From d8296fddb0166b73f5ee498d2122e174b98358ee Mon Sep 17 00:00:00 2001 From: Ben England Date: Tue, 17 Jul 2018 14:40:01 -0400 Subject: [PATCH] get latency percentiles over time from fio histo logs --- tools/hist/fio-histo-log-pctiles.py | 673 ++++++++++++++++++++++++++++ 1 file changed, 673 insertions(+) create mode 100755 tools/hist/fio-histo-log-pctiles.py diff --git a/tools/hist/fio-histo-log-pctiles.py b/tools/hist/fio-histo-log-pctiles.py new file mode 100755 index 00000000..9fb846f1 --- /dev/null +++ b/tools/hist/fio-histo-log-pctiles.py @@ -0,0 +1,673 @@ +#!/usr/bin/env python + +# module to parse fio histogram log files, not using pandas +# runs in python v2 or v3 +# to get help with the CLI: $ python fio-histo-log-pctiles.py -h +# this can be run standalone as a script but is callable +# assumes all threads run for same time duration +# assumes all threads are doing the same thing for the entire run + +# percentiles: +# 0 - min latency +# 50 - median +# 100 - max latency + +# TO-DO: +# separate read and write stats for randrw mixed workload +# report average latency if needed +# prove that it works (partially done with unit tests) + +# to run unit tests, set UNITTEST environment variable to anything +# if you do this, don't pass normal CLI parameters to it +# otherwise it runs the CLI + +import sys, os, math, copy +from copy import deepcopy + +import unittest2 + +msec_per_sec = 1000 +nsec_per_usec = 1000 + +class FioHistoLogExc(Exception): + pass + +# if there is an error, print message, print syntax, and exit with error status + +def usage(msg): + print('ERROR: ' + msg) + print('usage: fio-histo-log-pctiles.py ') + print(' [ --fio-version 2|3 (default 3) ]') + print(' [ --bucket-groups positive-int (default 29) ]') + print(' [ --bucket-bits small-positive-int (default 6) ]') + print(' [ --percentiles p1,p2,...,pN ] (default 0,50,95,99,100)') + print(' [ --time-quantum positive-int (default 1 sec) ]') + print(' [ --output-unit msec|usec|nsec (default msec) ]') + print(' log-file1 log-file2 ...') + sys.exit(1) + + +# convert histogram log file into a list of +# (time_ms, direction, bsz, buckets) tuples where +# - time_ms is the time in msec at which the log record was written +# - direction is 0 (read) or 1 (write) +# - bsz is block size (not used) +# - buckets is a CSV list of counters that make up the histogram +# caller decides if the expected number of counters are present + + +def exception_suffix( record_num, pathname ): + return 'in histogram record %d file %s' % (record_num+1, pathname) + +# log file parser raises FioHistoLogExc exceptions +# it returns histogram buckets in whatever unit fio uses + +def parse_hist_file(logfn, buckets_per_interval): + max_timestamp_ms = 0.0 + + with open(logfn, 'r') as f: + records = [ l.strip() for l in f.readlines() ] + intervals = [] + for k, r in enumerate(records): + if r == '': + continue + tokens = r.split(',') + try: + int_tokens = [ int(t) for t in tokens ] + except ValueError as e: + raise FioHistoLogExc('non-integer value %s' % exception_suffix(k+1, logfn)) + + neg_ints = list(filter( lambda tk : tk < 0, int_tokens )) + if len(neg_ints) > 0: + raise FioHistoLogExc('negative integer value %s' % exception_suffix(k+1, logfn)) + + if len(int_tokens) < 3: + raise FioHistoLogExc('too few numbers %s' % exception_suffix(k+1, logfn)) + + time_ms = int_tokens[0] + if time_ms > max_timestamp_ms: + max_timestamp_ms = time_ms + + direction = int_tokens[1] + if direction != 0 and direction != 1: + raise FioHistoLogExc('invalid I/O direction %s' % exception_suffix(k+1, logfn)) + + bsz = int_tokens[2] + if bsz > (1 << 24): + raise FioHistoLogExc('block size too large %s' % exception_suffix(k+1, logfn)) + + buckets = int_tokens[3:] + if len(buckets) != buckets_per_interval: + raise FioHistoLogExc('%d buckets per interval but %d expected in %s' % + (len(buckets), buckets_per_interval, exception_suffix(k+1, logfn))) + intervals.append((time_ms, direction, bsz, buckets)) + if len(intervals) == 0: + raise FioHistoLogExc('no records in %s' % logfn) + return (intervals, max_timestamp_ms) + + +# compute time range for each bucket index in histogram record +# see comments in https://github.com/axboe/fio/blob/master/stat.h +# for description of bucket groups and buckets +# fio v3 bucket ranges are in nanosec (since response times are measured in nanosec) +# but we convert fio v3 nanosecs to floating-point microseconds + +def time_ranges(groups, counters_per_group, fio_version=3): + bucket_width = 1 + bucket_base = 0 + bucket_intervals = [] + for g in range(0, groups): + for b in range(0, counters_per_group): + rmin = float(bucket_base) + rmax = rmin + bucket_width + if fio_version == 3: + rmin /= nsec_per_usec + rmax /= nsec_per_usec + bucket_intervals.append( [rmin, rmax] ) + bucket_base += bucket_width + if g != 0: + bucket_width *= 2 + return bucket_intervals + + +# compute number of time quantum intervals in the test + +def get_time_intervals(time_quantum, max_timestamp_ms): + # round down to nearest second + max_timestamp = max_timestamp_ms // msec_per_sec + # round up to nearest whole multiple of time_quantum + time_interval_count = (max_timestamp + time_quantum) // time_quantum + end_time = time_interval_count * time_quantum + return (end_time, time_interval_count) + +# align raw histogram log data to time quantum so +# we can then combine histograms from different threads with addition +# for randrw workload we count both reads and writes in same output bucket +# but we separate reads and writes for purposes of calculating +# end time for histogram record. +# this requires us to weight a raw histogram bucket by the +# fraction of time quantum that the bucket overlaps the current +# time quantum interval +# for example, if we have a bucket with 515 samples for time interval +# [ 1010, 2014 ] msec since start of test, and time quantum is 1 sec, then +# for time quantum interval [ 1000, 2000 ] msec, the overlap is +# (2000 - 1010) / (2000 - 1000) = 0.99 +# so the contribution of this bucket to this time quantum is +# 515 x 0.99 = 509.85 + +def align_histo_log(raw_histogram_log, time_quantum, bucket_count, max_timestamp_ms): + + # slice up test time int intervals of time_quantum seconds + + (end_time, time_interval_count) = get_time_intervals(time_quantum, max_timestamp_ms) + time_qtm_ms = time_quantum * msec_per_sec + end_time_ms = end_time * msec_per_sec + aligned_intervals = [] + for j in range(0, time_interval_count): + aligned_intervals.append(( + j * time_qtm_ms, + [ 0.0 for j in range(0, bucket_count) ] )) + + log_record_count = len(raw_histogram_log) + for k, record in enumerate(raw_histogram_log): + + # find next record with same direction to get end-time + # have to avoid going past end of array + # for fio randrw workload, + # we have read and write records on same time interval + # sometimes read and write records are in opposite order + # assertion checks that next read/write record + # can be separated by at most 2 other records + + (time_msec, direction, sz, interval_buckets) = record + if k+1 < log_record_count: + (time_msec_end, direction2, _, _) = raw_histogram_log[k+1] + if direction2 != direction: + if k+2 < log_record_count: + (time_msec_end, direction2, _, _) = raw_histogram_log[k+2] + if direction2 != direction: + if k+3 < log_record_count: + (time_msec_end, direction2, _, _) = raw_histogram_log[k+3] + assert direction2 == direction + else: + time_msec_end = end_time_ms + else: + time_msec_end = end_time_ms + else: + time_msec_end = end_time_ms + + # calculate first quantum that overlaps this histogram record + + qtm_start_ms = (time_msec // time_qtm_ms) * time_qtm_ms + qtm_end_ms = ((time_msec + time_qtm_ms) // time_qtm_ms) * time_qtm_ms + qtm_index = qtm_start_ms // time_qtm_ms + + # for each quantum that overlaps this histogram record's time interval + + while qtm_start_ms < time_msec_end: # while quantum overlaps record + + # calculate fraction of time that this quantum + # overlaps histogram record's time interval + + overlap_start = max(qtm_start_ms, time_msec) + overlap_end = min(qtm_end_ms, time_msec_end) + weight = float(overlap_end - overlap_start) + weight /= (time_msec_end - time_msec) + (_,aligned_histogram) = aligned_intervals[qtm_index] + for bx, b in enumerate(interval_buckets): + weighted_bucket = weight * b + aligned_histogram[bx] += weighted_bucket + + # advance to the next time quantum + + qtm_start_ms += time_qtm_ms + qtm_end_ms += time_qtm_ms + qtm_index += 1 + + return aligned_intervals + +# add histogram in "source" to histogram in "target" +# it is assumed that the 2 histograms are precisely time-aligned + +def add_to_histo_from( target, source ): + for b in range(0, len(source)): + target[b] += source[b] + +# compute percentiles +# inputs: +# buckets: histogram bucket array +# wanted: list of floating-pt percentiles to calculate +# time_ranges: [tmin,tmax) time interval for each bucket +# returns None if no I/O reported. +# otherwise we would be dividing by zero +# think of buckets as probability distribution function +# and this loop is integrating to get cumulative distribution function + +def get_pctiles(buckets, wanted, time_ranges): + + # get total of IO requests done + total_ios = 0 + for io_count in buckets: + total_ios += io_count + + # don't return percentiles if no I/O was done during interval + if total_ios == 0.0: + return None + + pctile_count = len(wanted) + + # results returned as dictionary keyed by percentile + pctile_result = {} + + # index of next percentile in list + pctile_index = 0 + + # next percentile + next_pctile = wanted[pctile_index] + + # no one is interested in percentiles bigger than this but not 100.0 + # this prevents floating-point error from preventing loop exit + almost_100 = 99.9999 + + total_so_far = 0 + for b, io_count in enumerate(buckets): + total_so_far += io_count + pct_lt = 100.0 * float(total_so_far) / total_ios + # a single bucket could satisfy multiple pctiles + # so this must be a while loop + # consider both the 0-percentile (min latency) + # and 100-percentile (max latency) case here + while ((next_pctile == 100.0 and pct_lt >= almost_100) or + (next_pctile < 100.0 and pct_lt > next_pctile)): + # FIXME: interpolate between these fractions + range_max_time = time_ranges[b][1] + pctile_result[next_pctile] = range_max_time + pctile_index += 1 + if pctile_index == pctile_count: + break + next_pctile = wanted[pctile_index] + if pctile_index == pctile_count: + break + assert pctile_index == pctile_count + return pctile_result + + +# parse parameters +# returns a tuple of command line parameters +# parameters have default values unless otherwise shown + +def parse_cli_params(): + + # default values for input parameters + + fio_version = 3 # we are using fio 3.x now + bucket_groups = None # defaulting comes later + bucket_bits = 6 # default in fio 3.x + pctiles_wanted = [ 0, 50, 90, 95, 99, 100 ] + time_quantum = 1 + output_unit = 'usec' + + # parse command line parameters and display them + + argindex = 1 + argct = len(sys.argv) + if argct < 2: + usage('must supply at least one histogram log file') + while argindex < argct: + if argct < argindex + 2: + break + pname = sys.argv[argindex] + pval = sys.argv[argindex+1] + if not pname.startswith('--'): + break + argindex += 2 + pname = pname[2:] + + if pname == 'bucket-groups': + bucket_groups = int(pval) + elif pname == 'bucket-bits': + bucket_bits = int(pval) + elif pname == 'time-quantum': + time_quantum = int(pval) + elif pname == 'percentiles': + pctiles_wanted = [ float(p) for p in pval.split(',') ] + elif pname == 'output-unit': + if pval == 'msec' or pval == 'usec': + output_unit = pval + else: + usage('output-unit must be usec (microseconds) or msec (milliseconds)') + elif pname == 'fio-version': + if pval != '2' and pval != '3': + usage('invalid fio version, must be 2 or 3') + fio_version = int(pval) + else: + usage('invalid parameter name --%s' % pname) + + if not bucket_groups: + # default changes based on fio version + if fio_version == 2: + bucket_groups = 19 + else: + # default in fio 3.x + bucket_groups = 29 + + filename_list = sys.argv[argindex:] + for f in filename_list: + if not os.path.exists(f): + usage('file %s does not exist' % f) + return (bucket_groups, bucket_bits, fio_version, pctiles_wanted, + filename_list, time_quantum, output_unit) + + +# this is really the main program + +def compute_percentiles_from_logs(): + (bucket_groups, bucket_bits, fio_version, pctiles_wanted, + file_list, time_quantum, output_unit) = parse_cli_params() + + print('bucket groups = %d' % bucket_groups) + print('bucket bits = %d' % bucket_bits) + print('time quantum = %d sec' % time_quantum) + print('percentiles = %s' % ','.join([ str(p) for p in pctiles_wanted ])) + buckets_per_group = 1 << bucket_bits + print('buckets per group = %d' % buckets_per_group) + buckets_per_interval = buckets_per_group * bucket_groups + print('buckets per interval = %d ' % buckets_per_interval) + bucket_index_range = range(0, buckets_per_interval) + if time_quantum == 0: + usage('time-quantum must be a positive number of seconds') + print('output unit = ' + output_unit) + if output_unit == 'msec': + time_divisor = 1000.0 + elif output_unit == 'usec': + time_divisor = 1.0 + + # calculate response time interval associated with each histogram bucket + + bucket_times = time_ranges(bucket_groups, buckets_per_group, fio_version=fio_version) + + # construct template for each histogram bucket array with buckets all zeroes + # we just copy this for each new histogram + + zeroed_buckets = [ 0.0 for r in bucket_index_range ] + + # print CSV header just like fiologparser_hist does + + header = 'msec, ' + for p in pctiles_wanted: + header += '%3.1f, ' % p + print('time (millisec), percentiles in increasing order with values in ' + output_unit) + print(header) + + # parse the histogram logs + # assumption: each bucket has a monotonically increasing time + # assumption: time ranges do not overlap for a single thread's records + # (exception: if randrw workload, then there is a read and a write + # record for the same time interval) + + max_timestamp_all_logs = 0 + hist_files = {} + for fn in file_list: + try: + (hist_files[fn], max_timestamp_ms) = parse_hist_file(fn, buckets_per_interval) + except FioHistoLogExc as e: + usage(str(e)) + max_timestamp_all_logs = max(max_timestamp_all_logs, max_timestamp_ms) + + (end_time, time_interval_count) = get_time_intervals(time_quantum, max_timestamp_all_logs) + all_threads_histograms = [ ((j*time_quantum*msec_per_sec), deepcopy(zeroed_buckets)) + for j in range(0, time_interval_count) ] + + for logfn in hist_files.keys(): + aligned_per_thread = align_histo_log(hist_files[logfn], + time_quantum, + buckets_per_interval, + max_timestamp_all_logs) + for t in range(0, time_interval_count): + (_, all_threads_histo_t) = all_threads_histograms[t] + (_, log_histo_t) = aligned_per_thread[t] + pct = get_pctiles(log_histo_t, pctiles_wanted, bucket_times) + add_to_histo_from( all_threads_histo_t, log_histo_t ) + + print('percentiles for entire set of threads') + for (t_msec, all_threads_histo_t) in all_threads_histograms: + record = '%d, ' % t_msec + pct = get_pctiles(all_threads_histo_t, pctiles_wanted, bucket_times) + if not pct: + for w in pctiles_wanted: + record += ', ' + else: + pct_keys = [ k for k in pct.keys() ] + pct_values = [ str(pct[wanted]/time_divisor) for wanted in sorted(pct_keys) ] + record += ', '.join(pct_values) + print(record) + + + +#end of MAIN PROGRAM + + + +##### below are unit tests ############## + +import tempfile, shutil +from os.path import join +should_not_get_here = False + +class Test(unittest2.TestCase): + tempdir = None + + # a little less typing please + def A(self, boolean_val): + self.assertTrue(boolean_val) + + # initialize unit test environment + + @classmethod + def setUpClass(cls): + d = tempfile.mkdtemp() + Test.tempdir = d + + # remove anything left by unit test environment + # unless user sets UNITTEST_LEAVE_FILES environment variable + + @classmethod + def tearDownClass(cls): + if not os.getenv("UNITTEST_LEAVE_FILES"): + shutil.rmtree(cls.tempdir) + + def setUp(self): + self.fn = join(Test.tempdir, self.id()) + + def test_a_add_histos(self): + a = [ 1.0, 2.0 ] + b = [ 1.5, 2.5 ] + add_to_histo_from( a, b ) + self.A(a == [2.5, 4.5]) + self.A(b == [1.5, 2.5]) + + def test_b1_parse_log(self): + with open(self.fn, 'w') as f: + f.write('1234, 0, 4096, 1, 2, 3, 4\n') + f.write('5678,1,16384,5,6,7,8 \n') + (raw_histo_log, max_timestamp) = parse_hist_file(self.fn, 4) # 4 buckets per interval + self.A(len(raw_histo_log) == 2 and max_timestamp == 5678) + (time_ms, direction, bsz, histo) = raw_histo_log[0] + self.A(time_ms == 1234 and direction == 0 and bsz == 4096 and histo == [ 1, 2, 3, 4 ]) + (time_ms, direction, bsz, histo) = raw_histo_log[1] + self.A(time_ms == 5678 and direction == 1 and bsz == 16384 and histo == [ 5, 6, 7, 8 ]) + + def test_b2_parse_empty_log(self): + with open(self.fn, 'w') as f: + pass + try: + (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4) + self.A(should_not_get_here) + except FioHistoLogExc as e: + self.A(str(e).startswith('no records')) + + def test_b3_parse_empty_records(self): + with open(self.fn, 'w') as f: + f.write('\n') + f.write('1234, 0, 4096, 1, 2, 3, 4\n') + f.write('5678,1,16384,5,6,7,8 \n') + f.write('\n') + (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4) + self.A(len(raw_histo_log) == 2 and max_timestamp_ms == 5678) + (time_ms, direction, bsz, histo) = raw_histo_log[0] + self.A(time_ms == 1234 and direction == 0 and bsz == 4096 and histo == [ 1, 2, 3, 4 ]) + (time_ms, direction, bsz, histo) = raw_histo_log[1] + self.A(time_ms == 5678 and direction == 1 and bsz == 16384 and histo == [ 5, 6, 7, 8 ]) + + def test_b4_parse_non_int(self): + with open(self.fn, 'w') as f: + f.write('12, 0, 4096, 1a, 2, 3, 4\n') + try: + (raw_histo_log, _) = parse_hist_file(self.fn, 4) + self.A(False) + except FioHistoLogExc as e: + self.A(str(e).startswith('non-integer')) + + def test_b5_parse_neg_int(self): + with open(self.fn, 'w') as f: + f.write('-12, 0, 4096, 1, 2, 3, 4\n') + try: + (raw_histo_log, _) = parse_hist_file(self.fn, 4) + self.A(False) + except FioHistoLogExc as e: + self.A(str(e).startswith('negative integer')) + + def test_b6_parse_too_few_int(self): + with open(self.fn, 'w') as f: + f.write('0, 0\n') + try: + (raw_histo_log, _) = parse_hist_file(self.fn, 4) + self.A(False) + except FioHistoLogExc as e: + self.A(str(e).startswith('too few numbers')) + + def test_b7_parse_invalid_direction(self): + with open(self.fn, 'w') as f: + f.write('100, 2, 4096, 1, 2, 3, 4\n') + try: + (raw_histo_log, _) = parse_hist_file(self.fn, 4) + self.A(False) + except FioHistoLogExc as e: + self.A(str(e).startswith('invalid I/O direction')) + + def test_b8_parse_bsz_too_big(self): + with open(self.fn+'_good', 'w') as f: + f.write('100, 1, %d, 1, 2, 3, 4\n' % (1<<24)) + (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn+'_good', 4) + with open(self.fn+'_bad', 'w') as f: + f.write('100, 1, 20000000, 1, 2, 3, 4\n') + try: + (raw_histo_log, _) = parse_hist_file(self.fn+'_bad', 4) + self.A(False) + except FioHistoLogExc as e: + self.A(str(e).startswith('block size too large')) + + def test_b9_parse_wrong_bucket_count(self): + with open(self.fn, 'w') as f: + f.write('100, 1, %d, 1, 2, 3, 4, 5\n' % (1<<24)) + try: + (raw_histo_log, _) = parse_hist_file(self.fn, 4) + self.A(False) + except FioHistoLogExc as e: + self.A(str(e).__contains__('buckets per interval')) + + def test_c1_time_ranges(self): + ranges = time_ranges(3, 2) # fio_version defaults to 3 + expected_ranges = [ # fio_version 3 is in nanoseconds + [0.000, 0.001], [0.001, 0.002], # first group + [0.002, 0.003], [0.003, 0.004], # second group same width + [0.004, 0.006], [0.006, 0.008]] # subsequent groups double width + self.A(ranges == expected_ranges) + ranges = time_ranges(3, 2, fio_version=3) + self.A(ranges == expected_ranges) + ranges = time_ranges(3, 2, fio_version=2) + expected_ranges_v2 = [ [ 1000.0 * min_or_max for min_or_max in time_range ] + for time_range in expected_ranges ] + self.A(ranges == expected_ranges_v2) + # see fio V3 stat.h for why 29 groups and 2^6 buckets/group + normal_ranges_v3 = time_ranges(29, 64) + # for v3, bucket time intervals are measured in nanoseconds + self.A(len(normal_ranges_v3) == 29 * 64 and normal_ranges_v3[-1][1] == 64*(1<<(29-1))/1000.0) + normal_ranges_v2 = time_ranges(19, 64, fio_version=2) + # for v2, bucket time intervals are measured in microseconds so we have fewer buckets + self.A(len(normal_ranges_v2) == 19 * 64 and normal_ranges_v2[-1][1] == 64*(1<<(19-1))) + + def test_d1_align_histo_log_1_quantum(self): + with open(self.fn, 'w') as f: + f.write('100, 1, 4096, 1, 2, 3, 4') + (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4) + self.A(max_timestamp_ms == 100) + aligned_log = align_histo_log(raw_histo_log, 5, 4, max_timestamp_ms) + self.A(len(aligned_log) == 1) + (time_ms0, h) = aligned_log[0] + self.A(time_ms0 == 0 and h == [1.0, 2.0, 3.0, 4.0]) + + # we need this to compare 2 lists of floating point numbers for equality + # because of floating-point imprecision + + def compare_2_floats(self, x, y): + if x == 0.0 or y == 0.0: + return (x+y) < 0.0000001 + else: + return (math.fabs(x-y)/x) < 0.00001 + + def is_close(self, buckets, buckets_expected): + if len(buckets) != len(buckets_expected): + return False + compare_buckets = lambda k: self.compare_2_floats(buckets[k], buckets_expected[k]) + indices_close = list(filter(compare_buckets, range(0, len(buckets)))) + return len(indices_close) == len(buckets) + + def test_d2_align_histo_log_2_quantum(self): + with open(self.fn, 'w') as f: + f.write('2000, 1, 4096, 1, 2, 3, 4\n') + f.write('7000, 1, 4096, 1, 2, 3, 4\n') + (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 4) + self.A(max_timestamp_ms == 7000) + (_, _, _, raw_buckets1) = raw_histo_log[0] + (_, _, _, raw_buckets2) = raw_histo_log[1] + aligned_log = align_histo_log(raw_histo_log, 5, 4, max_timestamp_ms) + self.A(len(aligned_log) == 2) + (time_ms1, h1) = aligned_log[0] + (time_ms2, h2) = aligned_log[1] + # because first record is from time interval [2000, 7000] + # we weight it according + expect1 = [float(b) * 0.6 for b in raw_buckets1] + expect2 = [float(b) * 0.4 for b in raw_buckets1] + for e in range(0, len(expect2)): + expect2[e] += raw_buckets2[e] + self.A(time_ms1 == 0 and self.is_close(h1, expect1)) + self.A(time_ms2 == 5000 and self.is_close(h2, expect2)) + + def test_e1_get_pctiles(self): + with open(self.fn, 'w') as f: + buckets = [ 100 for j in range(0, 128) ] + f.write('9000, 1, 4096, %s\n' % ', '.join([str(b) for b in buckets])) + (raw_histo_log, max_timestamp_ms) = parse_hist_file(self.fn, 128) + self.A(max_timestamp_ms == 9000) + aligned_log = align_histo_log(raw_histo_log, 5, 128, max_timestamp_ms) + time_intervals = time_ranges(4, 32) + # since buckets are all equal, then median is halfway through time_intervals + # and max latency interval is at end of time_intervals + self.A(time_intervals[64][1] == 0.066 and time_intervals[127][1] == 0.256) + pctiles_wanted = [ 0, 50, 100 ] + pct_vs_time = [] + for (time_ms, histo) in aligned_log: + pct_vs_time.append(get_pctiles(histo, pctiles_wanted, time_intervals)) + self.A(pct_vs_time[0] == None) # no I/O in this time interval + expected_pctiles = { 0:0.001, 50:0.066, 100:0.256 } + self.A(pct_vs_time[1] == expected_pctiles) + +# we are using this module as a standalone program + +if __name__ == '__main__': + if os.getenv('UNITTEST'): + sys.exit(unittest2.main()) + else: + compute_percentiles_from_logs() + -- 2.25.1