struct request_queue *q = rq->q;
struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
- rq->cmd_flags &= ~REQ_STARTED;
+ /*
+ * Updating q->in_flight[] here for making this tag usable
+ * early. Because in blk_queue_start_tag(),
+ * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
+ * reserve tags for sync I/O.
+ *
+ * More importantly this way can avoid the following I/O
+ * deadlock:
+ *
+ * - suppose there are 40 fua requests comming to flush queue
+ * and queue depth is 31
+ * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
+ * tag for async I/O any more
+ * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
+ * and flush_data_end_io() is called
+ * - the other rqs still can't go ahead if not updating
+ * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
+ * are held in flush data queue and make no progress of
+ * handling post flush rq
+ * - only after the post flush rq is handled, all these rqs
+ * can be completed
+ */
+
+ elv_completed_request(q, rq);
+
+ /* for avoiding double accounting */
++ rq->rq_flags &= ~RQF_STARTED;
+
/*
* After populating an empty queue, kick it to avoid stall. Read
* the comment in flush_end_io().
NVME_SC_REFTAG_CHECK = 0x284,
NVME_SC_COMPARE_FAILED = 0x285,
NVME_SC_ACCESS_DENIED = 0x286,
+ NVME_SC_UNWRITTEN_BLOCK = 0x287,
NVME_SC_DNR = 0x4000,
+
+
+ /*
+ * FC Transport-specific error status values for NVME commands
+ *
+ * Transport-specific status code values must be in the range 0xB0..0xBF
+ */
+
+ /* Generic FC failure - catchall */
+ NVME_SC_FC_TRANSPORT_ERROR = 0x00B0,
+
+ /* I/O failure due to FC ABTS'd */
+ NVME_SC_FC_TRANSPORT_ABORTED = 0x00B1,
};
struct nvme_completion {