select GENERIC_IRQ_SHOW
select GENERIC_IRQ_SHOW_LEVEL
select GENERIC_PCI_IOMAP if PCI
- select GENERIC_PTDUMP
select GENERIC_SMP_IDLE_THREAD
select GENERIC_TIME_VSYSCALL
+ select GENERIC_VDSO_DATA_STORE
select GENERIC_VDSO_TIME_NS
select HAS_IOPORT if PCI
select HAVE_ARCH_AUDITSYSCALL
select GENERIC_IRQ_SHOW
select GENERIC_IRQ_SHOW_LEVEL
select GENERIC_LIB_DEVMEM_IS_ALLOWED
+ select GENERIC_PENDING_IRQ if SMP
select GENERIC_PCI_IOMAP
- select GENERIC_PTDUMP if MMU
select GENERIC_SCHED_CLOCK
select GENERIC_SMP_IDLE_THREAD
select GENERIC_TIME_VSYSCALL if MMU && 64BIT
#include <asm-generic/io.h>
#ifdef CONFIG_MMU
-#define arch_memremap_wb(addr, size) \
+#define arch_memremap_wb(addr, size, flags) \
- ((__force void *)ioremap_prot((addr), (size), _PAGE_KERNEL))
+ ((__force void *)ioremap_prot((addr), (size), __pgprot(_PAGE_KERNEL)))
#endif
#endif /* _ASM_RISCV_IO_H */
select GENERIC_CPU_VULNERABILITIES
select GENERIC_ENTRY
select GENERIC_GETTIMEOFDAY
- select GENERIC_PTDUMP
select GENERIC_SMP_IDLE_THREAD
select GENERIC_TIME_VSYSCALL
+ select GENERIC_VDSO_DATA_STORE
select GENERIC_VDSO_TIME_NS
select GENERIC_IOREMAP if PCI
select HAVE_ALIGNED_STRUCT_PAGE
#define _PAGE_IOREMAP pgprot_val(PAGE_KERNEL)
#define ioremap_wc(addr, size) \
- ioremap_prot((addr), (size), pgprot_val(pgprot_writecombine(PAGE_KERNEL)))
+ ioremap_prot((addr), (size), pgprot_writecombine(PAGE_KERNEL))
-#define ioremap_wt(addr, size) \
- ioremap_prot((addr), (size), pgprot_writethrough(PAGE_KERNEL))
static inline void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
cpumask_set_cpu(0, &init_mm.context.cpu_attach_mask);
cpumask_set_cpu(0, mm_cpumask(&init_mm));
- set_max_mapnr(max_low_pfn);
- high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
-
pv_init();
- kfence_split_mapping();
- /* this will put all low memory onto the freelists */
- memblock_free_all();
setup_zero_pages(); /* Setup zeroed pages. */
}
--- /dev/null
- if (pagemap != page->pgmap) {
+// SPDX-License-Identifier: GPL-2.0-only OR MIT
+/*
+ * Copyright © 2024 Intel Corporation
+ *
+ * Authors:
+ * Matthew Brost <matthew.brost@intel.com>
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/hmm.h>
+#include <linux/memremap.h>
+#include <linux/migrate.h>
+#include <linux/mm_types.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+
+#include <drm/drm_device.h>
+#include <drm/drm_gpusvm.h>
+#include <drm/drm_pagemap.h>
+#include <drm/drm_print.h>
+
+/**
+ * DOC: Overview
+ *
+ * GPU Shared Virtual Memory (GPU SVM) layer for the Direct Rendering Manager (DRM)
+ * is a component of the DRM framework designed to manage shared virtual memory
+ * between the CPU and GPU. It enables efficient data exchange and processing
+ * for GPU-accelerated applications by allowing memory sharing and
+ * synchronization between the CPU's and GPU's virtual address spaces.
+ *
+ * Key GPU SVM Components:
+ *
+ * - Notifiers:
+ * Used for tracking memory intervals and notifying the GPU of changes,
+ * notifiers are sized based on a GPU SVM initialization parameter, with a
+ * recommendation of 512M or larger. They maintain a Red-BlacK tree and a
+ * list of ranges that fall within the notifier interval. Notifiers are
+ * tracked within a GPU SVM Red-BlacK tree and list and are dynamically
+ * inserted or removed as ranges within the interval are created or
+ * destroyed.
+ * - Ranges:
+ * Represent memory ranges mapped in a DRM device and managed by GPU SVM.
+ * They are sized based on an array of chunk sizes, which is a GPU SVM
+ * initialization parameter, and the CPU address space. Upon GPU fault,
+ * the largest aligned chunk that fits within the faulting CPU address
+ * space is chosen for the range size. Ranges are expected to be
+ * dynamically allocated on GPU fault and removed on an MMU notifier UNMAP
+ * event. As mentioned above, ranges are tracked in a notifier's Red-Black
+ * tree.
+ *
+ * - Operations:
+ * Define the interface for driver-specific GPU SVM operations such as
+ * range allocation, notifier allocation, and invalidations.
+ *
+ * - Device Memory Allocations:
+ * Embedded structure containing enough information for GPU SVM to migrate
+ * to / from device memory.
+ *
+ * - Device Memory Operations:
+ * Define the interface for driver-specific device memory operations
+ * release memory, populate pfns, and copy to / from device memory.
+ *
+ * This layer provides interfaces for allocating, mapping, migrating, and
+ * releasing memory ranges between the CPU and GPU. It handles all core memory
+ * management interactions (DMA mapping, HMM, and migration) and provides
+ * driver-specific virtual functions (vfuncs). This infrastructure is sufficient
+ * to build the expected driver components for an SVM implementation as detailed
+ * below.
+ *
+ * Expected Driver Components:
+ *
+ * - GPU page fault handler:
+ * Used to create ranges and notifiers based on the fault address,
+ * optionally migrate the range to device memory, and create GPU bindings.
+ *
+ * - Garbage collector:
+ * Used to unmap and destroy GPU bindings for ranges. Ranges are expected
+ * to be added to the garbage collector upon a MMU_NOTIFY_UNMAP event in
+ * notifier callback.
+ *
+ * - Notifier callback:
+ * Used to invalidate and DMA unmap GPU bindings for ranges.
+ */
+
+/**
+ * DOC: Locking
+ *
+ * GPU SVM handles locking for core MM interactions, i.e., it locks/unlocks the
+ * mmap lock as needed.
+ *
+ * GPU SVM introduces a global notifier lock, which safeguards the notifier's
+ * range RB tree and list, as well as the range's DMA mappings and sequence
+ * number. GPU SVM manages all necessary locking and unlocking operations,
+ * except for the recheck range's pages being valid
+ * (drm_gpusvm_range_pages_valid) when the driver is committing GPU bindings.
+ * This lock corresponds to the ``driver->update`` lock mentioned in
+ * Documentation/mm/hmm.rst. Future revisions may transition from a GPU SVM
+ * global lock to a per-notifier lock if finer-grained locking is deemed
+ * necessary.
+ *
+ * In addition to the locking mentioned above, the driver should implement a
+ * lock to safeguard core GPU SVM function calls that modify state, such as
+ * drm_gpusvm_range_find_or_insert and drm_gpusvm_range_remove. This lock is
+ * denoted as 'driver_svm_lock' in code examples. Finer grained driver side
+ * locking should also be possible for concurrent GPU fault processing within a
+ * single GPU SVM. The 'driver_svm_lock' can be via drm_gpusvm_driver_set_lock
+ * to add annotations to GPU SVM.
+ */
+
+/**
+ * DOC: Migration
+ *
+ * The migration support is quite simple, allowing migration between RAM and
+ * device memory at the range granularity. For example, GPU SVM currently does
+ * not support mixing RAM and device memory pages within a range. This means
+ * that upon GPU fault, the entire range can be migrated to device memory, and
+ * upon CPU fault, the entire range is migrated to RAM. Mixed RAM and device
+ * memory storage within a range could be added in the future if required.
+ *
+ * The reasoning for only supporting range granularity is as follows: it
+ * simplifies the implementation, and range sizes are driver-defined and should
+ * be relatively small.
+ */
+
+/**
+ * DOC: Partial Unmapping of Ranges
+ *
+ * Partial unmapping of ranges (e.g., 1M out of 2M is unmapped by CPU resulting
+ * in MMU_NOTIFY_UNMAP event) presents several challenges, with the main one
+ * being that a subset of the range still has CPU and GPU mappings. If the
+ * backing store for the range is in device memory, a subset of the backing
+ * store has references. One option would be to split the range and device
+ * memory backing store, but the implementation for this would be quite
+ * complicated. Given that partial unmappings are rare and driver-defined range
+ * sizes are relatively small, GPU SVM does not support splitting of ranges.
+ *
+ * With no support for range splitting, upon partial unmapping of a range, the
+ * driver is expected to invalidate and destroy the entire range. If the range
+ * has device memory as its backing, the driver is also expected to migrate any
+ * remaining pages back to RAM.
+ */
+
+/**
+ * DOC: Examples
+ *
+ * This section provides three examples of how to build the expected driver
+ * components: the GPU page fault handler, the garbage collector, and the
+ * notifier callback.
+ *
+ * The generic code provided does not include logic for complex migration
+ * policies, optimized invalidations, fined grained driver locking, or other
+ * potentially required driver locking (e.g., DMA-resv locks).
+ *
+ * 1) GPU page fault handler
+ *
+ * .. code-block:: c
+ *
+ * int driver_bind_range(struct drm_gpusvm *gpusvm, struct drm_gpusvm_range *range)
+ * {
+ * int err = 0;
+ *
+ * driver_alloc_and_setup_memory_for_bind(gpusvm, range);
+ *
+ * drm_gpusvm_notifier_lock(gpusvm);
+ * if (drm_gpusvm_range_pages_valid(range))
+ * driver_commit_bind(gpusvm, range);
+ * else
+ * err = -EAGAIN;
+ * drm_gpusvm_notifier_unlock(gpusvm);
+ *
+ * return err;
+ * }
+ *
+ * int driver_gpu_fault(struct drm_gpusvm *gpusvm, unsigned long fault_addr,
+ * unsigned long gpuva_start, unsigned long gpuva_end)
+ * {
+ * struct drm_gpusvm_ctx ctx = {};
+ * int err;
+ *
+ * driver_svm_lock();
+ * retry:
+ * // Always process UNMAPs first so view of GPU SVM ranges is current
+ * driver_garbage_collector(gpusvm);
+ *
+ * range = drm_gpusvm_range_find_or_insert(gpusvm, fault_addr,
+ * gpuva_start, gpuva_end,
+ * &ctx);
+ * if (IS_ERR(range)) {
+ * err = PTR_ERR(range);
+ * goto unlock;
+ * }
+ *
+ * if (driver_migration_policy(range)) {
+ * mmap_read_lock(mm);
+ * devmem = driver_alloc_devmem();
+ * err = drm_gpusvm_migrate_to_devmem(gpusvm, range,
+ * devmem_allocation,
+ * &ctx);
+ * mmap_read_unlock(mm);
+ * if (err) // CPU mappings may have changed
+ * goto retry;
+ * }
+ *
+ * err = drm_gpusvm_range_get_pages(gpusvm, range, &ctx);
+ * if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) { // CPU mappings changed
+ * if (err == -EOPNOTSUPP)
+ * drm_gpusvm_range_evict(gpusvm, range);
+ * goto retry;
+ * } else if (err) {
+ * goto unlock;
+ * }
+ *
+ * err = driver_bind_range(gpusvm, range);
+ * if (err == -EAGAIN) // CPU mappings changed
+ * goto retry
+ *
+ * unlock:
+ * driver_svm_unlock();
+ * return err;
+ * }
+ *
+ * 2) Garbage Collector
+ *
+ * .. code-block:: c
+ *
+ * void __driver_garbage_collector(struct drm_gpusvm *gpusvm,
+ * struct drm_gpusvm_range *range)
+ * {
+ * assert_driver_svm_locked(gpusvm);
+ *
+ * // Partial unmap, migrate any remaining device memory pages back to RAM
+ * if (range->flags.partial_unmap)
+ * drm_gpusvm_range_evict(gpusvm, range);
+ *
+ * driver_unbind_range(range);
+ * drm_gpusvm_range_remove(gpusvm, range);
+ * }
+ *
+ * void driver_garbage_collector(struct drm_gpusvm *gpusvm)
+ * {
+ * assert_driver_svm_locked(gpusvm);
+ *
+ * for_each_range_in_garbage_collector(gpusvm, range)
+ * __driver_garbage_collector(gpusvm, range);
+ * }
+ *
+ * 3) Notifier callback
+ *
+ * .. code-block:: c
+ *
+ * void driver_invalidation(struct drm_gpusvm *gpusvm,
+ * struct drm_gpusvm_notifier *notifier,
+ * const struct mmu_notifier_range *mmu_range)
+ * {
+ * struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
+ * struct drm_gpusvm_range *range = NULL;
+ *
+ * driver_invalidate_device_pages(gpusvm, mmu_range->start, mmu_range->end);
+ *
+ * drm_gpusvm_for_each_range(range, notifier, mmu_range->start,
+ * mmu_range->end) {
+ * drm_gpusvm_range_unmap_pages(gpusvm, range, &ctx);
+ *
+ * if (mmu_range->event != MMU_NOTIFY_UNMAP)
+ * continue;
+ *
+ * drm_gpusvm_range_set_unmapped(range, mmu_range);
+ * driver_garbage_collector_add(gpusvm, range);
+ * }
+ * }
+ */
+
+/**
+ * npages_in_range() - Calculate the number of pages in a given range
+ * @start: The start address of the range
+ * @end: The end address of the range
+ *
+ * This macro calculates the number of pages in a given memory range,
+ * specified by the start and end addresses. It divides the difference
+ * between the end and start addresses by the page size (PAGE_SIZE) to
+ * determine the number of pages in the range.
+ *
+ * Return: The number of pages in the specified range.
+ */
+static unsigned long
+npages_in_range(unsigned long start, unsigned long end)
+{
+ return (end - start) >> PAGE_SHIFT;
+}
+
+/**
+ * struct drm_gpusvm_zdd - GPU SVM zone device data
+ *
+ * @refcount: Reference count for the zdd
+ * @devmem_allocation: device memory allocation
+ * @device_private_page_owner: Device private pages owner
+ *
+ * This structure serves as a generic wrapper installed in
+ * page->zone_device_data. It provides infrastructure for looking up a device
+ * memory allocation upon CPU page fault and asynchronously releasing device
+ * memory once the CPU has no page references. Asynchronous release is useful
+ * because CPU page references can be dropped in IRQ contexts, while releasing
+ * device memory likely requires sleeping locks.
+ */
+struct drm_gpusvm_zdd {
+ struct kref refcount;
+ struct drm_gpusvm_devmem *devmem_allocation;
+ void *device_private_page_owner;
+};
+
+/**
+ * drm_gpusvm_zdd_alloc() - Allocate a zdd structure.
+ * @device_private_page_owner: Device private pages owner
+ *
+ * This function allocates and initializes a new zdd structure. It sets up the
+ * reference count and initializes the destroy work.
+ *
+ * Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
+ */
+static struct drm_gpusvm_zdd *
+drm_gpusvm_zdd_alloc(void *device_private_page_owner)
+{
+ struct drm_gpusvm_zdd *zdd;
+
+ zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
+ if (!zdd)
+ return NULL;
+
+ kref_init(&zdd->refcount);
+ zdd->devmem_allocation = NULL;
+ zdd->device_private_page_owner = device_private_page_owner;
+
+ return zdd;
+}
+
+/**
+ * drm_gpusvm_zdd_get() - Get a reference to a zdd structure.
+ * @zdd: Pointer to the zdd structure.
+ *
+ * This function increments the reference count of the provided zdd structure.
+ *
+ * Return: Pointer to the zdd structure.
+ */
+static struct drm_gpusvm_zdd *drm_gpusvm_zdd_get(struct drm_gpusvm_zdd *zdd)
+{
+ kref_get(&zdd->refcount);
+ return zdd;
+}
+
+/**
+ * drm_gpusvm_zdd_destroy() - Destroy a zdd structure.
+ * @ref: Pointer to the reference count structure.
+ *
+ * This function queues the destroy_work of the zdd for asynchronous destruction.
+ */
+static void drm_gpusvm_zdd_destroy(struct kref *ref)
+{
+ struct drm_gpusvm_zdd *zdd =
+ container_of(ref, struct drm_gpusvm_zdd, refcount);
+ struct drm_gpusvm_devmem *devmem = zdd->devmem_allocation;
+
+ if (devmem) {
+ complete_all(&devmem->detached);
+ if (devmem->ops->devmem_release)
+ devmem->ops->devmem_release(devmem);
+ }
+ kfree(zdd);
+}
+
+/**
+ * drm_gpusvm_zdd_put() - Put a zdd reference.
+ * @zdd: Pointer to the zdd structure.
+ *
+ * This function decrements the reference count of the provided zdd structure
+ * and schedules its destruction if the count drops to zero.
+ */
+static void drm_gpusvm_zdd_put(struct drm_gpusvm_zdd *zdd)
+{
+ kref_put(&zdd->refcount, drm_gpusvm_zdd_destroy);
+}
+
+/**
+ * drm_gpusvm_range_find() - Find GPU SVM range from GPU SVM notifier
+ * @notifier: Pointer to the GPU SVM notifier structure.
+ * @start: Start address of the range
+ * @end: End address of the range
+ *
+ * Return: A pointer to the drm_gpusvm_range if found or NULL
+ */
+struct drm_gpusvm_range *
+drm_gpusvm_range_find(struct drm_gpusvm_notifier *notifier, unsigned long start,
+ unsigned long end)
+{
+ struct interval_tree_node *itree;
+
+ itree = interval_tree_iter_first(¬ifier->root, start, end - 1);
+
+ if (itree)
+ return container_of(itree, struct drm_gpusvm_range, itree);
+ else
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_find);
+
+/**
+ * drm_gpusvm_for_each_range_safe() - Safely iterate over GPU SVM ranges in a notifier
+ * @range__: Iterator variable for the ranges
+ * @next__: Iterator variable for the ranges temporay storage
+ * @notifier__: Pointer to the GPU SVM notifier
+ * @start__: Start address of the range
+ * @end__: End address of the range
+ *
+ * This macro is used to iterate over GPU SVM ranges in a notifier while
+ * removing ranges from it.
+ */
+#define drm_gpusvm_for_each_range_safe(range__, next__, notifier__, start__, end__) \
+ for ((range__) = drm_gpusvm_range_find((notifier__), (start__), (end__)), \
+ (next__) = __drm_gpusvm_range_next(range__); \
+ (range__) && (drm_gpusvm_range_start(range__) < (end__)); \
+ (range__) = (next__), (next__) = __drm_gpusvm_range_next(range__))
+
+/**
+ * __drm_gpusvm_notifier_next() - get the next drm_gpusvm_notifier in the list
+ * @notifier: a pointer to the current drm_gpusvm_notifier
+ *
+ * Return: A pointer to the next drm_gpusvm_notifier if available, or NULL if
+ * the current notifier is the last one or if the input notifier is
+ * NULL.
+ */
+static struct drm_gpusvm_notifier *
+__drm_gpusvm_notifier_next(struct drm_gpusvm_notifier *notifier)
+{
+ if (notifier && !list_is_last(¬ifier->entry,
+ ¬ifier->gpusvm->notifier_list))
+ return list_next_entry(notifier, entry);
+
+ return NULL;
+}
+
+static struct drm_gpusvm_notifier *
+notifier_iter_first(struct rb_root_cached *root, unsigned long start,
+ unsigned long last)
+{
+ struct interval_tree_node *itree;
+
+ itree = interval_tree_iter_first(root, start, last);
+
+ if (itree)
+ return container_of(itree, struct drm_gpusvm_notifier, itree);
+ else
+ return NULL;
+}
+
+/**
+ * drm_gpusvm_for_each_notifier() - Iterate over GPU SVM notifiers in a gpusvm
+ * @notifier__: Iterator variable for the notifiers
+ * @notifier__: Pointer to the GPU SVM notifier
+ * @start__: Start address of the notifier
+ * @end__: End address of the notifier
+ *
+ * This macro is used to iterate over GPU SVM notifiers in a gpusvm.
+ */
+#define drm_gpusvm_for_each_notifier(notifier__, gpusvm__, start__, end__) \
+ for ((notifier__) = notifier_iter_first(&(gpusvm__)->root, (start__), (end__) - 1); \
+ (notifier__) && (drm_gpusvm_notifier_start(notifier__) < (end__)); \
+ (notifier__) = __drm_gpusvm_notifier_next(notifier__))
+
+/**
+ * drm_gpusvm_for_each_notifier_safe() - Safely iterate over GPU SVM notifiers in a gpusvm
+ * @notifier__: Iterator variable for the notifiers
+ * @next__: Iterator variable for the notifiers temporay storage
+ * @notifier__: Pointer to the GPU SVM notifier
+ * @start__: Start address of the notifier
+ * @end__: End address of the notifier
+ *
+ * This macro is used to iterate over GPU SVM notifiers in a gpusvm while
+ * removing notifiers from it.
+ */
+#define drm_gpusvm_for_each_notifier_safe(notifier__, next__, gpusvm__, start__, end__) \
+ for ((notifier__) = notifier_iter_first(&(gpusvm__)->root, (start__), (end__) - 1), \
+ (next__) = __drm_gpusvm_notifier_next(notifier__); \
+ (notifier__) && (drm_gpusvm_notifier_start(notifier__) < (end__)); \
+ (notifier__) = (next__), (next__) = __drm_gpusvm_notifier_next(notifier__))
+
+/**
+ * drm_gpusvm_notifier_invalidate() - Invalidate a GPU SVM notifier.
+ * @mni: Pointer to the mmu_interval_notifier structure.
+ * @mmu_range: Pointer to the mmu_notifier_range structure.
+ * @cur_seq: Current sequence number.
+ *
+ * This function serves as a generic MMU notifier for GPU SVM. It sets the MMU
+ * notifier sequence number and calls the driver invalidate vfunc under
+ * gpusvm->notifier_lock.
+ *
+ * Return: true if the operation succeeds, false otherwise.
+ */
+static bool
+drm_gpusvm_notifier_invalidate(struct mmu_interval_notifier *mni,
+ const struct mmu_notifier_range *mmu_range,
+ unsigned long cur_seq)
+{
+ struct drm_gpusvm_notifier *notifier =
+ container_of(mni, typeof(*notifier), notifier);
+ struct drm_gpusvm *gpusvm = notifier->gpusvm;
+
+ if (!mmu_notifier_range_blockable(mmu_range))
+ return false;
+
+ down_write(&gpusvm->notifier_lock);
+ mmu_interval_set_seq(mni, cur_seq);
+ gpusvm->ops->invalidate(gpusvm, notifier, mmu_range);
+ up_write(&gpusvm->notifier_lock);
+
+ return true;
+}
+
+/*
+ * drm_gpusvm_notifier_ops - MMU interval notifier operations for GPU SVM
+ */
+static const struct mmu_interval_notifier_ops drm_gpusvm_notifier_ops = {
+ .invalidate = drm_gpusvm_notifier_invalidate,
+};
+
+/**
+ * drm_gpusvm_init() - Initialize the GPU SVM.
+ * @gpusvm: Pointer to the GPU SVM structure.
+ * @name: Name of the GPU SVM.
+ * @drm: Pointer to the DRM device structure.
+ * @mm: Pointer to the mm_struct for the address space.
+ * @device_private_page_owner: Device private pages owner.
+ * @mm_start: Start address of GPU SVM.
+ * @mm_range: Range of the GPU SVM.
+ * @notifier_size: Size of individual notifiers.
+ * @ops: Pointer to the operations structure for GPU SVM.
+ * @chunk_sizes: Pointer to the array of chunk sizes used in range allocation.
+ * Entries should be powers of 2 in descending order with last
+ * entry being SZ_4K.
+ * @num_chunks: Number of chunks.
+ *
+ * This function initializes the GPU SVM.
+ *
+ * Return: 0 on success, a negative error code on failure.
+ */
+int drm_gpusvm_init(struct drm_gpusvm *gpusvm,
+ const char *name, struct drm_device *drm,
+ struct mm_struct *mm, void *device_private_page_owner,
+ unsigned long mm_start, unsigned long mm_range,
+ unsigned long notifier_size,
+ const struct drm_gpusvm_ops *ops,
+ const unsigned long *chunk_sizes, int num_chunks)
+{
+ if (!ops->invalidate || !num_chunks)
+ return -EINVAL;
+
+ gpusvm->name = name;
+ gpusvm->drm = drm;
+ gpusvm->mm = mm;
+ gpusvm->device_private_page_owner = device_private_page_owner;
+ gpusvm->mm_start = mm_start;
+ gpusvm->mm_range = mm_range;
+ gpusvm->notifier_size = notifier_size;
+ gpusvm->ops = ops;
+ gpusvm->chunk_sizes = chunk_sizes;
+ gpusvm->num_chunks = num_chunks;
+
+ mmgrab(mm);
+ gpusvm->root = RB_ROOT_CACHED;
+ INIT_LIST_HEAD(&gpusvm->notifier_list);
+
+ init_rwsem(&gpusvm->notifier_lock);
+
+ fs_reclaim_acquire(GFP_KERNEL);
+ might_lock(&gpusvm->notifier_lock);
+ fs_reclaim_release(GFP_KERNEL);
+
+#ifdef CONFIG_LOCKDEP
+ gpusvm->lock_dep_map = NULL;
+#endif
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_init);
+
+/**
+ * drm_gpusvm_notifier_find() - Find GPU SVM notifier
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @fault_addr: Fault address
+ *
+ * This function finds the GPU SVM notifier associated with the fault address.
+ *
+ * Return: Pointer to the GPU SVM notifier on success, NULL otherwise.
+ */
+static struct drm_gpusvm_notifier *
+drm_gpusvm_notifier_find(struct drm_gpusvm *gpusvm,
+ unsigned long fault_addr)
+{
+ return notifier_iter_first(&gpusvm->root, fault_addr, fault_addr + 1);
+}
+
+/**
+ * to_drm_gpusvm_notifier() - retrieve the container struct for a given rbtree node
+ * @node: a pointer to the rbtree node embedded within a drm_gpusvm_notifier struct
+ *
+ * Return: A pointer to the containing drm_gpusvm_notifier structure.
+ */
+static struct drm_gpusvm_notifier *to_drm_gpusvm_notifier(struct rb_node *node)
+{
+ return container_of(node, struct drm_gpusvm_notifier, itree.rb);
+}
+
+/**
+ * drm_gpusvm_notifier_insert() - Insert GPU SVM notifier
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @notifier: Pointer to the GPU SVM notifier structure
+ *
+ * This function inserts the GPU SVM notifier into the GPU SVM RB tree and list.
+ */
+static void drm_gpusvm_notifier_insert(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier)
+{
+ struct rb_node *node;
+ struct list_head *head;
+
+ interval_tree_insert(¬ifier->itree, &gpusvm->root);
+
+ node = rb_prev(¬ifier->itree.rb);
+ if (node)
+ head = &(to_drm_gpusvm_notifier(node))->entry;
+ else
+ head = &gpusvm->notifier_list;
+
+ list_add(¬ifier->entry, head);
+}
+
+/**
+ * drm_gpusvm_notifier_remove() - Remove GPU SVM notifier
+ * @gpusvm: Pointer to the GPU SVM tructure
+ * @notifier: Pointer to the GPU SVM notifier structure
+ *
+ * This function removes the GPU SVM notifier from the GPU SVM RB tree and list.
+ */
+static void drm_gpusvm_notifier_remove(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier)
+{
+ interval_tree_remove(¬ifier->itree, &gpusvm->root);
+ list_del(¬ifier->entry);
+}
+
+/**
+ * drm_gpusvm_fini() - Finalize the GPU SVM.
+ * @gpusvm: Pointer to the GPU SVM structure.
+ *
+ * This function finalizes the GPU SVM by cleaning up any remaining ranges and
+ * notifiers, and dropping a reference to struct MM.
+ */
+void drm_gpusvm_fini(struct drm_gpusvm *gpusvm)
+{
+ struct drm_gpusvm_notifier *notifier, *next;
+
+ drm_gpusvm_for_each_notifier_safe(notifier, next, gpusvm, 0, LONG_MAX) {
+ struct drm_gpusvm_range *range, *__next;
+
+ /*
+ * Remove notifier first to avoid racing with any invalidation
+ */
+ mmu_interval_notifier_remove(¬ifier->notifier);
+ notifier->flags.removed = true;
+
+ drm_gpusvm_for_each_range_safe(range, __next, notifier, 0,
+ LONG_MAX)
+ drm_gpusvm_range_remove(gpusvm, range);
+ }
+
+ mmdrop(gpusvm->mm);
+ WARN_ON(!RB_EMPTY_ROOT(&gpusvm->root.rb_root));
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_fini);
+
+/**
+ * drm_gpusvm_notifier_alloc() - Allocate GPU SVM notifier
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @fault_addr: Fault address
+ *
+ * This function allocates and initializes the GPU SVM notifier structure.
+ *
+ * Return: Pointer to the allocated GPU SVM notifier on success, ERR_PTR() on failure.
+ */
+static struct drm_gpusvm_notifier *
+drm_gpusvm_notifier_alloc(struct drm_gpusvm *gpusvm, unsigned long fault_addr)
+{
+ struct drm_gpusvm_notifier *notifier;
+
+ if (gpusvm->ops->notifier_alloc)
+ notifier = gpusvm->ops->notifier_alloc();
+ else
+ notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
+
+ if (!notifier)
+ return ERR_PTR(-ENOMEM);
+
+ notifier->gpusvm = gpusvm;
+ notifier->itree.start = ALIGN_DOWN(fault_addr, gpusvm->notifier_size);
+ notifier->itree.last = ALIGN(fault_addr + 1, gpusvm->notifier_size) - 1;
+ INIT_LIST_HEAD(¬ifier->entry);
+ notifier->root = RB_ROOT_CACHED;
+ INIT_LIST_HEAD(¬ifier->range_list);
+
+ return notifier;
+}
+
+/**
+ * drm_gpusvm_notifier_free() - Free GPU SVM notifier
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @notifier: Pointer to the GPU SVM notifier structure
+ *
+ * This function frees the GPU SVM notifier structure.
+ */
+static void drm_gpusvm_notifier_free(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier)
+{
+ WARN_ON(!RB_EMPTY_ROOT(¬ifier->root.rb_root));
+
+ if (gpusvm->ops->notifier_free)
+ gpusvm->ops->notifier_free(notifier);
+ else
+ kfree(notifier);
+}
+
+/**
+ * to_drm_gpusvm_range() - retrieve the container struct for a given rbtree node
+ * @node: a pointer to the rbtree node embedded within a drm_gpusvm_range struct
+ *
+ * Return: A pointer to the containing drm_gpusvm_range structure.
+ */
+static struct drm_gpusvm_range *to_drm_gpusvm_range(struct rb_node *node)
+{
+ return container_of(node, struct drm_gpusvm_range, itree.rb);
+}
+
+/**
+ * drm_gpusvm_range_insert() - Insert GPU SVM range
+ * @notifier: Pointer to the GPU SVM notifier structure
+ * @range: Pointer to the GPU SVM range structure
+ *
+ * This function inserts the GPU SVM range into the notifier RB tree and list.
+ */
+static void drm_gpusvm_range_insert(struct drm_gpusvm_notifier *notifier,
+ struct drm_gpusvm_range *range)
+{
+ struct rb_node *node;
+ struct list_head *head;
+
+ drm_gpusvm_notifier_lock(notifier->gpusvm);
+ interval_tree_insert(&range->itree, ¬ifier->root);
+
+ node = rb_prev(&range->itree.rb);
+ if (node)
+ head = &(to_drm_gpusvm_range(node))->entry;
+ else
+ head = ¬ifier->range_list;
+
+ list_add(&range->entry, head);
+ drm_gpusvm_notifier_unlock(notifier->gpusvm);
+}
+
+/**
+ * __drm_gpusvm_range_remove() - Remove GPU SVM range
+ * @notifier: Pointer to the GPU SVM notifier structure
+ * @range: Pointer to the GPU SVM range structure
+ *
+ * This macro removes the GPU SVM range from the notifier RB tree and list.
+ */
+static void __drm_gpusvm_range_remove(struct drm_gpusvm_notifier *notifier,
+ struct drm_gpusvm_range *range)
+{
+ interval_tree_remove(&range->itree, ¬ifier->root);
+ list_del(&range->entry);
+}
+
+/**
+ * drm_gpusvm_range_alloc() - Allocate GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @notifier: Pointer to the GPU SVM notifier structure
+ * @fault_addr: Fault address
+ * @chunk_size: Chunk size
+ * @migrate_devmem: Flag indicating whether to migrate device memory
+ *
+ * This function allocates and initializes the GPU SVM range structure.
+ *
+ * Return: Pointer to the allocated GPU SVM range on success, ERR_PTR() on failure.
+ */
+static struct drm_gpusvm_range *
+drm_gpusvm_range_alloc(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier,
+ unsigned long fault_addr, unsigned long chunk_size,
+ bool migrate_devmem)
+{
+ struct drm_gpusvm_range *range;
+
+ if (gpusvm->ops->range_alloc)
+ range = gpusvm->ops->range_alloc(gpusvm);
+ else
+ range = kzalloc(sizeof(*range), GFP_KERNEL);
+
+ if (!range)
+ return ERR_PTR(-ENOMEM);
+
+ kref_init(&range->refcount);
+ range->gpusvm = gpusvm;
+ range->notifier = notifier;
+ range->itree.start = ALIGN_DOWN(fault_addr, chunk_size);
+ range->itree.last = ALIGN(fault_addr + 1, chunk_size) - 1;
+ INIT_LIST_HEAD(&range->entry);
+ range->notifier_seq = LONG_MAX;
+ range->flags.migrate_devmem = migrate_devmem ? 1 : 0;
+
+ return range;
+}
+
+/**
+ * drm_gpusvm_check_pages() - Check pages
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @notifier: Pointer to the GPU SVM notifier structure
+ * @start: Start address
+ * @end: End address
+ *
+ * Check if pages between start and end have been faulted in on the CPU. Use to
+ * prevent migration of pages without CPU backing store.
+ *
+ * Return: True if pages have been faulted into CPU, False otherwise
+ */
+static bool drm_gpusvm_check_pages(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier,
+ unsigned long start, unsigned long end)
+{
+ struct hmm_range hmm_range = {
+ .default_flags = 0,
+ .notifier = ¬ifier->notifier,
+ .start = start,
+ .end = end,
+ .dev_private_owner = gpusvm->device_private_page_owner,
+ };
+ unsigned long timeout =
+ jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+ unsigned long *pfns;
+ unsigned long npages = npages_in_range(start, end);
+ int err, i;
+
+ mmap_assert_locked(gpusvm->mm);
+
+ pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
+ if (!pfns)
+ return false;
+
+ hmm_range.notifier_seq = mmu_interval_read_begin(¬ifier->notifier);
+ hmm_range.hmm_pfns = pfns;
+
+ while (true) {
+ err = hmm_range_fault(&hmm_range);
+ if (err == -EBUSY) {
+ if (time_after(jiffies, timeout))
+ break;
+
+ hmm_range.notifier_seq =
+ mmu_interval_read_begin(¬ifier->notifier);
+ continue;
+ }
+ break;
+ }
+ if (err)
+ goto err_free;
+
+ for (i = 0; i < npages;) {
+ if (!(pfns[i] & HMM_PFN_VALID)) {
+ err = -EFAULT;
+ goto err_free;
+ }
+ i += 0x1 << hmm_pfn_to_map_order(pfns[i]);
+ }
+
+err_free:
+ kvfree(pfns);
+ return err ? false : true;
+}
+
+/**
+ * drm_gpusvm_range_chunk_size() - Determine chunk size for GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @notifier: Pointer to the GPU SVM notifier structure
+ * @vas: Pointer to the virtual memory area structure
+ * @fault_addr: Fault address
+ * @gpuva_start: Start address of GPUVA which mirrors CPU
+ * @gpuva_end: End address of GPUVA which mirrors CPU
+ * @check_pages_threshold: Check CPU pages for present threshold
+ *
+ * This function determines the chunk size for the GPU SVM range based on the
+ * fault address, GPU SVM chunk sizes, existing GPU SVM ranges, and the virtual
+ * memory area boundaries.
+ *
+ * Return: Chunk size on success, LONG_MAX on failure.
+ */
+static unsigned long
+drm_gpusvm_range_chunk_size(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier,
+ struct vm_area_struct *vas,
+ unsigned long fault_addr,
+ unsigned long gpuva_start,
+ unsigned long gpuva_end,
+ unsigned long check_pages_threshold)
+{
+ unsigned long start, end;
+ int i = 0;
+
+retry:
+ for (; i < gpusvm->num_chunks; ++i) {
+ start = ALIGN_DOWN(fault_addr, gpusvm->chunk_sizes[i]);
+ end = ALIGN(fault_addr + 1, gpusvm->chunk_sizes[i]);
+
+ if (start >= vas->vm_start && end <= vas->vm_end &&
+ start >= drm_gpusvm_notifier_start(notifier) &&
+ end <= drm_gpusvm_notifier_end(notifier) &&
+ start >= gpuva_start && end <= gpuva_end)
+ break;
+ }
+
+ if (i == gpusvm->num_chunks)
+ return LONG_MAX;
+
+ /*
+ * If allocation more than page, ensure not to overlap with existing
+ * ranges.
+ */
+ if (end - start != SZ_4K) {
+ struct drm_gpusvm_range *range;
+
+ range = drm_gpusvm_range_find(notifier, start, end);
+ if (range) {
+ ++i;
+ goto retry;
+ }
+
+ /*
+ * XXX: Only create range on pages CPU has faulted in. Without
+ * this check, or prefault, on BMG 'xe_exec_system_allocator --r
+ * process-many-malloc' fails. In the failure case, each process
+ * mallocs 16k but the CPU VMA is ~128k which results in 64k SVM
+ * ranges. When migrating the SVM ranges, some processes fail in
+ * drm_gpusvm_migrate_to_devmem with 'migrate.cpages != npages'
+ * and then upon drm_gpusvm_range_get_pages device pages from
+ * other processes are collected + faulted in which creates all
+ * sorts of problems. Unsure exactly how this happening, also
+ * problem goes away if 'xe_exec_system_allocator --r
+ * process-many-malloc' mallocs at least 64k at a time.
+ */
+ if (end - start <= check_pages_threshold &&
+ !drm_gpusvm_check_pages(gpusvm, notifier, start, end)) {
+ ++i;
+ goto retry;
+ }
+ }
+
+ return end - start;
+}
+
+#ifdef CONFIG_LOCKDEP
+/**
+ * drm_gpusvm_driver_lock_held() - Assert GPU SVM driver lock is held
+ * @gpusvm: Pointer to the GPU SVM structure.
+ *
+ * Ensure driver lock is held.
+ */
+static void drm_gpusvm_driver_lock_held(struct drm_gpusvm *gpusvm)
+{
+ if ((gpusvm)->lock_dep_map)
+ lockdep_assert(lock_is_held_type((gpusvm)->lock_dep_map, 0));
+}
+#else
+static void drm_gpusvm_driver_lock_held(struct drm_gpusvm *gpusvm)
+{
+}
+#endif
+
+/**
+ * drm_gpusvm_range_find_or_insert() - Find or insert GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @fault_addr: Fault address
+ * @gpuva_start: Start address of GPUVA which mirrors CPU
+ * @gpuva_end: End address of GPUVA which mirrors CPU
+ * @ctx: GPU SVM context
+ *
+ * This function finds or inserts a newly allocated a GPU SVM range based on the
+ * fault address. Caller must hold a lock to protect range lookup and insertion.
+ *
+ * Return: Pointer to the GPU SVM range on success, ERR_PTR() on failure.
+ */
+struct drm_gpusvm_range *
+drm_gpusvm_range_find_or_insert(struct drm_gpusvm *gpusvm,
+ unsigned long fault_addr,
+ unsigned long gpuva_start,
+ unsigned long gpuva_end,
+ const struct drm_gpusvm_ctx *ctx)
+{
+ struct drm_gpusvm_notifier *notifier;
+ struct drm_gpusvm_range *range;
+ struct mm_struct *mm = gpusvm->mm;
+ struct vm_area_struct *vas;
+ bool notifier_alloc = false;
+ unsigned long chunk_size;
+ int err;
+ bool migrate_devmem;
+
+ drm_gpusvm_driver_lock_held(gpusvm);
+
+ if (fault_addr < gpusvm->mm_start ||
+ fault_addr > gpusvm->mm_start + gpusvm->mm_range)
+ return ERR_PTR(-EINVAL);
+
+ if (!mmget_not_zero(mm))
+ return ERR_PTR(-EFAULT);
+
+ notifier = drm_gpusvm_notifier_find(gpusvm, fault_addr);
+ if (!notifier) {
+ notifier = drm_gpusvm_notifier_alloc(gpusvm, fault_addr);
+ if (IS_ERR(notifier)) {
+ err = PTR_ERR(notifier);
+ goto err_mmunlock;
+ }
+ notifier_alloc = true;
+ err = mmu_interval_notifier_insert(¬ifier->notifier,
+ mm,
+ drm_gpusvm_notifier_start(notifier),
+ drm_gpusvm_notifier_size(notifier),
+ &drm_gpusvm_notifier_ops);
+ if (err)
+ goto err_notifier;
+ }
+
+ mmap_read_lock(mm);
+
+ vas = vma_lookup(mm, fault_addr);
+ if (!vas) {
+ err = -ENOENT;
+ goto err_notifier_remove;
+ }
+
+ if (!ctx->read_only && !(vas->vm_flags & VM_WRITE)) {
+ err = -EPERM;
+ goto err_notifier_remove;
+ }
+
+ range = drm_gpusvm_range_find(notifier, fault_addr, fault_addr + 1);
+ if (range)
+ goto out_mmunlock;
+ /*
+ * XXX: Short-circuiting migration based on migrate_vma_* current
+ * limitations. If/when migrate_vma_* add more support, this logic will
+ * have to change.
+ */
+ migrate_devmem = ctx->devmem_possible &&
+ vma_is_anonymous(vas) && !is_vm_hugetlb_page(vas);
+
+ chunk_size = drm_gpusvm_range_chunk_size(gpusvm, notifier, vas,
+ fault_addr, gpuva_start,
+ gpuva_end,
+ ctx->check_pages_threshold);
+ if (chunk_size == LONG_MAX) {
+ err = -EINVAL;
+ goto err_notifier_remove;
+ }
+
+ range = drm_gpusvm_range_alloc(gpusvm, notifier, fault_addr, chunk_size,
+ migrate_devmem);
+ if (IS_ERR(range)) {
+ err = PTR_ERR(range);
+ goto err_notifier_remove;
+ }
+
+ drm_gpusvm_range_insert(notifier, range);
+ if (notifier_alloc)
+ drm_gpusvm_notifier_insert(gpusvm, notifier);
+
+out_mmunlock:
+ mmap_read_unlock(mm);
+ mmput(mm);
+
+ return range;
+
+err_notifier_remove:
+ mmap_read_unlock(mm);
+ if (notifier_alloc)
+ mmu_interval_notifier_remove(¬ifier->notifier);
+err_notifier:
+ if (notifier_alloc)
+ drm_gpusvm_notifier_free(gpusvm, notifier);
+err_mmunlock:
+ mmput(mm);
+ return ERR_PTR(err);
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_find_or_insert);
+
+/**
+ * __drm_gpusvm_range_unmap_pages() - Unmap pages associated with a GPU SVM range (internal)
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ * @npages: Number of pages to unmap
+ *
+ * This function unmap pages associated with a GPU SVM range. Assumes and
+ * asserts correct locking is in place when called.
+ */
+static void __drm_gpusvm_range_unmap_pages(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range,
+ unsigned long npages)
+{
+ unsigned long i, j;
+ struct drm_pagemap *dpagemap = range->dpagemap;
+ struct device *dev = gpusvm->drm->dev;
+
+ lockdep_assert_held(&gpusvm->notifier_lock);
+
+ if (range->flags.has_dma_mapping) {
+ for (i = 0, j = 0; i < npages; j++) {
+ struct drm_pagemap_device_addr *addr = &range->dma_addr[j];
+
+ if (addr->proto == DRM_INTERCONNECT_SYSTEM)
+ dma_unmap_page(dev,
+ addr->addr,
+ PAGE_SIZE << addr->order,
+ addr->dir);
+ else if (dpagemap && dpagemap->ops->device_unmap)
+ dpagemap->ops->device_unmap(dpagemap,
+ dev, *addr);
+ i += 1 << addr->order;
+ }
+ range->flags.has_devmem_pages = false;
+ range->flags.has_dma_mapping = false;
+ range->dpagemap = NULL;
+ }
+}
+
+/**
+ * drm_gpusvm_range_free_pages() - Free pages associated with a GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ *
+ * This function frees the dma address array associated with a GPU SVM range.
+ */
+static void drm_gpusvm_range_free_pages(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range)
+{
+ lockdep_assert_held(&gpusvm->notifier_lock);
+
+ if (range->dma_addr) {
+ kvfree(range->dma_addr);
+ range->dma_addr = NULL;
+ }
+}
+
+/**
+ * drm_gpusvm_range_remove() - Remove GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range to be removed
+ *
+ * This function removes the specified GPU SVM range and also removes the parent
+ * GPU SVM notifier if no more ranges remain in the notifier. The caller must
+ * hold a lock to protect range and notifier removal.
+ */
+void drm_gpusvm_range_remove(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range)
+{
+ unsigned long npages = npages_in_range(drm_gpusvm_range_start(range),
+ drm_gpusvm_range_end(range));
+ struct drm_gpusvm_notifier *notifier;
+
+ drm_gpusvm_driver_lock_held(gpusvm);
+
+ notifier = drm_gpusvm_notifier_find(gpusvm,
+ drm_gpusvm_range_start(range));
+ if (WARN_ON_ONCE(!notifier))
+ return;
+
+ drm_gpusvm_notifier_lock(gpusvm);
+ __drm_gpusvm_range_unmap_pages(gpusvm, range, npages);
+ drm_gpusvm_range_free_pages(gpusvm, range);
+ __drm_gpusvm_range_remove(notifier, range);
+ drm_gpusvm_notifier_unlock(gpusvm);
+
+ drm_gpusvm_range_put(range);
+
+ if (RB_EMPTY_ROOT(¬ifier->root.rb_root)) {
+ if (!notifier->flags.removed)
+ mmu_interval_notifier_remove(¬ifier->notifier);
+ drm_gpusvm_notifier_remove(gpusvm, notifier);
+ drm_gpusvm_notifier_free(gpusvm, notifier);
+ }
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_remove);
+
+/**
+ * drm_gpusvm_range_get() - Get a reference to GPU SVM range
+ * @range: Pointer to the GPU SVM range
+ *
+ * This function increments the reference count of the specified GPU SVM range.
+ *
+ * Return: Pointer to the GPU SVM range.
+ */
+struct drm_gpusvm_range *
+drm_gpusvm_range_get(struct drm_gpusvm_range *range)
+{
+ kref_get(&range->refcount);
+
+ return range;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_get);
+
+/**
+ * drm_gpusvm_range_destroy() - Destroy GPU SVM range
+ * @refcount: Pointer to the reference counter embedded in the GPU SVM range
+ *
+ * This function destroys the specified GPU SVM range when its reference count
+ * reaches zero. If a custom range-free function is provided, it is invoked to
+ * free the range; otherwise, the range is deallocated using kfree().
+ */
+static void drm_gpusvm_range_destroy(struct kref *refcount)
+{
+ struct drm_gpusvm_range *range =
+ container_of(refcount, struct drm_gpusvm_range, refcount);
+ struct drm_gpusvm *gpusvm = range->gpusvm;
+
+ if (gpusvm->ops->range_free)
+ gpusvm->ops->range_free(range);
+ else
+ kfree(range);
+}
+
+/**
+ * drm_gpusvm_range_put() - Put a reference to GPU SVM range
+ * @range: Pointer to the GPU SVM range
+ *
+ * This function decrements the reference count of the specified GPU SVM range
+ * and frees it when the count reaches zero.
+ */
+void drm_gpusvm_range_put(struct drm_gpusvm_range *range)
+{
+ kref_put(&range->refcount, drm_gpusvm_range_destroy);
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_put);
+
+/**
+ * drm_gpusvm_range_pages_valid() - GPU SVM range pages valid
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ *
+ * This function determines if a GPU SVM range pages are valid. Expected be
+ * called holding gpusvm->notifier_lock and as the last step before committing a
+ * GPU binding. This is akin to a notifier seqno check in the HMM documentation
+ * but due to wider notifiers (i.e., notifiers which span multiple ranges) this
+ * function is required for finer grained checking (i.e., per range) if pages
+ * are valid.
+ *
+ * Return: True if GPU SVM range has valid pages, False otherwise
+ */
+bool drm_gpusvm_range_pages_valid(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range)
+{
+ lockdep_assert_held(&gpusvm->notifier_lock);
+
+ return range->flags.has_devmem_pages || range->flags.has_dma_mapping;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_pages_valid);
+
+/**
+ * drm_gpusvm_range_pages_valid_unlocked() - GPU SVM range pages valid unlocked
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ *
+ * This function determines if a GPU SVM range pages are valid. Expected be
+ * called without holding gpusvm->notifier_lock.
+ *
+ * Return: True if GPU SVM range has valid pages, False otherwise
+ */
+static bool
+drm_gpusvm_range_pages_valid_unlocked(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range)
+{
+ bool pages_valid;
+
+ if (!range->dma_addr)
+ return false;
+
+ drm_gpusvm_notifier_lock(gpusvm);
+ pages_valid = drm_gpusvm_range_pages_valid(gpusvm, range);
+ if (!pages_valid)
+ drm_gpusvm_range_free_pages(gpusvm, range);
+ drm_gpusvm_notifier_unlock(gpusvm);
+
+ return pages_valid;
+}
+
+/**
+ * drm_gpusvm_range_get_pages() - Get pages for a GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ * @ctx: GPU SVM context
+ *
+ * This function gets pages for a GPU SVM range and ensures they are mapped for
+ * DMA access.
+ *
+ * Return: 0 on success, negative error code on failure.
+ */
+int drm_gpusvm_range_get_pages(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range,
+ const struct drm_gpusvm_ctx *ctx)
+{
+ struct mmu_interval_notifier *notifier = &range->notifier->notifier;
+ struct hmm_range hmm_range = {
+ .default_flags = HMM_PFN_REQ_FAULT | (ctx->read_only ? 0 :
+ HMM_PFN_REQ_WRITE),
+ .notifier = notifier,
+ .start = drm_gpusvm_range_start(range),
+ .end = drm_gpusvm_range_end(range),
+ .dev_private_owner = gpusvm->device_private_page_owner,
+ };
+ struct mm_struct *mm = gpusvm->mm;
+ struct drm_gpusvm_zdd *zdd;
+ unsigned long timeout =
+ jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+ unsigned long i, j;
+ unsigned long npages = npages_in_range(drm_gpusvm_range_start(range),
+ drm_gpusvm_range_end(range));
+ unsigned long num_dma_mapped;
+ unsigned int order = 0;
+ unsigned long *pfns;
+ struct page **pages;
+ int err = 0;
+ struct dev_pagemap *pagemap;
+ struct drm_pagemap *dpagemap;
+
+retry:
+ hmm_range.notifier_seq = mmu_interval_read_begin(notifier);
+ if (drm_gpusvm_range_pages_valid_unlocked(gpusvm, range))
+ goto set_seqno;
+
+ pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
+ if (!pfns)
+ return -ENOMEM;
+
+ if (!mmget_not_zero(mm)) {
+ err = -EFAULT;
+ goto err_free;
+ }
+
+ hmm_range.hmm_pfns = pfns;
+ while (true) {
+ mmap_read_lock(mm);
+ err = hmm_range_fault(&hmm_range);
+ mmap_read_unlock(mm);
+
+ if (err == -EBUSY) {
+ if (time_after(jiffies, timeout))
+ break;
+
+ hmm_range.notifier_seq =
+ mmu_interval_read_begin(notifier);
+ continue;
+ }
+ break;
+ }
+ mmput(mm);
+ if (err)
+ goto err_free;
+
+ pages = (struct page **)pfns;
+map_pages:
+ /*
+ * Perform all dma mappings under the notifier lock to not
+ * access freed pages. A notifier will either block on
+ * the notifier lock or unmap dma.
+ */
+ drm_gpusvm_notifier_lock(gpusvm);
+
+ if (range->flags.unmapped) {
+ drm_gpusvm_notifier_unlock(gpusvm);
+ err = -EFAULT;
+ goto err_free;
+ }
+
+ if (mmu_interval_read_retry(notifier, hmm_range.notifier_seq)) {
+ drm_gpusvm_notifier_unlock(gpusvm);
+ kvfree(pfns);
+ goto retry;
+ }
+
+ if (!range->dma_addr) {
+ /* Unlock and restart mapping to allocate memory. */
+ drm_gpusvm_notifier_unlock(gpusvm);
+ range->dma_addr = kvmalloc_array(npages,
+ sizeof(*range->dma_addr),
+ GFP_KERNEL);
+ if (!range->dma_addr) {
+ err = -ENOMEM;
+ goto err_free;
+ }
+ goto map_pages;
+ }
+
+ zdd = NULL;
+ num_dma_mapped = 0;
+ for (i = 0, j = 0; i < npages; ++j) {
+ struct page *page = hmm_pfn_to_page(pfns[i]);
+
+ order = hmm_pfn_to_map_order(pfns[i]);
+ if (is_device_private_page(page) ||
+ is_device_coherent_page(page)) {
+ if (zdd != page->zone_device_data && i > 0) {
+ err = -EOPNOTSUPP;
+ goto err_unmap;
+ }
+ zdd = page->zone_device_data;
- pagemap = page->pgmap;
++ if (pagemap != page_pgmap(page)) {
+ if (i > 0) {
+ err = -EOPNOTSUPP;
+ goto err_unmap;
+ }
+
++ pagemap = page_pgmap(page);
+ dpagemap = zdd->devmem_allocation->dpagemap;
+ if (drm_WARN_ON(gpusvm->drm, !dpagemap)) {
+ /*
+ * Raced. This is not supposed to happen
+ * since hmm_range_fault() should've migrated
+ * this page to system.
+ */
+ err = -EAGAIN;
+ goto err_unmap;
+ }
+ }
+ range->dma_addr[j] =
+ dpagemap->ops->device_map(dpagemap,
+ gpusvm->drm->dev,
+ page, order,
+ DMA_BIDIRECTIONAL);
+ if (dma_mapping_error(gpusvm->drm->dev,
+ range->dma_addr[j].addr)) {
+ err = -EFAULT;
+ goto err_unmap;
+ }
+
+ pages[i] = page;
+ } else {
+ dma_addr_t addr;
+
+ if (is_zone_device_page(page) || zdd) {
+ err = -EOPNOTSUPP;
+ goto err_unmap;
+ }
+
+ addr = dma_map_page(gpusvm->drm->dev,
+ page, 0,
+ PAGE_SIZE << order,
+ DMA_BIDIRECTIONAL);
+ if (dma_mapping_error(gpusvm->drm->dev, addr)) {
+ err = -EFAULT;
+ goto err_unmap;
+ }
+
+ range->dma_addr[j] = drm_pagemap_device_addr_encode
+ (addr, DRM_INTERCONNECT_SYSTEM, order,
+ DMA_BIDIRECTIONAL);
+ }
+ i += 1 << order;
+ num_dma_mapped = i;
+ }
+
+ range->flags.has_dma_mapping = true;
+ if (zdd) {
+ range->flags.has_devmem_pages = true;
+ range->dpagemap = dpagemap;
+ }
+
+ drm_gpusvm_notifier_unlock(gpusvm);
+ kvfree(pfns);
+set_seqno:
+ range->notifier_seq = hmm_range.notifier_seq;
+
+ return 0;
+
+err_unmap:
+ __drm_gpusvm_range_unmap_pages(gpusvm, range, num_dma_mapped);
+ drm_gpusvm_notifier_unlock(gpusvm);
+err_free:
+ kvfree(pfns);
+ if (err == -EAGAIN)
+ goto retry;
+ return err;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_get_pages);
+
+/**
+ * drm_gpusvm_range_unmap_pages() - Unmap pages associated with a GPU SVM range
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ * @ctx: GPU SVM context
+ *
+ * This function unmaps pages associated with a GPU SVM range. If @in_notifier
+ * is set, it is assumed that gpusvm->notifier_lock is held in write mode; if it
+ * is clear, it acquires gpusvm->notifier_lock in read mode. Must be called on
+ * each GPU SVM range attached to notifier in gpusvm->ops->invalidate for IOMMU
+ * security model.
+ */
+void drm_gpusvm_range_unmap_pages(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range,
+ const struct drm_gpusvm_ctx *ctx)
+{
+ unsigned long npages = npages_in_range(drm_gpusvm_range_start(range),
+ drm_gpusvm_range_end(range));
+
+ if (ctx->in_notifier)
+ lockdep_assert_held_write(&gpusvm->notifier_lock);
+ else
+ drm_gpusvm_notifier_lock(gpusvm);
+
+ __drm_gpusvm_range_unmap_pages(gpusvm, range, npages);
+
+ if (!ctx->in_notifier)
+ drm_gpusvm_notifier_unlock(gpusvm);
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_unmap_pages);
+
+/**
+ * drm_gpusvm_migration_unlock_put_page() - Put a migration page
+ * @page: Pointer to the page to put
+ *
+ * This function unlocks and puts a page.
+ */
+static void drm_gpusvm_migration_unlock_put_page(struct page *page)
+{
+ unlock_page(page);
+ put_page(page);
+}
+
+/**
+ * drm_gpusvm_migration_unlock_put_pages() - Put migration pages
+ * @npages: Number of pages
+ * @migrate_pfn: Array of migrate page frame numbers
+ *
+ * This function unlocks and puts an array of pages.
+ */
+static void drm_gpusvm_migration_unlock_put_pages(unsigned long npages,
+ unsigned long *migrate_pfn)
+{
+ unsigned long i;
+
+ for (i = 0; i < npages; ++i) {
+ struct page *page;
+
+ if (!migrate_pfn[i])
+ continue;
+
+ page = migrate_pfn_to_page(migrate_pfn[i]);
+ drm_gpusvm_migration_unlock_put_page(page);
+ migrate_pfn[i] = 0;
+ }
+}
+
+/**
+ * drm_gpusvm_get_devmem_page() - Get a reference to a device memory page
+ * @page: Pointer to the page
+ * @zdd: Pointer to the GPU SVM zone device data
+ *
+ * This function associates the given page with the specified GPU SVM zone
+ * device data and initializes it for zone device usage.
+ */
+static void drm_gpusvm_get_devmem_page(struct page *page,
+ struct drm_gpusvm_zdd *zdd)
+{
+ page->zone_device_data = drm_gpusvm_zdd_get(zdd);
+ zone_device_page_init(page);
+}
+
+/**
+ * drm_gpusvm_migrate_map_pages() - Map migration pages for GPU SVM migration
+ * @dev: The device for which the pages are being mapped
+ * @dma_addr: Array to store DMA addresses corresponding to mapped pages
+ * @migrate_pfn: Array of migrate page frame numbers to map
+ * @npages: Number of pages to map
+ * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
+ *
+ * This function maps pages of memory for migration usage in GPU SVM. It
+ * iterates over each page frame number provided in @migrate_pfn, maps the
+ * corresponding page, and stores the DMA address in the provided @dma_addr
+ * array.
+ *
+ * Return: 0 on success, -EFAULT if an error occurs during mapping.
+ */
+static int drm_gpusvm_migrate_map_pages(struct device *dev,
+ dma_addr_t *dma_addr,
+ unsigned long *migrate_pfn,
+ unsigned long npages,
+ enum dma_data_direction dir)
+{
+ unsigned long i;
+
+ for (i = 0; i < npages; ++i) {
+ struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
+
+ if (!page)
+ continue;
+
+ if (WARN_ON_ONCE(is_zone_device_page(page)))
+ return -EFAULT;
+
+ dma_addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
+ if (dma_mapping_error(dev, dma_addr[i]))
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/**
+ * drm_gpusvm_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
+ * @dev: The device for which the pages were mapped
+ * @dma_addr: Array of DMA addresses corresponding to mapped pages
+ * @npages: Number of pages to unmap
+ * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
+ *
+ * This function unmaps previously mapped pages of memory for GPU Shared Virtual
+ * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
+ * if it's valid and not already unmapped, and unmaps the corresponding page.
+ */
+static void drm_gpusvm_migrate_unmap_pages(struct device *dev,
+ dma_addr_t *dma_addr,
+ unsigned long npages,
+ enum dma_data_direction dir)
+{
+ unsigned long i;
+
+ for (i = 0; i < npages; ++i) {
+ if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i]))
+ continue;
+
+ dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
+ }
+}
+
+/**
+ * drm_gpusvm_migrate_to_devmem() - Migrate GPU SVM range to device memory
+ * @gpusvm: Pointer to the GPU SVM structure
+ * @range: Pointer to the GPU SVM range structure
+ * @devmem_allocation: Pointer to the device memory allocation. The caller
+ * should hold a reference to the device memory allocation,
+ * which should be dropped via ops->devmem_release or upon
+ * the failure of this function.
+ * @ctx: GPU SVM context
+ *
+ * This function migrates the specified GPU SVM range to device memory. It
+ * performs the necessary setup and invokes the driver-specific operations for
+ * migration to device memory. Upon successful return, @devmem_allocation can
+ * safely reference @range until ops->devmem_release is called which only upon
+ * successful return. Expected to be called while holding the mmap lock in read
+ * mode.
+ *
+ * Return: 0 on success, negative error code on failure.
+ */
+int drm_gpusvm_migrate_to_devmem(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range,
+ struct drm_gpusvm_devmem *devmem_allocation,
+ const struct drm_gpusvm_ctx *ctx)
+{
+ const struct drm_gpusvm_devmem_ops *ops = devmem_allocation->ops;
+ unsigned long start = drm_gpusvm_range_start(range),
+ end = drm_gpusvm_range_end(range);
+ struct migrate_vma migrate = {
+ .start = start,
+ .end = end,
+ .pgmap_owner = gpusvm->device_private_page_owner,
+ .flags = MIGRATE_VMA_SELECT_SYSTEM,
+ };
+ struct mm_struct *mm = gpusvm->mm;
+ unsigned long i, npages = npages_in_range(start, end);
+ struct vm_area_struct *vas;
+ struct drm_gpusvm_zdd *zdd = NULL;
+ struct page **pages;
+ dma_addr_t *dma_addr;
+ void *buf;
+ int err;
+
+ mmap_assert_locked(gpusvm->mm);
+
+ if (!range->flags.migrate_devmem)
+ return -EINVAL;
+
+ if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
+ !ops->copy_to_ram)
+ return -EOPNOTSUPP;
+
+ vas = vma_lookup(mm, start);
+ if (!vas) {
+ err = -ENOENT;
+ goto err_out;
+ }
+
+ if (end > vas->vm_end || start < vas->vm_start) {
+ err = -EINVAL;
+ goto err_out;
+ }
+
+ if (!vma_is_anonymous(vas)) {
+ err = -EBUSY;
+ goto err_out;
+ }
+
+ buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
+ sizeof(*pages), GFP_KERNEL);
+ if (!buf) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
+ pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;
+
+ zdd = drm_gpusvm_zdd_alloc(gpusvm->device_private_page_owner);
+ if (!zdd) {
+ err = -ENOMEM;
+ goto err_free;
+ }
+
+ migrate.vma = vas;
+ migrate.src = buf;
+ migrate.dst = migrate.src + npages;
+
+ err = migrate_vma_setup(&migrate);
+ if (err)
+ goto err_free;
+
+ if (!migrate.cpages) {
+ err = -EFAULT;
+ goto err_free;
+ }
+
+ if (migrate.cpages != npages) {
+ err = -EBUSY;
+ goto err_finalize;
+ }
+
+ err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
+ if (err)
+ goto err_finalize;
+
+ err = drm_gpusvm_migrate_map_pages(devmem_allocation->dev, dma_addr,
+ migrate.src, npages, DMA_TO_DEVICE);
+ if (err)
+ goto err_finalize;
+
+ for (i = 0; i < npages; ++i) {
+ struct page *page = pfn_to_page(migrate.dst[i]);
+
+ pages[i] = page;
+ migrate.dst[i] = migrate_pfn(migrate.dst[i]);
+ drm_gpusvm_get_devmem_page(page, zdd);
+ }
+
+ err = ops->copy_to_devmem(pages, dma_addr, npages);
+ if (err)
+ goto err_finalize;
+
+ /* Upon success bind devmem allocation to range and zdd */
+ zdd->devmem_allocation = devmem_allocation; /* Owns ref */
+
+err_finalize:
+ if (err)
+ drm_gpusvm_migration_unlock_put_pages(npages, migrate.dst);
+ migrate_vma_pages(&migrate);
+ migrate_vma_finalize(&migrate);
+ drm_gpusvm_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
+ DMA_TO_DEVICE);
+err_free:
+ if (zdd)
+ drm_gpusvm_zdd_put(zdd);
+ kvfree(buf);
+err_out:
+ return err;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_migrate_to_devmem);
+
+/**
+ * drm_gpusvm_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
+ * @vas: Pointer to the VM area structure, can be NULL
+ * @fault_page: Fault page
+ * @npages: Number of pages to populate
+ * @mpages: Number of pages to migrate
+ * @src_mpfn: Source array of migrate PFNs
+ * @mpfn: Array of migrate PFNs to populate
+ * @addr: Start address for PFN allocation
+ *
+ * This function populates the RAM migrate page frame numbers (PFNs) for the
+ * specified VM area structure. It allocates and locks pages in the VM area for
+ * RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
+ * alloc_page for allocation.
+ *
+ * Return: 0 on success, negative error code on failure.
+ */
+static int drm_gpusvm_migrate_populate_ram_pfn(struct vm_area_struct *vas,
+ struct page *fault_page,
+ unsigned long npages,
+ unsigned long *mpages,
+ unsigned long *src_mpfn,
+ unsigned long *mpfn,
+ unsigned long addr)
+{
+ unsigned long i;
+
+ for (i = 0; i < npages; ++i, addr += PAGE_SIZE) {
+ struct page *page, *src_page;
+
+ if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
+ continue;
+
+ src_page = migrate_pfn_to_page(src_mpfn[i]);
+ if (!src_page)
+ continue;
+
+ if (fault_page) {
+ if (src_page->zone_device_data !=
+ fault_page->zone_device_data)
+ continue;
+ }
+
+ if (vas)
+ page = alloc_page_vma(GFP_HIGHUSER, vas, addr);
+ else
+ page = alloc_page(GFP_HIGHUSER);
+
+ if (!page)
+ goto free_pages;
+
+ mpfn[i] = migrate_pfn(page_to_pfn(page));
+ }
+
+ for (i = 0; i < npages; ++i) {
+ struct page *page = migrate_pfn_to_page(mpfn[i]);
+
+ if (!page)
+ continue;
+
+ WARN_ON_ONCE(!trylock_page(page));
+ ++*mpages;
+ }
+
+ return 0;
+
+free_pages:
+ for (i = 0; i < npages; ++i) {
+ struct page *page = migrate_pfn_to_page(mpfn[i]);
+
+ if (!page)
+ continue;
+
+ put_page(page);
+ mpfn[i] = 0;
+ }
+ return -ENOMEM;
+}
+
+/**
+ * drm_gpusvm_evict_to_ram() - Evict GPU SVM range to RAM
+ * @devmem_allocation: Pointer to the device memory allocation
+ *
+ * Similar to __drm_gpusvm_migrate_to_ram but does not require mmap lock and
+ * migration done via migrate_device_* functions.
+ *
+ * Return: 0 on success, negative error code on failure.
+ */
+int drm_gpusvm_evict_to_ram(struct drm_gpusvm_devmem *devmem_allocation)
+{
+ const struct drm_gpusvm_devmem_ops *ops = devmem_allocation->ops;
+ unsigned long npages, mpages = 0;
+ struct page **pages;
+ unsigned long *src, *dst;
+ dma_addr_t *dma_addr;
+ void *buf;
+ int i, err = 0;
+ unsigned int retry_count = 2;
+
+ npages = devmem_allocation->size >> PAGE_SHIFT;
+
+retry:
+ if (!mmget_not_zero(devmem_allocation->mm))
+ return -EFAULT;
+
+ buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*dma_addr) +
+ sizeof(*pages), GFP_KERNEL);
+ if (!buf) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ src = buf;
+ dst = buf + (sizeof(*src) * npages);
+ dma_addr = buf + (2 * sizeof(*src) * npages);
+ pages = buf + (2 * sizeof(*src) + sizeof(*dma_addr)) * npages;
+
+ err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
+ if (err)
+ goto err_free;
+
+ err = migrate_device_pfns(src, npages);
+ if (err)
+ goto err_free;
+
+ err = drm_gpusvm_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
+ src, dst, 0);
+ if (err || !mpages)
+ goto err_finalize;
+
+ err = drm_gpusvm_migrate_map_pages(devmem_allocation->dev, dma_addr,
+ dst, npages, DMA_FROM_DEVICE);
+ if (err)
+ goto err_finalize;
+
+ for (i = 0; i < npages; ++i)
+ pages[i] = migrate_pfn_to_page(src[i]);
+
+ err = ops->copy_to_ram(pages, dma_addr, npages);
+ if (err)
+ goto err_finalize;
+
+err_finalize:
+ if (err)
+ drm_gpusvm_migration_unlock_put_pages(npages, dst);
+ migrate_device_pages(src, dst, npages);
+ migrate_device_finalize(src, dst, npages);
+ drm_gpusvm_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
+ DMA_FROM_DEVICE);
+err_free:
+ kvfree(buf);
+err_out:
+ mmput_async(devmem_allocation->mm);
+
+ if (completion_done(&devmem_allocation->detached))
+ return 0;
+
+ if (retry_count--) {
+ cond_resched();
+ goto retry;
+ }
+
+ return err ?: -EBUSY;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_evict_to_ram);
+
+/**
+ * __drm_gpusvm_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
+ * @vas: Pointer to the VM area structure
+ * @device_private_page_owner: Device private pages owner
+ * @page: Pointer to the page for fault handling (can be NULL)
+ * @fault_addr: Fault address
+ * @size: Size of migration
+ *
+ * This internal function performs the migration of the specified GPU SVM range
+ * to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
+ * invokes the driver-specific operations for migration to RAM.
+ *
+ * Return: 0 on success, negative error code on failure.
+ */
+static int __drm_gpusvm_migrate_to_ram(struct vm_area_struct *vas,
+ void *device_private_page_owner,
+ struct page *page,
+ unsigned long fault_addr,
+ unsigned long size)
+{
+ struct migrate_vma migrate = {
+ .vma = vas,
+ .pgmap_owner = device_private_page_owner,
+ .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
+ MIGRATE_VMA_SELECT_DEVICE_COHERENT,
+ .fault_page = page,
+ };
+ struct drm_gpusvm_zdd *zdd;
+ const struct drm_gpusvm_devmem_ops *ops;
+ struct device *dev = NULL;
+ unsigned long npages, mpages = 0;
+ struct page **pages;
+ dma_addr_t *dma_addr;
+ unsigned long start, end;
+ void *buf;
+ int i, err = 0;
+
+ start = ALIGN_DOWN(fault_addr, size);
+ end = ALIGN(fault_addr + 1, size);
+
+ /* Corner where VMA area struct has been partially unmapped */
+ if (start < vas->vm_start)
+ start = vas->vm_start;
+ if (end > vas->vm_end)
+ end = vas->vm_end;
+
+ migrate.start = start;
+ migrate.end = end;
+ npages = npages_in_range(start, end);
+
+ buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
+ sizeof(*pages), GFP_KERNEL);
+ if (!buf) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
+ pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;
+
+ migrate.vma = vas;
+ migrate.src = buf;
+ migrate.dst = migrate.src + npages;
+
+ err = migrate_vma_setup(&migrate);
+ if (err)
+ goto err_free;
+
+ /* Raced with another CPU fault, nothing to do */
+ if (!migrate.cpages)
+ goto err_free;
+
+ if (!page) {
+ for (i = 0; i < npages; ++i) {
+ if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
+ continue;
+
+ page = migrate_pfn_to_page(migrate.src[i]);
+ break;
+ }
+
+ if (!page)
+ goto err_finalize;
+ }
+ zdd = page->zone_device_data;
+ ops = zdd->devmem_allocation->ops;
+ dev = zdd->devmem_allocation->dev;
+
+ err = drm_gpusvm_migrate_populate_ram_pfn(vas, page, npages, &mpages,
+ migrate.src, migrate.dst,
+ start);
+ if (err)
+ goto err_finalize;
+
+ err = drm_gpusvm_migrate_map_pages(dev, dma_addr, migrate.dst, npages,
+ DMA_FROM_DEVICE);
+ if (err)
+ goto err_finalize;
+
+ for (i = 0; i < npages; ++i)
+ pages[i] = migrate_pfn_to_page(migrate.src[i]);
+
+ err = ops->copy_to_ram(pages, dma_addr, npages);
+ if (err)
+ goto err_finalize;
+
+err_finalize:
+ if (err)
+ drm_gpusvm_migration_unlock_put_pages(npages, migrate.dst);
+ migrate_vma_pages(&migrate);
+ migrate_vma_finalize(&migrate);
+ if (dev)
+ drm_gpusvm_migrate_unmap_pages(dev, dma_addr, npages,
+ DMA_FROM_DEVICE);
+err_free:
+ kvfree(buf);
+err_out:
+
+ return err;
+}
+
+/**
+ * drm_gpusvm_range_evict - Evict GPU SVM range
+ * @range: Pointer to the GPU SVM range to be removed
+ *
+ * This function evicts the specified GPU SVM range. This function will not
+ * evict coherent pages.
+ *
+ * Return: 0 on success, a negative error code on failure.
+ */
+int drm_gpusvm_range_evict(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_range *range)
+{
+ struct mmu_interval_notifier *notifier = &range->notifier->notifier;
+ struct hmm_range hmm_range = {
+ .default_flags = HMM_PFN_REQ_FAULT,
+ .notifier = notifier,
+ .start = drm_gpusvm_range_start(range),
+ .end = drm_gpusvm_range_end(range),
+ .dev_private_owner = NULL,
+ };
+ unsigned long timeout =
+ jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+ unsigned long *pfns;
+ unsigned long npages = npages_in_range(drm_gpusvm_range_start(range),
+ drm_gpusvm_range_end(range));
+ int err = 0;
+ struct mm_struct *mm = gpusvm->mm;
+
+ if (!mmget_not_zero(mm))
+ return -EFAULT;
+
+ pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
+ if (!pfns)
+ return -ENOMEM;
+
+ hmm_range.hmm_pfns = pfns;
+ while (!time_after(jiffies, timeout)) {
+ hmm_range.notifier_seq = mmu_interval_read_begin(notifier);
+ if (time_after(jiffies, timeout)) {
+ err = -ETIME;
+ break;
+ }
+
+ mmap_read_lock(mm);
+ err = hmm_range_fault(&hmm_range);
+ mmap_read_unlock(mm);
+ if (err != -EBUSY)
+ break;
+ }
+
+ kvfree(pfns);
+ mmput(mm);
+
+ return err;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_evict);
+
+/**
+ * drm_gpusvm_page_free() - Put GPU SVM zone device data associated with a page
+ * @page: Pointer to the page
+ *
+ * This function is a callback used to put the GPU SVM zone device data
+ * associated with a page when it is being released.
+ */
+static void drm_gpusvm_page_free(struct page *page)
+{
+ drm_gpusvm_zdd_put(page->zone_device_data);
+}
+
+/**
+ * drm_gpusvm_migrate_to_ram() - Migrate GPU SVM range to RAM (page fault handler)
+ * @vmf: Pointer to the fault information structure
+ *
+ * This function is a page fault handler used to migrate a GPU SVM range to RAM.
+ * It retrieves the GPU SVM range information from the faulting page and invokes
+ * the internal migration function to migrate the range back to RAM.
+ *
+ * Return: VM_FAULT_SIGBUS on failure, 0 on success.
+ */
+static vm_fault_t drm_gpusvm_migrate_to_ram(struct vm_fault *vmf)
+{
+ struct drm_gpusvm_zdd *zdd = vmf->page->zone_device_data;
+ int err;
+
+ err = __drm_gpusvm_migrate_to_ram(vmf->vma,
+ zdd->device_private_page_owner,
+ vmf->page, vmf->address,
+ zdd->devmem_allocation->size);
+
+ return err ? VM_FAULT_SIGBUS : 0;
+}
+
+/*
+ * drm_gpusvm_pagemap_ops - Device page map operations for GPU SVM
+ */
+static const struct dev_pagemap_ops drm_gpusvm_pagemap_ops = {
+ .page_free = drm_gpusvm_page_free,
+ .migrate_to_ram = drm_gpusvm_migrate_to_ram,
+};
+
+/**
+ * drm_gpusvm_pagemap_ops_get() - Retrieve GPU SVM device page map operations
+ *
+ * Return: Pointer to the GPU SVM device page map operations structure.
+ */
+const struct dev_pagemap_ops *drm_gpusvm_pagemap_ops_get(void)
+{
+ return &drm_gpusvm_pagemap_ops;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_pagemap_ops_get);
+
+/**
+ * drm_gpusvm_has_mapping() - Check if GPU SVM has mapping for the given address range
+ * @gpusvm: Pointer to the GPU SVM structure.
+ * @start: Start address
+ * @end: End address
+ *
+ * Return: True if GPU SVM has mapping, False otherwise
+ */
+bool drm_gpusvm_has_mapping(struct drm_gpusvm *gpusvm, unsigned long start,
+ unsigned long end)
+{
+ struct drm_gpusvm_notifier *notifier;
+
+ drm_gpusvm_for_each_notifier(notifier, gpusvm, start, end) {
+ struct drm_gpusvm_range *range = NULL;
+
+ drm_gpusvm_for_each_range(range, notifier, start, end)
+ return true;
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_has_mapping);
+
+/**
+ * drm_gpusvm_range_set_unmapped() - Mark a GPU SVM range as unmapped
+ * @range: Pointer to the GPU SVM range structure.
+ * @mmu_range: Pointer to the MMU notifier range structure.
+ *
+ * This function marks a GPU SVM range as unmapped and sets the partial_unmap flag
+ * if the range partially falls within the provided MMU notifier range.
+ */
+void drm_gpusvm_range_set_unmapped(struct drm_gpusvm_range *range,
+ const struct mmu_notifier_range *mmu_range)
+{
+ lockdep_assert_held_write(&range->gpusvm->notifier_lock);
+
+ range->flags.unmapped = true;
+ if (drm_gpusvm_range_start(range) < mmu_range->start ||
+ drm_gpusvm_range_end(range) > mmu_range->end)
+ range->flags.partial_unmap = true;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_range_set_unmapped);
+
+/**
+ * drm_gpusvm_devmem_init() - Initialize a GPU SVM device memory allocation
+ *
+ * @dev: Pointer to the device structure which device memory allocation belongs to
+ * @mm: Pointer to the mm_struct for the address space
+ * @ops: Pointer to the operations structure for GPU SVM device memory
+ * @dpagemap: The struct drm_pagemap we're allocating from.
+ * @size: Size of device memory allocation
+ */
+void drm_gpusvm_devmem_init(struct drm_gpusvm_devmem *devmem_allocation,
+ struct device *dev, struct mm_struct *mm,
+ const struct drm_gpusvm_devmem_ops *ops,
+ struct drm_pagemap *dpagemap, size_t size)
+{
+ init_completion(&devmem_allocation->detached);
+ devmem_allocation->dev = dev;
+ devmem_allocation->mm = mm;
+ devmem_allocation->ops = ops;
+ devmem_allocation->dpagemap = dpagemap;
+ devmem_allocation->size = size;
+}
+EXPORT_SYMBOL_GPL(drm_gpusvm_devmem_init);
+
+MODULE_DESCRIPTION("DRM GPUSVM");
+MODULE_LICENSE("GPL");
--- /dev/null
- return container_of(page->pgmap, struct xe_vram_region, pagemap);
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2024 Intel Corporation
+ */
+
+#include "xe_bo.h"
+#include "xe_gt_tlb_invalidation.h"
+#include "xe_migrate.h"
+#include "xe_module.h"
+#include "xe_pt.h"
+#include "xe_svm.h"
+#include "xe_ttm_vram_mgr.h"
+#include "xe_vm.h"
+#include "xe_vm_types.h"
+
+static bool xe_svm_range_in_vram(struct xe_svm_range *range)
+{
+ /* Not reliable without notifier lock */
+ return range->base.flags.has_devmem_pages;
+}
+
+static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
+{
+ /* Not reliable without notifier lock */
+ return xe_svm_range_in_vram(range) && range->tile_present;
+}
+
+static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
+{
+ return container_of(gpusvm, struct xe_vm, svm.gpusvm);
+}
+
+static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
+{
+ return gpusvm_to_vm(r->gpusvm);
+}
+
+static unsigned long xe_svm_range_start(struct xe_svm_range *range)
+{
+ return drm_gpusvm_range_start(&range->base);
+}
+
+static unsigned long xe_svm_range_end(struct xe_svm_range *range)
+{
+ return drm_gpusvm_range_end(&range->base);
+}
+
+static unsigned long xe_svm_range_size(struct xe_svm_range *range)
+{
+ return drm_gpusvm_range_size(&range->base);
+}
+
+#define range_debug(r__, operaton__) \
+ vm_dbg(&range_to_vm(&(r__)->base)->xe->drm, \
+ "%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
+ "start=0x%014lx, end=0x%014lx, size=%lu", \
+ (operaton__), range_to_vm(&(r__)->base)->usm.asid, \
+ (r__)->base.gpusvm, \
+ xe_svm_range_in_vram((r__)) ? 1 : 0, \
+ xe_svm_range_has_vram_binding((r__)) ? 1 : 0, \
+ (r__)->base.notifier_seq, \
+ xe_svm_range_start((r__)), xe_svm_range_end((r__)), \
+ xe_svm_range_size((r__)))
+
+void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
+{
+ range_debug(range, operation);
+}
+
+static void *xe_svm_devm_owner(struct xe_device *xe)
+{
+ return xe;
+}
+
+static struct drm_gpusvm_range *
+xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
+{
+ struct xe_svm_range *range;
+
+ range = kzalloc(sizeof(*range), GFP_KERNEL);
+ if (!range)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_LIST_HEAD(&range->garbage_collector_link);
+ xe_vm_get(gpusvm_to_vm(gpusvm));
+
+ return &range->base;
+}
+
+static void xe_svm_range_free(struct drm_gpusvm_range *range)
+{
+ xe_vm_put(range_to_vm(range));
+ kfree(range);
+}
+
+static struct xe_svm_range *to_xe_range(struct drm_gpusvm_range *r)
+{
+ return container_of(r, struct xe_svm_range, base);
+}
+
+static void
+xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
+ const struct mmu_notifier_range *mmu_range)
+{
+ struct xe_device *xe = vm->xe;
+
+ range_debug(range, "GARBAGE COLLECTOR ADD");
+
+ drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
+
+ spin_lock(&vm->svm.garbage_collector.lock);
+ if (list_empty(&range->garbage_collector_link))
+ list_add_tail(&range->garbage_collector_link,
+ &vm->svm.garbage_collector.range_list);
+ spin_unlock(&vm->svm.garbage_collector.lock);
+
+ queue_work(xe_device_get_root_tile(xe)->primary_gt->usm.pf_wq,
+ &vm->svm.garbage_collector.work);
+}
+
+static u8
+xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
+ const struct mmu_notifier_range *mmu_range,
+ u64 *adj_start, u64 *adj_end)
+{
+ struct xe_svm_range *range = to_xe_range(r);
+ struct xe_device *xe = vm->xe;
+ struct xe_tile *tile;
+ u8 tile_mask = 0;
+ u8 id;
+
+ xe_svm_assert_in_notifier(vm);
+
+ range_debug(range, "NOTIFIER");
+
+ /* Skip if already unmapped or if no binding exist */
+ if (range->base.flags.unmapped || !range->tile_present)
+ return 0;
+
+ range_debug(range, "NOTIFIER - EXECUTE");
+
+ /* Adjust invalidation to range boundaries */
+ *adj_start = min(xe_svm_range_start(range), mmu_range->start);
+ *adj_end = max(xe_svm_range_end(range), mmu_range->end);
+
+ /*
+ * XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
+ * invalidation code can't correctly cope with sparse ranges or
+ * invalidations spanning multiple ranges.
+ */
+ for_each_tile(tile, xe, id)
+ if (xe_pt_zap_ptes_range(tile, vm, range)) {
+ tile_mask |= BIT(id);
+ range->tile_invalidated |= BIT(id);
+ }
+
+ return tile_mask;
+}
+
+static void
+xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
+ const struct mmu_notifier_range *mmu_range)
+{
+ struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
+
+ xe_svm_assert_in_notifier(vm);
+
+ drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
+ if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
+ xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
+ mmu_range);
+}
+
+static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
+ struct drm_gpusvm_notifier *notifier,
+ const struct mmu_notifier_range *mmu_range)
+{
+ struct xe_vm *vm = gpusvm_to_vm(gpusvm);
+ struct xe_device *xe = vm->xe;
+ struct xe_tile *tile;
+ struct drm_gpusvm_range *r, *first;
+ struct xe_gt_tlb_invalidation_fence
+ fence[XE_MAX_TILES_PER_DEVICE * XE_MAX_GT_PER_TILE];
+ u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
+ u8 tile_mask = 0;
+ u8 id;
+ u32 fence_id = 0;
+ long err;
+
+ xe_svm_assert_in_notifier(vm);
+
+ vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
+ "INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
+ vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
+ mmu_range->start, mmu_range->end, mmu_range->event);
+
+ /* Adjust invalidation to notifier boundaries */
+ adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
+ adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
+
+ first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
+ if (!first)
+ return;
+
+ /*
+ * PTs may be getting destroyed so not safe to touch these but PT should
+ * be invalidated at this point in time. Regardless we still need to
+ * ensure any dma mappings are unmapped in the here.
+ */
+ if (xe_vm_is_closed(vm))
+ goto range_notifier_event_end;
+
+ /*
+ * XXX: Less than ideal to always wait on VM's resv slots if an
+ * invalidation is not required. Could walk range list twice to figure
+ * out if an invalidations is need, but also not ideal.
+ */
+ err = dma_resv_wait_timeout(xe_vm_resv(vm),
+ DMA_RESV_USAGE_BOOKKEEP,
+ false, MAX_SCHEDULE_TIMEOUT);
+ XE_WARN_ON(err <= 0);
+
+ r = first;
+ drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
+ tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
+ &adj_start,
+ &adj_end);
+ if (!tile_mask)
+ goto range_notifier_event_end;
+
+ xe_device_wmb(xe);
+
+ for_each_tile(tile, xe, id) {
+ if (tile_mask & BIT(id)) {
+ int err;
+
+ xe_gt_tlb_invalidation_fence_init(tile->primary_gt,
+ &fence[fence_id], true);
+
+ err = xe_gt_tlb_invalidation_range(tile->primary_gt,
+ &fence[fence_id],
+ adj_start,
+ adj_end,
+ vm->usm.asid);
+ if (WARN_ON_ONCE(err < 0))
+ goto wait;
+ ++fence_id;
+
+ if (!tile->media_gt)
+ continue;
+
+ xe_gt_tlb_invalidation_fence_init(tile->media_gt,
+ &fence[fence_id], true);
+
+ err = xe_gt_tlb_invalidation_range(tile->media_gt,
+ &fence[fence_id],
+ adj_start,
+ adj_end,
+ vm->usm.asid);
+ if (WARN_ON_ONCE(err < 0))
+ goto wait;
+ ++fence_id;
+ }
+ }
+
+wait:
+ for (id = 0; id < fence_id; ++id)
+ xe_gt_tlb_invalidation_fence_wait(&fence[id]);
+
+range_notifier_event_end:
+ r = first;
+ drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
+ xe_svm_range_notifier_event_end(vm, r, mmu_range);
+}
+
+static int __xe_svm_garbage_collector(struct xe_vm *vm,
+ struct xe_svm_range *range)
+{
+ struct dma_fence *fence;
+
+ range_debug(range, "GARBAGE COLLECTOR");
+
+ xe_vm_lock(vm, false);
+ fence = xe_vm_range_unbind(vm, range);
+ xe_vm_unlock(vm);
+ if (IS_ERR(fence))
+ return PTR_ERR(fence);
+ dma_fence_put(fence);
+
+ drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
+
+ return 0;
+}
+
+static int xe_svm_garbage_collector(struct xe_vm *vm)
+{
+ struct xe_svm_range *range;
+ int err;
+
+ lockdep_assert_held_write(&vm->lock);
+
+ if (xe_vm_is_closed_or_banned(vm))
+ return -ENOENT;
+
+ spin_lock(&vm->svm.garbage_collector.lock);
+ for (;;) {
+ range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
+ typeof(*range),
+ garbage_collector_link);
+ if (!range)
+ break;
+
+ list_del(&range->garbage_collector_link);
+ spin_unlock(&vm->svm.garbage_collector.lock);
+
+ err = __xe_svm_garbage_collector(vm, range);
+ if (err) {
+ drm_warn(&vm->xe->drm,
+ "Garbage collection failed: %pe\n",
+ ERR_PTR(err));
+ xe_vm_kill(vm, true);
+ return err;
+ }
+
+ spin_lock(&vm->svm.garbage_collector.lock);
+ }
+ spin_unlock(&vm->svm.garbage_collector.lock);
+
+ return 0;
+}
+
+static void xe_svm_garbage_collector_work_func(struct work_struct *w)
+{
+ struct xe_vm *vm = container_of(w, struct xe_vm,
+ svm.garbage_collector.work);
+
+ down_write(&vm->lock);
+ xe_svm_garbage_collector(vm);
+ up_write(&vm->lock);
+}
+
+static struct xe_vram_region *page_to_vr(struct page *page)
+{
++ return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
+}
+
+static struct xe_tile *vr_to_tile(struct xe_vram_region *vr)
+{
+ return container_of(vr, struct xe_tile, mem.vram);
+}
+
+static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
+ struct page *page)
+{
+ u64 dpa;
+ struct xe_tile *tile = vr_to_tile(vr);
+ u64 pfn = page_to_pfn(page);
+ u64 offset;
+
+ xe_tile_assert(tile, is_device_private_page(page));
+ xe_tile_assert(tile, (pfn << PAGE_SHIFT) >= vr->hpa_base);
+
+ offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
+ dpa = vr->dpa_base + offset;
+
+ return dpa;
+}
+
+enum xe_svm_copy_dir {
+ XE_SVM_COPY_TO_VRAM,
+ XE_SVM_COPY_TO_SRAM,
+};
+
+static int xe_svm_copy(struct page **pages, dma_addr_t *dma_addr,
+ unsigned long npages, const enum xe_svm_copy_dir dir)
+{
+ struct xe_vram_region *vr = NULL;
+ struct xe_tile *tile;
+ struct dma_fence *fence = NULL;
+ unsigned long i;
+#define XE_VRAM_ADDR_INVALID ~0x0ull
+ u64 vram_addr = XE_VRAM_ADDR_INVALID;
+ int err = 0, pos = 0;
+ bool sram = dir == XE_SVM_COPY_TO_SRAM;
+
+ /*
+ * This flow is complex: it locates physically contiguous device pages,
+ * derives the starting physical address, and performs a single GPU copy
+ * to for every 8M chunk in a DMA address array. Both device pages and
+ * DMA addresses may be sparsely populated. If either is NULL, a copy is
+ * triggered based on the current search state. The last GPU copy is
+ * waited on to ensure all copies are complete.
+ */
+
+ for (i = 0; i < npages; ++i) {
+ struct page *spage = pages[i];
+ struct dma_fence *__fence;
+ u64 __vram_addr;
+ bool match = false, chunk, last;
+
+#define XE_MIGRATE_CHUNK_SIZE SZ_8M
+ chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
+ last = (i + 1) == npages;
+
+ /* No CPU page and no device pages queue'd to copy */
+ if (!dma_addr[i] && vram_addr == XE_VRAM_ADDR_INVALID)
+ continue;
+
+ if (!vr && spage) {
+ vr = page_to_vr(spage);
+ tile = vr_to_tile(vr);
+ }
+ XE_WARN_ON(spage && page_to_vr(spage) != vr);
+
+ /*
+ * CPU page and device page valid, capture physical address on
+ * first device page, check if physical contiguous on subsequent
+ * device pages.
+ */
+ if (dma_addr[i] && spage) {
+ __vram_addr = xe_vram_region_page_to_dpa(vr, spage);
+ if (vram_addr == XE_VRAM_ADDR_INVALID) {
+ vram_addr = __vram_addr;
+ pos = i;
+ }
+
+ match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
+ }
+
+ /*
+ * Mismatched physical address, 8M copy chunk, or last page -
+ * trigger a copy.
+ */
+ if (!match || chunk || last) {
+ /*
+ * Extra page for first copy if last page and matching
+ * physical address.
+ */
+ int incr = (match && last) ? 1 : 0;
+
+ if (vram_addr != XE_VRAM_ADDR_INVALID) {
+ if (sram) {
+ vm_dbg(&tile->xe->drm,
+ "COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
+ vram_addr, (u64)dma_addr[pos], i - pos + incr);
+ __fence = xe_migrate_from_vram(tile->migrate,
+ i - pos + incr,
+ vram_addr,
+ dma_addr + pos);
+ } else {
+ vm_dbg(&tile->xe->drm,
+ "COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
+ (u64)dma_addr[pos], vram_addr, i - pos + incr);
+ __fence = xe_migrate_to_vram(tile->migrate,
+ i - pos + incr,
+ dma_addr + pos,
+ vram_addr);
+ }
+ if (IS_ERR(__fence)) {
+ err = PTR_ERR(__fence);
+ goto err_out;
+ }
+
+ dma_fence_put(fence);
+ fence = __fence;
+ }
+
+ /* Setup physical address of next device page */
+ if (dma_addr[i] && spage) {
+ vram_addr = __vram_addr;
+ pos = i;
+ } else {
+ vram_addr = XE_VRAM_ADDR_INVALID;
+ }
+
+ /* Extra mismatched device page, copy it */
+ if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
+ if (sram) {
+ vm_dbg(&tile->xe->drm,
+ "COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
+ vram_addr, (u64)dma_addr[pos], 1);
+ __fence = xe_migrate_from_vram(tile->migrate, 1,
+ vram_addr,
+ dma_addr + pos);
+ } else {
+ vm_dbg(&tile->xe->drm,
+ "COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
+ (u64)dma_addr[pos], vram_addr, 1);
+ __fence = xe_migrate_to_vram(tile->migrate, 1,
+ dma_addr + pos,
+ vram_addr);
+ }
+ if (IS_ERR(__fence)) {
+ err = PTR_ERR(__fence);
+ goto err_out;
+ }
+
+ dma_fence_put(fence);
+ fence = __fence;
+ }
+ }
+ }
+
+err_out:
+ /* Wait for all copies to complete */
+ if (fence) {
+ dma_fence_wait(fence, false);
+ dma_fence_put(fence);
+ }
+
+ return err;
+#undef XE_MIGRATE_CHUNK_SIZE
+#undef XE_VRAM_ADDR_INVALID
+}
+
+static int xe_svm_copy_to_devmem(struct page **pages, dma_addr_t *dma_addr,
+ unsigned long npages)
+{
+ return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_VRAM);
+}
+
+static int xe_svm_copy_to_ram(struct page **pages, dma_addr_t *dma_addr,
+ unsigned long npages)
+{
+ return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_SRAM);
+}
+
+static struct xe_bo *to_xe_bo(struct drm_gpusvm_devmem *devmem_allocation)
+{
+ return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
+}
+
+static void xe_svm_devmem_release(struct drm_gpusvm_devmem *devmem_allocation)
+{
+ struct xe_bo *bo = to_xe_bo(devmem_allocation);
+
+ xe_bo_put_async(bo);
+}
+
+static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
+{
+ return PHYS_PFN(offset + vr->hpa_base);
+}
+
+static struct drm_buddy *tile_to_buddy(struct xe_tile *tile)
+{
+ return &tile->mem.vram.ttm.mm;
+}
+
+static int xe_svm_populate_devmem_pfn(struct drm_gpusvm_devmem *devmem_allocation,
+ unsigned long npages, unsigned long *pfn)
+{
+ struct xe_bo *bo = to_xe_bo(devmem_allocation);
+ struct ttm_resource *res = bo->ttm.resource;
+ struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
+ struct drm_buddy_block *block;
+ int j = 0;
+
+ list_for_each_entry(block, blocks, link) {
+ struct xe_vram_region *vr = block->private;
+ struct xe_tile *tile = vr_to_tile(vr);
+ struct drm_buddy *buddy = tile_to_buddy(tile);
+ u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
+ int i;
+
+ for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
+ pfn[j++] = block_pfn + i;
+ }
+
+ return 0;
+}
+
+static const struct drm_gpusvm_devmem_ops gpusvm_devmem_ops = {
+ .devmem_release = xe_svm_devmem_release,
+ .populate_devmem_pfn = xe_svm_populate_devmem_pfn,
+ .copy_to_devmem = xe_svm_copy_to_devmem,
+ .copy_to_ram = xe_svm_copy_to_ram,
+};
+
+static const struct drm_gpusvm_ops gpusvm_ops = {
+ .range_alloc = xe_svm_range_alloc,
+ .range_free = xe_svm_range_free,
+ .invalidate = xe_svm_invalidate,
+};
+
+static const unsigned long fault_chunk_sizes[] = {
+ SZ_2M,
+ SZ_64K,
+ SZ_4K,
+};
+
+/**
+ * xe_svm_init() - SVM initialize
+ * @vm: The VM.
+ *
+ * Initialize SVM state which is embedded within the VM.
+ *
+ * Return: 0 on success, negative error code on error.
+ */
+int xe_svm_init(struct xe_vm *vm)
+{
+ int err;
+
+ spin_lock_init(&vm->svm.garbage_collector.lock);
+ INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
+ INIT_WORK(&vm->svm.garbage_collector.work,
+ xe_svm_garbage_collector_work_func);
+
+ err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
+ current->mm, xe_svm_devm_owner(vm->xe), 0,
+ vm->size, xe_modparam.svm_notifier_size * SZ_1M,
+ &gpusvm_ops, fault_chunk_sizes,
+ ARRAY_SIZE(fault_chunk_sizes));
+ if (err)
+ return err;
+
+ drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
+
+ return 0;
+}
+
+/**
+ * xe_svm_close() - SVM close
+ * @vm: The VM.
+ *
+ * Close SVM state (i.e., stop and flush all SVM actions).
+ */
+void xe_svm_close(struct xe_vm *vm)
+{
+ xe_assert(vm->xe, xe_vm_is_closed(vm));
+ flush_work(&vm->svm.garbage_collector.work);
+}
+
+/**
+ * xe_svm_fini() - SVM finalize
+ * @vm: The VM.
+ *
+ * Finalize SVM state which is embedded within the VM.
+ */
+void xe_svm_fini(struct xe_vm *vm)
+{
+ xe_assert(vm->xe, xe_vm_is_closed(vm));
+
+ drm_gpusvm_fini(&vm->svm.gpusvm);
+}
+
+static bool xe_svm_range_is_valid(struct xe_svm_range *range,
+ struct xe_tile *tile)
+{
+ return (range->tile_present & ~range->tile_invalidated) & BIT(tile->id);
+}
+
+static struct xe_vram_region *tile_to_vr(struct xe_tile *tile)
+{
+ return &tile->mem.vram;
+}
+
+static int xe_svm_alloc_vram(struct xe_vm *vm, struct xe_tile *tile,
+ struct xe_svm_range *range,
+ const struct drm_gpusvm_ctx *ctx)
+{
+ struct mm_struct *mm = vm->svm.gpusvm.mm;
+ struct xe_vram_region *vr = tile_to_vr(tile);
+ struct drm_buddy_block *block;
+ struct list_head *blocks;
+ struct xe_bo *bo;
+ ktime_t end = 0;
+ int err;
+
+ range_debug(range, "ALLOCATE VRAM");
+
+ if (!mmget_not_zero(mm))
+ return -EFAULT;
+ mmap_read_lock(mm);
+
+retry:
+ bo = xe_bo_create_locked(tile_to_xe(tile), NULL, NULL,
+ xe_svm_range_size(range),
+ ttm_bo_type_device,
+ XE_BO_FLAG_VRAM_IF_DGFX(tile) |
+ XE_BO_FLAG_CPU_ADDR_MIRROR);
+ if (IS_ERR(bo)) {
+ err = PTR_ERR(bo);
+ if (xe_vm_validate_should_retry(NULL, err, &end))
+ goto retry;
+ goto unlock;
+ }
+
+ drm_gpusvm_devmem_init(&bo->devmem_allocation,
+ vm->xe->drm.dev, mm,
+ &gpusvm_devmem_ops,
+ &tile->mem.vram.dpagemap,
+ xe_svm_range_size(range));
+
+ blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
+ list_for_each_entry(block, blocks, link)
+ block->private = vr;
+
+ err = drm_gpusvm_migrate_to_devmem(&vm->svm.gpusvm, &range->base,
+ &bo->devmem_allocation, ctx);
+ xe_bo_unlock(bo);
+ if (err)
+ xe_bo_put(bo); /* Creation ref */
+
+unlock:
+ mmap_read_unlock(mm);
+ mmput(mm);
+
+ return err;
+}
+
+/**
+ * xe_svm_handle_pagefault() - SVM handle page fault
+ * @vm: The VM.
+ * @vma: The CPU address mirror VMA.
+ * @tile: The tile upon the fault occurred.
+ * @fault_addr: The GPU fault address.
+ * @atomic: The fault atomic access bit.
+ *
+ * Create GPU bindings for a SVM page fault. Optionally migrate to device
+ * memory.
+ *
+ * Return: 0 on success, negative error code on error.
+ */
+int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
+ struct xe_tile *tile, u64 fault_addr,
+ bool atomic)
+{
+ struct drm_gpusvm_ctx ctx = {
+ .read_only = xe_vma_read_only(vma),
+ .devmem_possible = IS_DGFX(vm->xe) &&
+ IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR),
+ .check_pages_threshold = IS_DGFX(vm->xe) &&
+ IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR) ? SZ_64K : 0,
+ };
+ struct xe_svm_range *range;
+ struct drm_gpusvm_range *r;
+ struct drm_exec exec;
+ struct dma_fence *fence;
+ ktime_t end = 0;
+ int err;
+
+ lockdep_assert_held_write(&vm->lock);
+ xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
+
+retry:
+ /* Always process UNMAPs first so view SVM ranges is current */
+ err = xe_svm_garbage_collector(vm);
+ if (err)
+ return err;
+
+ r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, fault_addr,
+ xe_vma_start(vma), xe_vma_end(vma),
+ &ctx);
+ if (IS_ERR(r))
+ return PTR_ERR(r);
+
+ range = to_xe_range(r);
+ if (xe_svm_range_is_valid(range, tile))
+ return 0;
+
+ range_debug(range, "PAGE FAULT");
+
+ /* XXX: Add migration policy, for now migrate range once */
+ if (!range->skip_migrate && range->base.flags.migrate_devmem &&
+ xe_svm_range_size(range) >= SZ_64K) {
+ range->skip_migrate = true;
+
+ err = xe_svm_alloc_vram(vm, tile, range, &ctx);
+ if (err) {
+ drm_dbg(&vm->xe->drm,
+ "VRAM allocation failed, falling back to "
+ "retrying fault, asid=%u, errno=%pe\n",
+ vm->usm.asid, ERR_PTR(err));
+ goto retry;
+ }
+ }
+
+ range_debug(range, "GET PAGES");
+ err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, r, &ctx);
+ /* Corner where CPU mappings have changed */
+ if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
+ if (err == -EOPNOTSUPP) {
+ range_debug(range, "PAGE FAULT - EVICT PAGES");
+ drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
+ }
+ drm_dbg(&vm->xe->drm,
+ "Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
+ vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
+ range_debug(range, "PAGE FAULT - RETRY PAGES");
+ goto retry;
+ }
+ if (err) {
+ range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
+ goto err_out;
+ }
+
+ range_debug(range, "PAGE FAULT - BIND");
+
+retry_bind:
+ drm_exec_init(&exec, 0, 0);
+ drm_exec_until_all_locked(&exec) {
+ err = drm_exec_lock_obj(&exec, vm->gpuvm.r_obj);
+ drm_exec_retry_on_contention(&exec);
+ if (err) {
+ drm_exec_fini(&exec);
+ goto err_out;
+ }
+
+ fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
+ if (IS_ERR(fence)) {
+ drm_exec_fini(&exec);
+ err = PTR_ERR(fence);
+ if (err == -EAGAIN) {
+ range_debug(range, "PAGE FAULT - RETRY BIND");
+ goto retry;
+ }
+ if (xe_vm_validate_should_retry(&exec, err, &end))
+ goto retry_bind;
+ goto err_out;
+ }
+ }
+ drm_exec_fini(&exec);
+
+ if (xe_modparam.always_migrate_to_vram)
+ range->skip_migrate = false;
+
+ dma_fence_wait(fence, false);
+ dma_fence_put(fence);
+
+err_out:
+
+ return err;
+}
+
+/**
+ * xe_svm_has_mapping() - SVM has mappings
+ * @vm: The VM.
+ * @start: Start address.
+ * @end: End address.
+ *
+ * Check if an address range has SVM mappings.
+ *
+ * Return: True if address range has a SVM mapping, False otherwise
+ */
+bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
+{
+ return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
+}
+
+/**
+ * xe_svm_bo_evict() - SVM evict BO to system memory
+ * @bo: BO to evict
+ *
+ * SVM evict BO to system memory. GPU SVM layer ensures all device pages
+ * are evicted before returning.
+ *
+ * Return: 0 on success standard error code otherwise
+ */
+int xe_svm_bo_evict(struct xe_bo *bo)
+{
+ return drm_gpusvm_evict_to_ram(&bo->devmem_allocation);
+}
+
+#if IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR)
+static struct drm_pagemap_device_addr
+xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
+ struct device *dev,
+ struct page *page,
+ unsigned int order,
+ enum dma_data_direction dir)
+{
+ struct device *pgmap_dev = dpagemap->dev;
+ enum drm_interconnect_protocol prot;
+ dma_addr_t addr;
+
+ if (pgmap_dev == dev) {
+ addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
+ prot = XE_INTERCONNECT_VRAM;
+ } else {
+ addr = DMA_MAPPING_ERROR;
+ prot = 0;
+ }
+
+ return drm_pagemap_device_addr_encode(addr, prot, order, dir);
+}
+
+static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
+ .device_map = xe_drm_pagemap_device_map,
+};
+
+/**
+ * xe_devm_add: Remap and provide memmap backing for device memory
+ * @tile: tile that the memory region belongs to
+ * @vr: vram memory region to remap
+ *
+ * This remap device memory to host physical address space and create
+ * struct page to back device memory
+ *
+ * Return: 0 on success standard error code otherwise
+ */
+int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
+{
+ struct xe_device *xe = tile_to_xe(tile);
+ struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
+ struct resource *res;
+ void *addr;
+ int ret;
+
+ res = devm_request_free_mem_region(dev, &iomem_resource,
+ vr->usable_size);
+ if (IS_ERR(res)) {
+ ret = PTR_ERR(res);
+ return ret;
+ }
+
+ vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
+ vr->pagemap.range.start = res->start;
+ vr->pagemap.range.end = res->end;
+ vr->pagemap.nr_range = 1;
+ vr->pagemap.ops = drm_gpusvm_pagemap_ops_get();
+ vr->pagemap.owner = xe_svm_devm_owner(xe);
+ addr = devm_memremap_pages(dev, &vr->pagemap);
+
+ vr->dpagemap.dev = dev;
+ vr->dpagemap.ops = &xe_drm_pagemap_ops;
+
+ if (IS_ERR(addr)) {
+ devm_release_mem_region(dev, res->start, resource_size(res));
+ ret = PTR_ERR(addr);
+ drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
+ tile->id, ERR_PTR(ret));
+ return ret;
+ }
+ vr->hpa_base = res->start;
+
+ drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
+ tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
+ return 0;
+}
+#else
+int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
+{
+ return 0;
+}
+#endif
#define __must_be_byte_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_byte_array(a), \
"must be byte array")
+/*
+ * If the "nonstring" attribute isn't available, we have to return true
+ * so the __must_*() checks pass when "nonstring" isn't supported.
+ */
+#if __has_attribute(__nonstring__) && defined(__annotated)
+#define __is_cstr(a) (!__annotated(a, nonstring))
+#define __is_noncstr(a) (__annotated(a, nonstring))
+#else
+#define __is_cstr(a) (true)
+#define __is_noncstr(a) (true)
+#endif
+
/* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */
#define __must_be_cstr(p) \
- __BUILD_BUG_ON_ZERO_MSG(__annotated(p, nonstring), "must be cstr (NUL-terminated)")
+ __BUILD_BUG_ON_ZERO_MSG(!__is_cstr(p), \
+ "must be C-string (NUL-terminated)")
+#define __must_be_noncstr(p) \
+ __BUILD_BUG_ON_ZERO_MSG(!__is_noncstr(p), \
+ "must be non-C-string (not NUL-terminated)")
+ /*
+ * Use __typeof_unqual__() when available.
+ *
+ * XXX: Remove test for __CHECKER__ once
+ * sparse learns about __typeof_unqual__().
+ */
+ #if CC_HAS_TYPEOF_UNQUAL && !defined(__CHECKER__)
+ # define USE_TYPEOF_UNQUAL 1
+ #endif
+
+ /*
+ * Define TYPEOF_UNQUAL() to use __typeof_unqual__() as typeof
+ * operator when available, to return an unqualified type of the exp.
+ */
+ #if defined(USE_TYPEOF_UNQUAL)
+ # define TYPEOF_UNQUAL(exp) __typeof_unqual__(exp)
+ #else
+ # define TYPEOF_UNQUAL(exp) __typeof__(exp)
+ #endif
+
#endif /* __KERNEL__ */
+#if defined(CONFIG_CFI_CLANG) && !defined(__DISABLE_EXPORTS) && !defined(BUILD_VDSO)
+/*
+ * Force a reference to the external symbol so the compiler generates
+ * __kcfi_typid.
+ */
+#define KCFI_REFERENCE(sym) __ADDRESSABLE(sym)
+#else
+#define KCFI_REFERENCE(sym)
+#endif
+
/**
* offset_to_ptr - convert a relative memory offset to an absolute pointer
* @off: the address of the 32-bit offset value
struct pt_regs;
struct folio_batch;
-extern int sysctl_page_lock_unfairness;
-
+ void arch_mm_preinit(void);
void mm_core_init(void);
void init_mm_internals(void);
* Get a page reference while we know the page can't be
* freed.
*/
- get_page(vmf->page);
- pte_unmap_unlock(vmf->pte, vmf->ptl);
- pgmap = page_pgmap(vmf->page);
- ret = pgmap->ops->migrate_to_ram(vmf);
- put_page(vmf->page);
+ if (trylock_page(vmf->page)) {
++ struct dev_pagemap *pgmap;
++
+ get_page(vmf->page);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
- ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
++ pgmap = page_pgmap(vmf->page);
++ ret = pgmap->ops->migrate_to_ram(vmf);
+ unlock_page(vmf->page);
+ put_page(vmf->page);
+ } else {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ }
} else if (is_hwpoison_entry(entry)) {
ret = VM_FAULT_HWPOISON;
} else if (is_pte_marker_entry(entry)) {
#include <asm/mmu_context.h>
#include "internal.h"
- void *high_memory;
- EXPORT_SYMBOL(high_memory);
- struct page *mem_map;
- unsigned long max_mapnr;
- EXPORT_SYMBOL(max_mapnr);
unsigned long highest_memmap_pfn;
-int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
int heap_stack_gap = 0;
atomic_long_t mmap_pages_allocated;
{
/* get PageHead before we drop reference */
int head = PageHead(page);
- struct alloc_tag *tag = pgalloc_tag_get(page);
if (put_page_testzero(page))
- free_frozen_pages(page, order);
+ __free_frozen_pages(page, order, fpi_flags);
else if (!head) {
- pgalloc_tag_sub_pages(tag, (1 << order) - 1);
+ pgalloc_tag_sub_pages(page, (1 << order) - 1);
while (order-- > 0)
- free_frozen_pages(page + (1 << order), order);
+ __free_frozen_pages(page + (1 << order), order,
+ fpi_flags);
}
}
+void __free_pages(struct page *page, unsigned int order)
+{
+ ___free_pages(page, order, FPI_NONE);
+}
EXPORT_SYMBOL(__free_pages);
+/*
+ * Can be called while holding raw_spin_lock or from IRQ and NMI for any
+ * page type (not only those that came from try_alloc_pages)
+ */
+void free_pages_nolock(struct page *page, unsigned int order)
+{
+ ___free_pages(page, order, FPI_TRYLOCK);
+}
+
void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
page_owner = get_page_owner(page_ext);
alloc_handle = page_owner->handle;
+ page_ext_put(page_ext);
- handle = save_stack(GFP_NOWAIT | __GFP_NOWARN);
+ /*
+ * Do not specify GFP_NOWAIT to make gfpflags_allow_spinning() == false
+ * to prevent issues in stack_depot_save().
+ * This is similar to try_alloc_pages() gfp flags, but only used
+ * to signal stack_depot to avoid spin_locks.
+ */
+ handle = save_stack(__GFP_NOWARN);
- __update_page_owner_free_handle(page_ext, handle, order, current->pid,
+ __update_page_owner_free_handle(page, handle, order, current->pid,
current->tgid, free_ts_nsec);
- page_ext_put(page_ext);
if (alloc_handle != early_handle)
/*
--- /dev/null
-static int pidfd_open(pid_t pid, unsigned int flags)
-{
- return syscall(SYS_pidfd_open, pid, flags);
-}
-
+ // SPDX-License-Identifier: GPL-2.0-or-later
+
+ #define _GNU_SOURCE
+ #include "../kselftest_harness.h"
+ #include <asm-generic/mman.h> /* Force the import of the tools version. */
+ #include <assert.h>
+ #include <errno.h>
+ #include <fcntl.h>
+ #include <linux/limits.h>
+ #include <linux/userfaultfd.h>
+ #include <setjmp.h>
+ #include <signal.h>
+ #include <stdbool.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <string.h>
+ #include <sys/ioctl.h>
+ #include <sys/mman.h>
+ #include <sys/syscall.h>
+ #include <sys/uio.h>
+ #include <unistd.h>
+ #include "vm_util.h"
+
++#include "../pidfd/pidfd.h"
++
+ /*
+ * Ignore the checkpatch warning, as per the C99 standard, section 7.14.1.1:
+ *
+ * "If the signal occurs other than as the result of calling the abort or raise
+ * function, the behavior is undefined if the signal handler refers to any
+ * object with static storage duration other than by assigning a value to an
+ * object declared as volatile sig_atomic_t"
+ */
+ static volatile sig_atomic_t signal_jump_set;
+ static sigjmp_buf signal_jmp_buf;
+
+ /*
+ * Ignore the checkpatch warning, we must read from x but don't want to do
+ * anything with it in order to trigger a read page fault. We therefore must use
+ * volatile to stop the compiler from optimising this away.
+ */
+ #define FORCE_READ(x) (*(volatile typeof(x) *)x)
+
+ /*
+ * How is the test backing the mapping being tested?
+ */
+ enum backing_type {
+ ANON_BACKED,
+ SHMEM_BACKED,
+ LOCAL_FILE_BACKED,
+ };
+
+ FIXTURE(guard_regions)
+ {
+ unsigned long page_size;
+ char path[PATH_MAX];
+ int fd;
+ };
+
+ FIXTURE_VARIANT(guard_regions)
+ {
+ enum backing_type backing;
+ };
+
+ FIXTURE_VARIANT_ADD(guard_regions, anon)
+ {
+ .backing = ANON_BACKED,
+ };
+
+ FIXTURE_VARIANT_ADD(guard_regions, shmem)
+ {
+ .backing = SHMEM_BACKED,
+ };
+
+ FIXTURE_VARIANT_ADD(guard_regions, file)
+ {
+ .backing = LOCAL_FILE_BACKED,
+ };
+
+ static bool is_anon_backed(const FIXTURE_VARIANT(guard_regions) * variant)
+ {
+ switch (variant->backing) {
+ case ANON_BACKED:
+ case SHMEM_BACKED:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ static void *mmap_(FIXTURE_DATA(guard_regions) * self,
+ const FIXTURE_VARIANT(guard_regions) * variant,
+ void *addr, size_t length, int prot, int extra_flags,
+ off_t offset)
+ {
+ int fd;
+ int flags = extra_flags;
+
+ switch (variant->backing) {
+ case ANON_BACKED:
+ flags |= MAP_PRIVATE | MAP_ANON;
+ fd = -1;
+ break;
+ case SHMEM_BACKED:
+ case LOCAL_FILE_BACKED:
+ flags |= MAP_SHARED;
+ fd = self->fd;
+ break;
+ default:
+ ksft_exit_fail();
+ break;
+ }
+
+ return mmap(addr, length, prot, flags, fd, offset);
+ }
+
+ static int userfaultfd(int flags)
+ {
+ return syscall(SYS_userfaultfd, flags);
+ }
+
+ static void handle_fatal(int c)
+ {
+ if (!signal_jump_set)
+ return;
+
+ siglongjmp(signal_jmp_buf, c);
+ }
+
- pid_t pid = getpid();
- int pidfd = pidfd_open(pid, 0);
+ static ssize_t sys_process_madvise(int pidfd, const struct iovec *iovec,
+ size_t n, int advice, unsigned int flags)
+ {
+ return syscall(__NR_process_madvise, pidfd, iovec, n, advice, flags);
+ }
+
+ /*
+ * Enable our signal catcher and try to read/write the specified buffer. The
+ * return value indicates whether the read/write succeeds without a fatal
+ * signal.
+ */
+ static bool try_access_buf(char *ptr, bool write)
+ {
+ bool failed;
+
+ /* Tell signal handler to jump back here on fatal signal. */
+ signal_jump_set = true;
+ /* If a fatal signal arose, we will jump back here and failed is set. */
+ failed = sigsetjmp(signal_jmp_buf, 0) != 0;
+
+ if (!failed) {
+ if (write)
+ *ptr = 'x';
+ else
+ FORCE_READ(ptr);
+ }
+
+ signal_jump_set = false;
+ return !failed;
+ }
+
+ /* Try and read from a buffer, return true if no fatal signal. */
+ static bool try_read_buf(char *ptr)
+ {
+ return try_access_buf(ptr, false);
+ }
+
+ /* Try and write to a buffer, return true if no fatal signal. */
+ static bool try_write_buf(char *ptr)
+ {
+ return try_access_buf(ptr, true);
+ }
+
+ /*
+ * Try and BOTH read from AND write to a buffer, return true if BOTH operations
+ * succeed.
+ */
+ static bool try_read_write_buf(char *ptr)
+ {
+ return try_read_buf(ptr) && try_write_buf(ptr);
+ }
+
+ static void setup_sighandler(void)
+ {
+ struct sigaction act = {
+ .sa_handler = &handle_fatal,
+ .sa_flags = SA_NODEFER,
+ };
+
+ sigemptyset(&act.sa_mask);
+ if (sigaction(SIGSEGV, &act, NULL))
+ ksft_exit_fail_perror("sigaction");
+ }
+
+ static void teardown_sighandler(void)
+ {
+ struct sigaction act = {
+ .sa_handler = SIG_DFL,
+ .sa_flags = SA_NODEFER,
+ };
+
+ sigemptyset(&act.sa_mask);
+ sigaction(SIGSEGV, &act, NULL);
+ }
+
+ static int open_file(const char *prefix, char *path)
+ {
+ int fd;
+
+ snprintf(path, PATH_MAX, "%sguard_regions_test_file_XXXXXX", prefix);
+ fd = mkstemp(path);
+ if (fd < 0)
+ ksft_exit_fail_perror("mkstemp");
+
+ return fd;
+ }
+
+ /* Establish a varying pattern in a buffer. */
+ static void set_pattern(char *ptr, size_t num_pages, size_t page_size)
+ {
+ size_t i;
+
+ for (i = 0; i < num_pages; i++) {
+ char *ptr2 = &ptr[i * page_size];
+
+ memset(ptr2, 'a' + (i % 26), page_size);
+ }
+ }
+
+ /*
+ * Check that a buffer contains the pattern set by set_pattern(), starting at a
+ * page offset of pgoff within the buffer.
+ */
+ static bool check_pattern_offset(char *ptr, size_t num_pages, size_t page_size,
+ size_t pgoff)
+ {
+ size_t i;
+
+ for (i = 0; i < num_pages * page_size; i++) {
+ size_t offset = pgoff * page_size + i;
+ char actual = ptr[offset];
+ char expected = 'a' + ((offset / page_size) % 26);
+
+ if (actual != expected)
+ return false;
+ }
+
+ return true;
+ }
+
+ /* Check that a buffer contains the pattern set by set_pattern(). */
+ static bool check_pattern(char *ptr, size_t num_pages, size_t page_size)
+ {
+ return check_pattern_offset(ptr, num_pages, page_size, 0);
+ }
+
+ /* Determine if a buffer contains only repetitions of a specified char. */
+ static bool is_buf_eq(char *buf, size_t size, char chr)
+ {
+ size_t i;
+
+ for (i = 0; i < size; i++) {
+ if (buf[i] != chr)
+ return false;
+ }
+
+ return true;
+ }
+
+ FIXTURE_SETUP(guard_regions)
+ {
+ self->page_size = (unsigned long)sysconf(_SC_PAGESIZE);
+ setup_sighandler();
+
+ if (variant->backing == ANON_BACKED)
+ return;
+
+ self->fd = open_file(
+ variant->backing == SHMEM_BACKED ? "/tmp/" : "",
+ self->path);
+
+ /* We truncate file to at least 100 pages, tests can modify as needed. */
+ ASSERT_EQ(ftruncate(self->fd, 100 * self->page_size), 0);
+ };
+
+ FIXTURE_TEARDOWN_PARENT(guard_regions)
+ {
+ teardown_sighandler();
+
+ if (variant->backing == ANON_BACKED)
+ return;
+
+ if (self->fd >= 0)
+ close(self->fd);
+
+ if (self->path[0] != '\0')
+ unlink(self->path);
+ }
+
+ TEST_F(guard_regions, basic)
+ {
+ const unsigned long NUM_PAGES = 10;
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ ptr = mmap_(self, variant, NULL, NUM_PAGES * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Trivially assert we can touch the first page. */
+ ASSERT_TRUE(try_read_write_buf(ptr));
+
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Establish that 1st page SIGSEGV's. */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+
+ /* Ensure we can touch everything else.*/
+ for (i = 1; i < NUM_PAGES; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Establish a guard page at the end of the mapping. */
+ ASSERT_EQ(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size,
+ MADV_GUARD_INSTALL), 0);
+
+ /* Check that both guard pages result in SIGSEGV. */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size]));
+
+ /* Remove the first guard page. */
+ ASSERT_FALSE(madvise(ptr, page_size, MADV_GUARD_REMOVE));
+
+ /* Make sure we can touch it. */
+ ASSERT_TRUE(try_read_write_buf(ptr));
+
+ /* Remove the last guard page. */
+ ASSERT_FALSE(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size,
+ MADV_GUARD_REMOVE));
+
+ /* Make sure we can touch it. */
+ ASSERT_TRUE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size]));
+
+ /*
+ * Test setting a _range_ of pages, namely the first 3. The first of
+ * these be faulted in, so this also tests that we can install guard
+ * pages over backed pages.
+ */
+ ASSERT_EQ(madvise(ptr, 3 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure they are all guard pages. */
+ for (i = 0; i < 3; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Make sure the rest are not. */
+ for (i = 3; i < NUM_PAGES; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Remove guard pages. */
+ ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Now make sure we can touch everything. */
+ for (i = 0; i < NUM_PAGES; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /*
+ * Now remove all guard pages, make sure we don't remove existing
+ * entries.
+ */
+ ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0);
+
+ for (i = 0; i < NUM_PAGES * page_size; i += page_size) {
+ char chr = ptr[i];
+
+ ASSERT_EQ(chr, 'x');
+ }
+
+ ASSERT_EQ(munmap(ptr, NUM_PAGES * page_size), 0);
+ }
+
+ /* Assert that operations applied across multiple VMAs work as expected. */
+ TEST_F(guard_regions, multi_vma)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr_region, *ptr, *ptr1, *ptr2, *ptr3;
+ int i;
+
+ /* Reserve a 100 page region over which we can install VMAs. */
+ ptr_region = mmap_(self, variant, NULL, 100 * page_size,
+ PROT_NONE, 0, 0);
+ ASSERT_NE(ptr_region, MAP_FAILED);
+
+ /* Place a VMA of 10 pages size at the start of the region. */
+ ptr1 = mmap_(self, variant, ptr_region, 10 * page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr1, MAP_FAILED);
+
+ /* Place a VMA of 5 pages size 50 pages into the region. */
+ ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr2, MAP_FAILED);
+
+ /* Place a VMA of 20 pages size at the end of the region. */
+ ptr3 = mmap_(self, variant, &ptr_region[80 * page_size], 20 * page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr3, MAP_FAILED);
+
+ /* Unmap gaps. */
+ ASSERT_EQ(munmap(&ptr_region[10 * page_size], 40 * page_size), 0);
+ ASSERT_EQ(munmap(&ptr_region[55 * page_size], 25 * page_size), 0);
+
+ /*
+ * We end up with VMAs like this:
+ *
+ * 0 10 .. 50 55 .. 80 100
+ * [---] [---] [---]
+ */
+
+ /*
+ * Now mark the whole range as guard pages and make sure all VMAs are as
+ * such.
+ */
+
+ /*
+ * madvise() is certifiable and lets you perform operations over gaps,
+ * everything works, but it indicates an error and errno is set to
+ * -ENOMEM. Also if anything runs out of memory it is set to
+ * -ENOMEM. You are meant to guess which is which.
+ */
+ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), -1);
+ ASSERT_EQ(errno, ENOMEM);
+
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr1[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ for (i = 0; i < 5; i++) {
+ char *curr = &ptr2[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ for (i = 0; i < 20; i++) {
+ char *curr = &ptr3[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Now remove guar pages over range and assert the opposite. */
+
+ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), -1);
+ ASSERT_EQ(errno, ENOMEM);
+
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr1[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ for (i = 0; i < 5; i++) {
+ char *curr = &ptr2[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ for (i = 0; i < 20; i++) {
+ char *curr = &ptr3[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Now map incompatible VMAs in the gaps. */
+ ptr = mmap_(self, variant, &ptr_region[10 * page_size], 40 * page_size,
+ PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+ ptr = mmap_(self, variant, &ptr_region[55 * page_size], 25 * page_size,
+ PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /*
+ * We end up with VMAs like this:
+ *
+ * 0 10 .. 50 55 .. 80 100
+ * [---][xxxx][---][xxxx][---]
+ *
+ * Where 'x' signifies VMAs that cannot be merged with those adjacent to
+ * them.
+ */
+
+ /* Multiple VMAs adjacent to one another should result in no error. */
+ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), 0);
+ for (i = 0; i < 100; i++) {
+ char *curr = &ptr_region[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), 0);
+ for (i = 0; i < 100; i++) {
+ char *curr = &ptr_region[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr_region, 100 * page_size), 0);
+ }
+
+ /*
+ * Assert that batched operations performed using process_madvise() work as
+ * expected.
+ */
+ TEST_F(guard_regions, process_madvise)
+ {
+ const unsigned long page_size = self->page_size;
- ASSERT_NE(pidfd, -1);
-
+ char *ptr_region, *ptr1, *ptr2, *ptr3;
+ ssize_t count;
+ struct iovec vec[6];
+
- count = sys_process_madvise(pidfd, vec, 6, MADV_GUARD_INSTALL, 0);
+ /* Reserve region to map over. */
+ ptr_region = mmap_(self, variant, NULL, 100 * page_size,
+ PROT_NONE, 0, 0);
+ ASSERT_NE(ptr_region, MAP_FAILED);
+
+ /*
+ * 10 pages offset 1 page into reserve region. We MAP_POPULATE so we
+ * overwrite existing entries and test this code path against
+ * overwriting existing entries.
+ */
+ ptr1 = mmap_(self, variant, &ptr_region[page_size], 10 * page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED | MAP_POPULATE, 0);
+ ASSERT_NE(ptr1, MAP_FAILED);
+ /* We want guard markers at start/end of each VMA. */
+ vec[0].iov_base = ptr1;
+ vec[0].iov_len = page_size;
+ vec[1].iov_base = &ptr1[9 * page_size];
+ vec[1].iov_len = page_size;
+
+ /* 5 pages offset 50 pages into reserve region. */
+ ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr2, MAP_FAILED);
+ vec[2].iov_base = ptr2;
+ vec[2].iov_len = page_size;
+ vec[3].iov_base = &ptr2[4 * page_size];
+ vec[3].iov_len = page_size;
+
+ /* 20 pages offset 79 pages into reserve region. */
+ ptr3 = mmap_(self, variant, &ptr_region[79 * page_size], 20 * page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr3, MAP_FAILED);
+ vec[4].iov_base = ptr3;
+ vec[4].iov_len = page_size;
+ vec[5].iov_base = &ptr3[19 * page_size];
+ vec[5].iov_len = page_size;
+
+ /* Free surrounding VMAs. */
+ ASSERT_EQ(munmap(ptr_region, page_size), 0);
+ ASSERT_EQ(munmap(&ptr_region[11 * page_size], 39 * page_size), 0);
+ ASSERT_EQ(munmap(&ptr_region[55 * page_size], 24 * page_size), 0);
+ ASSERT_EQ(munmap(&ptr_region[99 * page_size], page_size), 0);
+
+ /* Now guard in one step. */
- count = sys_process_madvise(pidfd, vec, 6, MADV_GUARD_REMOVE, 0);
++ count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_INSTALL, 0);
+
+ /* OK we don't have permission to do this, skip. */
+ if (count == -1 && errno == EPERM)
+ ksft_exit_skip("No process_madvise() permissions, try running as root.\n");
+
+ /* Returns the number of bytes advised. */
+ ASSERT_EQ(count, 6 * page_size);
+
+ /* Now make sure the guarding was applied. */
+
+ ASSERT_FALSE(try_read_write_buf(ptr1));
+ ASSERT_FALSE(try_read_write_buf(&ptr1[9 * page_size]));
+
+ ASSERT_FALSE(try_read_write_buf(ptr2));
+ ASSERT_FALSE(try_read_write_buf(&ptr2[4 * page_size]));
+
+ ASSERT_FALSE(try_read_write_buf(ptr3));
+ ASSERT_FALSE(try_read_write_buf(&ptr3[19 * page_size]));
+
+ /* Now do the same with unguard... */
- close(pidfd);
++ count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_REMOVE, 0);
+
+ /* ...and everything should now succeed. */
+
+ ASSERT_TRUE(try_read_write_buf(ptr1));
+ ASSERT_TRUE(try_read_write_buf(&ptr1[9 * page_size]));
+
+ ASSERT_TRUE(try_read_write_buf(ptr2));
+ ASSERT_TRUE(try_read_write_buf(&ptr2[4 * page_size]));
+
+ ASSERT_TRUE(try_read_write_buf(ptr3));
+ ASSERT_TRUE(try_read_write_buf(&ptr3[19 * page_size]));
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr1, 10 * page_size), 0);
+ ASSERT_EQ(munmap(ptr2, 5 * page_size), 0);
+ ASSERT_EQ(munmap(ptr3, 20 * page_size), 0);
+ }
+
+ /* Assert that unmapping ranges does not leave guard markers behind. */
+ TEST_F(guard_regions, munmap)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr, *ptr_new1, *ptr_new2;
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Guard first and last pages. */
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+ ASSERT_EQ(madvise(&ptr[9 * page_size], page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Assert that they are guarded. */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[9 * page_size]));
+
+ /* Unmap them. */
+ ASSERT_EQ(munmap(ptr, page_size), 0);
+ ASSERT_EQ(munmap(&ptr[9 * page_size], page_size), 0);
+
+ /* Map over them.*/
+ ptr_new1 = mmap_(self, variant, ptr, page_size, PROT_READ | PROT_WRITE,
+ MAP_FIXED, 0);
+ ASSERT_NE(ptr_new1, MAP_FAILED);
+ ptr_new2 = mmap_(self, variant, &ptr[9 * page_size], page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr_new2, MAP_FAILED);
+
+ /* Assert that they are now not guarded. */
+ ASSERT_TRUE(try_read_write_buf(ptr_new1));
+ ASSERT_TRUE(try_read_write_buf(ptr_new2));
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Assert that mprotect() operations have no bearing on guard markers. */
+ TEST_F(guard_regions, mprotect)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Guard the middle of the range. */
+ ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size,
+ MADV_GUARD_INSTALL), 0);
+
+ /* Assert that it is indeed guarded. */
+ ASSERT_FALSE(try_read_write_buf(&ptr[5 * page_size]));
+ ASSERT_FALSE(try_read_write_buf(&ptr[6 * page_size]));
+
+ /* Now make these pages read-only. */
+ ASSERT_EQ(mprotect(&ptr[5 * page_size], 2 * page_size, PROT_READ), 0);
+
+ /* Make sure the range is still guarded. */
+ ASSERT_FALSE(try_read_buf(&ptr[5 * page_size]));
+ ASSERT_FALSE(try_read_buf(&ptr[6 * page_size]));
+
+ /* Make sure we can guard again without issue.*/
+ ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size,
+ MADV_GUARD_INSTALL), 0);
+
+ /* Make sure the range is, yet again, still guarded. */
+ ASSERT_FALSE(try_read_buf(&ptr[5 * page_size]));
+ ASSERT_FALSE(try_read_buf(&ptr[6 * page_size]));
+
+ /* Now unguard the whole range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Make sure the whole range is readable. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Split and merge VMAs and make sure guard pages still behave. */
+ TEST_F(guard_regions, split_merge)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr, *ptr_new;
+ int i;
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Guard the whole range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure the whole range is guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Now unmap some pages in the range so we split. */
+ ASSERT_EQ(munmap(&ptr[2 * page_size], page_size), 0);
+ ASSERT_EQ(munmap(&ptr[5 * page_size], page_size), 0);
+ ASSERT_EQ(munmap(&ptr[8 * page_size], page_size), 0);
+
+ /* Make sure the remaining ranges are guarded post-split. */
+ for (i = 0; i < 2; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+ for (i = 2; i < 5; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+ for (i = 6; i < 8; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+ for (i = 9; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Now map them again - the unmap will have cleared the guards. */
+ ptr_new = mmap_(self, variant, &ptr[2 * page_size], page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr_new, MAP_FAILED);
+ ptr_new = mmap_(self, variant, &ptr[5 * page_size], page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr_new, MAP_FAILED);
+ ptr_new = mmap_(self, variant, &ptr[8 * page_size], page_size,
+ PROT_READ | PROT_WRITE, MAP_FIXED, 0);
+ ASSERT_NE(ptr_new, MAP_FAILED);
+
+ /* Now make sure guard pages are established. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+ bool result = try_read_write_buf(curr);
+ bool expect_true = i == 2 || i == 5 || i == 8;
+
+ ASSERT_TRUE(expect_true ? result : !result);
+ }
+
+ /* Now guard everything again. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure the whole range is guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Now split the range into three. */
+ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0);
+ ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0);
+
+ /* Make sure the whole range is guarded for read. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_buf(curr));
+ }
+
+ /* Now reset protection bits so we merge the whole thing. */
+ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0);
+ ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size,
+ PROT_READ | PROT_WRITE), 0);
+
+ /* Make sure the whole range is still guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Split range into 3 again... */
+ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0);
+ ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0);
+
+ /* ...and unguard the whole range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Make sure the whole range is remedied for read. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_buf(curr));
+ }
+
+ /* Merge them again. */
+ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0);
+ ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size,
+ PROT_READ | PROT_WRITE), 0);
+
+ /* Now ensure the merged range is remedied for read/write. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Assert that MADV_DONTNEED does not remove guard markers. */
+ TEST_F(guard_regions, dontneed)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Back the whole range. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ *curr = 'y';
+ }
+
+ /* Guard every other page. */
+ for (i = 0; i < 10; i += 2) {
+ char *curr = &ptr[i * page_size];
+ int res = madvise(curr, page_size, MADV_GUARD_INSTALL);
+
+ ASSERT_EQ(res, 0);
+ }
+
+ /* Indicate that we don't need any of the range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_DONTNEED), 0);
+
+ /* Check to ensure guard markers are still in place. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+ bool result = try_read_buf(curr);
+
+ if (i % 2 == 0) {
+ ASSERT_FALSE(result);
+ } else {
+ ASSERT_TRUE(result);
+ switch (variant->backing) {
+ case ANON_BACKED:
+ /* If anon, then we get a zero page. */
+ ASSERT_EQ(*curr, '\0');
+ break;
+ default:
+ /* Otherwise, we get the file data. */
+ ASSERT_EQ(*curr, 'y');
+ break;
+ }
+ }
+
+ /* Now write... */
+ result = try_write_buf(&ptr[i * page_size]);
+
+ /* ...and make sure same result. */
+ ASSERT_TRUE(i % 2 != 0 ? result : !result);
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Assert that mlock()'ed pages work correctly with guard markers. */
+ TEST_F(guard_regions, mlock)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Populate. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ *curr = 'y';
+ }
+
+ /* Lock. */
+ ASSERT_EQ(mlock(ptr, 10 * page_size), 0);
+
+ /* Now try to guard, should fail with EINVAL. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), -1);
+ ASSERT_EQ(errno, EINVAL);
+
+ /* OK unlock. */
+ ASSERT_EQ(munlock(ptr, 10 * page_size), 0);
+
+ /* Guard first half of range, should now succeed. */
+ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure guard works. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+ bool result = try_read_write_buf(curr);
+
+ if (i < 5) {
+ ASSERT_FALSE(result);
+ } else {
+ ASSERT_TRUE(result);
+ ASSERT_EQ(*curr, 'x');
+ }
+ }
+
+ /*
+ * Now lock the latter part of the range. We can't lock the guard pages,
+ * as this would result in the pages being populated and the guarding
+ * would cause this to error out.
+ */
+ ASSERT_EQ(mlock(&ptr[5 * page_size], 5 * page_size), 0);
+
+ /*
+ * Now remove guard pages, we permit mlock()'d ranges to have guard
+ * pages removed as it is a non-destructive operation.
+ */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Now check that no guard pages remain. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Assert that moving, extending and shrinking memory via mremap() retains
+ * guard markers where possible.
+ *
+ * - Moving a mapping alone should retain markers as they are.
+ */
+ TEST_F(guard_regions, mremap_move)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr, *ptr_new;
+
+ /* Map 5 pages. */
+ ptr = mmap_(self, variant, NULL, 5 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Place guard markers at both ends of the 5 page span. */
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+ ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure the guard pages are in effect. */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
+
+ /* Map a new region we will move this range into. Doing this ensures
+ * that we have reserved a range to map into.
+ */
+ ptr_new = mmap_(self, variant, NULL, 5 * page_size, PROT_NONE, 0, 0);
+ ASSERT_NE(ptr_new, MAP_FAILED);
+
+ ASSERT_EQ(mremap(ptr, 5 * page_size, 5 * page_size,
+ MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new), ptr_new);
+
+ /* Make sure the guard markers are retained. */
+ ASSERT_FALSE(try_read_write_buf(ptr_new));
+ ASSERT_FALSE(try_read_write_buf(&ptr_new[4 * page_size]));
+
+ /*
+ * Clean up - we only need reference the new pointer as we overwrote the
+ * PROT_NONE range and moved the existing one.
+ */
+ munmap(ptr_new, 5 * page_size);
+ }
+
+ /*
+ * Assert that moving, extending and shrinking memory via mremap() retains
+ * guard markers where possible.
+ *
+ * Expanding should retain guard pages, only now in different position. The user
+ * will have to remove guard pages manually to fix up (they'd have to do the
+ * same if it were a PROT_NONE mapping).
+ */
+ TEST_F(guard_regions, mremap_expand)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr, *ptr_new;
+
+ /* Map 10 pages... */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+ /* ...But unmap the last 5 so we can ensure we can expand into them. */
+ ASSERT_EQ(munmap(&ptr[5 * page_size], 5 * page_size), 0);
+
+ /* Place guard markers at both ends of the 5 page span. */
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+ ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure the guarding is in effect. */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
+
+ /* Now expand to 10 pages. */
+ ptr = mremap(ptr, 5 * page_size, 10 * page_size, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /*
+ * Make sure the guard markers are retained in their original positions.
+ */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
+
+ /* Reserve a region which we can move to and expand into. */
+ ptr_new = mmap_(self, variant, NULL, 20 * page_size, PROT_NONE, 0, 0);
+ ASSERT_NE(ptr_new, MAP_FAILED);
+
+ /* Now move and expand into it. */
+ ptr = mremap(ptr, 10 * page_size, 20 * page_size,
+ MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new);
+ ASSERT_EQ(ptr, ptr_new);
+
+ /*
+ * Again, make sure the guard markers are retained in their original positions.
+ */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
+
+ /*
+ * A real user would have to remove guard markers, but would reasonably
+ * expect all characteristics of the mapping to be retained, including
+ * guard markers.
+ */
+
+ /* Cleanup. */
+ munmap(ptr, 20 * page_size);
+ }
+ /*
+ * Assert that moving, extending and shrinking memory via mremap() retains
+ * guard markers where possible.
+ *
+ * Shrinking will result in markers that are shrunk over being removed. Again,
+ * if the user were using a PROT_NONE mapping they'd have to manually fix this
+ * up also so this is OK.
+ */
+ TEST_F(guard_regions, mremap_shrink)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ /* Map 5 pages. */
+ ptr = mmap_(self, variant, NULL, 5 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Place guard markers at both ends of the 5 page span. */
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+ ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Make sure the guarding is in effect. */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+ ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
+
+ /* Now shrink to 3 pages. */
+ ptr = mremap(ptr, 5 * page_size, 3 * page_size, MREMAP_MAYMOVE);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* We expect the guard marker at the start to be retained... */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+
+ /* ...But remaining pages will not have guard markers. */
+ for (i = 1; i < 3; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /*
+ * As with expansion, a real user would have to remove guard pages and
+ * fixup. But you'd have to do similar manual things with PROT_NONE
+ * mappings too.
+ */
+
+ /*
+ * If we expand back to the original size, the end marker will, of
+ * course, no longer be present.
+ */
+ ptr = mremap(ptr, 3 * page_size, 5 * page_size, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Again, we expect the guard marker at the start to be retained... */
+ ASSERT_FALSE(try_read_write_buf(ptr));
+
+ /* ...But remaining pages will not have guard markers. */
+ for (i = 1; i < 5; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ munmap(ptr, 5 * page_size);
+ }
+
+ /*
+ * Assert that forking a process with VMAs that do not have VM_WIPEONFORK set
+ * retain guard pages.
+ */
+ TEST_F(guard_regions, fork)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ pid_t pid;
+ int i;
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Establish guard pages in the first 5 pages. */
+ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
+
+ pid = fork();
+ ASSERT_NE(pid, -1);
+ if (!pid) {
+ /* This is the child process now. */
+
+ /* Assert that the guarding is in effect. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+ bool result = try_read_write_buf(curr);
+
+ ASSERT_TRUE(i >= 5 ? result : !result);
+ }
+
+ /* Now unguard the range.*/
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ exit(0);
+ }
+
+ /* Parent process. */
+
+ /* Parent simply waits on child. */
+ waitpid(pid, NULL, 0);
+
+ /* Child unguard does not impact parent page table state. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+ bool result = try_read_write_buf(curr);
+
+ ASSERT_TRUE(i >= 5 ? result : !result);
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Assert expected behaviour after we fork populated ranges of anonymous memory
+ * and then guard and unguard the range.
+ */
+ TEST_F(guard_regions, fork_cow)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ pid_t pid;
+ int i;
+
+ if (variant->backing != ANON_BACKED)
+ SKIP(return, "CoW only supported on anon mappings");
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Populate range. */
+ for (i = 0; i < 10 * page_size; i++) {
+ char chr = 'a' + (i % 26);
+
+ ptr[i] = chr;
+ }
+
+ pid = fork();
+ ASSERT_NE(pid, -1);
+ if (!pid) {
+ /* This is the child process now. */
+
+ /* Ensure the range is as expected. */
+ for (i = 0; i < 10 * page_size; i++) {
+ char expected = 'a' + (i % 26);
+ char actual = ptr[i];
+
+ ASSERT_EQ(actual, expected);
+ }
+
+ /* Establish guard pages across the whole range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+ /* Remove it. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /*
+ * By removing the guard pages, the page tables will be
+ * cleared. Assert that we are looking at the zero page now.
+ */
+ for (i = 0; i < 10 * page_size; i++) {
+ char actual = ptr[i];
+
+ ASSERT_EQ(actual, '\0');
+ }
+
+ exit(0);
+ }
+
+ /* Parent process. */
+
+ /* Parent simply waits on child. */
+ waitpid(pid, NULL, 0);
+
+ /* Ensure the range is unchanged in parent anon range. */
+ for (i = 0; i < 10 * page_size; i++) {
+ char expected = 'a' + (i % 26);
+ char actual = ptr[i];
+
+ ASSERT_EQ(actual, expected);
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Assert that forking a process with VMAs that do have VM_WIPEONFORK set
+ * behave as expected.
+ */
+ TEST_F(guard_regions, fork_wipeonfork)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ pid_t pid;
+ int i;
+
+ if (variant->backing != ANON_BACKED)
+ SKIP(return, "Wipe on fork only supported on anon mappings");
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Mark wipe on fork. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_WIPEONFORK), 0);
+
+ /* Guard the first 5 pages. */
+ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
+
+ pid = fork();
+ ASSERT_NE(pid, -1);
+ if (!pid) {
+ /* This is the child process now. */
+
+ /* Guard will have been wiped. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_write_buf(curr));
+ }
+
+ exit(0);
+ }
+
+ /* Parent process. */
+
+ waitpid(pid, NULL, 0);
+
+ /* Guard markers should be in effect.*/
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+ bool result = try_read_write_buf(curr);
+
+ ASSERT_TRUE(i >= 5 ? result : !result);
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Ensure that MADV_FREE retains guard entries as expected. */
+ TEST_F(guard_regions, lazyfree)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (variant->backing != ANON_BACKED)
+ SKIP(return, "MADV_FREE only supported on anon mappings");
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Guard range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Ensure guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Lazyfree range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_FREE), 0);
+
+ /* This should leave the guard markers in place. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Ensure that MADV_POPULATE_READ, MADV_POPULATE_WRITE behave as expected. */
+ TEST_F(guard_regions, populate)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Guard range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Populate read should error out... */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_READ), -1);
+ ASSERT_EQ(errno, EFAULT);
+
+ /* ...as should populate write. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_WRITE), -1);
+ ASSERT_EQ(errno, EFAULT);
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Ensure that MADV_COLD, MADV_PAGEOUT do not remove guard markers. */
+ TEST_F(guard_regions, cold_pageout)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Guard range. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* Ensured guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Now mark cold. This should have no impact on guard markers. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_COLD), 0);
+
+ /* Should remain guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* OK, now page out. This should equally, have no effect on markers. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
+
+ /* Should remain guarded. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /* Ensure that guard pages do not break userfaultd. */
+ TEST_F(guard_regions, uffd)
+ {
+ const unsigned long page_size = self->page_size;
+ int uffd;
+ char *ptr;
+ int i;
+ struct uffdio_api api = {
+ .api = UFFD_API,
+ .features = 0,
+ };
+ struct uffdio_register reg;
+ struct uffdio_range range;
+
+ if (!is_anon_backed(variant))
+ SKIP(return, "uffd only works on anon backing");
+
+ /* Set up uffd. */
+ uffd = userfaultfd(0);
+ if (uffd == -1 && errno == EPERM)
+ ksft_exit_skip("No userfaultfd permissions, try running as root.\n");
+ ASSERT_NE(uffd, -1);
+
+ ASSERT_EQ(ioctl(uffd, UFFDIO_API, &api), 0);
+
+ /* Map 10 pages. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Register the range with uffd. */
+ range.start = (unsigned long)ptr;
+ range.len = 10 * page_size;
+ reg.range = range;
+ reg.mode = UFFDIO_REGISTER_MODE_MISSING;
+ ASSERT_EQ(ioctl(uffd, UFFDIO_REGISTER, ®), 0);
+
+ /* Guard the range. This should not trigger the uffd. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /* The guarding should behave as usual with no uffd intervention. */
+ for (i = 0; i < 10; i++) {
+ char *curr = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_read_write_buf(curr));
+ }
+
+ /* Cleanup. */
+ ASSERT_EQ(ioctl(uffd, UFFDIO_UNREGISTER, &range), 0);
+ close(uffd);
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Mark a region within a file-backed mapping using MADV_SEQUENTIAL so we
+ * aggressively read-ahead, then install guard regions and assert that it
+ * behaves correctly.
+ *
+ * We page out using MADV_PAGEOUT before checking guard regions so we drop page
+ * cache folios, meaning we maximise the possibility of some broken readahead.
+ */
+ TEST_F(guard_regions, madvise_sequential)
+ {
+ char *ptr;
+ int i;
+ const unsigned long page_size = self->page_size;
+
+ if (variant->backing == ANON_BACKED)
+ SKIP(return, "MADV_SEQUENTIAL meaningful only for file-backed");
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Establish a pattern of data in the file. */
+ set_pattern(ptr, 10, page_size);
+ ASSERT_TRUE(check_pattern(ptr, 10, page_size));
+
+ /* Mark it as being accessed sequentially. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_SEQUENTIAL), 0);
+
+ /* Mark every other page a guard page. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr2 = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr2, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Now page it out. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
+
+ /* Now make sure pages are as expected. */
+ for (i = 0; i < 10; i++) {
+ char *chrp = &ptr[i * page_size];
+
+ if (i % 2 == 0) {
+ bool result = try_read_write_buf(chrp);
+
+ ASSERT_FALSE(result);
+ } else {
+ ASSERT_EQ(*chrp, 'a' + i);
+ }
+ }
+
+ /* Now remove guard pages. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Now make sure all data is as expected. */
+ if (!check_pattern(ptr, 10, page_size))
+ ASSERT_TRUE(false);
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Check that file-backed mappings implement guard regions with MAP_PRIVATE
+ * correctly.
+ */
+ TEST_F(guard_regions, map_private)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr_shared, *ptr_private;
+ int i;
+
+ if (variant->backing == ANON_BACKED)
+ SKIP(return, "MAP_PRIVATE test specific to file-backed");
+
+ ptr_shared = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr_shared, MAP_FAILED);
+
+ /* Manually mmap(), do not use mmap_() wrapper so we can force MAP_PRIVATE. */
+ ptr_private = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, self->fd, 0);
+ ASSERT_NE(ptr_private, MAP_FAILED);
+
+ /* Set pattern in shared mapping. */
+ set_pattern(ptr_shared, 10, page_size);
+
+ /* Install guard regions in every other page in the shared mapping. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr = &ptr_shared[i * page_size];
+
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ for (i = 0; i < 10; i++) {
+ /* Every even shared page should be guarded. */
+ ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0);
+ /* Private mappings should always be readable. */
+ ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size]));
+ }
+
+ /* Install guard regions in every other page in the private mapping. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr = &ptr_private[i * page_size];
+
+ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ for (i = 0; i < 10; i++) {
+ /* Every even shared page should be guarded. */
+ ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0);
+ /* Every odd private page should be guarded. */
+ ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0);
+ }
+
+ /* Remove guard regions from shared mapping. */
+ ASSERT_EQ(madvise(ptr_shared, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ for (i = 0; i < 10; i++) {
+ /* Shared mappings should always be readable. */
+ ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size]));
+ /* Every even private page should be guarded. */
+ ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0);
+ }
+
+ /* Remove guard regions from private mapping. */
+ ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ for (i = 0; i < 10; i++) {
+ /* Shared mappings should always be readable. */
+ ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size]));
+ /* Private mappings should always be readable. */
+ ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size]));
+ }
+
+ /* Ensure patterns are intact. */
+ ASSERT_TRUE(check_pattern(ptr_shared, 10, page_size));
+ ASSERT_TRUE(check_pattern(ptr_private, 10, page_size));
+
+ /* Now write out every other page to MAP_PRIVATE. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr = &ptr_private[i * page_size];
+
+ memset(ptr, 'a' + i, page_size);
+ }
+
+ /*
+ * At this point the mapping is:
+ *
+ * 0123456789
+ * SPSPSPSPSP
+ *
+ * Where S = shared, P = private mappings.
+ */
+
+ /* Now mark the beginning of the mapping guarded. */
+ ASSERT_EQ(madvise(ptr_private, 5 * page_size, MADV_GUARD_INSTALL), 0);
+
+ /*
+ * This renders the mapping:
+ *
+ * 0123456789
+ * xxxxxPSPSP
+ */
+
+ for (i = 0; i < 10; i++) {
+ char *ptr = &ptr_private[i * page_size];
+
+ /* Ensure guard regions as expected. */
+ ASSERT_EQ(try_read_buf(ptr), i >= 5);
+ /* The shared mapping should always succeed. */
+ ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size]));
+ }
+
+ /* Remove the guard regions altogether. */
+ ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /*
+ *
+ * We now expect the mapping to be:
+ *
+ * 0123456789
+ * SSSSSPSPSP
+ *
+ * As we removed guard regions, the private pages from the first 5 will
+ * have been zapped, so on fault will reestablish the shared mapping.
+ */
+
+ for (i = 0; i < 10; i++) {
+ char *ptr = &ptr_private[i * page_size];
+
+ /*
+ * Assert that shared mappings in the MAP_PRIVATE mapping match
+ * the shared mapping.
+ */
+ if (i < 5 || i % 2 == 0) {
+ char *ptr_s = &ptr_shared[i * page_size];
+
+ ASSERT_EQ(memcmp(ptr, ptr_s, page_size), 0);
+ continue;
+ }
+
+ /* Everything else is a private mapping. */
+ ASSERT_TRUE(is_buf_eq(ptr, page_size, 'a' + i));
+ }
+
+ ASSERT_EQ(munmap(ptr_shared, 10 * page_size), 0);
+ ASSERT_EQ(munmap(ptr_private, 10 * page_size), 0);
+ }
+
+ /* Test that guard regions established over a read-only mapping function correctly. */
+ TEST_F(guard_regions, readonly_file)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (variant->backing == ANON_BACKED)
+ SKIP(return, "Read-only test specific to file-backed");
+
+ /* Map shared so we can populate with pattern, populate it, unmap. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+ set_pattern(ptr, 10, page_size);
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ /* Close the fd so we can re-open read-only. */
+ ASSERT_EQ(close(self->fd), 0);
+
+ /* Re-open read-only. */
+ self->fd = open(self->path, O_RDONLY);
+ ASSERT_NE(self->fd, -1);
+ /* Re-map read-only. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Mark every other page guarded. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr_pg = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr_pg, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Assert that the guard regions are in place.*/
+ for (i = 0; i < 10; i++) {
+ char *ptr_pg = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_buf(ptr_pg), i % 2 != 0);
+ }
+
+ /* Remove guard regions. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Ensure the data is as expected. */
+ ASSERT_TRUE(check_pattern(ptr, 10, page_size));
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ TEST_F(guard_regions, fault_around)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (variant->backing == ANON_BACKED)
+ SKIP(return, "Fault-around test specific to file-backed");
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Establish a pattern in the backing file. */
+ set_pattern(ptr, 10, page_size);
+
+ /*
+ * Now drop it from the page cache so we get major faults when next we
+ * map it.
+ */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
+
+ /* Unmap and remap 'to be sure'. */
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Now make every even page guarded. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Now fault in every odd page. This should trigger fault-around. */
+ for (i = 1; i < 10; i += 2) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_buf(ptr_p));
+ }
+
+ /* Finally, ensure that guard regions are intact as expected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0);
+ }
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ TEST_F(guard_regions, truncation)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (variant->backing == ANON_BACKED)
+ SKIP(return, "Truncation test specific to file-backed");
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /*
+ * Establish a pattern in the backing file, just so there is data
+ * there.
+ */
+ set_pattern(ptr, 10, page_size);
+
+ /* Now make every even page guarded. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Now assert things are as expected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0);
+ }
+
+ /* Now truncate to actually used size (initialised to 100). */
+ ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0);
+
+ /* Here the guard regions will remain intact. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0);
+ }
+
+ /* Now truncate to half the size, then truncate again to the full size. */
+ ASSERT_EQ(ftruncate(self->fd, 5 * page_size), 0);
+ ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0);
+
+ /* Again, guard pages will remain intact. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0);
+ }
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ TEST_F(guard_regions, hole_punch)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (variant->backing == ANON_BACKED)
+ SKIP(return, "Truncation test specific to file-backed");
+
+ /* Establish pattern in mapping. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+ set_pattern(ptr, 10, page_size);
+
+ /* Install a guard region in the middle of the mapping. */
+ ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size,
+ MADV_GUARD_INSTALL), 0);
+
+ /*
+ * The buffer will now be:
+ *
+ * 0123456789
+ * ***xxxx***
+ *
+ * Where * is data and x is the guard region.
+ */
+
+ /* Ensure established. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7);
+ }
+
+ /* Now hole punch the guarded region. */
+ ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size,
+ MADV_REMOVE), 0);
+
+ /* Ensure guard regions remain. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7);
+ }
+
+ /* Now remove guard region throughout. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Check that the pattern exists in non-hole punched region. */
+ ASSERT_TRUE(check_pattern(ptr, 3, page_size));
+ /* Check that hole punched region is zeroed. */
+ ASSERT_TRUE(is_buf_eq(&ptr[3 * page_size], 4 * page_size, '\0'));
+ /* Check that the pattern exists in the remainder of the file. */
+ ASSERT_TRUE(check_pattern_offset(ptr, 3, page_size, 7));
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Ensure that a memfd works correctly with guard regions, that we can write
+ * seal it then open the mapping read-only and still establish guard regions
+ * within, remove those guard regions and have everything work correctly.
+ */
+ TEST_F(guard_regions, memfd_write_seal)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (variant->backing != SHMEM_BACKED)
+ SKIP(return, "memfd write seal test specific to shmem");
+
+ /* OK, we need a memfd, so close existing one. */
+ ASSERT_EQ(close(self->fd), 0);
+
+ /* Create and truncate memfd. */
+ self->fd = memfd_create("guard_regions_memfd_seals_test",
+ MFD_ALLOW_SEALING);
+ ASSERT_NE(self->fd, -1);
+ ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0);
+
+ /* Map, set pattern, unmap. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+ set_pattern(ptr, 10, page_size);
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+
+ /* Write-seal the memfd. */
+ ASSERT_EQ(fcntl(self->fd, F_ADD_SEALS, F_SEAL_WRITE), 0);
+
+ /* Now map the memfd readonly. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Ensure pattern is as expected. */
+ ASSERT_TRUE(check_pattern(ptr, 10, page_size));
+
+ /* Now make every even page guarded. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Now assert things are as expected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0);
+ }
+
+ /* Now remove guard regions. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Ensure pattern is as expected. */
+ ASSERT_TRUE(check_pattern(ptr, 10, page_size));
+
+ /* Ensure write seal intact. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_FALSE(try_write_buf(ptr_p));
+ }
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+
+ /*
+ * Since we are now permitted to establish guard regions in read-only anonymous
+ * mappings, for the sake of thoroughness, though it probably has no practical
+ * use, test that guard regions function with a mapping to the anonymous zero
+ * page.
+ */
+ TEST_F(guard_regions, anon_zeropage)
+ {
+ const unsigned long page_size = self->page_size;
+ char *ptr;
+ int i;
+
+ if (!is_anon_backed(variant))
+ SKIP(return, "anon zero page test specific to anon/shmem");
+
+ /* Obtain a read-only i.e. anon zero page mapping. */
+ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Now make every even page guarded. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Now assert things are as expected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0);
+ }
+
+ /* Now remove all guard regions. */
+ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
+
+ /* Now assert things are as expected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_TRUE(try_read_buf(ptr_p));
+ }
+
+ /* Ensure zero page...*/
+ ASSERT_TRUE(is_buf_eq(ptr, 10 * page_size, '\0'));
+
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ /*
+ * Assert that /proc/$pid/pagemap correctly identifies guard region ranges.
+ */
+ TEST_F(guard_regions, pagemap)
+ {
+ const unsigned long page_size = self->page_size;
+ int proc_fd;
+ char *ptr;
+ int i;
+
+ proc_fd = open("/proc/self/pagemap", O_RDONLY);
+ ASSERT_NE(proc_fd, -1);
+
+ ptr = mmap_(self, variant, NULL, 10 * page_size,
+ PROT_READ | PROT_WRITE, 0, 0);
+ ASSERT_NE(ptr, MAP_FAILED);
+
+ /* Read from pagemap, and assert no guard regions are detected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+ unsigned long entry = pagemap_get_entry(proc_fd, ptr_p);
+ unsigned long masked = entry & PM_GUARD_REGION;
+
+ ASSERT_EQ(masked, 0);
+ }
+
+ /* Install a guard region in every other page. */
+ for (i = 0; i < 10; i += 2) {
+ char *ptr_p = &ptr[i * page_size];
+
+ ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
+ }
+
+ /* Re-read from pagemap, and assert guard regions are detected. */
+ for (i = 0; i < 10; i++) {
+ char *ptr_p = &ptr[i * page_size];
+ unsigned long entry = pagemap_get_entry(proc_fd, ptr_p);
+ unsigned long masked = entry & PM_GUARD_REGION;
+
+ ASSERT_EQ(masked, i % 2 == 0 ? PM_GUARD_REGION : 0);
+ }
+
+ ASSERT_EQ(close(proc_fd), 0);
+ ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
+ }
+
+ TEST_HARNESS_MAIN