset + offset_increment
1133 * thread_number`, where the thread number is a counter that starts at 0 and
1134 is incremented for each sub-job (i.e. when :option:`numjobs` option is
1135 specified). This option is useful if there are several jobs which are
1136 intended to operate on a file in parallel disjoint segments, with even
1137 spacing between the starting points.
1138
1139.. option:: number_ios=int
1140
c60ebc45 1141 Fio will normally perform I/Os until it has exhausted the size of the region
f80dba8d
MT
1142 set by :option:`size`, or if it exhaust the allocated time (or hits an error
1143 condition). With this setting, the range/size can be set independently of
c60ebc45 1144 the number of I/Os to perform. When fio reaches this number, it will exit
f80dba8d
MT
1145 normally and report status. Note that this does not extend the amount of I/O
1146 that will be done, it will only stop fio if this condition is met before
1147 other end-of-job criteria.
1148
1149.. option:: fsync=int
1150
730bd7d9
SW
1151 If writing to a file, issue an :manpage:`fsync(2)` (or its equivalent) of
1152 the dirty data for every number of blocks given. For example, if you give 32
1153 as a parameter, fio will sync the file after every 32 writes issued. If fio is
1154 using non-buffered I/O, we may not sync the file. The exception is the sg
1155 I/O engine, which synchronizes the disk cache anyway. Defaults to 0, which
1156 means fio does not periodically issue and wait for a sync to complete. Also
1157 see :option:`end_fsync` and :option:`fsync_on_close`.
f80dba8d
MT
1158
1159.. option:: fdatasync=int
1160
1161 Like :option:`fsync` but uses :manpage:`fdatasync(2)` to only sync data and
000a5f1c 1162 not metadata blocks. In Windows, FreeBSD, and DragonFlyBSD there is no
730bd7d9
SW
1163 :manpage:`fdatasync(2)` so this falls back to using :manpage:`fsync(2)`.
1164 Defaults to 0, which means fio does not periodically issue and wait for a
1165 data-only sync to complete.
f80dba8d
MT
1166
1167.. option:: write_barrier=int
1168
2831be97 1169 Make every `N-th` write a barrier write.
f80dba8d
MT
1170
1171.. option:: sync_file_range=str:val
1172
1173 Use :manpage:`sync_file_range(2)` for every `val` number of write
1174 operations. Fio will track range of writes that have happened since the last
1175 :manpage:`sync_file_range(2)` call. `str` can currently be one or more of:
1176
1177 **wait_before**
1178 SYNC_FILE_RANGE_WAIT_BEFORE
1179 **write**
1180 SYNC_FILE_RANGE_WRITE
1181 **wait_after**
1182 SYNC_FILE_RANGE_WAIT_AFTER
1183
1184 So if you do ``sync_file_range=wait_before,write:8``, fio would use
1185 ``SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE`` for every 8
1186 writes. Also see the :manpage:`sync_file_range(2)` man page. This option is
1187 Linux specific.
1188
1189.. option:: overwrite=bool
1190
1191 If true, writes to a file will always overwrite existing data. If the file
1192 doesn't already exist, it will be created before the write phase begins. If
1193 the file exists and is large enough for the specified write phase, nothing
a47b697c 1194 will be done. Default: false.
f80dba8d
MT
1195
1196.. option:: end_fsync=bool
1197
a47b697c
SW
1198 If true, :manpage:`fsync(2)` file contents when a write stage has completed.
1199 Default: false.
f80dba8d
MT
1200
1201.. option:: fsync_on_close=bool
1202
1203 If true, fio will :manpage:`fsync(2)` a dirty file on close. This differs
a47b697c
SW
1204 from :option:`end_fsync` in that it will happen on every file close, not
1205 just at the end of the job. Default: false.
f80dba8d
MT
1206
1207.. option:: rwmixread=int
1208
1209 Percentage of a mixed workload that should be reads. Default: 50.
1210
1211.. option:: rwmixwrite=int
1212
1213 Percentage of a mixed workload that should be writes. If both
1214 :option:`rwmixread` and :option:`rwmixwrite` is given and the values do not
1215 add up to 100%, the latter of the two will be used to override the
1216 first. This may interfere with a given rate setting, if fio is asked to
1217 limit reads or writes to a certain rate. If that is the case, then the
1218 distribution may be skewed. Default: 50.
1219
1220.. option:: random_distribution=str:float[,str:float][,str:float]
1221
1222 By default, fio will use a completely uniform random distribution when asked
1223 to perform random I/O. Sometimes it is useful to skew the distribution in
1224 specific ways, ensuring that some parts of the data is more hot than others.
1225 fio includes the following distribution models:
1226
1227 **random**
1228 Uniform random distribution
1229
1230 **zipf**
1231 Zipf distribution
1232
1233 **pareto**
1234 Pareto distribution
1235
b2f4b559 1236 **normal**
c60ebc45 1237 Normal (Gaussian) distribution
f80dba8d
MT
1238
1239 **zoned**
1240 Zoned random distribution
1241
1242 When using a **zipf** or **pareto** distribution, an input value is also
1243 needed to define the access pattern. For **zipf**, this is the `zipf
c60ebc45 1244 theta`. For **pareto**, it's the `Pareto power`. Fio includes a test
f80dba8d
MT
1245 program, :command:`genzipf`, that can be used visualize what the given input
1246 values will yield in terms of hit rates. If you wanted to use **zipf** with
1247 a `theta` of 1.2, you would use ``random_distribution=zipf:1.2`` as the
1248 option. If a non-uniform model is used, fio will disable use of the random
b2f4b559
SW
1249 map. For the **normal** distribution, a normal (Gaussian) deviation is
1250 supplied as a value between 0 and 100.
f80dba8d
MT
1251
1252 For a **zoned** distribution, fio supports specifying percentages of I/O
1253 access that should fall within what range of the file or device. For
1254 example, given a criteria of:
1255
1256 * 60% of accesses should be to the first 10%
1257 * 30% of accesses should be to the next 20%
f334e05e 1258 * 8% of accesses should be to the next 30%
f80dba8d
MT
1259 * 2% of accesses should be to the next 40%
1260
1261 we can define that through zoning of the random accesses. For the above
1262 example, the user would do::
1263
1264 random_distribution=zoned:60/10:30/20:8/30:2/40
1265
1266 similarly to how :option:`bssplit` works for setting ranges and percentages
1267 of block sizes. Like :option:`bssplit`, it's possible to specify separate
1268 zones for reads, writes, and trims. If just one set is given, it'll apply to
1269 all of them.
1270
1271.. option:: percentage_random=int[,int][,int]
1272
1273 For a random workload, set how big a percentage should be random. This
1274 defaults to 100%, in which case the workload is fully random. It can be set
1275 from anywhere from 0 to 100. Setting it to 0 would make the workload fully
1276 sequential. Any setting in between will result in a random mix of sequential
1277 and random I/O, at the given percentages. Comma-separated values may be
1278 specified for reads, writes, and trims as described in :option:`blocksize`.
1279
1280.. option:: norandommap
1281
1282 Normally fio will cover every block of the file when doing random I/O. If
1283 this option is given, fio will just get a new random offset without looking
1284 at past I/O history. This means that some blocks may not be read or written,
1285 and that some blocks may be read/written more than once. If this option is
1286 used with :option:`verify` and multiple blocksizes (via :option:`bsrange`),
1287 only intact blocks are verified, i.e., partially-overwritten blocks are
1288 ignored.
1289
1290.. option:: softrandommap=bool
1291
1292 See :option:`norandommap`. If fio runs with the random block map enabled and
1293 it fails to allocate the map, if this option is set it will continue without
1294 a random block map. As coverage will not be as complete as with random maps,
1295 this option is disabled by default.
1296
1297.. option:: random_generator=str
1298
1299 Fio supports the following engines for generating
1300 I/O offsets for random I/O:
1301
1302 **tausworthe**
1303 Strong 2^88 cycle random number generator
1304 **lfsr**
1305 Linear feedback shift register generator
1306 **tausworthe64**
1307 Strong 64-bit 2^258 cycle random number generator
1308
1309 **tausworthe** is a strong random number generator, but it requires tracking
1310 on the side if we want to ensure that blocks are only read or written
1311 once. **LFSR** guarantees that we never generate the same offset twice, and
1312 it's also less computationally expensive. It's not a true random generator,
1313 however, though for I/O purposes it's typically good enough. **LFSR** only
1314 works with single block sizes, not with workloads that use multiple block
1315 sizes. If used with such a workload, fio may read or write some blocks
1316 multiple times. The default value is **tausworthe**, unless the required
1317 space exceeds 2^32 blocks. If it does, then **tausworthe64** is
1318 selected automatically.
1319
1320
1321Block size
1322~~~~~~~~~~
1323
1324.. option:: blocksize=int[,int][,int], bs=int[,int][,int]
1325
1326 The block size in bytes used for I/O units. Default: 4096. A single value
1327 applies to reads, writes, and trims. Comma-separated values may be
1328 specified for reads, writes, and trims. A value not terminated in a comma
1329 applies to subsequent types.
1330
1331 Examples:
1332
1333 **bs=256k**
1334 means 256k for reads, writes and trims.
1335
1336 **bs=8k,32k**
1337 means 8k for reads, 32k for writes and trims.
1338
1339 **bs=8k,32k,**
1340 means 8k for reads, 32k for writes, and default for trims.
1341
1342 **bs=,8k**
1343 means default for reads, 8k for writes and trims.
1344
1345 **bs=,8k,**
b443ae44 1346 means default for reads, 8k for writes, and default for trims.
f80dba8d
MT
1347
1348.. option:: blocksize_range=irange[,irange][,irange], bsrange=irange[,irange][,irange]
1349
1350 A range of block sizes in bytes for I/O units. The issued I/O unit will
1351 always be a multiple of the minimum size, unless
1352 :option:`blocksize_unaligned` is set.
1353
1354 Comma-separated ranges may be specified for reads, writes, and trims as
1355 described in :option:`blocksize`.
1356
1357 Example: ``bsrange=1k-4k,2k-8k``.
1358
1359.. option:: bssplit=str[,str][,str]
1360
1361 Sometimes you want even finer grained control of the block sizes issued, not
1362 just an even split between them. This option allows you to weight various
1363 block sizes, so that you are able to define a specific amount of block sizes
1364 issued. The format for this option is::
1365
1366 bssplit=blocksize/percentage:blocksize/percentage
1367
1368 for as many block sizes as needed. So if you want to define a workload that
1369 has 50% 64k blocks, 10% 4k blocks, and 40% 32k blocks, you would write::
1370
1371 bssplit=4k/10:64k/50:32k/40
1372
1373 Ordering does not matter. If the percentage is left blank, fio will fill in
1374 the remaining values evenly. So a bssplit option like this one::
1375
1376 bssplit=4k/50:1k/:32k/
1377
1378 would have 50% 4k ios, and 25% 1k and 32k ios. The percentages always add up
1379 to 100, if bssplit is given a range that adds up to more, it will error out.
1380
1381 Comma-separated values may be specified for reads, writes, and trims as
1382 described in :option:`blocksize`.
1383
1384 If you want a workload that has 50% 2k reads and 50% 4k reads, while having
1385 90% 4k writes and 10% 8k writes, you would specify::
1386
1387 bssplit=2k/50:4k/50,4k/90,8k/10
1388
1389.. option:: blocksize_unaligned, bs_unaligned
1390
1391 If set, fio will issue I/O units with any size within
1392 :option:`blocksize_range`, not just multiples of the minimum size. This
1393 typically won't work with direct I/O, as that normally requires sector
1394 alignment.
1395
1396.. option:: bs_is_seq_rand
1397
1398 If this option is set, fio will use the normal read,write blocksize settings
1399 as sequential,random blocksize settings instead. Any random read or write
1400 will use the WRITE blocksize settings, and any sequential read or write will
1401 use the READ blocksize settings.
1402
1403.. option:: blockalign=int[,int][,int], ba=int[,int][,int]
1404
1405 Boundary to which fio will align random I/O units. Default:
1406 :option:`blocksize`. Minimum alignment is typically 512b for using direct
1407 I/O, though it usually depends on the hardware block size. This option is
1408 mutually exclusive with using a random map for files, so it will turn off
1409 that option. Comma-separated values may be specified for reads, writes, and
1410 trims as described in :option:`blocksize`.
1411
1412
1413Buffers and memory
1414~~~~~~~~~~~~~~~~~~
1415
1416.. option:: zero_buffers
1417
1418 Initialize buffers with all zeros. Default: fill buffers with random data.
1419
1420.. option:: refill_buffers
1421
1422 If this option is given, fio will refill the I/O buffers on every
1423 submit. The default is to only fill it at init time and reuse that
1424 data. Only makes sense if zero_buffers isn't specified, naturally. If data
1425 verification is enabled, `refill_buffers` is also automatically enabled.
1426
1427.. option:: scramble_buffers=bool
1428
1429 If :option:`refill_buffers` is too costly and the target is using data
1430 deduplication, then setting this option will slightly modify the I/O buffer
1431 contents to defeat normal de-dupe attempts. This is not enough to defeat
1432 more clever block compression attempts, but it will stop naive dedupe of
1433 blocks. Default: true.
1434
1435.. option:: buffer_compress_percentage=int
1436
1437 If this is set, then fio will attempt to provide I/O buffer content (on
730bd7d9 1438 WRITEs) that compresses to the specified level. Fio does this by providing a
22413915 1439 mix of random data and a fixed pattern. The fixed pattern is either zeros,
f80dba8d
MT
1440 or the pattern specified by :option:`buffer_pattern`. If the pattern option
1441 is used, it might skew the compression ratio slightly. Note that this is per
1442 block size unit, for file/disk wide compression level that matches this
1443 setting, you'll also want to set :option:`refill_buffers`.
1444
1445.. option:: buffer_compress_chunk=int
1446
1447 See :option:`buffer_compress_percentage`. This setting allows fio to manage
1448 how big the ranges of random data and zeroed data is. Without this set, fio
1449 will provide :option:`buffer_compress_percentage` of blocksize random data,
1450 followed by the remaining zeroed. With this set to some chunk size smaller
1451 than the block size, fio can alternate random and zeroed data throughout the
1452 I/O buffer.
1453
1454.. option:: buffer_pattern=str
1455
a1554f65
SB
1456 If set, fio will fill the I/O buffers with this pattern or with the contents
1457 of a file. If not set, the contents of I/O buffers are defined by the other
1458 options related to buffer contents. The setting can be any pattern of bytes,
1459 and can be prefixed with 0x for hex values. It may also be a string, where
1460 the string must then be wrapped with ``""``. Or it may also be a filename,
1461 where the filename must be wrapped with ``''`` in which case the file is
1462 opened and read. Note that not all the file contents will be read if that
1463 would cause the buffers to overflow. So, for example::
1464
1465 buffer_pattern='filename'
1466
1467 or::
f80dba8d
MT
1468
1469 buffer_pattern="abcd"
1470
1471 or::
1472
1473 buffer_pattern=-12
1474
1475 or::
1476
1477 buffer_pattern=0xdeadface
1478
1479 Also you can combine everything together in any order::
1480
a1554f65 1481 buffer_pattern=0xdeadface"abcd"-12'filename'
f80dba8d
MT
1482
1483.. option:: dedupe_percentage=int
1484
1485 If set, fio will generate this percentage of identical buffers when
1486 writing. These buffers will be naturally dedupable. The contents of the
1487 buffers depend on what other buffer compression settings have been set. It's
1488 possible to have the individual buffers either fully compressible, or not at
1489 all. This option only controls the distribution of unique buffers.
1490
1491.. option:: invalidate=bool
1492
730bd7d9
SW
1493 Invalidate the buffer/page cache parts of the files to be used prior to
1494 starting I/O if the platform and file type support it. Defaults to true.
21c1b29e
TK
1495 This will be ignored if :option:`pre_read` is also specified for the
1496 same job.
f80dba8d
MT
1497
1498.. option:: sync=bool
1499
1500 Use synchronous I/O for buffered writes. For the majority of I/O engines,
1501 this means using O_SYNC. Default: false.
1502
1503.. option:: iomem=str, mem=str
1504
1505 Fio can use various types of memory as the I/O unit buffer. The allowed
1506 values are:
1507
1508 **malloc**
1509 Use memory from :manpage:`malloc(3)` as the buffers. Default memory
1510 type.
1511
1512 **shm**
1513 Use shared memory as the buffers. Allocated through
1514 :manpage:`shmget(2)`.
1515
1516 **shmhuge**
1517 Same as shm, but use huge pages as backing.
1518
1519 **mmap**
22413915 1520 Use :manpage:`mmap(2)` to allocate buffers. May either be anonymous memory, or can
f80dba8d
MT
1521 be file backed if a filename is given after the option. The format
1522 is `mem=mmap:/path/to/file`.
1523
1524 **mmaphuge**
1525 Use a memory mapped huge file as the buffer backing. Append filename
1526 after mmaphuge, ala `mem=mmaphuge:/hugetlbfs/file`.
1527
1528 **mmapshared**
1529 Same as mmap, but use a MMAP_SHARED mapping.
1530
03553853
YR
1531 **cudamalloc**
1532 Use GPU memory as the buffers for GPUDirect RDMA benchmark.
1533
f80dba8d
MT
1534 The area allocated is a function of the maximum allowed bs size for the job,
1535 multiplied by the I/O depth given. Note that for **shmhuge** and
1536 **mmaphuge** to work, the system must have free huge pages allocated. This
1537 can normally be checked and set by reading/writing
1538 :file:`/proc/sys/vm/nr_hugepages` on a Linux system. Fio assumes a huge page
1539 is 4MiB in size. So to calculate the number of huge pages you need for a
1540 given job file, add up the I/O depth of all jobs (normally one unless
1541 :option:`iodepth` is used) and multiply by the maximum bs set. Then divide
1542 that number by the huge page size. You can see the size of the huge pages in
1543 :file:`/proc/meminfo`. If no huge pages are allocated by having a non-zero
1544 number in `nr_hugepages`, using **mmaphuge** or **shmhuge** will fail. Also
1545 see :option:`hugepage-size`.
1546
1547 **mmaphuge** also needs to have hugetlbfs mounted and the file location
1548 should point there. So if it's mounted in :file:`/huge`, you would use
1549 `mem=mmaphuge:/huge/somefile`.
1550
1551.. option:: iomem_align=int
1552
1553 This indicates the memory alignment of the I/O memory buffers. Note that
1554 the given alignment is applied to the first I/O unit buffer, if using
1555 :option:`iodepth` the alignment of the following buffers are given by the
1556 :option:`bs` used. In other words, if using a :option:`bs` that is a
1557 multiple of the page sized in the system, all buffers will be aligned to
1558 this value. If using a :option:`bs` that is not page aligned, the alignment
1559 of subsequent I/O memory buffers is the sum of the :option:`iomem_align` and
1560 :option:`bs` used.
1561
1562.. option:: hugepage-size=int
1563
1564 Defines the size of a huge page. Must at least be equal to the system
1565 setting, see :file:`/proc/meminfo`. Defaults to 4MiB. Should probably
1566 always be a multiple of megabytes, so using ``hugepage-size=Xm`` is the
1567 preferred way to set this to avoid setting a non-pow-2 bad value.
1568
1569.. option:: lockmem=int
1570
1571 Pin the specified amount of memory with :manpage:`mlock(2)`. Can be used to
1572 simulate a smaller amount of memory. The amount specified is per worker.
1573
1574
1575I/O size
1576~~~~~~~~
1577
1578.. option:: size=int
1579
79591fa9
TK
1580 The total size of file I/O for each thread of this job. Fio will run until
1581 this many bytes has been transferred, unless runtime is limited by other options
1582 (such as :option:`runtime`, for instance, or increased/decreased by :option:`io_size`).
1583 Fio will divide this size between the available files determined by options
1584 such as :option:`nrfiles`, :option:`filename`, unless :option:`filesize` is
1585 specified by the job. If the result of division happens to be 0, the size is
c4aa2d08 1586 set to the physical size of the given files or devices if they exist.
79591fa9 1587 If this option is not specified, fio will use the full size of the given
f80dba8d
MT
1588 files or devices. If the files do not exist, size must be given. It is also
1589 possible to give size as a percentage between 1 and 100. If ``size=20%`` is
1590 given, fio will use 20% of the full size of the given files or devices.
9d25d068
SW
1591 Can be combined with :option:`offset` to constrain the start and end range
1592 that I/O will be done within.
f80dba8d
MT
1593
1594.. option:: io_size=int, io_limit=int
1595
1596 Normally fio operates within the region set by :option:`size`, which means
1597 that the :option:`size` option sets both the region and size of I/O to be
1598 performed. Sometimes that is not what you want. With this option, it is
1599 possible to define just the amount of I/O that fio should do. For instance,
1600 if :option:`size` is set to 20GiB and :option:`io_size` is set to 5GiB, fio
1601 will perform I/O within the first 20GiB but exit when 5GiB have been
1602 done. The opposite is also possible -- if :option:`size` is set to 20GiB,
1603 and :option:`io_size` is set to 40GiB, then fio will do 40GiB of I/O within
1604 the 0..20GiB region.
1605
7fdd97ca 1606.. option:: filesize=irange(int)
f80dba8d
MT
1607
1608 Individual file sizes. May be a range, in which case fio will select sizes
1609 for files at random within the given range and limited to :option:`size` in
1610 total (if that is given). If not given, each created file is the same size.
79591fa9
TK
1611 This option overrides :option:`size` in terms of file size, which means
1612 this value is used as a fixed size or possible range of each file.
f80dba8d
MT
1613
1614.. option:: file_append=bool
1615
1616 Perform I/O after the end of the file. Normally fio will operate within the
1617 size of a file. If this option is set, then fio will append to the file
1618 instead. This has identical behavior to setting :option:`offset` to the size
1619 of a file. This option is ignored on non-regular files.
1620
1621.. option:: fill_device=bool, fill_fs=bool
1622
1623 Sets size to something really large and waits for ENOSPC (no space left on
1624 device) as the terminating condition. Only makes sense with sequential
1625 write. For a read workload, the mount point will be filled first then I/O
1626 started on the result. This option doesn't make sense if operating on a raw
1627 device node, since the size of that is already known by the file system.
1628 Additionally, writing beyond end-of-device will not return ENOSPC there.
1629
1630
1631I/O engine
1632~~~~~~~~~~
1633
1634.. option:: ioengine=str
1635
1636 Defines how the job issues I/O to the file. The following types are defined:
1637
1638 **sync**
1639 Basic :manpage:`read(2)` or :manpage:`write(2)`
1640 I/O. :manpage:`lseek(2)` is used to position the I/O location.
54227e6b 1641 See :option:`fsync` and :option:`fdatasync` for syncing write I/Os.
f80dba8d
MT
1642
1643 **psync**
1644 Basic :manpage:`pread(2)` or :manpage:`pwrite(2)` I/O. Default on
1645 all supported operating systems except for Windows.
1646
1647 **vsync**
1648 Basic :manpage:`readv(2)` or :manpage:`writev(2)` I/O. Will emulate
c60ebc45 1649 queuing by coalescing adjacent I/Os into a single submission.
f80dba8d
MT
1650
1651 **pvsync**
1652 Basic :manpage:`preadv(2)` or :manpage:`pwritev(2)` I/O.
1653
1654 **pvsync2**
1655 Basic :manpage:`preadv2(2)` or :manpage:`pwritev2(2)` I/O.
1656
1657 **libaio**
1658 Linux native asynchronous I/O. Note that Linux may only support
22413915 1659 queued behavior with non-buffered I/O (set ``direct=1`` or
f80dba8d
MT
1660 ``buffered=0``).
1661 This engine defines engine specific options.
1662
1663 **posixaio**
1664 POSIX asynchronous I/O using :manpage:`aio_read(3)` and
1665 :manpage:`aio_write(3)`.
1666
1667 **solarisaio**
1668 Solaris native asynchronous I/O.
1669
1670 **windowsaio**
1671 Windows native asynchronous I/O. Default on Windows.
1672
1673 **mmap**
1674 File is memory mapped with :manpage:`mmap(2)` and data copied
1675 to/from using :manpage:`memcpy(3)`.
1676
1677 **splice**
1678 :manpage:`splice(2)` is used to transfer the data and
1679 :manpage:`vmsplice(2)` to transfer data from user space to the
1680 kernel.
1681
1682 **sg**
1683 SCSI generic sg v3 I/O. May either be synchronous using the SG_IO
1684 ioctl, or if the target is an sg character device we use
1685 :manpage:`read(2)` and :manpage:`write(2)` for asynchronous
1686 I/O. Requires filename option to specify either block or character
1687 devices.
1688
1689 **null**
1690 Doesn't transfer any data, just pretends to. This is mainly used to
1691 exercise fio itself and for debugging/testing purposes.
1692
1693 **net**
1694 Transfer over the network to given ``host:port``. Depending on the
1695 :option:`protocol` used, the :option:`hostname`, :option:`port`,
1696 :option:`listen` and :option:`filename` options are used to specify
1697 what sort of connection to make, while the :option:`protocol` option
1698 determines which protocol will be used. This engine defines engine
1699 specific options.
1700
1701 **netsplice**
1702 Like **net**, but uses :manpage:`splice(2)` and
1703 :manpage:`vmsplice(2)` to map data and send/receive.
1704 This engine defines engine specific options.
1705
1706 **cpuio**
1707 Doesn't transfer any data, but burns CPU cycles according to the
1708 :option:`cpuload` and :option:`cpuchunks` options. Setting
9207a0cb 1709 :option:`cpuload`\=85 will cause that job to do nothing but burn 85%
f80dba8d
MT
1710 of the CPU. In case of SMP machines, use :option:`numjobs`
1711 =<no_of_cpu> to get desired CPU usage, as the cpuload only loads a
1712 single CPU at the desired rate. A job never finishes unless there is
1713 at least one non-cpuio job.
1714
1715 **guasi**
1716 The GUASI I/O engine is the Generic Userspace Asyncronous Syscall
1717 Interface approach to async I/O. See
1718
1719 http://www.xmailserver.org/guasi-lib.html
1720
1721 for more info on GUASI.
1722
1723 **rdma**
1724 The RDMA I/O engine supports both RDMA memory semantics
1725 (RDMA_WRITE/RDMA_READ) and channel semantics (Send/Recv) for the
1726 InfiniBand, RoCE and iWARP protocols.
1727
1728 **falloc**
1729 I/O engine that does regular fallocate to simulate data transfer as
1730 fio ioengine.
1731
1732 DDIR_READ
1733 does fallocate(,mode = FALLOC_FL_KEEP_SIZE,).
1734
1735 DDIR_WRITE
1736 does fallocate(,mode = 0).
1737
1738 DDIR_TRIM
1739 does fallocate(,mode = FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE).
1740
761cd093
SW
1741 **ftruncate**
1742 I/O engine that sends :manpage:`ftruncate(2)` operations in response
1743 to write (DDIR_WRITE) events. Each ftruncate issued sets the file's
1744 size to the current block offset. Block size is ignored.
1745
f80dba8d
MT
1746 **e4defrag**
1747 I/O engine that does regular EXT4_IOC_MOVE_EXT ioctls to simulate
1748 defragment activity in request to DDIR_WRITE event.
1749
1750 **rbd**
1751 I/O engine supporting direct access to Ceph Rados Block Devices
1752 (RBD) via librbd without the need to use the kernel rbd driver. This
1753 ioengine defines engine specific options.
1754
1755 **gfapi**
ac8ca2af
SW
1756 Using GlusterFS libgfapi sync interface to direct access to
1757 GlusterFS volumes without having to go through FUSE. This ioengine
f80dba8d
MT
1758 defines engine specific options.
1759
1760 **gfapi_async**
ac8ca2af
SW
1761 Using GlusterFS libgfapi async interface to direct access to
1762 GlusterFS volumes without having to go through FUSE. This ioengine
f80dba8d
MT
1763 defines engine specific options.
1764
1765 **libhdfs**
1766 Read and write through Hadoop (HDFS). The :file:`filename` option
1767 is used to specify host,port of the hdfs name-node to connect. This
1768 engine interprets offsets a little differently. In HDFS, files once
e25c0c91
SW
1769 created cannot be modified so random writes are not possible. To
1770 imitate this the libhdfs engine expects a bunch of small files to be
1771 created over HDFS and will randomly pick a file from them
1772 based on the offset generated by fio backend (see the example
f80dba8d 1773 job file to create such files, use ``rw=write`` option). Please
e25c0c91
SW
1774 note, it may be necessary to set environment variables to work
1775 with HDFS/libhdfs properly. Each job uses its own connection to
f80dba8d
MT
1776 HDFS.
1777
1778 **mtd**
1779 Read, write and erase an MTD character device (e.g.,
1780 :file:`/dev/mtd0`). Discards are treated as erases. Depending on the
1781 underlying device type, the I/O may have to go in a certain pattern,
1782 e.g., on NAND, writing sequentially to erase blocks and discarding
c298ee71 1783 before overwriting. The `trimwrite` mode works well for this
f80dba8d
MT
1784 constraint.
1785
1786 **pmemblk**
1787 Read and write using filesystem DAX to a file on a filesystem
1788 mounted with DAX on a persistent memory device through the NVML
1789 libpmemblk library.
1790
1791 **dev-dax**
1792 Read and write using device DAX to a persistent memory device (e.g.,
1793 /dev/dax0.0) through the NVML libpmem library.
1794
1795 **external**
1796 Prefix to specify loading an external I/O engine object file. Append
c60ebc45 1797 the engine filename, e.g. ``ioengine=external:/tmp/foo.o`` to load
f80dba8d
MT
1798 ioengine :file:`foo.o` in :file:`/tmp`.
1799
1800
1801I/O engine specific parameters
1802~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1803
1804In addition, there are some parameters which are only valid when a specific
1805ioengine is in use. These are used identically to normal parameters, with the
1806caveat that when used on the command line, they must come after the
1807:option:`ioengine` that defines them is selected.
1808
1809.. option:: userspace_reap : [libaio]
1810
1811 Normally, with the libaio engine in use, fio will use the
1812 :manpage:`io_getevents(2)` system call to reap newly returned events. With
1813 this flag turned on, the AIO ring will be read directly from user-space to
1814 reap events. The reaping mode is only enabled when polling for a minimum of
c60ebc45 1815 0 events (e.g. when :option:`iodepth_batch_complete` `=0`).
f80dba8d 1816
9d25d068 1817.. option:: hipri : [pvsync2]
f80dba8d
MT
1818
1819 Set RWF_HIPRI on I/O, indicating to the kernel that it's of higher priority
1820 than normal.
1821
1822.. option:: cpuload=int : [cpuio]
1823
da19cdb4
TK
1824 Attempt to use the specified percentage of CPU cycles. This is a mandatory
1825 option when using cpuio I/O engine.
f80dba8d
MT
1826
1827.. option:: cpuchunks=int : [cpuio]
1828
1829 Split the load into cycles of the given time. In microseconds.
1830
1831.. option:: exit_on_io_done=bool : [cpuio]
1832
1833 Detect when I/O threads are done, then exit.
1834
1835.. option:: hostname=str : [netsplice] [net]
1836
22413915
SW
1837 The hostname or IP address to use for TCP or UDP based I/O. If the job is
1838 a TCP listener or UDP reader, the hostname is not used and must be omitted
f80dba8d
MT
1839 unless it is a valid UDP multicast address.
1840
1841.. option:: namenode=str : [libhdfs]
1842
22413915 1843 The hostname or IP address of a HDFS cluster namenode to contact.
f80dba8d
MT
1844
1845.. option:: port=int
1846
1847 [netsplice], [net]
1848
1849 The TCP or UDP port to bind to or connect to. If this is used with
1850 :option:`numjobs` to spawn multiple instances of the same job type, then
1851 this will be the starting port number since fio will use a range of
1852 ports.
1853
1854 [libhdfs]
1855
1856 the listening port of the HFDS cluster namenode.
1857
1858.. option:: interface=str : [netsplice] [net]
1859
1860 The IP address of the network interface used to send or receive UDP
1861 multicast.
1862
1863.. option:: ttl=int : [netsplice] [net]
1864
1865 Time-to-live value for outgoing UDP multicast packets. Default: 1.
1866
1867.. option:: nodelay=bool : [netsplice] [net]
1868
1869 Set TCP_NODELAY on TCP connections.
1870
1871.. option:: protocol=str : [netsplice] [net]
1872
1873.. option:: proto=str : [netsplice] [net]
1874
1875 The network protocol to use. Accepted values are:
1876
1877 **tcp**
1878 Transmission control protocol.
1879 **tcpv6**
1880 Transmission control protocol V6.
1881 **udp**
1882 User datagram protocol.
1883 **udpv6**
1884 User datagram protocol V6.
1885 **unix**
1886 UNIX domain socket.
1887
1888 When the protocol is TCP or UDP, the port must also be given, as well as the
1889 hostname if the job is a TCP listener or UDP reader. For unix sockets, the
1890 normal filename option should be used and the port is invalid.
1891
e9184ec1 1892.. option:: listen : [netsplice] [net]
f80dba8d
MT
1893
1894 For TCP network connections, tell fio to listen for incoming connections
1895 rather than initiating an outgoing connection. The :option:`hostname` must
1896 be omitted if this option is used.
1897
e9184ec1 1898.. option:: pingpong : [netsplice] [net]
f80dba8d
MT
1899
1900 Normally a network writer will just continue writing data, and a network
1901 reader will just consume packages. If ``pingpong=1`` is set, a writer will
1902 send its normal payload to the reader, then wait for the reader to send the
1903 same payload back. This allows fio to measure network latencies. The
1904 submission and completion latencies then measure local time spent sending or
1905 receiving, and the completion latency measures how long it took for the
1906 other end to receive and send back. For UDP multicast traffic
1907 ``pingpong=1`` should only be set for a single reader when multiple readers
1908 are listening to the same address.
1909
e9184ec1 1910.. option:: window_size : [netsplice] [net]
f80dba8d
MT
1911
1912 Set the desired socket buffer size for the connection.
1913
e9184ec1 1914.. option:: mss : [netsplice] [net]
f80dba8d
MT
1915
1916 Set the TCP maximum segment size (TCP_MAXSEG).
1917
1918.. option:: donorname=str : [e4defrag]
1919
730bd7d9 1920 File will be used as a block donor (swap extents between files).
f80dba8d
MT
1921
1922.. option:: inplace=int : [e4defrag]
1923
1924 Configure donor file blocks allocation strategy:
1925
1926 **0**
1927 Default. Preallocate donor's file on init.
1928 **1**
1929 Allocate space immediately inside defragment event, and free right
1930 after event.
1931
1932.. option:: clustername=str : [rbd]
1933
1934 Specifies the name of the Ceph cluster.
1935
1936.. option:: rbdname=str : [rbd]
1937
1938 Specifies the name of the RBD.
1939
1940.. option:: pool=str : [rbd]
1941
1942 Specifies the name of the Ceph pool containing RBD.
1943
1944.. option:: clientname=str : [rbd]
1945
1946 Specifies the username (without the 'client.' prefix) used to access the
1947 Ceph cluster. If the *clustername* is specified, the *clientname* shall be
1948 the full *type.id* string. If no type. prefix is given, fio will add
1949 'client.' by default.
1950
1951.. option:: skip_bad=bool : [mtd]
1952
1953 Skip operations against known bad blocks.
1954
1955.. option:: hdfsdirectory : [libhdfs]
1956
1957 libhdfs will create chunk in this HDFS directory.
1958
1959.. option:: chunk_size : [libhdfs]
1960
1961 the size of the chunk to use for each file.
1962
1963
1964I/O depth
1965~~~~~~~~~
1966
1967.. option:: iodepth=int
1968
1969 Number of I/O units to keep in flight against the file. Note that
1970 increasing *iodepth* beyond 1 will not affect synchronous ioengines (except
c60ebc45 1971 for small degrees when :option:`verify_async` is in use). Even async
f80dba8d
MT
1972 engines may impose OS restrictions causing the desired depth not to be
1973 achieved. This may happen on Linux when using libaio and not setting
9207a0cb 1974 :option:`direct`\=1, since buffered I/O is not async on that OS. Keep an
f80dba8d
MT
1975 eye on the I/O depth distribution in the fio output to verify that the
1976 achieved depth is as expected. Default: 1.
1977
1978.. option:: iodepth_batch_submit=int, iodepth_batch=int
1979
1980 This defines how many pieces of I/O to submit at once. It defaults to 1
1981 which means that we submit each I/O as soon as it is available, but can be
1982 raised to submit bigger batches of I/O at the time. If it is set to 0 the
1983 :option:`iodepth` value will be used.
1984
1985.. option:: iodepth_batch_complete_min=int, iodepth_batch_complete=int
1986
1987 This defines how many pieces of I/O to retrieve at once. It defaults to 1
1988 which means that we'll ask for a minimum of 1 I/O in the retrieval process
1989 from the kernel. The I/O retrieval will go on until we hit the limit set by
1990 :option:`iodepth_low`. If this variable is set to 0, then fio will always
1991 check for completed events before queuing more I/O. This helps reduce I/O
1992 latency, at the cost of more retrieval system calls.
1993
1994.. option:: iodepth_batch_complete_max=int
1995
1996 This defines maximum pieces of I/O to retrieve at once. This variable should
9207a0cb 1997 be used along with :option:`iodepth_batch_complete_min`\=int variable,
f80dba8d 1998 specifying the range of min and max amount of I/O which should be
730bd7d9 1999 retrieved. By default it is equal to the :option:`iodepth_batch_complete_min`
f80dba8d
MT
2000 value.
2001
2002 Example #1::
2003
2004 iodepth_batch_complete_min=1
2005 iodepth_batch_complete_max=<iodepth>
2006
2007 which means that we will retrieve at least 1 I/O and up to the whole
2008 submitted queue depth. If none of I/O has been completed yet, we will wait.
2009
2010 Example #2::
2011
2012 iodepth_batch_complete_min=0
2013 iodepth_batch_complete_max=<iodepth>
2014
2015 which means that we can retrieve up to the whole submitted queue depth, but
2016 if none of I/O has been completed yet, we will NOT wait and immediately exit
2017 the system call. In this example we simply do polling.
2018
2019.. option:: iodepth_low=int
2020
2021 The low water mark indicating when to start filling the queue
2022 again. Defaults to the same as :option:`iodepth`, meaning that fio will
2023 attempt to keep the queue full at all times. If :option:`iodepth` is set to
c60ebc45 2024 e.g. 16 and *iodepth_low* is set to 4, then after fio has filled the queue of
f80dba8d
MT
2025 16 requests, it will let the depth drain down to 4 before starting to fill
2026 it again.
2027
2028.. option:: io_submit_mode=str
2029
2030 This option controls how fio submits the I/O to the I/O engine. The default
2031 is `inline`, which means that the fio job threads submit and reap I/O
2032 directly. If set to `offload`, the job threads will offload I/O submission
2033 to a dedicated pool of I/O threads. This requires some coordination and thus
2034 has a bit of extra overhead, especially for lower queue depth I/O where it
2035 can increase latencies. The benefit is that fio can manage submission rates
2036 independently of the device completion rates. This avoids skewed latency
730bd7d9 2037 reporting if I/O gets backed up on the device side (the coordinated omission
f80dba8d
MT
2038 problem).
2039
2040
2041I/O rate
2042~~~~~~~~
2043
a881438b 2044.. option:: thinktime=time
f80dba8d 2045
f75ede1d
SW
2046 Stall the job for the specified period of time after an I/O has completed before issuing the
2047 next. May be used to simulate processing being done by an application.
947e0fe0 2048 When the unit is omitted, the value is interpreted in microseconds. See
f80dba8d
MT
2049 :option:`thinktime_blocks` and :option:`thinktime_spin`.
2050
a881438b 2051.. option:: thinktime_spin=time
f80dba8d
MT
2052
2053 Only valid if :option:`thinktime` is set - pretend to spend CPU time doing
2054 something with the data received, before falling back to sleeping for the
f75ede1d 2055 rest of the period specified by :option:`thinktime`. When the unit is
947e0fe0 2056 omitted, the value is interpreted in microseconds.
f80dba8d
MT
2057
2058.. option:: thinktime_blocks=int
2059
2060 Only valid if :option:`thinktime` is set - control how many blocks to issue,
2061 before waiting `thinktime` usecs. If not set, defaults to 1 which will make
2062 fio wait `thinktime` usecs after every block. This effectively makes any
2063 queue depth setting redundant, since no more than 1 I/O will be queued
2064 before we have to complete it and do our thinktime. In other words, this
2065 setting effectively caps the queue depth if the latter is larger.
71bfa161 2066
f80dba8d 2067.. option:: rate=int[,int][,int]
71bfa161 2068
f80dba8d
MT
2069 Cap the bandwidth used by this job. The number is in bytes/sec, the normal
2070 suffix rules apply. Comma-separated values may be specified for reads,
2071 writes, and trims as described in :option:`blocksize`.
71bfa161 2072
b25b3464
SW
2073 For example, using `rate=1m,500k` would limit reads to 1MiB/sec and writes to
2074 500KiB/sec. Capping only reads or writes can be done with `rate=,500k` or
2075 `rate=500k,` where the former will only limit writes (to 500KiB/sec) and the
2076 latter will only limit reads.
2077
f80dba8d 2078.. option:: rate_min=int[,int][,int]
71bfa161 2079
f80dba8d
MT
2080 Tell fio to do whatever it can to maintain at least this bandwidth. Failing
2081 to meet this requirement will cause the job to exit. Comma-separated values
2082 may be specified for reads, writes, and trims as described in
2083 :option:`blocksize`.
71bfa161 2084
f80dba8d 2085.. option:: rate_iops=int[,int][,int]
71bfa161 2086
f80dba8d
MT
2087 Cap the bandwidth to this number of IOPS. Basically the same as
2088 :option:`rate`, just specified independently of bandwidth. If the job is
2089 given a block size range instead of a fixed value, the smallest block size
2090 is used as the metric. Comma-separated values may be specified for reads,
2091 writes, and trims as described in :option:`blocksize`.
71bfa161 2092
f80dba8d 2093.. option:: rate_iops_min=int[,int][,int]
71bfa161 2094
f80dba8d
MT
2095 If fio doesn't meet this rate of I/O, it will cause the job to exit.
2096 Comma-separated values may be specified for reads, writes, and trims as
2097 described in :option:`blocksize`.
71bfa161 2098
f80dba8d 2099.. option:: rate_process=str
66c098b8 2100
f80dba8d
MT
2101 This option controls how fio manages rated I/O submissions. The default is
2102 `linear`, which submits I/O in a linear fashion with fixed delays between
c60ebc45 2103 I/Os that gets adjusted based on I/O completion rates. If this is set to
f80dba8d
MT
2104 `poisson`, fio will submit I/O based on a more real world random request
2105 flow, known as the Poisson process
2106 (https://en.wikipedia.org/wiki/Poisson_point_process). The lambda will be
2107 10^6 / IOPS for the given workload.
71bfa161
JA
2108
2109
f80dba8d
MT
2110I/O latency
2111~~~~~~~~~~~
71bfa161 2112
a881438b 2113.. option:: latency_target=time
71bfa161 2114
f80dba8d 2115 If set, fio will attempt to find the max performance point that the given
f75ede1d 2116 workload will run at while maintaining a latency below this target. When
947e0fe0 2117 the unit is omitted, the value is interpreted in microseconds. See
f75ede1d 2118 :option:`latency_window` and :option:`latency_percentile`.
71bfa161 2119
a881438b 2120.. option:: latency_window=time
71bfa161 2121
f80dba8d 2122 Used with :option:`latency_target` to specify the sample window that the job
f75ede1d 2123 is run at varying queue depths to test the performance. When the unit is
947e0fe0 2124 omitted, the value is interpreted in microseconds.
b4692828 2125
f80dba8d 2126.. option:: latency_percentile=float
71bfa161 2127
c60ebc45 2128 The percentage of I/Os that must fall within the criteria specified by
f80dba8d 2129 :option:`latency_target` and :option:`latency_window`. If not set, this
c60ebc45 2130 defaults to 100.0, meaning that all I/Os must be equal or below to the value
f80dba8d 2131 set by :option:`latency_target`.
71bfa161 2132
a881438b 2133.. option:: max_latency=time
71bfa161 2134
f75ede1d 2135 If set, fio will exit the job with an ETIMEDOUT error if it exceeds this
947e0fe0 2136 maximum latency. When the unit is omitted, the value is interpreted in
f75ede1d 2137 microseconds.
71bfa161 2138
f80dba8d 2139.. option:: rate_cycle=int
71bfa161 2140
f80dba8d 2141 Average bandwidth for :option:`rate` and :option:`rate_min` over this number
a47b697c 2142 of milliseconds. Defaults to 1000.
71bfa161 2143
71bfa161 2144
f80dba8d
MT
2145I/O replay
2146~~~~~~~~~~
71bfa161 2147
f80dba8d 2148.. option:: write_iolog=str
c2b1e753 2149
f80dba8d
MT
2150 Write the issued I/O patterns to the specified file. See
2151 :option:`read_iolog`. Specify a separate file for each job, otherwise the
2152 iologs will be interspersed and the file may be corrupt.
c2b1e753 2153
f80dba8d 2154.. option:: read_iolog=str
71bfa161 2155
22413915 2156 Open an iolog with the specified filename and replay the I/O patterns it
f80dba8d
MT
2157 contains. This can be used to store a workload and replay it sometime
2158 later. The iolog given may also be a blktrace binary file, which allows fio
2159 to replay a workload captured by :command:`blktrace`. See
2160 :manpage:`blktrace(8)` for how to capture such logging data. For blktrace
2161 replay, the file needs to be turned into a blkparse binary data file first
2162 (``blkparse <device> -o /dev/null -d file_for_fio.bin``).
71bfa161 2163
f80dba8d 2164.. option:: replay_no_stall=int
71bfa161 2165
f80dba8d 2166 When replaying I/O with :option:`read_iolog` the default behavior is to
22413915 2167 attempt to respect the timestamps within the log and replay them with the
f80dba8d
MT
2168 appropriate delay between IOPS. By setting this variable fio will not
2169 respect the timestamps and attempt to replay them as fast as possible while
2170 still respecting ordering. The result is the same I/O pattern to a given
2171 device, but different timings.
71bfa161 2172
f80dba8d 2173.. option:: replay_redirect=str
b4692828 2174
f80dba8d
MT
2175 While replaying I/O patterns using :option:`read_iolog` the default behavior
2176 is to replay the IOPS onto the major/minor device that each IOP was recorded
2177 from. This is sometimes undesirable because on a different machine those
2178 major/minor numbers can map to a different device. Changing hardware on the
2179 same system can also result in a different major/minor mapping.
730bd7d9 2180 ``replay_redirect`` causes all I/Os to be replayed onto the single specified
f80dba8d 2181 device regardless of the device it was recorded
9207a0cb 2182 from. i.e. :option:`replay_redirect`\= :file:`/dev/sdc` would cause all I/O
f80dba8d
MT
2183 in the blktrace or iolog to be replayed onto :file:`/dev/sdc`. This means
2184 multiple devices will be replayed onto a single device, if the trace
2185 contains multiple devices. If you want multiple devices to be replayed
2186 concurrently to multiple redirected devices you must blkparse your trace
2187 into separate traces and replay them with independent fio invocations.
2188 Unfortunately this also breaks the strict time ordering between multiple
2189 device accesses.
71bfa161 2190
f80dba8d 2191.. option:: replay_align=int
74929ac2 2192
f80dba8d
MT
2193 Force alignment of I/O offsets and lengths in a trace to this power of 2
2194 value.
3c54bc46 2195
f80dba8d 2196.. option:: replay_scale=int
3c54bc46 2197
f80dba8d 2198 Scale sector offsets down by this factor when replaying traces.
3c54bc46 2199
3c54bc46 2200
f80dba8d
MT
2201Threads, processes and job synchronization
2202~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3c54bc46 2203
f80dba8d 2204.. option:: thread
3c54bc46 2205
730bd7d9
SW
2206 Fio defaults to creating jobs by using fork, however if this option is
2207 given, fio will create jobs by using POSIX Threads' function
2208 :manpage:`pthread_create(3)` to create threads instead.
71bfa161 2209
f80dba8d 2210.. option:: wait_for=str
74929ac2 2211
730bd7d9
SW
2212 If set, the current job won't be started until all workers of the specified
2213 waitee job are done.
74929ac2 2214
f80dba8d
MT
2215 ``wait_for`` operates on the job name basis, so there are a few
2216 limitations. First, the waitee must be defined prior to the waiter job
2217 (meaning no forward references). Second, if a job is being referenced as a
2218 waitee, it must have a unique name (no duplicate waitees).
74929ac2 2219
f80dba8d 2220.. option:: nice=int
892a6ffc 2221
f80dba8d 2222 Run the job with the given nice value. See man :manpage:`nice(2)`.
892a6ffc 2223
f80dba8d
MT
2224 On Windows, values less than -15 set the process class to "High"; -1 through
2225 -15 set "Above Normal"; 1 through 15 "Below Normal"; and above 15 "Idle"
2226 priority class.
74929ac2 2227
f80dba8d 2228.. option:: prio=int
71bfa161 2229
f80dba8d
MT
2230 Set the I/O priority value of this job. Linux limits us to a positive value
2231 between 0 and 7, with 0 being the highest. See man
2232 :manpage:`ionice(1)`. Refer to an appropriate manpage for other operating
2233 systems since meaning of priority may differ.
71bfa161 2234
f80dba8d 2235.. option:: prioclass=int
d59aa780 2236
f80dba8d 2237 Set the I/O priority class. See man :manpage:`ionice(1)`.
d59aa780 2238
f80dba8d 2239.. option:: cpumask=int
71bfa161 2240
22413915
SW
2241 Set the CPU affinity of this job. The parameter given is a bit mask of
2242 allowed CPUs the job may run on. So if you want the allowed CPUs to be 1
f80dba8d
MT
2243 and 5, you would pass the decimal value of (1 << 1 | 1 << 5), or 34. See man
2244 :manpage:`sched_setaffinity(2)`. This may not work on all supported
2245 operating systems or kernel versions. This option doesn't work well for a
2246 higher CPU count than what you can store in an integer mask, so it can only
2247 control cpus 1-32. For boxes with larger CPU counts, use
2248 :option:`cpus_allowed`.
6d500c2e 2249
f80dba8d 2250.. option:: cpus_allowed=str
6d500c2e 2251
730bd7d9
SW
2252 Controls the same options as :option:`cpumask`, but accepts a textual
2253 specification of the permitted CPUs instead. So to use CPUs 1 and 5 you
2254 would specify ``cpus_allowed=1,5``. This option also allows a range of CPUs
2255 to be specified -- say you wanted a binding to CPUs 1, 5, and 8 to 15, you
2256 would set ``cpus_allowed=1,5,8-15``.
6d500c2e 2257
f80dba8d 2258.. option:: cpus_allowed_policy=str
6d500c2e 2259
f80dba8d 2260 Set the policy of how fio distributes the CPUs specified by
730bd7d9 2261 :option:`cpus_allowed` or :option:`cpumask`. Two policies are supported:
6d500c2e 2262
f80dba8d
MT
2263 **shared**
2264 All jobs will share the CPU set specified.
2265 **split**
2266 Each job will get a unique CPU from the CPU set.
6d500c2e 2267
22413915 2268 **shared** is the default behavior, if the option isn't specified. If
f80dba8d
MT
2269 **split** is specified, then fio will will assign one cpu per job. If not
2270 enough CPUs are given for the jobs listed, then fio will roundrobin the CPUs
2271 in the set.
6d500c2e 2272
f80dba8d 2273.. option:: numa_cpu_nodes=str
6d500c2e 2274
f80dba8d
MT
2275 Set this job running on specified NUMA nodes' CPUs. The arguments allow
2276 comma delimited list of cpu numbers, A-B ranges, or `all`. Note, to enable
ac8ca2af 2277 NUMA options support, fio must be built on a system with libnuma-dev(el)
f80dba8d 2278 installed.
61b9861d 2279
f80dba8d 2280.. option:: numa_mem_policy=str
61b9861d 2281
f80dba8d
MT
2282 Set this job's memory policy and corresponding NUMA nodes. Format of the
2283 arguments::
5c94b008 2284
f80dba8d 2285 <mode>[:<nodelist>]
ce35b1ec 2286
730bd7d9
SW
2287 ``mode`` is one of the following memory poicies: ``default``, ``prefer``,
2288 ``bind``, ``interleave`` or ``local``. For ``default`` and ``local`` memory
2289 policies, no node needs to be specified. For ``prefer``, only one node is
2290 allowed. For ``bind`` and ``interleave`` the ``nodelist`` may be as
2291 follows: a comma delimited list of numbers, A-B ranges, or `all`.
71bfa161 2292
f80dba8d 2293.. option:: cgroup=str
390b1537 2294
f80dba8d
MT
2295 Add job to this control group. If it doesn't exist, it will be created. The
2296 system must have a mounted cgroup blkio mount point for this to work. If
2297 your system doesn't have it mounted, you can do so with::
5af1c6f3 2298
f80dba8d 2299 # mount -t cgroup -o blkio none /cgroup
5af1c6f3 2300
f80dba8d 2301.. option:: cgroup_weight=int
5af1c6f3 2302
f80dba8d
MT
2303 Set the weight of the cgroup to this value. See the documentation that comes
2304 with the kernel, allowed values are in the range of 100..1000.
a086c257 2305
f80dba8d 2306.. option:: cgroup_nodelete=bool
8c07860d 2307
f80dba8d
MT
2308 Normally fio will delete the cgroups it has created after the job
2309 completion. To override this behavior and to leave cgroups around after the
2310 job completion, set ``cgroup_nodelete=1``. This can be useful if one wants
2311 to inspect various cgroup files after job completion. Default: false.
8c07860d 2312
f80dba8d 2313.. option:: flow_id=int
8c07860d 2314
f80dba8d
MT
2315 The ID of the flow. If not specified, it defaults to being a global
2316 flow. See :option:`flow`.
1907dbc6 2317
f80dba8d 2318.. option:: flow=int
71bfa161 2319
f80dba8d
MT
2320 Weight in token-based flow control. If this value is used, then there is a
2321 'flow counter' which is used to regulate the proportion of activity between
2322 two or more jobs. Fio attempts to keep this flow counter near zero. The
2323 ``flow`` parameter stands for how much should be added or subtracted to the
2324 flow counter on each iteration of the main I/O loop. That is, if one job has
2325 ``flow=8`` and another job has ``flow=-1``, then there will be a roughly 1:8
2326 ratio in how much one runs vs the other.
71bfa161 2327
f80dba8d 2328.. option:: flow_watermark=int
a31041ea 2329
f80dba8d
MT
2330 The maximum value that the absolute value of the flow counter is allowed to
2331 reach before the job must wait for a lower value of the counter.
82407585 2332
f80dba8d 2333.. option:: flow_sleep=int
82407585 2334
f80dba8d
MT
2335 The period of time, in microseconds, to wait after the flow watermark has
2336 been exceeded before retrying operations.
82407585 2337
f80dba8d 2338.. option:: stonewall, wait_for_previous
82407585 2339
f80dba8d
MT
2340 Wait for preceding jobs in the job file to exit, before starting this
2341 one. Can be used to insert serialization points in the job file. A stone
2342 wall also implies starting a new reporting group, see
2343 :option:`group_reporting`.
2344
2345.. option:: exitall
2346
730bd7d9
SW
2347 By default, fio will continue running all other jobs when one job finishes
2348 but sometimes this is not the desired action. Setting ``exitall`` will
2349 instead make fio terminate all other jobs when one job finishes.
f80dba8d
MT
2350
2351.. option:: exec_prerun=str
2352
2353 Before running this job, issue the command specified through
2354 :manpage:`system(3)`. Output is redirected in a file called
2355 :file:`jobname.prerun.txt`.
2356
2357.. option:: exec_postrun=str
2358
2359 After the job completes, issue the command specified though
2360 :manpage:`system(3)`. Output is redirected in a file called
2361 :file:`jobname.postrun.txt`.
2362
2363.. option:: uid=int
2364
2365 Instead of running as the invoking user, set the user ID to this value
2366 before the thread/process does any work.
2367
2368.. option:: gid=int
2369
2370 Set group ID, see :option:`uid`.
2371
2372
2373Verification
2374~~~~~~~~~~~~
2375
2376.. option:: verify_only
2377
2378 Do not perform specified workload, only verify data still matches previous
2379 invocation of this workload. This option allows one to check data multiple
2380 times at a later date without overwriting it. This option makes sense only
2381 for workloads that write data, and does not support workloads with the
2382 :option:`time_based` option set.
2383
2384.. option:: do_verify=bool
2385
2386 Run the verify phase after a write phase. Only valid if :option:`verify` is
2387 set. Default: true.
2388
2389.. option:: verify=str
2390
2391 If writing to a file, fio can verify the file contents after each iteration
2392 of the job. Each verification method also implies verification of special
2393 header, which is written to the beginning of each block. This header also
2394 includes meta information, like offset of the block, block number, timestamp
2395 when block was written, etc. :option:`verify` can be combined with
2396 :option:`verify_pattern` option. The allowed values are:
2397
2398 **md5**
2399 Use an md5 sum of the data area and store it in the header of
2400 each block.
2401
2402 **crc64**
2403 Use an experimental crc64 sum of the data area and store it in the
2404 header of each block.
2405
2406 **crc32c**
a5896300
SW
2407 Use a crc32c sum of the data area and store it in the header of
2408 each block. This will automatically use hardware acceleration
2409 (e.g. SSE4.2 on an x86 or CRC crypto extensions on ARM64) but will
2410 fall back to software crc32c if none is found. Generally the
2411 fatest checksum fio supports when hardware accelerated.
f80dba8d
MT
2412
2413 **crc32c-intel**
a5896300 2414 Synonym for crc32c.
f80dba8d
MT
2415
2416 **crc32**
2417 Use a crc32 sum of the data area and store it in the header of each
2418 block.
2419
2420 **crc16**
2421 Use a crc16 sum of the data area and store it in the header of each
2422 block.
2423
2424 **crc7**
2425 Use a crc7 sum of the data area and store it in the header of each
2426 block.
2427
2428 **xxhash**
2429 Use xxhash as the checksum function. Generally the fastest software
2430 checksum that fio supports.
2431
2432 **sha512**
2433 Use sha512 as the checksum function.
2434
2435 **sha256**
2436 Use sha256 as the checksum function.
2437
2438 **sha1**
2439 Use optimized sha1 as the checksum function.
82407585 2440
ae3a5acc
JA
2441 **sha3-224**
2442 Use optimized sha3-224 as the checksum function.
2443
2444 **sha3-256**
2445 Use optimized sha3-256 as the checksum function.
2446
2447 **sha3-384**
2448 Use optimized sha3-384 as the checksum function.
2449
2450 **sha3-512**
2451 Use optimized sha3-512 as the checksum function.
2452
f80dba8d
MT
2453 **meta**
2454 This option is deprecated, since now meta information is included in
2455 generic verification header and meta verification happens by
2456 default. For detailed information see the description of the
2457 :option:`verify` setting. This option is kept because of
2458 compatibility's sake with old configurations. Do not use it.
2459
2460 **pattern**
2461 Verify a strict pattern. Normally fio includes a header with some
2462 basic information and checksumming, but if this option is set, only
2463 the specific pattern set with :option:`verify_pattern` is verified.
2464
2465 **null**
2466 Only pretend to verify. Useful for testing internals with
9207a0cb 2467 :option:`ioengine`\=null, not for much else.
f80dba8d
MT
2468
2469 This option can be used for repeated burn-in tests of a system to make sure
2470 that the written data is also correctly read back. If the data direction
2471 given is a read or random read, fio will assume that it should verify a
2472 previously written file. If the data direction includes any form of write,
2473 the verify will be of the newly written data.
2474
2475.. option:: verifysort=bool
2476
2477 If true, fio will sort written verify blocks when it deems it faster to read
2478 them back in a sorted manner. This is often the case when overwriting an
2479 existing file, since the blocks are already laid out in the file system. You
2480 can ignore this option unless doing huge amounts of really fast I/O where
2481 the red-black tree sorting CPU time becomes significant. Default: true.
2482
2483.. option:: verifysort_nr=int
2484
2485 Pre-load and sort verify blocks for a read workload.
2486
2487.. option:: verify_offset=int
2488
2489 Swap the verification header with data somewhere else in the block before
2490 writing. It is swapped back before verifying.
2491
2492.. option:: verify_interval=int
2493
2494 Write the verification header at a finer granularity than the
2495 :option:`blocksize`. It will be written for chunks the size of
2496 ``verify_interval``. :option:`blocksize` should divide this evenly.
2497
2498.. option:: verify_pattern=str
2499
2500 If set, fio will fill the I/O buffers with this pattern. Fio defaults to
2501 filling with totally random bytes, but sometimes it's interesting to fill
2502 with a known pattern for I/O verification purposes. Depending on the width
730bd7d9 2503 of the pattern, fio will fill 1/2/3/4 bytes of the buffer at the time (it can
f80dba8d
MT
2504 be either a decimal or a hex number). The ``verify_pattern`` if larger than
2505 a 32-bit quantity has to be a hex number that starts with either "0x" or
2506 "0X". Use with :option:`verify`. Also, ``verify_pattern`` supports %o
2507 format, which means that for each block offset will be written and then
2508 verified back, e.g.::
61b9861d
RP
2509
2510 verify_pattern=%o
2511
f80dba8d
MT
2512 Or use combination of everything::
2513
61b9861d 2514 verify_pattern=0xff%o"abcd"-12
e28218f3 2515
f80dba8d
MT
2516.. option:: verify_fatal=bool
2517
2518 Normally fio will keep checking the entire contents before quitting on a
2519 block verification failure. If this option is set, fio will exit the job on
2520 the first observed failure. Default: false.
2521
2522.. option:: verify_dump=bool
2523
2524 If set, dump the contents of both the original data block and the data block
2525 we read off disk to files. This allows later analysis to inspect just what
2526 kind of data corruption occurred. Off by default.
2527
2528.. option:: verify_async=int
2529
2530 Fio will normally verify I/O inline from the submitting thread. This option
2531 takes an integer describing how many async offload threads to create for I/O
2532 verification instead, causing fio to offload the duty of verifying I/O
2533 contents to one or more separate threads. If using this offload option, even
2534 sync I/O engines can benefit from using an :option:`iodepth` setting higher
2535 than 1, as it allows them to have I/O in flight while verifies are running.
d7e6ea1c 2536 Defaults to 0 async threads, i.e. verification is not asynchronous.
f80dba8d
MT
2537
2538.. option:: verify_async_cpus=str
2539
2540 Tell fio to set the given CPU affinity on the async I/O verification
2541 threads. See :option:`cpus_allowed` for the format used.
2542
2543.. option:: verify_backlog=int
2544
2545 Fio will normally verify the written contents of a job that utilizes verify
2546 once that job has completed. In other words, everything is written then
2547 everything is read back and verified. You may want to verify continually
2548 instead for a variety of reasons. Fio stores the meta data associated with
2549 an I/O block in memory, so for large verify workloads, quite a bit of memory
2550 would be used up holding this meta data. If this option is enabled, fio will
2551 write only N blocks before verifying these blocks.
2552
2553.. option:: verify_backlog_batch=int
2554
2555 Control how many blocks fio will verify if :option:`verify_backlog` is
2556 set. If not set, will default to the value of :option:`verify_backlog`
2557 (meaning the entire queue is read back and verified). If
2558 ``verify_backlog_batch`` is less than :option:`verify_backlog` then not all
2559 blocks will be verified, if ``verify_backlog_batch`` is larger than
2560 :option:`verify_backlog`, some blocks will be verified more than once.
2561
2562.. option:: verify_state_save=bool
2563
2564 When a job exits during the write phase of a verify workload, save its
2565 current state. This allows fio to replay up until that point, if the verify
2566 state is loaded for the verify read phase. The format of the filename is,
2567 roughly::
2568
2569 <type>-<jobname>-<jobindex>-verify.state.
2570
2571 <type> is "local" for a local run, "sock" for a client/server socket
2572 connection, and "ip" (192.168.0.1, for instance) for a networked
d7e6ea1c 2573 client/server connection. Defaults to true.
f80dba8d
MT
2574
2575.. option:: verify_state_load=bool
2576
2577 If a verify termination trigger was used, fio stores the current write state
2578 of each thread. This can be used at verification time so that fio knows how
2579 far it should verify. Without this information, fio will run a full
a47b697c
SW
2580 verification pass, according to the settings in the job file used. Default
2581 false.
f80dba8d
MT
2582
2583.. option:: trim_percentage=int
2584
2585 Number of verify blocks to discard/trim.
2586
2587.. option:: trim_verify_zero=bool
2588
22413915 2589 Verify that trim/discarded blocks are returned as zeros.
f80dba8d
MT
2590
2591.. option:: trim_backlog=int
2592
22413915 2593 Verify that trim/discarded blocks are returned as zeros.
f80dba8d
MT
2594
2595.. option:: trim_backlog_batch=int
2596
2597 Trim this number of I/O blocks.
2598
2599.. option:: experimental_verify=bool
2600
2601 Enable experimental verification.
2602
2603
2604Steady state
2605~~~~~~~~~~~~
2606
2607.. option:: steadystate=str:float, ss=str:float
2608
2609 Define the criterion and limit for assessing steady state performance. The
2610 first parameter designates the criterion whereas the second parameter sets
2611 the threshold. When the criterion falls below the threshold for the
2612 specified duration, the job will stop. For example, `iops_slope:0.1%` will
2613 direct fio to terminate the job when the least squares regression slope
2614 falls below 0.1% of the mean IOPS. If :option:`group_reporting` is enabled
2615 this will apply to all jobs in the group. Below is the list of available
2616 steady state assessment criteria. All assessments are carried out using only
2617 data from the rolling collection window. Threshold limits can be expressed
2618 as a fixed value or as a percentage of the mean in the collection window.
2619
2620 **iops**
2621 Collect IOPS data. Stop the job if all individual IOPS measurements
2622 are within the specified limit of the mean IOPS (e.g., ``iops:2``
2623 means that all individual IOPS values must be within 2 of the mean,
2624 whereas ``iops:0.2%`` means that all individual IOPS values must be
2625 within 0.2% of the mean IOPS to terminate the job).
2626
2627 **iops_slope**
2628 Collect IOPS data and calculate the least squares regression
2629 slope. Stop the job if the slope falls below the specified limit.
2630
2631 **bw**
2632 Collect bandwidth data. Stop the job if all individual bandwidth
2633 measurements are within the specified limit of the mean bandwidth.
2634
2635 **bw_slope**
2636 Collect bandwidth data and calculate the least squares regression
2637 slope. Stop the job if the slope falls below the specified limit.
2638
2639.. option:: steadystate_duration=time, ss_dur=time
2640
2641 A rolling window of this duration will be used to judge whether steady state
2642 has been reached. Data will be collected once per second. The default is 0
f75ede1d 2643 which disables steady state detection. When the unit is omitted, the
947e0fe0 2644 value is interpreted in seconds.
f80dba8d
MT
2645
2646.. option:: steadystate_ramp_time=time, ss_ramp=time
2647
2648 Allow the job to run for the specified duration before beginning data
2649 collection for checking the steady state job termination criterion. The
947e0fe0 2650 default is 0. When the unit is omitted, the value is interpreted in seconds.
f80dba8d
MT
2651
2652
2653Measurements and reporting
2654~~~~~~~~~~~~~~~~~~~~~~~~~~
2655
2656.. option:: per_job_logs=bool
2657
2658 If set, this generates bw/clat/iops log with per file private filenames. If
2659 not set, jobs with identical names will share the log filename. Default:
2660 true.
2661
2662.. option:: group_reporting
2663
2664 It may sometimes be interesting to display statistics for groups of jobs as
2665 a whole instead of for each individual job. This is especially true if
2666 :option:`numjobs` is used; looking at individual thread/process output
2667 quickly becomes unwieldy. To see the final report per-group instead of
2668 per-job, use :option:`group_reporting`. Jobs in a file will be part of the
2669 same reporting group, unless if separated by a :option:`stonewall`, or by
2670 using :option:`new_group`.
2671
2672.. option:: new_group
2673
2674 Start a new reporting group. See: :option:`group_reporting`. If not given,
2675 all jobs in a file will be part of the same reporting group, unless
2676 separated by a :option:`stonewall`.
2677
8243be59
JA
2678.. option:: stats
2679
2680 By default, fio collects and shows final output results for all jobs
2681 that run. If this option is set to 0, then fio will ignore it in
2682 the final stat output.
2683
f80dba8d
MT
2684.. option:: write_bw_log=str
2685
2686 If given, write a bandwidth log for this job. Can be used to store data of
2687 the bandwidth of the jobs in their lifetime. The included
2688 :command:`fio_generate_plots` script uses :command:`gnuplot` to turn these
22413915 2689 text files into nice graphs. See :option:`write_lat_log` for behavior of
f80dba8d
MT
2690 given filename. For this option, the postfix is :file:`_bw.x.log`, where `x`
2691 is the index of the job (`1..N`, where `N` is the number of jobs). If
2692 :option:`per_job_logs` is false, then the filename will not include the job
2693 index. See `Log File Formats`_.
2694
2695.. option:: write_lat_log=str
2696
2697 Same as :option:`write_bw_log`, except that this option stores I/O
2698 submission, completion, and total latencies instead. If no filename is given
2699 with this option, the default filename of :file:`jobname_type.log` is
2700 used. Even if the filename is given, fio will still append the type of
2701 log. So if one specifies::
e3cedca7
JA
2702
2703 write_lat_log=foo
2704
f80dba8d
MT
2705 The actual log names will be :file:`foo_slat.x.log`, :file:`foo_clat.x.log`,
2706 and :file:`foo_lat.x.log`, where `x` is the index of the job (1..N, where N
2707 is the number of jobs). This helps :command:`fio_generate_plot` find the
2708 logs automatically. If :option:`per_job_logs` is false, then the filename
2709 will not include the job index. See `Log File Formats`_.
be4ecfdf 2710
f80dba8d 2711.. option:: write_hist_log=str
06842027 2712
f80dba8d
MT
2713 Same as :option:`write_lat_log`, but writes I/O completion latency
2714 histograms. If no filename is given with this option, the default filename
2715 of :file:`jobname_clat_hist.x.log` is used, where `x` is the index of the
2716 job (1..N, where `N` is the number of jobs). Even if the filename is given,
2717 fio will still append the type of log. If :option:`per_job_logs` is false,
2718 then the filename will not include the job index. See `Log File Formats`_.
06842027 2719
f80dba8d 2720.. option:: write_iops_log=str
06842027 2721
f80dba8d
MT
2722 Same as :option:`write_bw_log`, but writes IOPS. If no filename is given
2723 with this option, the default filename of :file:`jobname_type.x.log` is
2724 used,where `x` is the index of the job (1..N, where `N` is the number of
2725 jobs). Even if the filename is given, fio will still append the type of
2726 log. If :option:`per_job_logs` is false, then the filename will not include
2727 the job index. See `Log File Formats`_.
06842027 2728
f80dba8d 2729.. option:: log_avg_msec=int
06842027 2730
f80dba8d
MT
2731 By default, fio will log an entry in the iops, latency, or bw log for every
2732 I/O that completes. When writing to the disk log, that can quickly grow to a
2733 very large size. Setting this option makes fio average the each log entry
2734 over the specified period of time, reducing the resolution of the log. See
2735 :option:`log_max_value` as well. Defaults to 0, logging all entries.
6fc82095 2736 Also see `Log File Formats`_.
06842027 2737
f80dba8d 2738.. option:: log_hist_msec=int
06842027 2739
f80dba8d
MT
2740 Same as :option:`log_avg_msec`, but logs entries for completion latency
2741 histograms. Computing latency percentiles from averages of intervals using
c60ebc45 2742 :option:`log_avg_msec` is inaccurate. Setting this option makes fio log
f80dba8d
MT
2743 histogram entries over the specified period of time, reducing log sizes for
2744 high IOPS devices while retaining percentile accuracy. See
2745 :option:`log_hist_coarseness` as well. Defaults to 0, meaning histogram
2746 logging is disabled.
06842027 2747
f80dba8d 2748.. option:: log_hist_coarseness=int
06842027 2749
f80dba8d
MT
2750 Integer ranging from 0 to 6, defining the coarseness of the resolution of
2751 the histogram logs enabled with :option:`log_hist_msec`. For each increment
2752 in coarseness, fio outputs half as many bins. Defaults to 0, for which
2753 histogram logs contain 1216 latency bins. See `Log File Formats`_.
8b28bd41 2754
f80dba8d 2755.. option:: log_max_value=bool
66c098b8 2756
f80dba8d
MT
2757 If :option:`log_avg_msec` is set, fio logs the average over that window. If
2758 you instead want to log the maximum value, set this option to 1. Defaults to
2759 0, meaning that averaged values are logged.
a696fa2a 2760
f80dba8d 2761.. option:: log_offset=int
a696fa2a 2762
f80dba8d
MT
2763 If this is set, the iolog options will include the byte offset for the I/O
2764 entry as well as the other data values.
71bfa161 2765
f80dba8d 2766.. option:: log_compression=int
7de87099 2767
f80dba8d
MT
2768 If this is set, fio will compress the I/O logs as it goes, to keep the
2769 memory footprint lower. When a log reaches the specified size, that chunk is
2770 removed and compressed in the background. Given that I/O logs are fairly
2771 highly compressible, this yields a nice memory savings for longer runs. The
2772 downside is that the compression will consume some background CPU cycles, so
2773 it may impact the run. This, however, is also true if the logging ends up
2774 consuming most of the system memory. So pick your poison. The I/O logs are
2775 saved normally at the end of a run, by decompressing the chunks and storing
2776 them in the specified log file. This feature depends on the availability of
2777 zlib.
e0b0d892 2778
f80dba8d 2779.. option:: log_compression_cpus=str
e0b0d892 2780
f80dba8d
MT
2781 Define the set of CPUs that are allowed to handle online log compression for
2782 the I/O jobs. This can provide better isolation between performance
2783 sensitive jobs, and background compression work.
9e684a49 2784
f80dba8d 2785.. option:: log_store_compressed=bool
9e684a49 2786
f80dba8d
MT
2787 If set, fio will store the log files in a compressed format. They can be
2788 decompressed with fio, using the :option:`--inflate-log` command line
2789 parameter. The files will be stored with a :file:`.fz` suffix.
9e684a49 2790
f80dba8d 2791.. option:: log_unix_epoch=bool
9e684a49 2792
f80dba8d
MT
2793 If set, fio will log Unix timestamps to the log files produced by enabling
2794 write_type_log for each log type, instead of the default zero-based
2795 timestamps.
2796
2797.. option:: block_error_percentiles=bool
2798
2799 If set, record errors in trim block-sized units from writes and trims and
2800 output a histogram of how many trims it took to get to errors, and what kind
2801 of error was encountered.
2802
2803.. option:: bwavgtime=int
2804
2805 Average the calculated bandwidth over the given time. Value is specified in
2806 milliseconds. If the job also does bandwidth logging through
2807 :option:`write_bw_log`, then the minimum of this option and
2808 :option:`log_avg_msec` will be used. Default: 500ms.
2809
2810.. option:: iopsavgtime=int
2811
2812 Average the calculated IOPS over the given time. Value is specified in
2813 milliseconds. If the job also does IOPS logging through
2814 :option:`write_iops_log`, then the minimum of this option and
2815 :option:`log_avg_msec` will be used. Default: 500ms.
2816
2817.. option:: disk_util=bool
2818
2819 Generate disk utilization statistics, if the platform supports it.
2820 Default: true.
2821
2822.. option:: disable_lat=bool
2823
2824 Disable measurements of total latency numbers. Useful only for cutting back
2825 the number of calls to :manpage:`gettimeofday(2)`, as that does impact
2826 performance at really high IOPS rates. Note that to really get rid of a
2827 large amount of these calls, this option must be used with
f75ede1d 2828 :option:`disable_slat` and :option:`disable_bw_measurement` as well.
f80dba8d
MT
2829
2830.. option:: disable_clat=bool
2831
2832 Disable measurements of completion latency numbers. See
2833 :option:`disable_lat`.
2834
2835.. option:: disable_slat=bool
2836
2837 Disable measurements of submission latency numbers. See
2838 :option:`disable_slat`.
2839
f75ede1d 2840.. option:: disable_bw_measurement=bool, disable_bw=bool
f80dba8d
MT
2841
2842 Disable measurements of throughput/bandwidth numbers. See
2843 :option:`disable_lat`.
2844
2845.. option:: clat_percentiles=bool
2846
2847 Enable the reporting of percentiles of completion latencies.
2848
2849.. option:: percentile_list=float_list
2850
2851 Overwrite the default list of percentiles for completion latencies and the
2852 block error histogram. Each number is a floating number in the range
2853 (0,100], and the maximum length of the list is 20. Use ``:`` to separate the
2854 numbers, and list the numbers in ascending order. For example,
2855 ``--percentile_list=99.5:99.9`` will cause fio to report the values of
2856 completion latency below which 99.5% and 99.9% of the observed latencies
2857 fell, respectively.
2858
2859
2860Error handling
2861~~~~~~~~~~~~~~
2862
2863.. option:: exitall_on_error
2864
2865 When one job finishes in error, terminate the rest. The default is to wait
2866 for each job to finish.
2867
2868.. option:: continue_on_error=str
2869
2870 Normally fio will exit the job on the first observed failure. If this option
2871 is set, fio will continue the job when there is a 'non-fatal error' (EIO or
2872 EILSEQ) until the runtime is exceeded or the I/O size specified is
2873 completed. If this option is used, there are two more stats that are
2874 appended, the total error count and the first error. The error field given
2875 in the stats is the first error that was hit during the run.
2876
2877 The allowed values are:
2878
2879 **none**
2880 Exit on any I/O or verify errors.
2881
2882 **read**
2883 Continue on read errors, exit on all others.
2884
2885 **write**
2886 Continue on write errors, exit on all others.
2887
2888 **io**
2889 Continue on any I/O error, exit on all others.
2890
2891 **verify**
2892 Continue on verify errors, exit on all others.
2893
2894 **all**
2895 Continue on all errors.
2896
2897 **0**
2898 Backward-compatible alias for 'none'.
2899
2900 **1**
2901 Backward-compatible alias for 'all'.
2902
2903.. option:: ignore_error=str
2904
2905 Sometimes you want to ignore some errors during test in that case you can
a35ef7cb
TK
2906 specify error list for each error type, instead of only being able to
2907 ignore the default 'non-fatal error' using :option:`continue_on_error`.
f80dba8d
MT
2908 ``ignore_error=READ_ERR_LIST,WRITE_ERR_LIST,VERIFY_ERR_LIST`` errors for
2909 given error type is separated with ':'. Error may be symbol ('ENOSPC',
2910 'ENOMEM') or integer. Example::
2911
2912 ignore_error=EAGAIN,ENOSPC:122
2913
2914 This option will ignore EAGAIN from READ, and ENOSPC and 122(EDQUOT) from
a35ef7cb
TK
2915 WRITE. This option works by overriding :option:`continue_on_error` with
2916 the list of errors for each error type if any.
f80dba8d
MT
2917
2918.. option:: error_dump=bool
2919
2920 If set dump every error even if it is non fatal, true by default. If
2921 disabled only fatal error will be dumped.
2922
f75ede1d
SW
2923Running predefined workloads
2924----------------------------
2925
2926Fio includes predefined profiles that mimic the I/O workloads generated by
2927other tools.
2928
2929.. option:: profile=str
2930
2931 The predefined workload to run. Current profiles are:
2932
2933 **tiobench**
2934 Threaded I/O bench (tiotest/tiobench) like workload.
2935
2936 **act**
2937 Aerospike Certification Tool (ACT) like workload.
2938
2939To view a profile's additional options use :option:`--cmdhelp` after specifying
2940the profile. For example::
2941
2942$ fio --profile=act --cmdhelp
2943
2944Act profile options
2945~~~~~~~~~~~~~~~~~~~
2946
2947.. option:: device-names=str
2948 :noindex:
2949
2950 Devices to use.
2951
2952.. option:: load=int
2953 :noindex:
2954
2955 ACT load multiplier. Default: 1.
2956
2957.. option:: test-duration=time
2958 :noindex:
2959
947e0fe0
SW
2960 How long the entire test takes to run. When the unit is omitted, the value
2961 is given in seconds. Default: 24h.
f75ede1d
SW
2962
2963.. option:: threads-per-queue=int
2964 :noindex:
2965
2966 Number of read IO threads per device. Default: 8.
2967
2968.. option:: read-req-num-512-blocks=int
2969 :noindex:
2970
2971 Number of 512B blocks to read at the time. Default: 3.
2972
2973.. option:: large-block-op-kbytes=int
2974 :noindex:
2975
2976 Size of large block ops in KiB (writes). Default: 131072.
2977
2978.. option:: prep
2979 :noindex:
2980
2981 Set to run ACT prep phase.
2982
2983Tiobench profile options
2984~~~~~~~~~~~~~~~~~~~~~~~~
2985
2986.. option:: size=str
2987 :noindex:
2988
2989 Size in MiB
2990
2991.. option:: block=int
2992 :noindex:
2993
2994 Block size in bytes. Default: 4096.
2995
2996.. option:: numruns=int
2997 :noindex:
2998
2999 Number of runs.
3000
3001.. option:: dir=str
3002 :noindex:
3003
3004 Test directory.
3005
3006.. option:: threads=int
3007 :noindex:
3008
3009 Number of threads.
f80dba8d
MT
3010
3011Interpreting the output
3012-----------------------
3013
36214730
SW
3014..
3015 Example output was based on the following:
3016 TZ=UTC fio --iodepth=8 --ioengine=null --size=100M --time_based \
3017 --rate=1256k --bs=14K --name=quick --runtime=1s --name=mixed \
3018 --runtime=2m --rw=rw
3019
f80dba8d
MT
3020Fio spits out a lot of output. While running, fio will display the status of the
3021jobs created. An example of that would be::
3022
9d25d068 3023 Jobs: 1 (f=1): [_(1),M(1)][24.8%][r=20.5MiB/s,w=23.5MiB/s][r=82,w=94 IOPS][eta 01m:31s]
f80dba8d 3024
36214730
SW
3025The characters inside the first set of square brackets denote the current status of
3026each thread. The first character is the first job defined in the job file, and so
3027forth. The possible values (in typical life cycle order) are:
f80dba8d
MT
3028
3029+------+-----+-----------------------------------------------------------+
3030| Idle | Run | |
3031+======+=====+===========================================================+
3032| P | | Thread setup, but not started. |
3033+------+-----+-----------------------------------------------------------+
3034| C | | Thread created. |
3035+------+-----+-----------------------------------------------------------+
3036| I | | Thread initialized, waiting or generating necessary data. |
3037+------+-----+-----------------------------------------------------------+
3038| | p | Thread running pre-reading file(s). |
3039+------+-----+-----------------------------------------------------------+
36214730
SW
3040| | / | Thread is in ramp period. |
3041+------+-----+-----------------------------------------------------------+
f80dba8d
MT
3042| | R | Running, doing sequential reads. |
3043+------+-----+-----------------------------------------------------------+
3044| | r | Running, doing random reads. |
3045+------+-----+-----------------------------------------------------------+
3046| | W | Running, doing sequential writes. |
3047+------+-----+-----------------------------------------------------------+
3048| | w | Running, doing random writes. |
3049+------+-----+-----------------------------------------------------------+
3050| | M | Running, doing mixed sequential reads/writes. |
3051+------+-----+-----------------------------------------------------------+
3052| | m | Running, doing mixed random reads/writes. |
3053+------+-----+-----------------------------------------------------------+
36214730
SW
3054| | D | Running, doing sequential trims. |
3055+------+-----+-----------------------------------------------------------+
3056| | d | Running, doing random trims. |
3057+------+-----+-----------------------------------------------------------+
3058| | F | Running, currently waiting for :manpage:`fsync(2)`. |
f80dba8d
MT
3059+------+-----+-----------------------------------------------------------+
3060| | V | Running, doing verification of written data. |
3061+------+-----+-----------------------------------------------------------+
36214730
SW
3062| f | | Thread finishing. |
3063+------+-----+-----------------------------------------------------------+
f80dba8d
MT
3064| E | | Thread exited, not reaped by main thread yet. |
3065+------+-----+-----------------------------------------------------------+
36214730 3066| _ | | Thread reaped. |
f80dba8d
MT
3067+------+-----+-----------------------------------------------------------+
3068| X | | Thread reaped, exited with an error. |
3069+------+-----+-----------------------------------------------------------+
3070| K | | Thread reaped, exited due to signal. |
3071+------+-----+-----------------------------------------------------------+
3072
36214730
SW
3073..
3074 Example output was based on the following:
3075 TZ=UTC fio --iodepth=8 --ioengine=null --size=100M --runtime=58m \
3076 --time_based --rate=2512k --bs=256K --numjobs=10 \
3077 --name=readers --rw=read --name=writers --rw=write
3078
f80dba8d 3079Fio will condense the thread string as not to take up more space on the command
36214730 3080line than needed. For instance, if you have 10 readers and 10 writers running,
f80dba8d
MT
3081the output would look like this::
3082
9d25d068 3083 Jobs: 20 (f=20): [R(10),W(10)][4.0%][r=20.5MiB/s,w=23.5MiB/s][r=82,w=94 IOPS][eta 57m:36s]
f80dba8d 3084
36214730
SW
3085Note that the status string is displayed in order, so it's possible to tell which of
3086the jobs are currently doing what. In the example above this means that jobs 1--10
3087are readers and 11--20 are writers.
f80dba8d
MT
3088
3089The other values are fairly self explanatory -- number of threads currently
36214730
SW
3090running and doing I/O, the number of currently open files (f=), the estimated
3091completion percentage, the rate of I/O since last check (read speed listed first,
3092then write speed and optionally trim speed) in terms of bandwidth and IOPS, and time to completion for the current
f80dba8d 3093running group. It's impossible to estimate runtime of the following groups (if
36214730
SW
3094any).
3095
3096..
3097 Example output was based on the following:
3098 TZ=UTC fio --iodepth=16 --ioengine=posixaio --filename=/tmp/fiofile \
3099 --direct=1 --size=100M --time_based --runtime=50s --rate_iops=89 \
3100 --bs=7K --name=Client1 --rw=write
3101
3102When fio is done (or interrupted by :kbd:`Ctrl-C`), it will show the data for
3103each thread, group of threads, and disks in that order. For each overall thread (or
3104group) the output looks like::
3105
3106 Client1: (groupid=0, jobs=1): err= 0: pid=16109: Sat Jun 24 12:07:54 2017
3107 write: IOPS=88, BW=623KiB/s (638kB/s)(30.4MiB/50032msec)
3108 slat (nsec): min=500, max=145500, avg=8318.00, stdev=4781.50
3109 clat (usec): min=170, max=78367, avg=4019.02, stdev=8293.31
3110 lat (usec): min=174, max=78375, avg=4027.34, stdev=8291.79
3111 clat percentiles (usec):
3112 | 1.00th=[ 302], 5.00th=[ 326], 10.00th=[ 343], 20.00th=[ 363],
3113 | 30.00th=[ 392], 40.00th=[ 404], 50.00th=[ 416], 60.00th=[ 445],
3114 | 70.00th=[ 816], 80.00th=[ 6718], 90.00th=[12911], 95.00th=[21627],
3115 | 99.00th=[43779], 99.50th=[51643], 99.90th=[68682], 99.95th=[72877],
3116 | 99.99th=[78119]
3117 bw ( KiB/s): min= 532, max= 686, per=0.10%, avg=622.87, stdev=24.82, samples= 100
3118 iops : min= 76, max= 98, avg=88.98, stdev= 3.54, samples= 100
3119 lat (usec) : 250=0.04%, 500=64.11%, 750=4.81%, 1000=2.79%
3120 lat (msec) : 2=4.16%, 4=1.84%, 10=4.90%, 20=11.33%, 50=5.37%
3121 lat (msec) : 100=0.65%
3122 cpu : usr=0.27%, sys=0.18%, ctx=12072, majf=0, minf=21
3123 IO depths : 1=85.0%, 2=13.1%, 4=1.8%, 8=0.1%, 16=0.0%, 32=0.0%, >=64=0.0%
3124 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
3125 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
3126 issued rwt: total=0,4450,0, short=0,0,0, dropped=0,0,0
3127 latency : target=0, window=0, percentile=100.00%, depth=8
3128
3129The job name (or first job's name when using :option:`group_reporting`) is printed,
3130along with the group id, count of jobs being aggregated, last error id seen (which
3131is 0 when there are no errors), pid/tid of that thread and the time the job/group
3132completed. Below are the I/O statistics for each data direction performed (showing
3133writes in the example above). In the order listed, they denote:
3134
3135**read/write/trim**
3136 The string before the colon shows the I/O direction the statistics
3137 are for. **IOPS** is the average I/Os performed per second. **BW**
3138 is the average bandwidth rate shown as: value in power of 2 format
3139 (value in power of 10 format). The last two values show: (**total
3140 I/O performed** in power of 2 format / **runtime** of that thread).
f80dba8d
MT
3141
3142**slat**
36214730
SW
3143 Submission latency (**min** being the minimum, **max** being the
3144 maximum, **avg** being the average, **stdev** being the standard
3145 deviation). This is the time it took to submit the I/O. For
3146 sync I/O this row is not displayed as the slat is really the
3147 completion latency (since queue/complete is one operation there).
3148 This value can be in nanoseconds, microseconds or milliseconds ---
3149 fio will choose the most appropriate base and print that (in the
3150 example above nanoseconds was the best scale). Note: in :option:`--minimal` mode
0d237712 3151 latencies are always expressed in microseconds.
f80dba8d
MT
3152
3153**clat**
3154 Completion latency. Same names as slat, this denotes the time from
3155 submission to completion of the I/O pieces. For sync I/O, clat will
3156 usually be equal (or very close) to 0, as the time from submit to
3157 complete is basically just CPU time (I/O has already been done, see slat
3158 explanation).
3159
3160**bw**
36214730
SW
3161 Bandwidth statistics based on samples. Same names as the xlat stats,
3162 but also includes the number of samples taken (**samples**) and an
3163 approximate percentage of total aggregate bandwidth this thread
3164 received in its group (**per**). This last value is only really
3165 useful if the threads in this group are on the same disk, since they
3166 are then competing for disk access.
3167
3168**iops**
3169 IOPS statistics based on samples. Same names as bw.
f80dba8d
MT
3170
3171**cpu**
3172 CPU usage. User and system time, along with the number of context
3173 switches this thread went through, usage of system and user time, and
3174 finally the number of major and minor page faults. The CPU utilization
3175 numbers are averages for the jobs in that reporting group, while the
23a8e176 3176 context and fault counters are summed.
f80dba8d
MT
3177
3178**IO depths**
a2140525
SW
3179 The distribution of I/O depths over the job lifetime. The numbers are
3180 divided into powers of 2 and each entry covers depths from that value
3181 up to those that are lower than the next entry -- e.g., 16= covers
3182 depths from 16 to 31. Note that the range covered by a depth
3183 distribution entry can be different to the range covered by the
3184 equivalent submit/complete distribution entry.
f80dba8d
MT
3185
3186**IO submit**
3187 How many pieces of I/O were submitting in a single submit call. Each
c60ebc45 3188 entry denotes that amount and below, until the previous entry -- e.g.,
a2140525
SW
3189 16=100% means that we submitted anywhere between 9 to 16 I/Os per submit
3190 call. Note that the range covered by a submit distribution entry can
3191 be different to the range covered by the equivalent depth distribution
3192 entry.
f80dba8d
MT
3193
3194**IO complete**
3195 Like the above submit number, but for completions instead.
3196
36214730
SW
3197**IO issued rwt**
3198 The number of read/write/trim requests issued, and how many of them were
3199 short or dropped.
f80dba8d
MT
3200
3201**IO latencies**
3202 The distribution of I/O completion latencies. This is the time from when
3203 I/O leaves fio and when it gets completed. The numbers follow the same
3204 pattern as the I/O depths, meaning that 2=1.6% means that 1.6% of the
3205 I/O completed within 2 msecs, 20=12.8% means that 12.8% of the I/O took
3206 more than 10 msecs, but less than (or equal to) 20 msecs.
71bfa161 3207
36214730
SW
3208..
3209 Example output was based on the following:
3210 TZ=UTC fio --ioengine=null --iodepth=2 --size=100M --numjobs=2 \
3211 --rate_process=poisson --io_limit=32M --name=read --bs=128k \
3212 --rate=11M --name=write --rw=write --bs=2k --rate=700k
3213
71bfa161 3214After each client has been listed, the group statistics are printed. They
f80dba8d 3215will look like this::
71bfa161 3216
f80dba8d 3217 Run status group 0 (all jobs):
36214730
SW
3218 READ: bw=20.9MiB/s (21.9MB/s), 10.4MiB/s-10.8MiB/s (10.9MB/s-11.3MB/s), io=64.0MiB (67.1MB), run=2973-3069msec
3219 WRITE: bw=1231KiB/s (1261kB/s), 616KiB/s-621KiB/s (630kB/s-636kB/s), io=64.0MiB (67.1MB), run=52747-53223msec
71bfa161 3220
36214730 3221For each data direction it prints:
71bfa161 3222
36214730
SW
3223**bw**
3224 Aggregate bandwidth of threads in this group followed by the
3225 minimum and maximum bandwidth of all the threads in this group.
3226 Values outside of brackets are power-of-2 format and those
3227 within are the equivalent value in a power-of-10 format.
f80dba8d 3228**io**
36214730
SW
3229 Aggregate I/O performed of all threads in this group. The
3230 format is the same as bw.
3231**run**
3232 The smallest and longest runtimes of the threads in this group.
71bfa161 3233
f80dba8d 3234And finally, the disk statistics are printed. They will look like this::
71bfa161 3235
f80dba8d
MT
3236 Disk stats (read/write):
3237 sda: ios=16398/16511, merge=30/162, ticks=6853/819634, in_queue=826487, util=100.00%
71bfa161
JA
3238
3239Each value is printed for both reads and writes, with reads first. The
3240numbers denote:
3241
f80dba8d 3242**ios**
c60ebc45 3243 Number of I/Os performed by all groups.
f80dba8d
MT
3244**merge**
3245 Number of merges I/O the I/O scheduler.
3246**ticks**
3247 Number of ticks we kept the disk busy.
36214730 3248**in_queue**
f80dba8d
MT
3249 Total time spent in the disk queue.
3250**util**
3251 The disk utilization. A value of 100% means we kept the disk
71bfa161
JA
3252 busy constantly, 50% would be a disk idling half of the time.
3253
f80dba8d
MT
3254It is also possible to get fio to dump the current output while it is running,
3255without terminating the job. To do that, send fio the **USR1** signal. You can
3256also get regularly timed dumps by using the :option:`--status-interval`
3257parameter, or by creating a file in :file:`/tmp` named
3258:file:`fio-dump-status`. If fio sees this file, it will unlink it and dump the
3259current output status.
8423bd11 3260
71bfa161 3261
f80dba8d
MT
3262Terse output
3263------------
71bfa161 3264
f80dba8d
MT
3265For scripted usage where you typically want to generate tables or graphs of the
3266results, fio can output the results in a semicolon separated format. The format
3267is one long line of values, such as::
71bfa161 3268
f80dba8d
MT
3269 2;card0;0;0;7139336;121836;60004;1;10109;27.932460;116.933948;220;126861;3495.446807;1085.368601;226;126864;3523.635629;1089.012448;24063;99944;50.275485%;59818.274627;5540.657370;7155060;122104;60004;1;8338;29.086342;117.839068;388;128077;5032.488518;1234.785715;391;128085;5061.839412;1236.909129;23436;100928;50.287926%;59964.832030;5644.844189;14.595833%;19.394167%;123706;0;7313;0.1%;0.1%;0.1%;0.1%;0.1%;0.1%;100.0%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.01%;0.02%;0.05%;0.16%;6.04%;40.40%;52.68%;0.64%;0.01%;0.00%;0.01%;0.00%;0.00%;0.00%;0.00%;0.00%
3270 A description of this job goes here.
562c2d2f
DN
3271
3272The job description (if provided) follows on a second line.
71bfa161 3273
a7f77fa6
SW
3274To enable terse output, use the :option:`--minimal` or
3275:option:`--output-format`\=terse command line options. The
f80dba8d
MT
3276first value is the version of the terse output format. If the output has to be
3277changed for some reason, this number will be incremented by 1 to signify that
3278change.
6820cb3b 3279
a2c95580
AH
3280Split up, the format is as follows (comments in brackets denote when a
3281field was introduced or whether its specific to some terse version):
71bfa161 3282
f80dba8d
MT
3283 ::
3284
a2c95580 3285 terse version, fio version [v3], jobname, groupid, error
f80dba8d
MT
3286
3287 READ status::
3288
3289 Total IO (KiB), bandwidth (KiB/sec), IOPS, runtime (msec)
3290 Submission latency: min, max, mean, stdev (usec)
3291 Completion latency: min, max, mean, stdev (usec)
3292 Completion latency percentiles: 20 fields (see below)
3293 Total latency: min, max, mean, stdev (usec)
a2c95580
AH
3294 Bw (KiB/s): min, max, aggregate percentage of total, mean, stdev, number of samples [v5]
3295 IOPS [v5]: min, max, mean, stdev, number of samples
f80dba8d
MT
3296
3297 WRITE status:
3298
3299 ::
3300
3301 Total IO (KiB), bandwidth (KiB/sec), IOPS, runtime (msec)
3302 Submission latency: min, max, mean, stdev (usec)
247823cc 3303 Completion latency: min, max, mean, stdev (usec)
f80dba8d
MT
3304 Completion latency percentiles: 20 fields (see below)
3305 Total latency: min, max, mean, stdev (usec)
a2c95580
AH
3306 Bw (KiB/s): min, max, aggregate percentage of total, mean, stdev, number of samples [v5]
3307 IOPS [v5]: min, max, mean, stdev, number of samples
3308
3309 TRIM status [all but version 3]:
3310
3311 Fields are similar to READ/WRITE status.
f80dba8d
MT
3312
3313 CPU usage::
3314
3315 user, system, context switches, major faults, minor faults
3316
3317 I/O depths::
3318
3319 <=1, 2, 4, 8, 16, 32, >=64
3320
3321 I/O latencies microseconds::
3322
3323 <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000
3324
3325 I/O latencies milliseconds::
3326
3327 <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, 2000, >=2000
3328
a2c95580 3329 Disk utilization [v3]::
f80dba8d
MT
3330
3331 Disk name, Read ios, write ios,
3332 Read merges, write merges,
3333 Read ticks, write ticks,
3334 Time spent in queue, disk utilization percentage
3335
3336 Additional Info (dependent on continue_on_error, default off)::
3337
3338 total # errors, first error code
3339
3340 Additional Info (dependent on description being set)::
3341
3342 Text description
3343
3344Completion latency percentiles can be a grouping of up to 20 sets, so for the
3345terse output fio writes all of them. Each field will look like this::
1db92cb6
JA
3346
3347 1.00%=6112
3348
f80dba8d 3349which is the Xth percentile, and the `usec` latency associated with it.
1db92cb6 3350
f80dba8d
MT
3351For disk utilization, all disks used by fio are shown. So for each disk there
3352will be a disk utilization section.
f2f788dd 3353
2fc26c3d 3354Below is a single line containing short names for each of the fields in the
2831be97 3355minimal output v3, separated by semicolons::
2fc26c3d 3356
586631b8 3357 terse_version_3;fio_version;jobname;groupid;error;read_kb;read_bandwidth;read_iops;read_runtime_ms;read_slat_min;read_slat_max;read_slat_mean;read_slat_dev;read_clat_min;read_clat_max;read_clat_mean;read_clat_dev;read_clat_pct01;read_clat_pct02;read_clat_pct03;read_clat_pct04;read_clat_pct05;read_clat_pct06;read_clat_pct07;read_clat_pct08;read_clat_pct09;read_clat_pct10;read_clat_pct11;read_clat_pct12;read_clat_pct13;read_clat_pct14;read_clat_pct15;read_clat_pct16;read_clat_pct17;read_clat_pct18;read_clat_pct19;read_clat_pct20;read_tlat_min;read_lat_max;read_lat_mean;read_lat_dev;read_bw_min;read_bw_max;read_bw_agg_pct;read_bw_mean;read_bw_dev;write_kb;write_bandwidth;write_iops;write_runtime_ms;write_slat_min;write_slat_max;write_slat_mean;write_slat_dev;write_clat_min;write_clat_max;write_clat_mean;write_clat_dev;write_clat_pct01;write_clat_pct02;write_clat_pct03;write_clat_pct04;write_clat_pct05;write_clat_pct06;write_clat_pct07;write_clat_pct08;write_clat_pct09;write_clat_pct10;write_clat_pct11;write_clat_pct12;write_clat_pct13;write_clat_pct14;write_clat_pct15;write_clat_pct16;write_clat_pct17;write_clat_pct18;write_clat_pct19;write_clat_pct20;write_tlat_min;write_lat_max;write_lat_mean;write_lat_dev;write_bw_min;write_bw_max;write_bw_agg_pct;write_bw_mean;write_bw_dev;cpu_user;cpu_sys;cpu_csw;cpu_mjf;cpu_minf;iodepth_1;iodepth_2;iodepth_4;iodepth_8;iodepth_16;iodepth_32;iodepth_64;lat_2us;lat_4us;lat_10us;lat_20us;lat_50us;lat_100us;lat_250us;lat_500us;lat_750us;lat_1000us;lat_2ms;lat_4ms;lat_10ms;lat_20ms;lat_50ms;lat_100ms;lat_250ms;lat_500ms;lat_750ms;lat_1000ms;lat_2000ms;lat_over_2000ms;disk_name;disk_read_iops;disk_write_iops;disk_read_merges;disk_write_merges;disk_read_ticks;write_ticks;disk_queue_time;disk_util
2fc26c3d 3358
25c8b9d7 3359
f80dba8d
MT
3360Trace file format
3361-----------------
3362
3363There are two trace file format that you can encounter. The older (v1) format is
3364unsupported since version 1.20-rc3 (March 2008). It will still be described
25c8b9d7
PD
3365below in case that you get an old trace and want to understand it.
3366
3367In any case the trace is a simple text file with a single action per line.
3368
3369
f80dba8d
MT
3370Trace file format v1
3371~~~~~~~~~~~~~~~~~~~~
3372
3373Each line represents a single I/O action in the following format::
3374
3375 rw, offset, length
25c8b9d7 3376
f80dba8d 3377where `rw=0/1` for read/write, and the offset and length entries being in bytes.
25c8b9d7 3378
22413915 3379This format is not supported in fio versions >= 1.20-rc3.
25c8b9d7 3380
25c8b9d7 3381
f80dba8d
MT
3382Trace file format v2
3383~~~~~~~~~~~~~~~~~~~~
25c8b9d7 3384
f80dba8d
MT
3385The second version of the trace file format was added in fio version 1.17. It
3386allows to access more then one file per trace and has a bigger set of possible
3387file actions.
25c8b9d7 3388
f80dba8d 3389The first line of the trace file has to be::
25c8b9d7 3390
f80dba8d 3391 fio version 2 iolog
25c8b9d7
PD
3392
3393Following this can be lines in two different formats, which are described below.
3394
f80dba8d 3395The file management format::
25c8b9d7 3396
f80dba8d 3397 filename action
25c8b9d7
PD
3398
3399The filename is given as an absolute path. The action can be one of these:
3400
f80dba8d
MT
3401**add**
3402 Add the given filename to the trace.
3403**open**
3404 Open the file with the given filename. The filename has to have
3405 been added with the **add** action before.
3406**close**
3407 Close the file with the given filename. The file has to have been
3408 opened before.
3409
3410
3411The file I/O action format::
3412
3413 filename action offset length
3414
3415The `filename` is given as an absolute path, and has to have been added and
3416opened before it can be used with this format. The `offset` and `length` are
3417given in bytes. The `action` can be one of these:
3418
3419**wait**
3420 Wait for `offset` microseconds. Everything below 100 is discarded.
3421 The time is relative to the previous `wait` statement.
3422**read**
3423 Read `length` bytes beginning from `offset`.
3424**write**
3425 Write `length` bytes beginning from `offset`.
3426**sync**
3427 :manpage:`fsync(2)` the file.
3428**datasync**
3429 :manpage:`fdatasync(2)` the file.
3430**trim**
3431 Trim the given file from the given `offset` for `length` bytes.
3432
3433CPU idleness profiling
3434----------------------
3435
3436In some cases, we want to understand CPU overhead in a test. For example, we
3437test patches for the specific goodness of whether they reduce CPU usage.
3438Fio implements a balloon approach to create a thread per CPU that runs at idle
3439priority, meaning that it only runs when nobody else needs the cpu.
3440By measuring the amount of work completed by the thread, idleness of each CPU
3441can be derived accordingly.
3442
3443An unit work is defined as touching a full page of unsigned characters. Mean and
3444standard deviation of time to complete an unit work is reported in "unit work"
3445section. Options can be chosen to report detailed percpu idleness or overall
3446system idleness by aggregating percpu stats.
3447
3448
3449Verification and triggers
3450-------------------------
3451
3452Fio is usually run in one of two ways, when data verification is done. The first
3453is a normal write job of some sort with verify enabled. When the write phase has
3454completed, fio switches to reads and verifies everything it wrote. The second
3455model is running just the write phase, and then later on running the same job
3456(but with reads instead of writes) to repeat the same I/O patterns and verify
3457the contents. Both of these methods depend on the write phase being completed,
3458as fio otherwise has no idea how much data was written.
3459
3460With verification triggers, fio supports dumping the current write state to
3461local files. Then a subsequent read verify workload can load this state and know
3462exactly where to stop. This is useful for testing cases where power is cut to a
3463server in a managed fashion, for instance.
99b9a85a
JA
3464
3465A verification trigger consists of two things:
3466
f80dba8d
MT
34671) Storing the write state of each job.
34682) Executing a trigger command.
99b9a85a 3469
f80dba8d
MT
3470The write state is relatively small, on the order of hundreds of bytes to single
3471kilobytes. It contains information on the number of completions done, the last X
3472completions, etc.
99b9a85a 3473
f80dba8d
MT
3474A trigger is invoked either through creation ('touch') of a specified file in
3475the system, or through a timeout setting. If fio is run with
9207a0cb 3476:option:`--trigger-file`\= :file:`/tmp/trigger-file`, then it will continually
f80dba8d
MT
3477check for the existence of :file:`/tmp/trigger-file`. When it sees this file, it
3478will fire off the trigger (thus saving state, and executing the trigger
99b9a85a
JA
3479command).
3480
f80dba8d
MT
3481For client/server runs, there's both a local and remote trigger. If fio is
3482running as a server backend, it will send the job states back to the client for
3483safe storage, then execute the remote trigger, if specified. If a local trigger
3484is specified, the server will still send back the write state, but the client
3485will then execute the trigger.
99b9a85a 3486
f80dba8d
MT
3487Verification trigger example
3488~~~~~~~~~~~~~~~~~~~~~~~~~~~~
99b9a85a 3489
4502cb42 3490Let's say we want to run a powercut test on the remote machine 'server'. Our
f80dba8d
MT
3491write workload is in :file:`write-test.fio`. We want to cut power to 'server' at
3492some point during the run, and we'll run this test from the safety or our local
3493machine, 'localbox'. On the server, we'll start the fio backend normally::
99b9a85a 3494
f80dba8d 3495 server# fio --server
99b9a85a 3496
f80dba8d 3497and on the client, we'll fire off the workload::
99b9a85a 3498
f80dba8d 3499 localbox$ fio --client=server --trigger-file=/tmp/my-trigger --trigger-remote="bash -c \"echo b > /proc/sysrq-triger\""
99b9a85a 3500
f80dba8d 3501We set :file:`/tmp/my-trigger` as the trigger file, and we tell fio to execute::
99b9a85a 3502
f80dba8d 3503 echo b > /proc/sysrq-trigger
99b9a85a 3504
f80dba8d
MT
3505on the server once it has received the trigger and sent us the write state. This
3506will work, but it's not **really** cutting power to the server, it's merely
3507abruptly rebooting it. If we have a remote way of cutting power to the server
3508through IPMI or similar, we could do that through a local trigger command
4502cb42 3509instead. Let's assume we have a script that does IPMI reboot of a given hostname,
f80dba8d
MT
3510ipmi-reboot. On localbox, we could then have run fio with a local trigger
3511instead::
99b9a85a 3512
f80dba8d 3513 localbox$ fio --client=server --trigger-file=/tmp/my-trigger --trigger="ipmi-reboot server"
99b9a85a 3514
f80dba8d
MT
3515For this case, fio would wait for the server to send us the write state, then
3516execute ``ipmi-reboot server`` when that happened.
3517
3518Loading verify state
3519~~~~~~~~~~~~~~~~~~~~
3520
4502cb42 3521To load stored write state, a read verification job file must contain the
f80dba8d 3522:option:`verify_state_load` option. If that is set, fio will load the previously
99b9a85a 3523stored state. For a local fio run this is done by loading the files directly,
f80dba8d
MT
3524and on a client/server run, the server backend will ask the client to send the
3525files over and load them from there.
a3ae5b05
JA
3526
3527
f80dba8d
MT
3528Log File Formats
3529----------------
a3ae5b05
JA
3530
3531Fio supports a variety of log file formats, for logging latencies, bandwidth,
3532and IOPS. The logs share a common format, which looks like this:
3533
f80dba8d 3534 *time* (`msec`), *value*, *data direction*, *offset*
a3ae5b05 3535
f80dba8d 3536Time for the log entry is always in milliseconds. The *value* logged depends
a3ae5b05
JA
3537on the type of log, it will be one of the following:
3538
f80dba8d
MT
3539 **Latency log**
3540 Value is latency in usecs
3541 **Bandwidth log**
3542 Value is in KiB/sec
3543 **IOPS log**
3544 Value is IOPS
3545
3546*Data direction* is one of the following:
3547
3548 **0**
3549 I/O is a READ
3550 **1**
3551 I/O is a WRITE
3552 **2**
3553 I/O is a TRIM
3554
3555The *offset* is the offset, in bytes, from the start of the file, for that
3556particular I/O. The logging of the offset can be toggled with
3557:option:`log_offset`.
3558
6fc82095
SW
3559Fio defaults to logging every individual I/O. When IOPS are logged for individual
3560I/Os the value entry will always be 1. If windowed logging is enabled through
3561:option:`log_avg_msec`, fio logs the average values over the specified period of time.
3562If windowed logging is enabled and :option:`log_max_value` is set, then fio logs
3563maximum values in that window instead of averages. Since 'data direction' and
3564'offset' are per-I/O values, they aren't applicable if windowed logging is enabled.
f80dba8d 3565
b8f7e412 3566Client/Server
f80dba8d
MT
3567-------------
3568
3569Normally fio is invoked as a stand-alone application on the machine where the
6cf30ac0
SW
3570I/O workload should be generated. However, the backend and frontend of fio can
3571be run separately i.e., the fio server can generate an I/O workload on the "Device
3572Under Test" while being controlled by a client on another machine.
f80dba8d
MT
3573
3574Start the server on the machine which has access to the storage DUT::
3575
3576 fio --server=args
3577
dbb257bb 3578where `args` defines what fio listens to. The arguments are of the form
f80dba8d
MT
3579``type,hostname`` or ``IP,port``. *type* is either ``ip`` (or ip4) for TCP/IP
3580v4, ``ip6`` for TCP/IP v6, or ``sock`` for a local unix domain socket.
3581*hostname* is either a hostname or IP address, and *port* is the port to listen
3582to (only valid for TCP/IP, not a local socket). Some examples:
3583
35841) ``fio --server``
3585
3586 Start a fio server, listening on all interfaces on the default port (8765).
3587
35882) ``fio --server=ip:hostname,4444``
3589
3590 Start a fio server, listening on IP belonging to hostname and on port 4444.
3591
35923) ``fio --server=ip6:::1,4444``
3593
3594 Start a fio server, listening on IPv6 localhost ::1 and on port 4444.
3595
35964) ``fio --server=,4444``
3597
3598 Start a fio server, listening on all interfaces on port 4444.
3599
36005) ``fio --server=1.2.3.4``
3601
3602 Start a fio server, listening on IP 1.2.3.4 on the default port.
3603
36046) ``fio --server=sock:/tmp/fio.sock``
3605
dbb257bb 3606 Start a fio server, listening on the local socket :file:`/tmp/fio.sock`.
f80dba8d
MT
3607
3608Once a server is running, a "client" can connect to the fio server with::
3609
3610 fio <local-args> --client=<server> <remote-args> <job file(s)>
3611
3612where `local-args` are arguments for the client where it is running, `server`
3613is the connect string, and `remote-args` and `job file(s)` are sent to the
3614server. The `server` string follows the same format as it does on the server
3615side, to allow IP/hostname/socket and port strings.
3616
3617Fio can connect to multiple servers this way::
3618
3619 fio --client=<server1> <job file(s)> --client=<server2> <job file(s)>
3620
3621If the job file is located on the fio server, then you can tell the server to
3622load a local file as well. This is done by using :option:`--remote-config` ::
3623
3624 fio --client=server --remote-config /path/to/file.fio
3625
3626Then fio will open this local (to the server) job file instead of being passed
3627one from the client.
3628
3629If you have many servers (example: 100 VMs/containers), you can input a pathname
3630of a file containing host IPs/names as the parameter value for the
3631:option:`--client` option. For example, here is an example :file:`host.list`
3632file containing 2 hostnames::
3633
3634 host1.your.dns.domain
3635 host2.your.dns.domain
3636
3637The fio command would then be::
a3ae5b05 3638
f80dba8d 3639 fio --client=host.list <job file(s)>
a3ae5b05 3640
f80dba8d
MT
3641In this mode, you cannot input server-specific parameters or job files -- all
3642servers receive the same job file.
a3ae5b05 3643
f80dba8d
MT
3644In order to let ``fio --client`` runs use a shared filesystem from multiple
3645hosts, ``fio --client`` now prepends the IP address of the server to the
4502cb42 3646filename. For example, if fio is using the directory :file:`/mnt/nfs/fio` and is
f80dba8d
MT
3647writing filename :file:`fileio.tmp`, with a :option:`--client` `hostfile`
3648containing two hostnames ``h1`` and ``h2`` with IP addresses 192.168.10.120 and
3649192.168.10.121, then fio will create two files::
a3ae5b05 3650
f80dba8d
MT
3651 /mnt/nfs/fio/192.168.10.120.fileio.tmp
3652 /mnt/nfs/fio/192.168.10.121.fileio.tmp