sched/topology: Split out scheduler topology code from core.c into topology.c
authorIngo Molnar <mingo@kernel.org>
Wed, 1 Feb 2017 12:10:18 +0000 (13:10 +0100)
committerIngo Molnar <mingo@kernel.org>
Tue, 7 Feb 2017 09:58:12 +0000 (10:58 +0100)
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kernel/sched/Makefile
kernel/sched/core.c
kernel/sched/sched.h
kernel/sched/topology.c [new file with mode: 0644]

index 5e59b832ae2b4b7447de17c105da19890763826d..130ce8ac725b2ee3feabf1b17bf08be9c63d54fe 100644 (file)
@@ -18,7 +18,7 @@ endif
 obj-y += core.o loadavg.o clock.o cputime.o
 obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o
 obj-y += wait.o swait.o completion.o idle.o
-obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o
+obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o
 obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
 obj-$(CONFIG_SCHEDSTATS) += stats.o
 obj-$(CONFIG_SCHED_DEBUG) += debug.o
index 1cea6c61fb013f29f5e7b72b7f6bc5651c7af576..e4aa470ed45435ef3b4ad3f74b435d5ce8cf7c6d 100644 (file)
@@ -31,7 +31,6 @@
 #define CREATE_TRACE_POINTS
 #include <trace/events/sched.h>
 
-DEFINE_MUTEX(sched_domains_mutex);
 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 /*
@@ -5446,7 +5445,7 @@ out:
 
 #ifdef CONFIG_SMP
 
-static bool sched_smp_initialized __read_mostly;
+bool sched_smp_initialized __read_mostly;
 
 #ifdef CONFIG_NUMA_BALANCING
 /* Migrate current task p to target_cpu */
@@ -5643,7 +5642,7 @@ static void migrate_tasks(struct rq *dead_rq)
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
-static void set_rq_online(struct rq *rq)
+void set_rq_online(struct rq *rq)
 {
        if (!rq->online) {
                const struct sched_class *class;
@@ -5658,7 +5657,7 @@ static void set_rq_online(struct rq *rq)
        }
 }
 
-static void set_rq_offline(struct rq *rq)
+void set_rq_offline(struct rq *rq)
 {
        if (rq->online) {
                const struct sched_class *class;
@@ -5680,1658 +5679,6 @@ static void set_cpu_rq_start_time(unsigned int cpu)
        rq->age_stamp = sched_clock_cpu(cpu);
 }
 
-/* Protected by sched_domains_mutex: */
-static cpumask_var_t sched_domains_tmpmask;
-
-#ifdef CONFIG_SCHED_DEBUG
-
-static __read_mostly int sched_debug_enabled;
-
-static int __init sched_debug_setup(char *str)
-{
-       sched_debug_enabled = 1;
-
-       return 0;
-}
-early_param("sched_debug", sched_debug_setup);
-
-static inline bool sched_debug(void)
-{
-       return sched_debug_enabled;
-}
-
-static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-                                 struct cpumask *groupmask)
-{
-       struct sched_group *group = sd->groups;
-
-       cpumask_clear(groupmask);
-
-       printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-
-       if (!(sd->flags & SD_LOAD_BALANCE)) {
-               printk("does not load-balance\n");
-               if (sd->parent)
-                       printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-                                       " has parent");
-               return -1;
-       }
-
-       printk(KERN_CONT "span %*pbl level %s\n",
-              cpumask_pr_args(sched_domain_span(sd)), sd->name);
-
-       if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-               printk(KERN_ERR "ERROR: domain->span does not contain "
-                               "CPU%d\n", cpu);
-       }
-       if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
-               printk(KERN_ERR "ERROR: domain->groups does not contain"
-                               " CPU%d\n", cpu);
-       }
-
-       printk(KERN_DEBUG "%*s groups:", level + 1, "");
-       do {
-               if (!group) {
-                       printk("\n");
-                       printk(KERN_ERR "ERROR: group is NULL\n");
-                       break;
-               }
-
-               if (!cpumask_weight(sched_group_cpus(group))) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: empty group\n");
-                       break;
-               }
-
-               if (!(sd->flags & SD_OVERLAP) &&
-                   cpumask_intersects(groupmask, sched_group_cpus(group))) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: repeated CPUs\n");
-                       break;
-               }
-
-               cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-
-               printk(KERN_CONT " %*pbl",
-                      cpumask_pr_args(sched_group_cpus(group)));
-               if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
-                       printk(KERN_CONT " (cpu_capacity = %lu)",
-                               group->sgc->capacity);
-               }
-
-               group = group->next;
-       } while (group != sd->groups);
-       printk(KERN_CONT "\n");
-
-       if (!cpumask_equal(sched_domain_span(sd), groupmask))
-               printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-
-       if (sd->parent &&
-           !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-               printk(KERN_ERR "ERROR: parent span is not a superset "
-                       "of domain->span\n");
-       return 0;
-}
-
-static void sched_domain_debug(struct sched_domain *sd, int cpu)
-{
-       int level = 0;
-
-       if (!sched_debug_enabled)
-               return;
-
-       if (!sd) {
-               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-               return;
-       }
-
-       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-
-       for (;;) {
-               if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
-                       break;
-               level++;
-               sd = sd->parent;
-               if (!sd)
-                       break;
-       }
-}
-#else /* !CONFIG_SCHED_DEBUG */
-
-# define sched_debug_enabled 0
-# define sched_domain_debug(sd, cpu) do { } while (0)
-static inline bool sched_debug(void)
-{
-       return false;
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-static int sd_degenerate(struct sched_domain *sd)
-{
-       if (cpumask_weight(sched_domain_span(sd)) == 1)
-               return 1;
-
-       /* Following flags need at least 2 groups */
-       if (sd->flags & (SD_LOAD_BALANCE |
-                        SD_BALANCE_NEWIDLE |
-                        SD_BALANCE_FORK |
-                        SD_BALANCE_EXEC |
-                        SD_SHARE_CPUCAPACITY |
-                        SD_ASYM_CPUCAPACITY |
-                        SD_SHARE_PKG_RESOURCES |
-                        SD_SHARE_POWERDOMAIN)) {
-               if (sd->groups != sd->groups->next)
-                       return 0;
-       }
-
-       /* Following flags don't use groups */
-       if (sd->flags & (SD_WAKE_AFFINE))
-               return 0;
-
-       return 1;
-}
-
-static int
-sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-{
-       unsigned long cflags = sd->flags, pflags = parent->flags;
-
-       if (sd_degenerate(parent))
-               return 1;
-
-       if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
-               return 0;
-
-       /* Flags needing groups don't count if only 1 group in parent */
-       if (parent->groups == parent->groups->next) {
-               pflags &= ~(SD_LOAD_BALANCE |
-                               SD_BALANCE_NEWIDLE |
-                               SD_BALANCE_FORK |
-                               SD_BALANCE_EXEC |
-                               SD_ASYM_CPUCAPACITY |
-                               SD_SHARE_CPUCAPACITY |
-                               SD_SHARE_PKG_RESOURCES |
-                               SD_PREFER_SIBLING |
-                               SD_SHARE_POWERDOMAIN);
-               if (nr_node_ids == 1)
-                       pflags &= ~SD_SERIALIZE;
-       }
-       if (~cflags & pflags)
-               return 0;
-
-       return 1;
-}
-
-static void free_rootdomain(struct rcu_head *rcu)
-{
-       struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
-
-       cpupri_cleanup(&rd->cpupri);
-       cpudl_cleanup(&rd->cpudl);
-       free_cpumask_var(rd->dlo_mask);
-       free_cpumask_var(rd->rto_mask);
-       free_cpumask_var(rd->online);
-       free_cpumask_var(rd->span);
-       kfree(rd);
-}
-
-static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-{
-       struct root_domain *old_rd = NULL;
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       if (rq->rd) {
-               old_rd = rq->rd;
-
-               if (cpumask_test_cpu(rq->cpu, old_rd->online))
-                       set_rq_offline(rq);
-
-               cpumask_clear_cpu(rq->cpu, old_rd->span);
-
-               /*
-                * If we dont want to free the old_rd yet then
-                * set old_rd to NULL to skip the freeing later
-                * in this function:
-                */
-               if (!atomic_dec_and_test(&old_rd->refcount))
-                       old_rd = NULL;
-       }
-
-       atomic_inc(&rd->refcount);
-       rq->rd = rd;
-
-       cpumask_set_cpu(rq->cpu, rd->span);
-       if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
-               set_rq_online(rq);
-
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-       if (old_rd)
-               call_rcu_sched(&old_rd->rcu, free_rootdomain);
-}
-
-static int init_rootdomain(struct root_domain *rd)
-{
-       memset(rd, 0, sizeof(*rd));
-
-       if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
-               goto out;
-       if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
-               goto free_span;
-       if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
-               goto free_online;
-       if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
-               goto free_dlo_mask;
-
-       init_dl_bw(&rd->dl_bw);
-       if (cpudl_init(&rd->cpudl) != 0)
-               goto free_rto_mask;
-
-       if (cpupri_init(&rd->cpupri) != 0)
-               goto free_cpudl;
-       return 0;
-
-free_cpudl:
-       cpudl_cleanup(&rd->cpudl);
-free_rto_mask:
-       free_cpumask_var(rd->rto_mask);
-free_dlo_mask:
-       free_cpumask_var(rd->dlo_mask);
-free_online:
-       free_cpumask_var(rd->online);
-free_span:
-       free_cpumask_var(rd->span);
-out:
-       return -ENOMEM;
-}
-
-/*
- * By default the system creates a single root-domain with all CPUs as
- * members (mimicking the global state we have today).
- */
-struct root_domain def_root_domain;
-
-static void init_defrootdomain(void)
-{
-       init_rootdomain(&def_root_domain);
-
-       atomic_set(&def_root_domain.refcount, 1);
-}
-
-static struct root_domain *alloc_rootdomain(void)
-{
-       struct root_domain *rd;
-
-       rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-       if (!rd)
-               return NULL;
-
-       if (init_rootdomain(rd) != 0) {
-               kfree(rd);
-               return NULL;
-       }
-
-       return rd;
-}
-
-static void free_sched_groups(struct sched_group *sg, int free_sgc)
-{
-       struct sched_group *tmp, *first;
-
-       if (!sg)
-               return;
-
-       first = sg;
-       do {
-               tmp = sg->next;
-
-               if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
-                       kfree(sg->sgc);
-
-               kfree(sg);
-               sg = tmp;
-       } while (sg != first);
-}
-
-static void destroy_sched_domain(struct sched_domain *sd)
-{
-       /*
-        * If its an overlapping domain it has private groups, iterate and
-        * nuke them all.
-        */
-       if (sd->flags & SD_OVERLAP) {
-               free_sched_groups(sd->groups, 1);
-       } else if (atomic_dec_and_test(&sd->groups->ref)) {
-               kfree(sd->groups->sgc);
-               kfree(sd->groups);
-       }
-       if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
-               kfree(sd->shared);
-       kfree(sd);
-}
-
-static void destroy_sched_domains_rcu(struct rcu_head *rcu)
-{
-       struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
-
-       while (sd) {
-               struct sched_domain *parent = sd->parent;
-               destroy_sched_domain(sd);
-               sd = parent;
-       }
-}
-
-static void destroy_sched_domains(struct sched_domain *sd)
-{
-       if (sd)
-               call_rcu(&sd->rcu, destroy_sched_domains_rcu);
-}
-
-/*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first CPU number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two CPUs are in the same cache domain, see cpus_share_cache().
- */
-DEFINE_PER_CPU(struct sched_domain *, sd_llc);
-DEFINE_PER_CPU(int, sd_llc_size);
-DEFINE_PER_CPU(int, sd_llc_id);
-DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
-DEFINE_PER_CPU(struct sched_domain *, sd_numa);
-DEFINE_PER_CPU(struct sched_domain *, sd_asym);
-
-static void update_top_cache_domain(int cpu)
-{
-       struct sched_domain_shared *sds = NULL;
-       struct sched_domain *sd;
-       int id = cpu;
-       int size = 1;
-
-       sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
-       if (sd) {
-               id = cpumask_first(sched_domain_span(sd));
-               size = cpumask_weight(sched_domain_span(sd));
-               sds = sd->shared;
-       }
-
-       rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
-       per_cpu(sd_llc_size, cpu) = size;
-       per_cpu(sd_llc_id, cpu) = id;
-       rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
-
-       sd = lowest_flag_domain(cpu, SD_NUMA);
-       rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
-
-       sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
-       rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
-}
-
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
-static void
-cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       struct sched_domain *tmp;
-
-       /* Remove the sched domains which do not contribute to scheduling. */
-       for (tmp = sd; tmp; ) {
-               struct sched_domain *parent = tmp->parent;
-               if (!parent)
-                       break;
-
-               if (sd_parent_degenerate(tmp, parent)) {
-                       tmp->parent = parent->parent;
-                       if (parent->parent)
-                               parent->parent->child = tmp;
-                       /*
-                        * Transfer SD_PREFER_SIBLING down in case of a
-                        * degenerate parent; the spans match for this
-                        * so the property transfers.
-                        */
-                       if (parent->flags & SD_PREFER_SIBLING)
-                               tmp->flags |= SD_PREFER_SIBLING;
-                       destroy_sched_domain(parent);
-               } else
-                       tmp = tmp->parent;
-       }
-
-       if (sd && sd_degenerate(sd)) {
-               tmp = sd;
-               sd = sd->parent;
-               destroy_sched_domain(tmp);
-               if (sd)
-                       sd->child = NULL;
-       }
-
-       sched_domain_debug(sd, cpu);
-
-       rq_attach_root(rq, rd);
-       tmp = rq->sd;
-       rcu_assign_pointer(rq->sd, sd);
-       destroy_sched_domains(tmp);
-
-       update_top_cache_domain(cpu);
-}
-
-/* Setup the mask of CPUs configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
-       int ret;
-
-       alloc_bootmem_cpumask_var(&cpu_isolated_map);
-       ret = cpulist_parse(str, cpu_isolated_map);
-       if (ret) {
-               pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
-               return 0;
-       }
-       return 1;
-}
-__setup("isolcpus=", isolated_cpu_setup);
-
-struct s_data {
-       struct sched_domain ** __percpu sd;
-       struct root_domain      *rd;
-};
-
-enum s_alloc {
-       sa_rootdomain,
-       sa_sd,
-       sa_sd_storage,
-       sa_none,
-};
-
-/*
- * Build an iteration mask that can exclude certain CPUs from the upwards
- * domain traversal.
- *
- * Asymmetric node setups can result in situations where the domain tree is of
- * unequal depth, make sure to skip domains that already cover the entire
- * range.
- *
- * In that case build_sched_domains() will have terminated the iteration early
- * and our sibling sd spans will be empty. Domains should always include the
- * CPU they're built on, so check that.
- */
-static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
-{
-       const struct cpumask *span = sched_domain_span(sd);
-       struct sd_data *sdd = sd->private;
-       struct sched_domain *sibling;
-       int i;
-
-       for_each_cpu(i, span) {
-               sibling = *per_cpu_ptr(sdd->sd, i);
-               if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
-                       continue;
-
-               cpumask_set_cpu(i, sched_group_mask(sg));
-       }
-}
-
-/*
- * Return the canonical balance CPU for this group, this is the first CPU
- * of this group that's also in the iteration mask.
- */
-int group_balance_cpu(struct sched_group *sg)
-{
-       return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
-}
-
-static int
-build_overlap_sched_groups(struct sched_domain *sd, int cpu)
-{
-       struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
-       const struct cpumask *span = sched_domain_span(sd);
-       struct cpumask *covered = sched_domains_tmpmask;
-       struct sd_data *sdd = sd->private;
-       struct sched_domain *sibling;
-       int i;
-
-       cpumask_clear(covered);
-
-       for_each_cpu(i, span) {
-               struct cpumask *sg_span;
-
-               if (cpumask_test_cpu(i, covered))
-                       continue;
-
-               sibling = *per_cpu_ptr(sdd->sd, i);
-
-               /* See the comment near build_group_mask(). */
-               if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
-                       continue;
-
-               sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-                               GFP_KERNEL, cpu_to_node(cpu));
-
-               if (!sg)
-                       goto fail;
-
-               sg_span = sched_group_cpus(sg);
-               if (sibling->child)
-                       cpumask_copy(sg_span, sched_domain_span(sibling->child));
-               else
-                       cpumask_set_cpu(i, sg_span);
-
-               cpumask_or(covered, covered, sg_span);
-
-               sg->sgc = *per_cpu_ptr(sdd->sgc, i);
-               if (atomic_inc_return(&sg->sgc->ref) == 1)
-                       build_group_mask(sd, sg);
-
-               /*
-                * Initialize sgc->capacity such that even if we mess up the
-                * domains and no possible iteration will get us here, we won't
-                * die on a /0 trap.
-                */
-               sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
-               sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
-
-               /*
-                * Make sure the first group of this domain contains the
-                * canonical balance CPU. Otherwise the sched_domain iteration
-                * breaks. See update_sg_lb_stats().
-                */
-               if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
-                   group_balance_cpu(sg) == cpu)
-                       groups = sg;
-
-               if (!first)
-                       first = sg;
-               if (last)
-                       last->next = sg;
-               last = sg;
-               last->next = first;
-       }
-       sd->groups = groups;
-
-       return 0;
-
-fail:
-       free_sched_groups(first, 0);
-
-       return -ENOMEM;
-}
-
-static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
-{
-       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
-       struct sched_domain *child = sd->child;
-
-       if (child)
-               cpu = cpumask_first(sched_domain_span(child));
-
-       if (sg) {
-               *sg = *per_cpu_ptr(sdd->sg, cpu);
-               (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
-
-               /* For claim_allocations: */
-               atomic_set(&(*sg)->sgc->ref, 1);
-       }
-
-       return cpu;
-}
-
-/*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_capacity to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
-static int
-build_sched_groups(struct sched_domain *sd, int cpu)
-{
-       struct sched_group *first = NULL, *last = NULL;
-       struct sd_data *sdd = sd->private;
-       const struct cpumask *span = sched_domain_span(sd);
-       struct cpumask *covered;
-       int i;
-
-       get_group(cpu, sdd, &sd->groups);
-       atomic_inc(&sd->groups->ref);
-
-       if (cpu != cpumask_first(span))
-               return 0;
-
-       lockdep_assert_held(&sched_domains_mutex);
-       covered = sched_domains_tmpmask;
-
-       cpumask_clear(covered);
-
-       for_each_cpu(i, span) {
-               struct sched_group *sg;
-               int group, j;
-
-               if (cpumask_test_cpu(i, covered))
-                       continue;
-
-               group = get_group(i, sdd, &sg);
-               cpumask_setall(sched_group_mask(sg));
-
-               for_each_cpu(j, span) {
-                       if (get_group(j, sdd, NULL) != group)
-                               continue;
-
-                       cpumask_set_cpu(j, covered);
-                       cpumask_set_cpu(j, sched_group_cpus(sg));
-               }
-
-               if (!first)
-                       first = sg;
-               if (last)
-                       last->next = sg;
-               last = sg;
-       }
-       last->next = first;
-
-       return 0;
-}
-
-/*
- * Initialize sched groups cpu_capacity.
- *
- * cpu_capacity indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_capacity for all the groups in a sched domain will be same
- * unless there are asymmetries in the topology. If there are asymmetries,
- * group having more cpu_capacity will pickup more load compared to the
- * group having less cpu_capacity.
- */
-static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
-{
-       struct sched_group *sg = sd->groups;
-
-       WARN_ON(!sg);
-
-       do {
-               int cpu, max_cpu = -1;
-
-               sg->group_weight = cpumask_weight(sched_group_cpus(sg));
-
-               if (!(sd->flags & SD_ASYM_PACKING))
-                       goto next;
-
-               for_each_cpu(cpu, sched_group_cpus(sg)) {
-                       if (max_cpu < 0)
-                               max_cpu = cpu;
-                       else if (sched_asym_prefer(cpu, max_cpu))
-                               max_cpu = cpu;
-               }
-               sg->asym_prefer_cpu = max_cpu;
-
-next:
-               sg = sg->next;
-       } while (sg != sd->groups);
-
-       if (cpu != group_balance_cpu(sg))
-               return;
-
-       update_group_capacity(sd, cpu);
-}
-
-/*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
-
-static int default_relax_domain_level = -1;
-int sched_domain_level_max;
-
-static int __init setup_relax_domain_level(char *str)
-{
-       if (kstrtoint(str, 0, &default_relax_domain_level))
-               pr_warn("Unable to set relax_domain_level\n");
-
-       return 1;
-}
-__setup("relax_domain_level=", setup_relax_domain_level);
-
-static void set_domain_attribute(struct sched_domain *sd,
-                                struct sched_domain_attr *attr)
-{
-       int request;
-
-       if (!attr || attr->relax_domain_level < 0) {
-               if (default_relax_domain_level < 0)
-                       return;
-               else
-                       request = default_relax_domain_level;
-       } else
-               request = attr->relax_domain_level;
-       if (request < sd->level) {
-               /* Turn off idle balance on this domain: */
-               sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-       } else {
-               /* Turn on idle balance on this domain: */
-               sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-       }
-}
-
-static void __sdt_free(const struct cpumask *cpu_map);
-static int __sdt_alloc(const struct cpumask *cpu_map);
-
-static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
-                                const struct cpumask *cpu_map)
-{
-       switch (what) {
-       case sa_rootdomain:
-               if (!atomic_read(&d->rd->refcount))
-                       free_rootdomain(&d->rd->rcu);
-               /* Fall through */
-       case sa_sd:
-               free_percpu(d->sd);
-               /* Fall through */
-       case sa_sd_storage:
-               __sdt_free(cpu_map);
-               /* Fall through */
-       case sa_none:
-               break;
-       }
-}
-
-static enum s_alloc
-__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
-{
-       memset(d, 0, sizeof(*d));
-
-       if (__sdt_alloc(cpu_map))
-               return sa_sd_storage;
-       d->sd = alloc_percpu(struct sched_domain *);
-       if (!d->sd)
-               return sa_sd_storage;
-       d->rd = alloc_rootdomain();
-       if (!d->rd)
-               return sa_sd;
-       return sa_rootdomain;
-}
-
-/*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
-static void claim_allocations(int cpu, struct sched_domain *sd)
-{
-       struct sd_data *sdd = sd->private;
-
-       WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
-       *per_cpu_ptr(sdd->sd, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
-               *per_cpu_ptr(sdd->sds, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
-               *per_cpu_ptr(sdd->sg, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
-               *per_cpu_ptr(sdd->sgc, cpu) = NULL;
-}
-
-#ifdef CONFIG_NUMA
-static int sched_domains_numa_levels;
-enum numa_topology_type sched_numa_topology_type;
-static int *sched_domains_numa_distance;
-int sched_max_numa_distance;
-static struct cpumask ***sched_domains_numa_masks;
-static int sched_domains_curr_level;
-#endif
-
-/*
- * SD_flags allowed in topology descriptions.
- *
- * These flags are purely descriptive of the topology and do not prescribe
- * behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
- *
- *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
- *   SD_SHARE_PKG_RESOURCES - describes shared caches
- *   SD_NUMA                - describes NUMA topologies
- *   SD_SHARE_POWERDOMAIN   - describes shared power domain
- *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
- *
- * Odd one out, which beside describing the topology has a quirk also
- * prescribes the desired behaviour that goes along with it:
- *
- *   SD_ASYM_PACKING        - describes SMT quirks
- */
-#define TOPOLOGY_SD_FLAGS              \
-       (SD_SHARE_CPUCAPACITY |         \
-        SD_SHARE_PKG_RESOURCES |       \
-        SD_NUMA |                      \
-        SD_ASYM_PACKING |              \
-        SD_ASYM_CPUCAPACITY |          \
-        SD_SHARE_POWERDOMAIN)
-
-static struct sched_domain *
-sd_init(struct sched_domain_topology_level *tl,
-       const struct cpumask *cpu_map,
-       struct sched_domain *child, int cpu)
-{
-       struct sd_data *sdd = &tl->data;
-       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
-       int sd_id, sd_weight, sd_flags = 0;
-
-#ifdef CONFIG_NUMA
-       /*
-        * Ugly hack to pass state to sd_numa_mask()...
-        */
-       sched_domains_curr_level = tl->numa_level;
-#endif
-
-       sd_weight = cpumask_weight(tl->mask(cpu));
-
-       if (tl->sd_flags)
-               sd_flags = (*tl->sd_flags)();
-       if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
-                       "wrong sd_flags in topology description\n"))
-               sd_flags &= ~TOPOLOGY_SD_FLAGS;
-
-       *sd = (struct sched_domain){
-               .min_interval           = sd_weight,
-               .max_interval           = 2*sd_weight,
-               .busy_factor            = 32,
-               .imbalance_pct          = 125,
-
-               .cache_nice_tries       = 0,
-               .busy_idx               = 0,
-               .idle_idx               = 0,
-               .newidle_idx            = 0,
-               .wake_idx               = 0,
-               .forkexec_idx           = 0,
-
-               .flags                  = 1*SD_LOAD_BALANCE
-                                       | 1*SD_BALANCE_NEWIDLE
-                                       | 1*SD_BALANCE_EXEC
-                                       | 1*SD_BALANCE_FORK
-                                       | 0*SD_BALANCE_WAKE
-                                       | 1*SD_WAKE_AFFINE
-                                       | 0*SD_SHARE_CPUCAPACITY
-                                       | 0*SD_SHARE_PKG_RESOURCES
-                                       | 0*SD_SERIALIZE
-                                       | 0*SD_PREFER_SIBLING
-                                       | 0*SD_NUMA
-                                       | sd_flags
-                                       ,
-
-               .last_balance           = jiffies,
-               .balance_interval       = sd_weight,
-               .smt_gain               = 0,
-               .max_newidle_lb_cost    = 0,
-               .next_decay_max_lb_cost = jiffies,
-               .child                  = child,
-#ifdef CONFIG_SCHED_DEBUG
-               .name                   = tl->name,
-#endif
-       };
-
-       cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
-       sd_id = cpumask_first(sched_domain_span(sd));
-
-       /*
-        * Convert topological properties into behaviour.
-        */
-
-       if (sd->flags & SD_ASYM_CPUCAPACITY) {
-               struct sched_domain *t = sd;
-
-               for_each_lower_domain(t)
-                       t->flags |= SD_BALANCE_WAKE;
-       }
-
-       if (sd->flags & SD_SHARE_CPUCAPACITY) {
-               sd->flags |= SD_PREFER_SIBLING;
-               sd->imbalance_pct = 110;
-               sd->smt_gain = 1178; /* ~15% */
-
-       } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
-               sd->imbalance_pct = 117;
-               sd->cache_nice_tries = 1;
-               sd->busy_idx = 2;
-
-#ifdef CONFIG_NUMA
-       } else if (sd->flags & SD_NUMA) {
-               sd->cache_nice_tries = 2;
-               sd->busy_idx = 3;
-               sd->idle_idx = 2;
-
-               sd->flags |= SD_SERIALIZE;
-               if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
-                       sd->flags &= ~(SD_BALANCE_EXEC |
-                                      SD_BALANCE_FORK |
-                                      SD_WAKE_AFFINE);
-               }
-
-#endif
-       } else {
-               sd->flags |= SD_PREFER_SIBLING;
-               sd->cache_nice_tries = 1;
-               sd->busy_idx = 2;
-               sd->idle_idx = 1;
-       }
-
-       /*
-        * For all levels sharing cache; connect a sched_domain_shared
-        * instance.
-        */
-       if (sd->flags & SD_SHARE_PKG_RESOURCES) {
-               sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
-               atomic_inc(&sd->shared->ref);
-               atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
-       }
-
-       sd->private = sdd;
-
-       return sd;
-}
-
-/*
- * Topology list, bottom-up.
- */
-static struct sched_domain_topology_level default_topology[] = {
-#ifdef CONFIG_SCHED_SMT
-       { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
-#endif
-#ifdef CONFIG_SCHED_MC
-       { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
-#endif
-       { cpu_cpu_mask, SD_INIT_NAME(DIE) },
-       { NULL, },
-};
-
-static struct sched_domain_topology_level *sched_domain_topology =
-       default_topology;
-
-#define for_each_sd_topology(tl)                       \
-       for (tl = sched_domain_topology; tl->mask; tl++)
-
-void set_sched_topology(struct sched_domain_topology_level *tl)
-{
-       if (WARN_ON_ONCE(sched_smp_initialized))
-               return;
-
-       sched_domain_topology = tl;
-}
-
-#ifdef CONFIG_NUMA
-
-static const struct cpumask *sd_numa_mask(int cpu)
-{
-       return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
-}
-
-static void sched_numa_warn(const char *str)
-{
-       static int done = false;
-       int i,j;
-
-       if (done)
-               return;
-
-       done = true;
-
-       printk(KERN_WARNING "ERROR: %s\n\n", str);
-
-       for (i = 0; i < nr_node_ids; i++) {
-               printk(KERN_WARNING "  ");
-               for (j = 0; j < nr_node_ids; j++)
-                       printk(KERN_CONT "%02d ", node_distance(i,j));
-               printk(KERN_CONT "\n");
-       }
-       printk(KERN_WARNING "\n");
-}
-
-bool find_numa_distance(int distance)
-{
-       int i;
-
-       if (distance == node_distance(0, 0))
-               return true;
-
-       for (i = 0; i < sched_domains_numa_levels; i++) {
-               if (sched_domains_numa_distance[i] == distance)
-                       return true;
-       }
-
-       return false;
-}
-
-/*
- * A system can have three types of NUMA topology:
- * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
- * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
- * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
- *
- * The difference between a glueless mesh topology and a backplane
- * topology lies in whether communication between not directly
- * connected nodes goes through intermediary nodes (where programs
- * could run), or through backplane controllers. This affects
- * placement of programs.
- *
- * The type of topology can be discerned with the following tests:
- * - If the maximum distance between any nodes is 1 hop, the system
- *   is directly connected.
- * - If for two nodes A and B, located N > 1 hops away from each other,
- *   there is an intermediary node C, which is < N hops away from both
- *   nodes A and B, the system is a glueless mesh.
- */
-static void init_numa_topology_type(void)
-{
-       int a, b, c, n;
-
-       n = sched_max_numa_distance;
-
-       if (sched_domains_numa_levels <= 1) {
-               sched_numa_topology_type = NUMA_DIRECT;
-               return;
-       }
-
-       for_each_online_node(a) {
-               for_each_online_node(b) {
-                       /* Find two nodes furthest removed from each other. */
-                       if (node_distance(a, b) < n)
-                               continue;
-
-                       /* Is there an intermediary node between a and b? */
-                       for_each_online_node(c) {
-                               if (node_distance(a, c) < n &&
-                                   node_distance(b, c) < n) {
-                                       sched_numa_topology_type =
-                                                       NUMA_GLUELESS_MESH;
-                                       return;
-                               }
-                       }
-
-                       sched_numa_topology_type = NUMA_BACKPLANE;
-                       return;
-               }
-       }
-}
-
-static void sched_init_numa(void)
-{
-       int next_distance, curr_distance = node_distance(0, 0);
-       struct sched_domain_topology_level *tl;
-       int level = 0;
-       int i, j, k;
-
-       sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
-       if (!sched_domains_numa_distance)
-               return;
-
-       /*
-        * O(nr_nodes^2) deduplicating selection sort -- in order to find the
-        * unique distances in the node_distance() table.
-        *
-        * Assumes node_distance(0,j) includes all distances in
-        * node_distance(i,j) in order to avoid cubic time.
-        */
-       next_distance = curr_distance;
-       for (i = 0; i < nr_node_ids; i++) {
-               for (j = 0; j < nr_node_ids; j++) {
-                       for (k = 0; k < nr_node_ids; k++) {
-                               int distance = node_distance(i, k);
-
-                               if (distance > curr_distance &&
-                                   (distance < next_distance ||
-                                    next_distance == curr_distance))
-                                       next_distance = distance;
-
-                               /*
-                                * While not a strong assumption it would be nice to know
-                                * about cases where if node A is connected to B, B is not
-                                * equally connected to A.
-                                */
-                               if (sched_debug() && node_distance(k, i) != distance)
-                                       sched_numa_warn("Node-distance not symmetric");
-
-                               if (sched_debug() && i && !find_numa_distance(distance))
-                                       sched_numa_warn("Node-0 not representative");
-                       }
-                       if (next_distance != curr_distance) {
-                               sched_domains_numa_distance[level++] = next_distance;
-                               sched_domains_numa_levels = level;
-                               curr_distance = next_distance;
-                       } else break;
-               }
-
-               /*
-                * In case of sched_debug() we verify the above assumption.
-                */
-               if (!sched_debug())
-                       break;
-       }
-
-       if (!level)
-               return;
-
-       /*
-        * 'level' contains the number of unique distances, excluding the
-        * identity distance node_distance(i,i).
-        *
-        * The sched_domains_numa_distance[] array includes the actual distance
-        * numbers.
-        */
-
-       /*
-        * Here, we should temporarily reset sched_domains_numa_levels to 0.
-        * If it fails to allocate memory for array sched_domains_numa_masks[][],
-        * the array will contain less then 'level' members. This could be
-        * dangerous when we use it to iterate array sched_domains_numa_masks[][]
-        * in other functions.
-        *
-        * We reset it to 'level' at the end of this function.
-        */
-       sched_domains_numa_levels = 0;
-
-       sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
-       if (!sched_domains_numa_masks)
-               return;
-
-       /*
-        * Now for each level, construct a mask per node which contains all
-        * CPUs of nodes that are that many hops away from us.
-        */
-       for (i = 0; i < level; i++) {
-               sched_domains_numa_masks[i] =
-                       kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
-               if (!sched_domains_numa_masks[i])
-                       return;
-
-               for (j = 0; j < nr_node_ids; j++) {
-                       struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
-                       if (!mask)
-                               return;
-
-                       sched_domains_numa_masks[i][j] = mask;
-
-                       for_each_node(k) {
-                               if (node_distance(j, k) > sched_domains_numa_distance[i])
-                                       continue;
-
-                               cpumask_or(mask, mask, cpumask_of_node(k));
-                       }
-               }
-       }
-
-       /* Compute default topology size */
-       for (i = 0; sched_domain_topology[i].mask; i++);
-
-       tl = kzalloc((i + level + 1) *
-                       sizeof(struct sched_domain_topology_level), GFP_KERNEL);
-       if (!tl)
-               return;
-
-       /*
-        * Copy the default topology bits..
-        */
-       for (i = 0; sched_domain_topology[i].mask; i++)
-               tl[i] = sched_domain_topology[i];
-
-       /*
-        * .. and append 'j' levels of NUMA goodness.
-        */
-       for (j = 0; j < level; i++, j++) {
-               tl[i] = (struct sched_domain_topology_level){
-                       .mask = sd_numa_mask,
-                       .sd_flags = cpu_numa_flags,
-                       .flags = SDTL_OVERLAP,
-                       .numa_level = j,
-                       SD_INIT_NAME(NUMA)
-               };
-       }
-
-       sched_domain_topology = tl;
-
-       sched_domains_numa_levels = level;
-       sched_max_numa_distance = sched_domains_numa_distance[level - 1];
-
-       init_numa_topology_type();
-}
-
-static void sched_domains_numa_masks_set(unsigned int cpu)
-{
-       int node = cpu_to_node(cpu);
-       int i, j;
-
-       for (i = 0; i < sched_domains_numa_levels; i++) {
-               for (j = 0; j < nr_node_ids; j++) {
-                       if (node_distance(j, node) <= sched_domains_numa_distance[i])
-                               cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
-               }
-       }
-}
-
-static void sched_domains_numa_masks_clear(unsigned int cpu)
-{
-       int i, j;
-
-       for (i = 0; i < sched_domains_numa_levels; i++) {
-               for (j = 0; j < nr_node_ids; j++)
-                       cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
-       }
-}
-
-#else
-static inline void sched_init_numa(void) { }
-static void sched_domains_numa_masks_set(unsigned int cpu) { }
-static void sched_domains_numa_masks_clear(unsigned int cpu) { }
-#endif /* CONFIG_NUMA */
-
-static int __sdt_alloc(const struct cpumask *cpu_map)
-{
-       struct sched_domain_topology_level *tl;
-       int j;
-
-       for_each_sd_topology(tl) {
-               struct sd_data *sdd = &tl->data;
-
-               sdd->sd = alloc_percpu(struct sched_domain *);
-               if (!sdd->sd)
-                       return -ENOMEM;
-
-               sdd->sds = alloc_percpu(struct sched_domain_shared *);
-               if (!sdd->sds)
-                       return -ENOMEM;
-
-               sdd->sg = alloc_percpu(struct sched_group *);
-               if (!sdd->sg)
-                       return -ENOMEM;
-
-               sdd->sgc = alloc_percpu(struct sched_group_capacity *);
-               if (!sdd->sgc)
-                       return -ENOMEM;
-
-               for_each_cpu(j, cpu_map) {
-                       struct sched_domain *sd;
-                       struct sched_domain_shared *sds;
-                       struct sched_group *sg;
-                       struct sched_group_capacity *sgc;
-
-                       sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sd)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sd, j) = sd;
-
-                       sds = kzalloc_node(sizeof(struct sched_domain_shared),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sds)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sds, j) = sds;
-
-                       sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sg)
-                               return -ENOMEM;
-
-                       sg->next = sg;
-
-                       *per_cpu_ptr(sdd->sg, j) = sg;
-
-                       sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sgc)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sgc, j) = sgc;
-               }
-       }
-
-       return 0;
-}
-
-static void __sdt_free(const struct cpumask *cpu_map)
-{
-       struct sched_domain_topology_level *tl;
-       int j;
-
-       for_each_sd_topology(tl) {
-               struct sd_data *sdd = &tl->data;
-
-               for_each_cpu(j, cpu_map) {
-                       struct sched_domain *sd;
-
-                       if (sdd->sd) {
-                               sd = *per_cpu_ptr(sdd->sd, j);
-                               if (sd && (sd->flags & SD_OVERLAP))
-                                       free_sched_groups(sd->groups, 0);
-                               kfree(*per_cpu_ptr(sdd->sd, j));
-                       }
-
-                       if (sdd->sds)
-                               kfree(*per_cpu_ptr(sdd->sds, j));
-                       if (sdd->sg)
-                               kfree(*per_cpu_ptr(sdd->sg, j));
-                       if (sdd->sgc)
-                               kfree(*per_cpu_ptr(sdd->sgc, j));
-               }
-               free_percpu(sdd->sd);
-               sdd->sd = NULL;
-               free_percpu(sdd->sds);
-               sdd->sds = NULL;
-               free_percpu(sdd->sg);
-               sdd->sg = NULL;
-               free_percpu(sdd->sgc);
-               sdd->sgc = NULL;
-       }
-}
-
-struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
-               const struct cpumask *cpu_map, struct sched_domain_attr *attr,
-               struct sched_domain *child, int cpu)
-{
-       struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
-
-       if (child) {
-               sd->level = child->level + 1;
-               sched_domain_level_max = max(sched_domain_level_max, sd->level);
-               child->parent = sd;
-
-               if (!cpumask_subset(sched_domain_span(child),
-                                   sched_domain_span(sd))) {
-                       pr_err("BUG: arch topology borken\n");
-#ifdef CONFIG_SCHED_DEBUG
-                       pr_err("     the %s domain not a subset of the %s domain\n",
-                                       child->name, sd->name);
-#endif
-                       /* Fixup, ensure @sd has at least @child cpus. */
-                       cpumask_or(sched_domain_span(sd),
-                                  sched_domain_span(sd),
-                                  sched_domain_span(child));
-               }
-
-       }
-       set_domain_attribute(sd, attr);
-
-       return sd;
-}
-
-/*
- * Build sched domains for a given set of CPUs and attach the sched domains
- * to the individual CPUs
- */
-static int
-build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
-{
-       enum s_alloc alloc_state;
-       struct sched_domain *sd;
-       struct s_data d;
-       struct rq *rq = NULL;
-       int i, ret = -ENOMEM;
-
-       alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
-       if (alloc_state != sa_rootdomain)
-               goto error;
-
-       /* Set up domains for CPUs specified by the cpu_map: */
-       for_each_cpu(i, cpu_map) {
-               struct sched_domain_topology_level *tl;
-
-               sd = NULL;
-               for_each_sd_topology(tl) {
-                       sd = build_sched_domain(tl, cpu_map, attr, sd, i);
-                       if (tl == sched_domain_topology)
-                               *per_cpu_ptr(d.sd, i) = sd;
-                       if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
-                               sd->flags |= SD_OVERLAP;
-                       if (cpumask_equal(cpu_map, sched_domain_span(sd)))
-                               break;
-               }
-       }
-
-       /* Build the groups for the domains */
-       for_each_cpu(i, cpu_map) {
-               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-                       sd->span_weight = cpumask_weight(sched_domain_span(sd));
-                       if (sd->flags & SD_OVERLAP) {
-                               if (build_overlap_sched_groups(sd, i))
-                                       goto error;
-                       } else {
-                               if (build_sched_groups(sd, i))
-                                       goto error;
-                       }
-               }
-       }
-
-       /* Calculate CPU capacity for physical packages and nodes */
-       for (i = nr_cpumask_bits-1; i >= 0; i--) {
-               if (!cpumask_test_cpu(i, cpu_map))
-                       continue;
-
-               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-                       claim_allocations(i, sd);
-                       init_sched_groups_capacity(i, sd);
-               }
-       }
-
-       /* Attach the domains */
-       rcu_read_lock();
-       for_each_cpu(i, cpu_map) {
-               rq = cpu_rq(i);
-               sd = *per_cpu_ptr(d.sd, i);
-
-               /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
-               if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
-                       WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
-
-               cpu_attach_domain(sd, d.rd, i);
-       }
-       rcu_read_unlock();
-
-       if (rq && sched_debug_enabled) {
-               pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
-                       cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
-       }
-
-       ret = 0;
-error:
-       __free_domain_allocs(&d, alloc_state, cpu_map);
-       return ret;
-}
-
-/* Current sched domains: */
-static cpumask_var_t                   *doms_cur;
-
-/* Number of sched domains in 'doms_cur': */
-static int                             ndoms_cur;
-
-/* Attribues of custom domains in 'doms_cur' */
-static struct sched_domain_attr                *dattr_cur;
-
-/*
- * Special case: If a kmalloc() of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
-static cpumask_var_t                   fallback_doms;
-
-/*
- * arch_update_cpu_topology lets virtualized architectures update the
- * CPU core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
-int __weak arch_update_cpu_topology(void)
-{
-       return 0;
-}
-
-cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-{
-       int i;
-       cpumask_var_t *doms;
-
-       doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
-       if (!doms)
-               return NULL;
-       for (i = 0; i < ndoms; i++) {
-               if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
-                       free_sched_domains(doms, i);
-                       return NULL;
-               }
-       }
-       return doms;
-}
-
-void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-{
-       unsigned int i;
-       for (i = 0; i < ndoms; i++)
-               free_cpumask_var(doms[i]);
-       kfree(doms);
-}
-
-/*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated CPUs, but could be used to
- * exclude other special cases in the future.
- */
-static int init_sched_domains(const struct cpumask *cpu_map)
-{
-       int err;
-
-       arch_update_cpu_topology();
-       ndoms_cur = 1;
-       doms_cur = alloc_sched_domains(ndoms_cur);
-       if (!doms_cur)
-               doms_cur = &fallback_doms;
-       cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
-       err = build_sched_domains(doms_cur[0], NULL);
-       register_sched_domain_sysctl();
-
-       return err;
-}
-
-/*
- * Detach sched domains from a group of CPUs specified in cpu_map
- * These CPUs will now be attached to the NULL domain
- */
-static void detach_destroy_domains(const struct cpumask *cpu_map)
-{
-       int i;
-
-       rcu_read_lock();
-       for_each_cpu(i, cpu_map)
-               cpu_attach_domain(NULL, &def_root_domain, i);
-       rcu_read_unlock();
-}
-
-/* handle null as "default" */
-static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-                       struct sched_domain_attr *new, int idx_new)
-{
-       struct sched_domain_attr tmp;
-
-       /* Fast path: */
-       if (!new && !cur)
-               return 1;
-
-       tmp = SD_ATTR_INIT;
-       return !memcmp(cur ? (cur + idx_cur) : &tmp,
-                       new ? (new + idx_new) : &tmp,
-                       sizeof(struct sched_domain_attr));
-}
-
-/*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains.  This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
-void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
-                            struct sched_domain_attr *dattr_new)
-{
-       int i, j, n;
-       int new_topology;
-
-       mutex_lock(&sched_domains_mutex);
-
-       /* Always unregister in case we don't destroy any domains: */
-       unregister_sched_domain_sysctl();
-
-       /* Let the architecture update CPU core mappings: */
-       new_topology = arch_update_cpu_topology();
-
-       n = doms_new ? ndoms_new : 0;
-
-       /* Destroy deleted domains: */
-       for (i = 0; i < ndoms_cur; i++) {
-               for (j = 0; j < n && !new_topology; j++) {
-                       if (cpumask_equal(doms_cur[i], doms_new[j])
-                           && dattrs_equal(dattr_cur, i, dattr_new, j))
-                               goto match1;
-               }
-               /* No match - a current sched domain not in new doms_new[] */
-               detach_destroy_domains(doms_cur[i]);
-match1:
-               ;
-       }
-
-       n = ndoms_cur;
-       if (doms_new == NULL) {
-               n = 0;
-               doms_new = &fallback_doms;
-               cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
-               WARN_ON_ONCE(dattr_new);
-       }
-
-       /* Build new domains: */
-       for (i = 0; i < ndoms_new; i++) {
-               for (j = 0; j < n && !new_topology; j++) {
-                       if (cpumask_equal(doms_new[i], doms_cur[j])
-                           && dattrs_equal(dattr_new, i, dattr_cur, j))
-                               goto match2;
-               }
-               /* No match - add a new doms_new */
-               build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
-match2:
-               ;
-       }
-
-       /* Remember the new sched domains: */
-       if (doms_cur != &fallback_doms)
-               free_sched_domains(doms_cur, ndoms_cur);
-
-       kfree(dattr_cur);
-       doms_cur = doms_new;
-       dattr_cur = dattr_new;
-       ndoms_cur = ndoms_new;
-
-       register_sched_domain_sysctl();
-
-       mutex_unlock(&sched_domains_mutex);
-}
-
 /*
  * used to mark begin/end of suspend/resume:
  */
index 8ff5cc539e8a103b50493280da550e632af810ca..17ed94b9b4130d7229510dc4aaa0b7f41656a4c2 100644 (file)
@@ -223,7 +223,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
               dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 }
 
-extern struct mutex sched_domains_mutex;
+extern void init_dl_bw(struct dl_bw *dl_b);
 
 #ifdef CONFIG_CGROUP_SCHED
 
@@ -584,6 +584,13 @@ struct root_domain {
 };
 
 extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+extern cpumask_var_t fallback_doms;
+extern cpumask_var_t sched_domains_tmpmask;
+
+extern void init_defrootdomain(void);
+extern int init_sched_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 
 #endif /* CONFIG_SMP */
 
@@ -886,6 +893,16 @@ extern int sched_max_numa_distance;
 extern bool find_numa_distance(int distance);
 #endif
 
+#ifdef CONFIG_NUMA
+extern void sched_init_numa(void);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+#else
+static inline void sched_init_numa(void) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+#endif
+
 #ifdef CONFIG_NUMA_BALANCING
 /* The regions in numa_faults array from task_struct */
 enum numa_faults_stats {
@@ -1752,6 +1769,10 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
                __release(rq2->lock);
 }
 
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
 #else /* CONFIG_SMP */
 
 /*
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
new file mode 100644 (file)
index 0000000..1b0b4fb
--- /dev/null
@@ -0,0 +1,1658 @@
+/*
+ * Scheduler topology setup/handling methods
+ */
+#include <linux/sched.h>
+#include <linux/mutex.h>
+
+#include "sched.h"
+
+DEFINE_MUTEX(sched_domains_mutex);
+
+/* Protected by sched_domains_mutex: */
+cpumask_var_t sched_domains_tmpmask;
+
+#ifdef CONFIG_SCHED_DEBUG
+
+static __read_mostly int sched_debug_enabled;
+
+static int __init sched_debug_setup(char *str)
+{
+       sched_debug_enabled = 1;
+
+       return 0;
+}
+early_param("sched_debug", sched_debug_setup);
+
+static inline bool sched_debug(void)
+{
+       return sched_debug_enabled;
+}
+
+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
+                                 struct cpumask *groupmask)
+{
+       struct sched_group *group = sd->groups;
+
+       cpumask_clear(groupmask);
+
+       printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
+
+       if (!(sd->flags & SD_LOAD_BALANCE)) {
+               printk("does not load-balance\n");
+               if (sd->parent)
+                       printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
+                                       " has parent");
+               return -1;
+       }
+
+       printk(KERN_CONT "span %*pbl level %s\n",
+              cpumask_pr_args(sched_domain_span(sd)), sd->name);
+
+       if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+               printk(KERN_ERR "ERROR: domain->span does not contain "
+                               "CPU%d\n", cpu);
+       }
+       if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
+               printk(KERN_ERR "ERROR: domain->groups does not contain"
+                               " CPU%d\n", cpu);
+       }
+
+       printk(KERN_DEBUG "%*s groups:", level + 1, "");
+       do {
+               if (!group) {
+                       printk("\n");
+                       printk(KERN_ERR "ERROR: group is NULL\n");
+                       break;
+               }
+
+               if (!cpumask_weight(sched_group_cpus(group))) {
+                       printk(KERN_CONT "\n");
+                       printk(KERN_ERR "ERROR: empty group\n");
+                       break;
+               }
+
+               if (!(sd->flags & SD_OVERLAP) &&
+                   cpumask_intersects(groupmask, sched_group_cpus(group))) {
+                       printk(KERN_CONT "\n");
+                       printk(KERN_ERR "ERROR: repeated CPUs\n");
+                       break;
+               }
+
+               cpumask_or(groupmask, groupmask, sched_group_cpus(group));
+
+               printk(KERN_CONT " %*pbl",
+                      cpumask_pr_args(sched_group_cpus(group)));
+               if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
+                       printk(KERN_CONT " (cpu_capacity = %lu)",
+                               group->sgc->capacity);
+               }
+
+               group = group->next;
+       } while (group != sd->groups);
+       printk(KERN_CONT "\n");
+
+       if (!cpumask_equal(sched_domain_span(sd), groupmask))
+               printk(KERN_ERR "ERROR: groups don't span domain->span\n");
+
+       if (sd->parent &&
+           !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
+               printk(KERN_ERR "ERROR: parent span is not a superset "
+                       "of domain->span\n");
+       return 0;
+}
+
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
+{
+       int level = 0;
+
+       if (!sched_debug_enabled)
+               return;
+
+       if (!sd) {
+               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+               return;
+       }
+
+       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
+
+       for (;;) {
+               if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
+                       break;
+               level++;
+               sd = sd->parent;
+               if (!sd)
+                       break;
+       }
+}
+#else /* !CONFIG_SCHED_DEBUG */
+
+# define sched_debug_enabled 0
+# define sched_domain_debug(sd, cpu) do { } while (0)
+static inline bool sched_debug(void)
+{
+       return false;
+}
+#endif /* CONFIG_SCHED_DEBUG */
+
+static int sd_degenerate(struct sched_domain *sd)
+{
+       if (cpumask_weight(sched_domain_span(sd)) == 1)
+               return 1;
+
+       /* Following flags need at least 2 groups */
+       if (sd->flags & (SD_LOAD_BALANCE |
+                        SD_BALANCE_NEWIDLE |
+                        SD_BALANCE_FORK |
+                        SD_BALANCE_EXEC |
+                        SD_SHARE_CPUCAPACITY |
+                        SD_ASYM_CPUCAPACITY |
+                        SD_SHARE_PKG_RESOURCES |
+                        SD_SHARE_POWERDOMAIN)) {
+               if (sd->groups != sd->groups->next)
+                       return 0;
+       }
+
+       /* Following flags don't use groups */
+       if (sd->flags & (SD_WAKE_AFFINE))
+               return 0;
+
+       return 1;
+}
+
+static int
+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
+{
+       unsigned long cflags = sd->flags, pflags = parent->flags;
+
+       if (sd_degenerate(parent))
+               return 1;
+
+       if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
+               return 0;
+
+       /* Flags needing groups don't count if only 1 group in parent */
+       if (parent->groups == parent->groups->next) {
+               pflags &= ~(SD_LOAD_BALANCE |
+                               SD_BALANCE_NEWIDLE |
+                               SD_BALANCE_FORK |
+                               SD_BALANCE_EXEC |
+                               SD_ASYM_CPUCAPACITY |
+                               SD_SHARE_CPUCAPACITY |
+                               SD_SHARE_PKG_RESOURCES |
+                               SD_PREFER_SIBLING |
+                               SD_SHARE_POWERDOMAIN);
+               if (nr_node_ids == 1)
+                       pflags &= ~SD_SERIALIZE;
+       }
+       if (~cflags & pflags)
+               return 0;
+
+       return 1;
+}
+
+static void free_rootdomain(struct rcu_head *rcu)
+{
+       struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
+
+       cpupri_cleanup(&rd->cpupri);
+       cpudl_cleanup(&rd->cpudl);
+       free_cpumask_var(rd->dlo_mask);
+       free_cpumask_var(rd->rto_mask);
+       free_cpumask_var(rd->online);
+       free_cpumask_var(rd->span);
+       kfree(rd);
+}
+
+void rq_attach_root(struct rq *rq, struct root_domain *rd)
+{
+       struct root_domain *old_rd = NULL;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       if (rq->rd) {
+               old_rd = rq->rd;
+
+               if (cpumask_test_cpu(rq->cpu, old_rd->online))
+                       set_rq_offline(rq);
+
+               cpumask_clear_cpu(rq->cpu, old_rd->span);
+
+               /*
+                * If we dont want to free the old_rd yet then
+                * set old_rd to NULL to skip the freeing later
+                * in this function:
+                */
+               if (!atomic_dec_and_test(&old_rd->refcount))
+                       old_rd = NULL;
+       }
+
+       atomic_inc(&rd->refcount);
+       rq->rd = rd;
+
+       cpumask_set_cpu(rq->cpu, rd->span);
+       if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
+               set_rq_online(rq);
+
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+       if (old_rd)
+               call_rcu_sched(&old_rd->rcu, free_rootdomain);
+}
+
+static int init_rootdomain(struct root_domain *rd)
+{
+       memset(rd, 0, sizeof(*rd));
+
+       if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
+               goto out;
+       if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
+               goto free_span;
+       if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
+               goto free_online;
+       if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+               goto free_dlo_mask;
+
+       init_dl_bw(&rd->dl_bw);
+       if (cpudl_init(&rd->cpudl) != 0)
+               goto free_rto_mask;
+
+       if (cpupri_init(&rd->cpupri) != 0)
+               goto free_cpudl;
+       return 0;
+
+free_cpudl:
+       cpudl_cleanup(&rd->cpudl);
+free_rto_mask:
+       free_cpumask_var(rd->rto_mask);
+free_dlo_mask:
+       free_cpumask_var(rd->dlo_mask);
+free_online:
+       free_cpumask_var(rd->online);
+free_span:
+       free_cpumask_var(rd->span);
+out:
+       return -ENOMEM;
+}
+
+/*
+ * By default the system creates a single root-domain with all CPUs as
+ * members (mimicking the global state we have today).
+ */
+struct root_domain def_root_domain;
+
+void init_defrootdomain(void)
+{
+       init_rootdomain(&def_root_domain);
+
+       atomic_set(&def_root_domain.refcount, 1);
+}
+
+static struct root_domain *alloc_rootdomain(void)
+{
+       struct root_domain *rd;
+
+       rd = kmalloc(sizeof(*rd), GFP_KERNEL);
+       if (!rd)
+               return NULL;
+
+       if (init_rootdomain(rd) != 0) {
+               kfree(rd);
+               return NULL;
+       }
+
+       return rd;
+}
+
+static void free_sched_groups(struct sched_group *sg, int free_sgc)
+{
+       struct sched_group *tmp, *first;
+
+       if (!sg)
+               return;
+
+       first = sg;
+       do {
+               tmp = sg->next;
+
+               if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
+                       kfree(sg->sgc);
+
+               kfree(sg);
+               sg = tmp;
+       } while (sg != first);
+}
+
+static void destroy_sched_domain(struct sched_domain *sd)
+{
+       /*
+        * If its an overlapping domain it has private groups, iterate and
+        * nuke them all.
+        */
+       if (sd->flags & SD_OVERLAP) {
+               free_sched_groups(sd->groups, 1);
+       } else if (atomic_dec_and_test(&sd->groups->ref)) {
+               kfree(sd->groups->sgc);
+               kfree(sd->groups);
+       }
+       if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
+               kfree(sd->shared);
+       kfree(sd);
+}
+
+static void destroy_sched_domains_rcu(struct rcu_head *rcu)
+{
+       struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
+
+       while (sd) {
+               struct sched_domain *parent = sd->parent;
+               destroy_sched_domain(sd);
+               sd = parent;
+       }
+}
+
+static void destroy_sched_domains(struct sched_domain *sd)
+{
+       if (sd)
+               call_rcu(&sd->rcu, destroy_sched_domains_rcu);
+}
+
+/*
+ * Keep a special pointer to the highest sched_domain that has
+ * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
+ * allows us to avoid some pointer chasing select_idle_sibling().
+ *
+ * Also keep a unique ID per domain (we use the first CPU number in
+ * the cpumask of the domain), this allows us to quickly tell if
+ * two CPUs are in the same cache domain, see cpus_share_cache().
+ */
+DEFINE_PER_CPU(struct sched_domain *, sd_llc);
+DEFINE_PER_CPU(int, sd_llc_size);
+DEFINE_PER_CPU(int, sd_llc_id);
+DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
+DEFINE_PER_CPU(struct sched_domain *, sd_numa);
+DEFINE_PER_CPU(struct sched_domain *, sd_asym);
+
+static void update_top_cache_domain(int cpu)
+{
+       struct sched_domain_shared *sds = NULL;
+       struct sched_domain *sd;
+       int id = cpu;
+       int size = 1;
+
+       sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
+       if (sd) {
+               id = cpumask_first(sched_domain_span(sd));
+               size = cpumask_weight(sched_domain_span(sd));
+               sds = sd->shared;
+       }
+
+       rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
+       per_cpu(sd_llc_size, cpu) = size;
+       per_cpu(sd_llc_id, cpu) = id;
+       rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
+
+       sd = lowest_flag_domain(cpu, SD_NUMA);
+       rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
+
+       sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
+       rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
+}
+
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
+ * hold the hotplug lock.
+ */
+static void
+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       struct sched_domain *tmp;
+
+       /* Remove the sched domains which do not contribute to scheduling. */
+       for (tmp = sd; tmp; ) {
+               struct sched_domain *parent = tmp->parent;
+               if (!parent)
+                       break;
+
+               if (sd_parent_degenerate(tmp, parent)) {
+                       tmp->parent = parent->parent;
+                       if (parent->parent)
+                               parent->parent->child = tmp;
+                       /*
+                        * Transfer SD_PREFER_SIBLING down in case of a
+                        * degenerate parent; the spans match for this
+                        * so the property transfers.
+                        */
+                       if (parent->flags & SD_PREFER_SIBLING)
+                               tmp->flags |= SD_PREFER_SIBLING;
+                       destroy_sched_domain(parent);
+               } else
+                       tmp = tmp->parent;
+       }
+
+       if (sd && sd_degenerate(sd)) {
+               tmp = sd;
+               sd = sd->parent;
+               destroy_sched_domain(tmp);
+               if (sd)
+                       sd->child = NULL;
+       }
+
+       sched_domain_debug(sd, cpu);
+
+       rq_attach_root(rq, rd);
+       tmp = rq->sd;
+       rcu_assign_pointer(rq->sd, sd);
+       destroy_sched_domains(tmp);
+
+       update_top_cache_domain(cpu);
+}
+
+/* Setup the mask of CPUs configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
+{
+       int ret;
+
+       alloc_bootmem_cpumask_var(&cpu_isolated_map);
+       ret = cpulist_parse(str, cpu_isolated_map);
+       if (ret) {
+               pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
+               return 0;
+       }
+       return 1;
+}
+__setup("isolcpus=", isolated_cpu_setup);
+
+struct s_data {
+       struct sched_domain ** __percpu sd;
+       struct root_domain      *rd;
+};
+
+enum s_alloc {
+       sa_rootdomain,
+       sa_sd,
+       sa_sd_storage,
+       sa_none,
+};
+
+/*
+ * Build an iteration mask that can exclude certain CPUs from the upwards
+ * domain traversal.
+ *
+ * Asymmetric node setups can result in situations where the domain tree is of
+ * unequal depth, make sure to skip domains that already cover the entire
+ * range.
+ *
+ * In that case build_sched_domains() will have terminated the iteration early
+ * and our sibling sd spans will be empty. Domains should always include the
+ * CPU they're built on, so check that.
+ */
+static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
+{
+       const struct cpumask *span = sched_domain_span(sd);
+       struct sd_data *sdd = sd->private;
+       struct sched_domain *sibling;
+       int i;
+
+       for_each_cpu(i, span) {
+               sibling = *per_cpu_ptr(sdd->sd, i);
+               if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
+                       continue;
+
+               cpumask_set_cpu(i, sched_group_mask(sg));
+       }
+}
+
+/*
+ * Return the canonical balance CPU for this group, this is the first CPU
+ * of this group that's also in the iteration mask.
+ */
+int group_balance_cpu(struct sched_group *sg)
+{
+       return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
+}
+
+static int
+build_overlap_sched_groups(struct sched_domain *sd, int cpu)
+{
+       struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
+       const struct cpumask *span = sched_domain_span(sd);
+       struct cpumask *covered = sched_domains_tmpmask;
+       struct sd_data *sdd = sd->private;
+       struct sched_domain *sibling;
+       int i;
+
+       cpumask_clear(covered);
+
+       for_each_cpu(i, span) {
+               struct cpumask *sg_span;
+
+               if (cpumask_test_cpu(i, covered))
+                       continue;
+
+               sibling = *per_cpu_ptr(sdd->sd, i);
+
+               /* See the comment near build_group_mask(). */
+               if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
+                       continue;
+
+               sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+                               GFP_KERNEL, cpu_to_node(cpu));
+
+               if (!sg)
+                       goto fail;
+
+               sg_span = sched_group_cpus(sg);
+               if (sibling->child)
+                       cpumask_copy(sg_span, sched_domain_span(sibling->child));
+               else
+                       cpumask_set_cpu(i, sg_span);
+
+               cpumask_or(covered, covered, sg_span);
+
+               sg->sgc = *per_cpu_ptr(sdd->sgc, i);
+               if (atomic_inc_return(&sg->sgc->ref) == 1)
+                       build_group_mask(sd, sg);
+
+               /*
+                * Initialize sgc->capacity such that even if we mess up the
+                * domains and no possible iteration will get us here, we won't
+                * die on a /0 trap.
+                */
+               sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
+               sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
+
+               /*
+                * Make sure the first group of this domain contains the
+                * canonical balance CPU. Otherwise the sched_domain iteration
+                * breaks. See update_sg_lb_stats().
+                */
+               if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
+                   group_balance_cpu(sg) == cpu)
+                       groups = sg;
+
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+               last->next = first;
+       }
+       sd->groups = groups;
+
+       return 0;
+
+fail:
+       free_sched_groups(first, 0);
+
+       return -ENOMEM;
+}
+
+static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
+{
+       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+       struct sched_domain *child = sd->child;
+
+       if (child)
+               cpu = cpumask_first(sched_domain_span(child));
+
+       if (sg) {
+               *sg = *per_cpu_ptr(sdd->sg, cpu);
+               (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
+
+               /* For claim_allocations: */
+               atomic_set(&(*sg)->sgc->ref, 1);
+       }
+
+       return cpu;
+}
+
+/*
+ * build_sched_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_capacity to 0.
+ *
+ * Assumes the sched_domain tree is fully constructed
+ */
+static int
+build_sched_groups(struct sched_domain *sd, int cpu)
+{
+       struct sched_group *first = NULL, *last = NULL;
+       struct sd_data *sdd = sd->private;
+       const struct cpumask *span = sched_domain_span(sd);
+       struct cpumask *covered;
+       int i;
+
+       get_group(cpu, sdd, &sd->groups);
+       atomic_inc(&sd->groups->ref);
+
+       if (cpu != cpumask_first(span))
+               return 0;
+
+       lockdep_assert_held(&sched_domains_mutex);
+       covered = sched_domains_tmpmask;
+
+       cpumask_clear(covered);
+
+       for_each_cpu(i, span) {
+               struct sched_group *sg;
+               int group, j;
+
+               if (cpumask_test_cpu(i, covered))
+                       continue;
+
+               group = get_group(i, sdd, &sg);
+               cpumask_setall(sched_group_mask(sg));
+
+               for_each_cpu(j, span) {
+                       if (get_group(j, sdd, NULL) != group)
+                               continue;
+
+                       cpumask_set_cpu(j, covered);
+                       cpumask_set_cpu(j, sched_group_cpus(sg));
+               }
+
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+       }
+       last->next = first;
+
+       return 0;
+}
+
+/*
+ * Initialize sched groups cpu_capacity.
+ *
+ * cpu_capacity indicates the capacity of sched group, which is used while
+ * distributing the load between different sched groups in a sched domain.
+ * Typically cpu_capacity for all the groups in a sched domain will be same
+ * unless there are asymmetries in the topology. If there are asymmetries,
+ * group having more cpu_capacity will pickup more load compared to the
+ * group having less cpu_capacity.
+ */
+static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
+{
+       struct sched_group *sg = sd->groups;
+
+       WARN_ON(!sg);
+
+       do {
+               int cpu, max_cpu = -1;
+
+               sg->group_weight = cpumask_weight(sched_group_cpus(sg));
+
+               if (!(sd->flags & SD_ASYM_PACKING))
+                       goto next;
+
+               for_each_cpu(cpu, sched_group_cpus(sg)) {
+                       if (max_cpu < 0)
+                               max_cpu = cpu;
+                       else if (sched_asym_prefer(cpu, max_cpu))
+                               max_cpu = cpu;
+               }
+               sg->asym_prefer_cpu = max_cpu;
+
+next:
+               sg = sg->next;
+       } while (sg != sd->groups);
+
+       if (cpu != group_balance_cpu(sg))
+               return;
+
+       update_group_capacity(sd, cpu);
+}
+
+/*
+ * Initializers for schedule domains
+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
+ */
+
+static int default_relax_domain_level = -1;
+int sched_domain_level_max;
+
+static int __init setup_relax_domain_level(char *str)
+{
+       if (kstrtoint(str, 0, &default_relax_domain_level))
+               pr_warn("Unable to set relax_domain_level\n");
+
+       return 1;
+}
+__setup("relax_domain_level=", setup_relax_domain_level);
+
+static void set_domain_attribute(struct sched_domain *sd,
+                                struct sched_domain_attr *attr)
+{
+       int request;
+
+       if (!attr || attr->relax_domain_level < 0) {
+               if (default_relax_domain_level < 0)
+                       return;
+               else
+                       request = default_relax_domain_level;
+       } else
+               request = attr->relax_domain_level;
+       if (request < sd->level) {
+               /* Turn off idle balance on this domain: */
+               sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+       } else {
+               /* Turn on idle balance on this domain: */
+               sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+       }
+}
+
+static void __sdt_free(const struct cpumask *cpu_map);
+static int __sdt_alloc(const struct cpumask *cpu_map);
+
+static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
+                                const struct cpumask *cpu_map)
+{
+       switch (what) {
+       case sa_rootdomain:
+               if (!atomic_read(&d->rd->refcount))
+                       free_rootdomain(&d->rd->rcu);
+               /* Fall through */
+       case sa_sd:
+               free_percpu(d->sd);
+               /* Fall through */
+       case sa_sd_storage:
+               __sdt_free(cpu_map);
+               /* Fall through */
+       case sa_none:
+               break;
+       }
+}
+
+static enum s_alloc
+__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
+{
+       memset(d, 0, sizeof(*d));
+
+       if (__sdt_alloc(cpu_map))
+               return sa_sd_storage;
+       d->sd = alloc_percpu(struct sched_domain *);
+       if (!d->sd)
+               return sa_sd_storage;
+       d->rd = alloc_rootdomain();
+       if (!d->rd)
+               return sa_sd;
+       return sa_rootdomain;
+}
+
+/*
+ * NULL the sd_data elements we've used to build the sched_domain and
+ * sched_group structure so that the subsequent __free_domain_allocs()
+ * will not free the data we're using.
+ */
+static void claim_allocations(int cpu, struct sched_domain *sd)
+{
+       struct sd_data *sdd = sd->private;
+
+       WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
+       *per_cpu_ptr(sdd->sd, cpu) = NULL;
+
+       if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
+               *per_cpu_ptr(sdd->sds, cpu) = NULL;
+
+       if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
+               *per_cpu_ptr(sdd->sg, cpu) = NULL;
+
+       if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
+               *per_cpu_ptr(sdd->sgc, cpu) = NULL;
+}
+
+#ifdef CONFIG_NUMA
+static int sched_domains_numa_levels;
+enum numa_topology_type sched_numa_topology_type;
+static int *sched_domains_numa_distance;
+int sched_max_numa_distance;
+static struct cpumask ***sched_domains_numa_masks;
+static int sched_domains_curr_level;
+#endif
+
+/*
+ * SD_flags allowed in topology descriptions.
+ *
+ * These flags are purely descriptive of the topology and do not prescribe
+ * behaviour. Behaviour is artificial and mapped in the below sd_init()
+ * function:
+ *
+ *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
+ *   SD_SHARE_PKG_RESOURCES - describes shared caches
+ *   SD_NUMA                - describes NUMA topologies
+ *   SD_SHARE_POWERDOMAIN   - describes shared power domain
+ *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
+ *
+ * Odd one out, which beside describing the topology has a quirk also
+ * prescribes the desired behaviour that goes along with it:
+ *
+ *   SD_ASYM_PACKING        - describes SMT quirks
+ */
+#define TOPOLOGY_SD_FLAGS              \
+       (SD_SHARE_CPUCAPACITY |         \
+        SD_SHARE_PKG_RESOURCES |       \
+        SD_NUMA |                      \
+        SD_ASYM_PACKING |              \
+        SD_ASYM_CPUCAPACITY |          \
+        SD_SHARE_POWERDOMAIN)
+
+static struct sched_domain *
+sd_init(struct sched_domain_topology_level *tl,
+       const struct cpumask *cpu_map,
+       struct sched_domain *child, int cpu)
+{
+       struct sd_data *sdd = &tl->data;
+       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+       int sd_id, sd_weight, sd_flags = 0;
+
+#ifdef CONFIG_NUMA
+       /*
+        * Ugly hack to pass state to sd_numa_mask()...
+        */
+       sched_domains_curr_level = tl->numa_level;
+#endif
+
+       sd_weight = cpumask_weight(tl->mask(cpu));
+
+       if (tl->sd_flags)
+               sd_flags = (*tl->sd_flags)();
+       if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
+                       "wrong sd_flags in topology description\n"))
+               sd_flags &= ~TOPOLOGY_SD_FLAGS;
+
+       *sd = (struct sched_domain){
+               .min_interval           = sd_weight,
+               .max_interval           = 2*sd_weight,
+               .busy_factor            = 32,
+               .imbalance_pct          = 125,
+
+               .cache_nice_tries       = 0,
+               .busy_idx               = 0,
+               .idle_idx               = 0,
+               .newidle_idx            = 0,
+               .wake_idx               = 0,
+               .forkexec_idx           = 0,
+
+               .flags                  = 1*SD_LOAD_BALANCE
+                                       | 1*SD_BALANCE_NEWIDLE
+                                       | 1*SD_BALANCE_EXEC
+                                       | 1*SD_BALANCE_FORK
+                                       | 0*SD_BALANCE_WAKE
+                                       | 1*SD_WAKE_AFFINE
+                                       | 0*SD_SHARE_CPUCAPACITY
+                                       | 0*SD_SHARE_PKG_RESOURCES
+                                       | 0*SD_SERIALIZE
+                                       | 0*SD_PREFER_SIBLING
+                                       | 0*SD_NUMA
+                                       | sd_flags
+                                       ,
+
+               .last_balance           = jiffies,
+               .balance_interval       = sd_weight,
+               .smt_gain               = 0,
+               .max_newidle_lb_cost    = 0,
+               .next_decay_max_lb_cost = jiffies,
+               .child                  = child,
+#ifdef CONFIG_SCHED_DEBUG
+               .name                   = tl->name,
+#endif
+       };
+
+       cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
+       sd_id = cpumask_first(sched_domain_span(sd));
+
+       /*
+        * Convert topological properties into behaviour.
+        */
+
+       if (sd->flags & SD_ASYM_CPUCAPACITY) {
+               struct sched_domain *t = sd;
+
+               for_each_lower_domain(t)
+                       t->flags |= SD_BALANCE_WAKE;
+       }
+
+       if (sd->flags & SD_SHARE_CPUCAPACITY) {
+               sd->flags |= SD_PREFER_SIBLING;
+               sd->imbalance_pct = 110;
+               sd->smt_gain = 1178; /* ~15% */
+
+       } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+               sd->imbalance_pct = 117;
+               sd->cache_nice_tries = 1;
+               sd->busy_idx = 2;
+
+#ifdef CONFIG_NUMA
+       } else if (sd->flags & SD_NUMA) {
+               sd->cache_nice_tries = 2;
+               sd->busy_idx = 3;
+               sd->idle_idx = 2;
+
+               sd->flags |= SD_SERIALIZE;
+               if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
+                       sd->flags &= ~(SD_BALANCE_EXEC |
+                                      SD_BALANCE_FORK |
+                                      SD_WAKE_AFFINE);
+               }
+
+#endif
+       } else {
+               sd->flags |= SD_PREFER_SIBLING;
+               sd->cache_nice_tries = 1;
+               sd->busy_idx = 2;
+               sd->idle_idx = 1;
+       }
+
+       /*
+        * For all levels sharing cache; connect a sched_domain_shared
+        * instance.
+        */
+       if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+               sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
+               atomic_inc(&sd->shared->ref);
+               atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
+       }
+
+       sd->private = sdd;
+
+       return sd;
+}
+
+/*
+ * Topology list, bottom-up.
+ */
+static struct sched_domain_topology_level default_topology[] = {
+#ifdef CONFIG_SCHED_SMT
+       { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
+#endif
+#ifdef CONFIG_SCHED_MC
+       { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+#endif
+       { cpu_cpu_mask, SD_INIT_NAME(DIE) },
+       { NULL, },
+};
+
+static struct sched_domain_topology_level *sched_domain_topology =
+       default_topology;
+
+#define for_each_sd_topology(tl)                       \
+       for (tl = sched_domain_topology; tl->mask; tl++)
+
+void set_sched_topology(struct sched_domain_topology_level *tl)
+{
+       if (WARN_ON_ONCE(sched_smp_initialized))
+               return;
+
+       sched_domain_topology = tl;
+}
+
+#ifdef CONFIG_NUMA
+
+static const struct cpumask *sd_numa_mask(int cpu)
+{
+       return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
+}
+
+static void sched_numa_warn(const char *str)
+{
+       static int done = false;
+       int i,j;
+
+       if (done)
+               return;
+
+       done = true;
+
+       printk(KERN_WARNING "ERROR: %s\n\n", str);
+
+       for (i = 0; i < nr_node_ids; i++) {
+               printk(KERN_WARNING "  ");
+               for (j = 0; j < nr_node_ids; j++)
+                       printk(KERN_CONT "%02d ", node_distance(i,j));
+               printk(KERN_CONT "\n");
+       }
+       printk(KERN_WARNING "\n");
+}
+
+bool find_numa_distance(int distance)
+{
+       int i;
+
+       if (distance == node_distance(0, 0))
+               return true;
+
+       for (i = 0; i < sched_domains_numa_levels; i++) {
+               if (sched_domains_numa_distance[i] == distance)
+                       return true;
+       }
+
+       return false;
+}
+
+/*
+ * A system can have three types of NUMA topology:
+ * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
+ * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
+ * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
+ *
+ * The difference between a glueless mesh topology and a backplane
+ * topology lies in whether communication between not directly
+ * connected nodes goes through intermediary nodes (where programs
+ * could run), or through backplane controllers. This affects
+ * placement of programs.
+ *
+ * The type of topology can be discerned with the following tests:
+ * - If the maximum distance between any nodes is 1 hop, the system
+ *   is directly connected.
+ * - If for two nodes A and B, located N > 1 hops away from each other,
+ *   there is an intermediary node C, which is < N hops away from both
+ *   nodes A and B, the system is a glueless mesh.
+ */
+static void init_numa_topology_type(void)
+{
+       int a, b, c, n;
+
+       n = sched_max_numa_distance;
+
+       if (sched_domains_numa_levels <= 1) {
+               sched_numa_topology_type = NUMA_DIRECT;
+               return;
+       }
+
+       for_each_online_node(a) {
+               for_each_online_node(b) {
+                       /* Find two nodes furthest removed from each other. */
+                       if (node_distance(a, b) < n)
+                               continue;
+
+                       /* Is there an intermediary node between a and b? */
+                       for_each_online_node(c) {
+                               if (node_distance(a, c) < n &&
+                                   node_distance(b, c) < n) {
+                                       sched_numa_topology_type =
+                                                       NUMA_GLUELESS_MESH;
+                                       return;
+                               }
+                       }
+
+                       sched_numa_topology_type = NUMA_BACKPLANE;
+                       return;
+               }
+       }
+}
+
+void sched_init_numa(void)
+{
+       int next_distance, curr_distance = node_distance(0, 0);
+       struct sched_domain_topology_level *tl;
+       int level = 0;
+       int i, j, k;
+
+       sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
+       if (!sched_domains_numa_distance)
+               return;
+
+       /*
+        * O(nr_nodes^2) deduplicating selection sort -- in order to find the
+        * unique distances in the node_distance() table.
+        *
+        * Assumes node_distance(0,j) includes all distances in
+        * node_distance(i,j) in order to avoid cubic time.
+        */
+       next_distance = curr_distance;
+       for (i = 0; i < nr_node_ids; i++) {
+               for (j = 0; j < nr_node_ids; j++) {
+                       for (k = 0; k < nr_node_ids; k++) {
+                               int distance = node_distance(i, k);
+
+                               if (distance > curr_distance &&
+                                   (distance < next_distance ||
+                                    next_distance == curr_distance))
+                                       next_distance = distance;
+
+                               /*
+                                * While not a strong assumption it would be nice to know
+                                * about cases where if node A is connected to B, B is not
+                                * equally connected to A.
+                                */
+                               if (sched_debug() && node_distance(k, i) != distance)
+                                       sched_numa_warn("Node-distance not symmetric");
+
+                               if (sched_debug() && i && !find_numa_distance(distance))
+                                       sched_numa_warn("Node-0 not representative");
+                       }
+                       if (next_distance != curr_distance) {
+                               sched_domains_numa_distance[level++] = next_distance;
+                               sched_domains_numa_levels = level;
+                               curr_distance = next_distance;
+                       } else break;
+               }
+
+               /*
+                * In case of sched_debug() we verify the above assumption.
+                */
+               if (!sched_debug())
+                       break;
+       }
+
+       if (!level)
+               return;
+
+       /*
+        * 'level' contains the number of unique distances, excluding the
+        * identity distance node_distance(i,i).
+        *
+        * The sched_domains_numa_distance[] array includes the actual distance
+        * numbers.
+        */
+
+       /*
+        * Here, we should temporarily reset sched_domains_numa_levels to 0.
+        * If it fails to allocate memory for array sched_domains_numa_masks[][],
+        * the array will contain less then 'level' members. This could be
+        * dangerous when we use it to iterate array sched_domains_numa_masks[][]
+        * in other functions.
+        *
+        * We reset it to 'level' at the end of this function.
+        */
+       sched_domains_numa_levels = 0;
+
+       sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
+       if (!sched_domains_numa_masks)
+               return;
+
+       /*
+        * Now for each level, construct a mask per node which contains all
+        * CPUs of nodes that are that many hops away from us.
+        */
+       for (i = 0; i < level; i++) {
+               sched_domains_numa_masks[i] =
+                       kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
+               if (!sched_domains_numa_masks[i])
+                       return;
+
+               for (j = 0; j < nr_node_ids; j++) {
+                       struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
+                       if (!mask)
+                               return;
+
+                       sched_domains_numa_masks[i][j] = mask;
+
+                       for_each_node(k) {
+                               if (node_distance(j, k) > sched_domains_numa_distance[i])
+                                       continue;
+
+                               cpumask_or(mask, mask, cpumask_of_node(k));
+                       }
+               }
+       }
+
+       /* Compute default topology size */
+       for (i = 0; sched_domain_topology[i].mask; i++);
+
+       tl = kzalloc((i + level + 1) *
+                       sizeof(struct sched_domain_topology_level), GFP_KERNEL);
+       if (!tl)
+               return;
+
+       /*
+        * Copy the default topology bits..
+        */
+       for (i = 0; sched_domain_topology[i].mask; i++)
+               tl[i] = sched_domain_topology[i];
+
+       /*
+        * .. and append 'j' levels of NUMA goodness.
+        */
+       for (j = 0; j < level; i++, j++) {
+               tl[i] = (struct sched_domain_topology_level){
+                       .mask = sd_numa_mask,
+                       .sd_flags = cpu_numa_flags,
+                       .flags = SDTL_OVERLAP,
+                       .numa_level = j,
+                       SD_INIT_NAME(NUMA)
+               };
+       }
+
+       sched_domain_topology = tl;
+
+       sched_domains_numa_levels = level;
+       sched_max_numa_distance = sched_domains_numa_distance[level - 1];
+
+       init_numa_topology_type();
+}
+
+void sched_domains_numa_masks_set(unsigned int cpu)
+{
+       int node = cpu_to_node(cpu);
+       int i, j;
+
+       for (i = 0; i < sched_domains_numa_levels; i++) {
+               for (j = 0; j < nr_node_ids; j++) {
+                       if (node_distance(j, node) <= sched_domains_numa_distance[i])
+                               cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
+               }
+       }
+}
+
+void sched_domains_numa_masks_clear(unsigned int cpu)
+{
+       int i, j;
+
+       for (i = 0; i < sched_domains_numa_levels; i++) {
+               for (j = 0; j < nr_node_ids; j++)
+                       cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
+       }
+}
+
+#endif /* CONFIG_NUMA */
+
+static int __sdt_alloc(const struct cpumask *cpu_map)
+{
+       struct sched_domain_topology_level *tl;
+       int j;
+
+       for_each_sd_topology(tl) {
+               struct sd_data *sdd = &tl->data;
+
+               sdd->sd = alloc_percpu(struct sched_domain *);
+               if (!sdd->sd)
+                       return -ENOMEM;
+
+               sdd->sds = alloc_percpu(struct sched_domain_shared *);
+               if (!sdd->sds)
+                       return -ENOMEM;
+
+               sdd->sg = alloc_percpu(struct sched_group *);
+               if (!sdd->sg)
+                       return -ENOMEM;
+
+               sdd->sgc = alloc_percpu(struct sched_group_capacity *);
+               if (!sdd->sgc)
+                       return -ENOMEM;
+
+               for_each_cpu(j, cpu_map) {
+                       struct sched_domain *sd;
+                       struct sched_domain_shared *sds;
+                       struct sched_group *sg;
+                       struct sched_group_capacity *sgc;
+
+                       sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sd)
+                               return -ENOMEM;
+
+                       *per_cpu_ptr(sdd->sd, j) = sd;
+
+                       sds = kzalloc_node(sizeof(struct sched_domain_shared),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sds)
+                               return -ENOMEM;
+
+                       *per_cpu_ptr(sdd->sds, j) = sds;
+
+                       sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sg)
+                               return -ENOMEM;
+
+                       sg->next = sg;
+
+                       *per_cpu_ptr(sdd->sg, j) = sg;
+
+                       sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sgc)
+                               return -ENOMEM;
+
+                       *per_cpu_ptr(sdd->sgc, j) = sgc;
+               }
+       }
+
+       return 0;
+}
+
+static void __sdt_free(const struct cpumask *cpu_map)
+{
+       struct sched_domain_topology_level *tl;
+       int j;
+
+       for_each_sd_topology(tl) {
+               struct sd_data *sdd = &tl->data;
+
+               for_each_cpu(j, cpu_map) {
+                       struct sched_domain *sd;
+
+                       if (sdd->sd) {
+                               sd = *per_cpu_ptr(sdd->sd, j);
+                               if (sd && (sd->flags & SD_OVERLAP))
+                                       free_sched_groups(sd->groups, 0);
+                               kfree(*per_cpu_ptr(sdd->sd, j));
+                       }
+
+                       if (sdd->sds)
+                               kfree(*per_cpu_ptr(sdd->sds, j));
+                       if (sdd->sg)
+                               kfree(*per_cpu_ptr(sdd->sg, j));
+                       if (sdd->sgc)
+                               kfree(*per_cpu_ptr(sdd->sgc, j));
+               }
+               free_percpu(sdd->sd);
+               sdd->sd = NULL;
+               free_percpu(sdd->sds);
+               sdd->sds = NULL;
+               free_percpu(sdd->sg);
+               sdd->sg = NULL;
+               free_percpu(sdd->sgc);
+               sdd->sgc = NULL;
+       }
+}
+
+struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
+               const struct cpumask *cpu_map, struct sched_domain_attr *attr,
+               struct sched_domain *child, int cpu)
+{
+       struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
+
+       if (child) {
+               sd->level = child->level + 1;
+               sched_domain_level_max = max(sched_domain_level_max, sd->level);
+               child->parent = sd;
+
+               if (!cpumask_subset(sched_domain_span(child),
+                                   sched_domain_span(sd))) {
+                       pr_err("BUG: arch topology borken\n");
+#ifdef CONFIG_SCHED_DEBUG
+                       pr_err("     the %s domain not a subset of the %s domain\n",
+                                       child->name, sd->name);
+#endif
+                       /* Fixup, ensure @sd has at least @child cpus. */
+                       cpumask_or(sched_domain_span(sd),
+                                  sched_domain_span(sd),
+                                  sched_domain_span(child));
+               }
+
+       }
+       set_domain_attribute(sd, attr);
+
+       return sd;
+}
+
+/*
+ * Build sched domains for a given set of CPUs and attach the sched domains
+ * to the individual CPUs
+ */
+static int
+build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
+{
+       enum s_alloc alloc_state;
+       struct sched_domain *sd;
+       struct s_data d;
+       struct rq *rq = NULL;
+       int i, ret = -ENOMEM;
+
+       alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
+       if (alloc_state != sa_rootdomain)
+               goto error;
+
+       /* Set up domains for CPUs specified by the cpu_map: */
+       for_each_cpu(i, cpu_map) {
+               struct sched_domain_topology_level *tl;
+
+               sd = NULL;
+               for_each_sd_topology(tl) {
+                       sd = build_sched_domain(tl, cpu_map, attr, sd, i);
+                       if (tl == sched_domain_topology)
+                               *per_cpu_ptr(d.sd, i) = sd;
+                       if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
+                               sd->flags |= SD_OVERLAP;
+                       if (cpumask_equal(cpu_map, sched_domain_span(sd)))
+                               break;
+               }
+       }
+
+       /* Build the groups for the domains */
+       for_each_cpu(i, cpu_map) {
+               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+                       sd->span_weight = cpumask_weight(sched_domain_span(sd));
+                       if (sd->flags & SD_OVERLAP) {
+                               if (build_overlap_sched_groups(sd, i))
+                                       goto error;
+                       } else {
+                               if (build_sched_groups(sd, i))
+                                       goto error;
+                       }
+               }
+       }
+
+       /* Calculate CPU capacity for physical packages and nodes */
+       for (i = nr_cpumask_bits-1; i >= 0; i--) {
+               if (!cpumask_test_cpu(i, cpu_map))
+                       continue;
+
+               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+                       claim_allocations(i, sd);
+                       init_sched_groups_capacity(i, sd);
+               }
+       }
+
+       /* Attach the domains */
+       rcu_read_lock();
+       for_each_cpu(i, cpu_map) {
+               rq = cpu_rq(i);
+               sd = *per_cpu_ptr(d.sd, i);
+
+               /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
+               if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
+                       WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
+
+               cpu_attach_domain(sd, d.rd, i);
+       }
+       rcu_read_unlock();
+
+       if (rq && sched_debug_enabled) {
+               pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
+                       cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
+       }
+
+       ret = 0;
+error:
+       __free_domain_allocs(&d, alloc_state, cpu_map);
+       return ret;
+}
+
+/* Current sched domains: */
+static cpumask_var_t                   *doms_cur;
+
+/* Number of sched domains in 'doms_cur': */
+static int                             ndoms_cur;
+
+/* Attribues of custom domains in 'doms_cur' */
+static struct sched_domain_attr                *dattr_cur;
+
+/*
+ * Special case: If a kmalloc() of a doms_cur partition (array of
+ * cpumask) fails, then fallback to a single sched domain,
+ * as determined by the single cpumask fallback_doms.
+ */
+cpumask_var_t                          fallback_doms;
+
+/*
+ * arch_update_cpu_topology lets virtualized architectures update the
+ * CPU core maps. It is supposed to return 1 if the topology changed
+ * or 0 if it stayed the same.
+ */
+int __weak arch_update_cpu_topology(void)
+{
+       return 0;
+}
+
+cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
+{
+       int i;
+       cpumask_var_t *doms;
+
+       doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
+       if (!doms)
+               return NULL;
+       for (i = 0; i < ndoms; i++) {
+               if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
+                       free_sched_domains(doms, i);
+                       return NULL;
+               }
+       }
+       return doms;
+}
+
+void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
+{
+       unsigned int i;
+       for (i = 0; i < ndoms; i++)
+               free_cpumask_var(doms[i]);
+       kfree(doms);
+}
+
+/*
+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
+ * For now this just excludes isolated CPUs, but could be used to
+ * exclude other special cases in the future.
+ */
+int init_sched_domains(const struct cpumask *cpu_map)
+{
+       int err;
+
+       arch_update_cpu_topology();
+       ndoms_cur = 1;
+       doms_cur = alloc_sched_domains(ndoms_cur);
+       if (!doms_cur)
+               doms_cur = &fallback_doms;
+       cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
+       err = build_sched_domains(doms_cur[0], NULL);
+       register_sched_domain_sysctl();
+
+       return err;
+}
+
+/*
+ * Detach sched domains from a group of CPUs specified in cpu_map
+ * These CPUs will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const struct cpumask *cpu_map)
+{
+       int i;
+
+       rcu_read_lock();
+       for_each_cpu(i, cpu_map)
+               cpu_attach_domain(NULL, &def_root_domain, i);
+       rcu_read_unlock();
+}
+
+/* handle null as "default" */
+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
+                       struct sched_domain_attr *new, int idx_new)
+{
+       struct sched_domain_attr tmp;
+
+       /* Fast path: */
+       if (!new && !cur)
+               return 1;
+
+       tmp = SD_ATTR_INIT;
+       return !memcmp(cur ? (cur + idx_cur) : &tmp,
+                       new ? (new + idx_new) : &tmp,
+                       sizeof(struct sched_domain_attr));
+}
+
+/*
+ * Partition sched domains as specified by the 'ndoms_new'
+ * cpumasks in the array doms_new[] of cpumasks. This compares
+ * doms_new[] to the current sched domain partitioning, doms_cur[].
+ * It destroys each deleted domain and builds each new domain.
+ *
+ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
+ * The masks don't intersect (don't overlap.) We should setup one
+ * sched domain for each mask. CPUs not in any of the cpumasks will
+ * not be load balanced. If the same cpumask appears both in the
+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
+ * it as it is.
+ *
+ * The passed in 'doms_new' should be allocated using
+ * alloc_sched_domains.  This routine takes ownership of it and will
+ * free_sched_domains it when done with it. If the caller failed the
+ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
+ * and partition_sched_domains() will fallback to the single partition
+ * 'fallback_doms', it also forces the domains to be rebuilt.
+ *
+ * If doms_new == NULL it will be replaced with cpu_online_mask.
+ * ndoms_new == 0 is a special case for destroying existing domains,
+ * and it will not create the default domain.
+ *
+ * Call with hotplug lock held
+ */
+void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
+                            struct sched_domain_attr *dattr_new)
+{
+       int i, j, n;
+       int new_topology;
+
+       mutex_lock(&sched_domains_mutex);
+
+       /* Always unregister in case we don't destroy any domains: */
+       unregister_sched_domain_sysctl();
+
+       /* Let the architecture update CPU core mappings: */
+       new_topology = arch_update_cpu_topology();
+
+       n = doms_new ? ndoms_new : 0;
+
+       /* Destroy deleted domains: */
+       for (i = 0; i < ndoms_cur; i++) {
+               for (j = 0; j < n && !new_topology; j++) {
+                       if (cpumask_equal(doms_cur[i], doms_new[j])
+                           && dattrs_equal(dattr_cur, i, dattr_new, j))
+                               goto match1;
+               }
+               /* No match - a current sched domain not in new doms_new[] */
+               detach_destroy_domains(doms_cur[i]);
+match1:
+               ;
+       }
+
+       n = ndoms_cur;
+       if (doms_new == NULL) {
+               n = 0;
+               doms_new = &fallback_doms;
+               cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
+               WARN_ON_ONCE(dattr_new);
+       }
+
+       /* Build new domains: */
+       for (i = 0; i < ndoms_new; i++) {
+               for (j = 0; j < n && !new_topology; j++) {
+                       if (cpumask_equal(doms_new[i], doms_cur[j])
+                           && dattrs_equal(dattr_new, i, dattr_cur, j))
+                               goto match2;
+               }
+               /* No match - add a new doms_new */
+               build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
+match2:
+               ;
+       }
+
+       /* Remember the new sched domains: */
+       if (doms_cur != &fallback_doms)
+               free_sched_domains(doms_cur, ndoms_cur);
+
+       kfree(dattr_cur);
+       doms_cur = doms_new;
+       dattr_cur = dattr_new;
+       ndoms_cur = ndoms_new;
+
+       register_sched_domain_sysctl();
+
+       mutex_unlock(&sched_domains_mutex);
+}
+