Merge branch 'tip/sched/core' into for-6.12
authorTejun Heo <tj@kernel.org>
Tue, 3 Sep 2024 19:15:42 +0000 (09:15 -1000)
committerTejun Heo <tj@kernel.org>
Tue, 3 Sep 2024 22:49:18 +0000 (12:49 -1000)
- Resolve trivial context conflicts from dl_server clearing being moved
  around.

- Add @next to put_prev_task_scx() and @prev to pick_next_task_scx() to
  match sched/core.

- Merge sched_class->switch_class() addition from sched_ext with
  tip/sched/core changes in __pick_next_task().

- Make pick_next_task_scx() call put_prev_task_scx() to emulate the previous
  behavior where sched_class->put_prev_task() was called before
  sched_class->pick_next_task().

While this makes sched_ext build and function, the behavior is not in line
with other sched classes. The follow-up patches will address the
discrepancies and remove sched_class->switch_class().

Signed-off-by: Tejun Heo <tj@kernel.org>
1  2 
include/linux/sched.h
kernel/sched/core.c
kernel/sched/ext.c
kernel/sched/fair.c
kernel/sched/idle.c
kernel/sched/sched.h

Simple merge
index b0cec06bb1facaae65cf46dcc0800ff24dd4f666,ffcd637dc8e42a875d4db7098a177c8ba76c8254..91bedf5d9f89375a0744e9d56a0e1dac7e3059d8
@@@ -5895,22 -5839,11 +5893,22 @@@ static inline void schedule_debug(struc
        schedstat_inc(this_rq()->sched_count);
  }
  
- static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
-                                 struct rq_flags *rf)
+ static void prev_balance(struct rq *rq, struct task_struct *prev,
+                        struct rq_flags *rf)
  {
 -#ifdef CONFIG_SMP
 +      const struct sched_class *start_class = prev->sched_class;
        const struct sched_class *class;
 +
 +#ifdef CONFIG_SCHED_CLASS_EXT
 +      /*
 +       * SCX requires a balance() call before every pick_next_task() including
 +       * when waking up from SCHED_IDLE. If @start_class is below SCX, start
 +       * from SCX instead.
 +       */
 +      if (scx_enabled() && sched_class_above(&ext_sched_class, start_class))
 +              start_class = &ext_sched_class;
 +#endif
 +
        /*
         * We must do the balancing pass before put_prev_task(), such
         * that when we release the rq->lock the task is in the same
         * We can terminate the balance pass as soon as we know there is
         * a runnable task of @class priority or higher.
         */
 -      for_class_range(class, prev->sched_class, &idle_sched_class) {
 -              if (class->balance(rq, prev, rf))
 +      for_active_class_range(class, start_class, &idle_sched_class) {
 +              if (class->balance && class->balance(rq, prev, rf))
                        break;
        }
-       put_prev_task(rq, prev);
-       /*
-        * We've updated @prev and no longer need the server link, clear it.
-        * Must be done before ->pick_next_task() because that can (re)set
-        * ->dl_server.
-        */
-       if (prev->dl_server)
-               prev->dl_server = NULL;
 -#endif
  }
  
  /*
@@@ -5944,9 -5868,8 +5932,11 @@@ __pick_next_task(struct rq *rq, struct 
        const struct sched_class *class;
        struct task_struct *p;
  
+       rq->dl_server = NULL;
 +      if (scx_enabled())
 +              goto restart;
 +
        /*
         * Optimization: we know that if all tasks are in the fair class we can
         * call that function directly, but only if the @prev task wasn't of a
        }
  
  restart:
-       put_prev_task_balance(rq, prev, rf);
+       prev_balance(rq, prev, rf);
  
 -      for_each_class(class) {
 +      for_each_active_class(class) {
-               p = class->pick_next_task(rq);
-               if (p) {
-                       const struct sched_class *prev_class = prev->sched_class;
+               if (class->pick_next_task) {
+                       p = class->pick_next_task(rq, prev);
 -                      if (p)
++                      if (p) {
++                              const struct sched_class *prev_class = prev->sched_class;
++
++                              if (class != prev_class && prev_class->switch_class)
++                                      prev_class->switch_class(rq, p);
+                               return p;
++                      }
+               } else {
+                       p = class->pick_task(rq);
+                       if (p) {
++                              const struct sched_class *prev_class = prev->sched_class;
 +
-                       if (class != prev_class && prev_class->switch_class)
-                               prev_class->switch_class(rq, p);
-                       return p;
+                               put_prev_set_next_task(rq, prev, p);
++
++                              if (class != prev_class && prev_class->switch_class)
++                                      prev_class->switch_class(rq, p);
+                               return p;
+                       }
                }
        }
  
@@@ -6024,7 -5936,9 +6013,9 @@@ static inline struct task_struct *pick_
        const struct sched_class *class;
        struct task_struct *p;
  
 -      for_each_class(class) {
+       rq->dl_server = NULL;
 +      for_each_active_class(class) {
                p = class->pick_task(rq);
                if (p)
                        return p;
index 450389c2073dfe6854e30dc5fbcab8080f9f6b5b,0000000000000000000000000000000000000000..5e862c7c0e6b429cd91daf5906419c9a2a2402cf
mode 100644,000000..100644
--- /dev/null
@@@ -1,6510 -1,0 +1,6518 @@@
- static void put_prev_task_scx(struct rq *rq, struct task_struct *p)
 +/* SPDX-License-Identifier: GPL-2.0 */
 +/*
 + * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
 + *
 + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
 + * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
 + * Copyright (c) 2022 David Vernet <dvernet@meta.com>
 + */
 +#define SCX_OP_IDX(op)                (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
 +
 +enum scx_consts {
 +      SCX_DSP_DFL_MAX_BATCH           = 32,
 +      SCX_DSP_MAX_LOOPS               = 32,
 +      SCX_WATCHDOG_MAX_TIMEOUT        = 30 * HZ,
 +
 +      SCX_EXIT_BT_LEN                 = 64,
 +      SCX_EXIT_MSG_LEN                = 1024,
 +      SCX_EXIT_DUMP_DFL_LEN           = 32768,
 +
 +      SCX_CPUPERF_ONE                 = SCHED_CAPACITY_SCALE,
 +};
 +
 +enum scx_exit_kind {
 +      SCX_EXIT_NONE,
 +      SCX_EXIT_DONE,
 +
 +      SCX_EXIT_UNREG = 64,    /* user-space initiated unregistration */
 +      SCX_EXIT_UNREG_BPF,     /* BPF-initiated unregistration */
 +      SCX_EXIT_UNREG_KERN,    /* kernel-initiated unregistration */
 +      SCX_EXIT_SYSRQ,         /* requested by 'S' sysrq */
 +
 +      SCX_EXIT_ERROR = 1024,  /* runtime error, error msg contains details */
 +      SCX_EXIT_ERROR_BPF,     /* ERROR but triggered through scx_bpf_error() */
 +      SCX_EXIT_ERROR_STALL,   /* watchdog detected stalled runnable tasks */
 +};
 +
 +/*
 + * An exit code can be specified when exiting with scx_bpf_exit() or
 + * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
 + * respectively. The codes are 64bit of the format:
 + *
 + *   Bits: [63  ..  48 47   ..  32 31 .. 0]
 + *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
 + *
 + *   SYS ACT: System-defined exit actions
 + *   SYS RSN: System-defined exit reasons
 + *   USR    : User-defined exit codes and reasons
 + *
 + * Using the above, users may communicate intention and context by ORing system
 + * actions and/or system reasons with a user-defined exit code.
 + */
 +enum scx_exit_code {
 +      /* Reasons */
 +      SCX_ECODE_RSN_HOTPLUG   = 1LLU << 32,
 +
 +      /* Actions */
 +      SCX_ECODE_ACT_RESTART   = 1LLU << 48,
 +};
 +
 +/*
 + * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
 + * being disabled.
 + */
 +struct scx_exit_info {
 +      /* %SCX_EXIT_* - broad category of the exit reason */
 +      enum scx_exit_kind      kind;
 +
 +      /* exit code if gracefully exiting */
 +      s64                     exit_code;
 +
 +      /* textual representation of the above */
 +      const char              *reason;
 +
 +      /* backtrace if exiting due to an error */
 +      unsigned long           *bt;
 +      u32                     bt_len;
 +
 +      /* informational message */
 +      char                    *msg;
 +
 +      /* debug dump */
 +      char                    *dump;
 +};
 +
 +/* sched_ext_ops.flags */
 +enum scx_ops_flags {
 +      /*
 +       * Keep built-in idle tracking even if ops.update_idle() is implemented.
 +       */
 +      SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
 +
 +      /*
 +       * By default, if there are no other task to run on the CPU, ext core
 +       * keeps running the current task even after its slice expires. If this
 +       * flag is specified, such tasks are passed to ops.enqueue() with
 +       * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
 +       */
 +      SCX_OPS_ENQ_LAST        = 1LLU << 1,
 +
 +      /*
 +       * An exiting task may schedule after PF_EXITING is set. In such cases,
 +       * bpf_task_from_pid() may not be able to find the task and if the BPF
 +       * scheduler depends on pid lookup for dispatching, the task will be
 +       * lost leading to various issues including RCU grace period stalls.
 +       *
 +       * To mask this problem, by default, unhashed tasks are automatically
 +       * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
 +       * depend on pid lookups and wants to handle these tasks directly, the
 +       * following flag can be used.
 +       */
 +      SCX_OPS_ENQ_EXITING     = 1LLU << 2,
 +
 +      /*
 +       * If set, only tasks with policy set to SCHED_EXT are attached to
 +       * sched_ext. If clear, SCHED_NORMAL tasks are also included.
 +       */
 +      SCX_OPS_SWITCH_PARTIAL  = 1LLU << 3,
 +
 +      SCX_OPS_ALL_FLAGS       = SCX_OPS_KEEP_BUILTIN_IDLE |
 +                                SCX_OPS_ENQ_LAST |
 +                                SCX_OPS_ENQ_EXITING |
 +                                SCX_OPS_SWITCH_PARTIAL,
 +};
 +
 +/* argument container for ops.init_task() */
 +struct scx_init_task_args {
 +      /*
 +       * Set if ops.init_task() is being invoked on the fork path, as opposed
 +       * to the scheduler transition path.
 +       */
 +      bool                    fork;
 +};
 +
 +/* argument container for ops.exit_task() */
 +struct scx_exit_task_args {
 +      /* Whether the task exited before running on sched_ext. */
 +      bool cancelled;
 +};
 +
 +enum scx_cpu_preempt_reason {
 +      /* next task is being scheduled by &sched_class_rt */
 +      SCX_CPU_PREEMPT_RT,
 +      /* next task is being scheduled by &sched_class_dl */
 +      SCX_CPU_PREEMPT_DL,
 +      /* next task is being scheduled by &sched_class_stop */
 +      SCX_CPU_PREEMPT_STOP,
 +      /* unknown reason for SCX being preempted */
 +      SCX_CPU_PREEMPT_UNKNOWN,
 +};
 +
 +/*
 + * Argument container for ops->cpu_acquire(). Currently empty, but may be
 + * expanded in the future.
 + */
 +struct scx_cpu_acquire_args {};
 +
 +/* argument container for ops->cpu_release() */
 +struct scx_cpu_release_args {
 +      /* the reason the CPU was preempted */
 +      enum scx_cpu_preempt_reason reason;
 +
 +      /* the task that's going to be scheduled on the CPU */
 +      struct task_struct      *task;
 +};
 +
 +/*
 + * Informational context provided to dump operations.
 + */
 +struct scx_dump_ctx {
 +      enum scx_exit_kind      kind;
 +      s64                     exit_code;
 +      const char              *reason;
 +      u64                     at_ns;
 +      u64                     at_jiffies;
 +};
 +
 +/**
 + * struct sched_ext_ops - Operation table for BPF scheduler implementation
 + *
 + * Userland can implement an arbitrary scheduling policy by implementing and
 + * loading operations in this table.
 + */
 +struct sched_ext_ops {
 +      /**
 +       * select_cpu - Pick the target CPU for a task which is being woken up
 +       * @p: task being woken up
 +       * @prev_cpu: the cpu @p was on before sleeping
 +       * @wake_flags: SCX_WAKE_*
 +       *
 +       * Decision made here isn't final. @p may be moved to any CPU while it
 +       * is getting dispatched for execution later. However, as @p is not on
 +       * the rq at this point, getting the eventual execution CPU right here
 +       * saves a small bit of overhead down the line.
 +       *
 +       * If an idle CPU is returned, the CPU is kicked and will try to
 +       * dispatch. While an explicit custom mechanism can be added,
 +       * select_cpu() serves as the default way to wake up idle CPUs.
 +       *
 +       * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
 +       * is dispatched, the ops.enqueue() callback will be skipped. Finally,
 +       * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
 +       * local DSQ of whatever CPU is returned by this callback.
 +       */
 +      s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
 +
 +      /**
 +       * enqueue - Enqueue a task on the BPF scheduler
 +       * @p: task being enqueued
 +       * @enq_flags: %SCX_ENQ_*
 +       *
 +       * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
 +       * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
 +       * scheduler owns @p and if it fails to dispatch @p, the task will
 +       * stall.
 +       *
 +       * If @p was dispatched from ops.select_cpu(), this callback is
 +       * skipped.
 +       */
 +      void (*enqueue)(struct task_struct *p, u64 enq_flags);
 +
 +      /**
 +       * dequeue - Remove a task from the BPF scheduler
 +       * @p: task being dequeued
 +       * @deq_flags: %SCX_DEQ_*
 +       *
 +       * Remove @p from the BPF scheduler. This is usually called to isolate
 +       * the task while updating its scheduling properties (e.g. priority).
 +       *
 +       * The ext core keeps track of whether the BPF side owns a given task or
 +       * not and can gracefully ignore spurious dispatches from BPF side,
 +       * which makes it safe to not implement this method. However, depending
 +       * on the scheduling logic, this can lead to confusing behaviors - e.g.
 +       * scheduling position not being updated across a priority change.
 +       */
 +      void (*dequeue)(struct task_struct *p, u64 deq_flags);
 +
 +      /**
 +       * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
 +       * @cpu: CPU to dispatch tasks for
 +       * @prev: previous task being switched out
 +       *
 +       * Called when a CPU's local dsq is empty. The operation should dispatch
 +       * one or more tasks from the BPF scheduler into the DSQs using
 +       * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
 +       * scx_bpf_consume().
 +       *
 +       * The maximum number of times scx_bpf_dispatch() can be called without
 +       * an intervening scx_bpf_consume() is specified by
 +       * ops.dispatch_max_batch. See the comments on top of the two functions
 +       * for more details.
 +       *
 +       * When not %NULL, @prev is an SCX task with its slice depleted. If
 +       * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
 +       * @prev->scx.flags, it is not enqueued yet and will be enqueued after
 +       * ops.dispatch() returns. To keep executing @prev, return without
 +       * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
 +       */
 +      void (*dispatch)(s32 cpu, struct task_struct *prev);
 +
 +      /**
 +       * tick - Periodic tick
 +       * @p: task running currently
 +       *
 +       * This operation is called every 1/HZ seconds on CPUs which are
 +       * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
 +       * immediate dispatch cycle on the CPU.
 +       */
 +      void (*tick)(struct task_struct *p);
 +
 +      /**
 +       * runnable - A task is becoming runnable on its associated CPU
 +       * @p: task becoming runnable
 +       * @enq_flags: %SCX_ENQ_*
 +       *
 +       * This and the following three functions can be used to track a task's
 +       * execution state transitions. A task becomes ->runnable() on a CPU,
 +       * and then goes through one or more ->running() and ->stopping() pairs
 +       * as it runs on the CPU, and eventually becomes ->quiescent() when it's
 +       * done running on the CPU.
 +       *
 +       * @p is becoming runnable on the CPU because it's
 +       *
 +       * - waking up (%SCX_ENQ_WAKEUP)
 +       * - being moved from another CPU
 +       * - being restored after temporarily taken off the queue for an
 +       *   attribute change.
 +       *
 +       * This and ->enqueue() are related but not coupled. This operation
 +       * notifies @p's state transition and may not be followed by ->enqueue()
 +       * e.g. when @p is being dispatched to a remote CPU, or when @p is
 +       * being enqueued on a CPU experiencing a hotplug event. Likewise, a
 +       * task may be ->enqueue()'d without being preceded by this operation
 +       * e.g. after exhausting its slice.
 +       */
 +      void (*runnable)(struct task_struct *p, u64 enq_flags);
 +
 +      /**
 +       * running - A task is starting to run on its associated CPU
 +       * @p: task starting to run
 +       *
 +       * See ->runnable() for explanation on the task state notifiers.
 +       */
 +      void (*running)(struct task_struct *p);
 +
 +      /**
 +       * stopping - A task is stopping execution
 +       * @p: task stopping to run
 +       * @runnable: is task @p still runnable?
 +       *
 +       * See ->runnable() for explanation on the task state notifiers. If
 +       * !@runnable, ->quiescent() will be invoked after this operation
 +       * returns.
 +       */
 +      void (*stopping)(struct task_struct *p, bool runnable);
 +
 +      /**
 +       * quiescent - A task is becoming not runnable on its associated CPU
 +       * @p: task becoming not runnable
 +       * @deq_flags: %SCX_DEQ_*
 +       *
 +       * See ->runnable() for explanation on the task state notifiers.
 +       *
 +       * @p is becoming quiescent on the CPU because it's
 +       *
 +       * - sleeping (%SCX_DEQ_SLEEP)
 +       * - being moved to another CPU
 +       * - being temporarily taken off the queue for an attribute change
 +       *   (%SCX_DEQ_SAVE)
 +       *
 +       * This and ->dequeue() are related but not coupled. This operation
 +       * notifies @p's state transition and may not be preceded by ->dequeue()
 +       * e.g. when @p is being dispatched to a remote CPU.
 +       */
 +      void (*quiescent)(struct task_struct *p, u64 deq_flags);
 +
 +      /**
 +       * yield - Yield CPU
 +       * @from: yielding task
 +       * @to: optional yield target task
 +       *
 +       * If @to is NULL, @from is yielding the CPU to other runnable tasks.
 +       * The BPF scheduler should ensure that other available tasks are
 +       * dispatched before the yielding task. Return value is ignored in this
 +       * case.
 +       *
 +       * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
 +       * scheduler can implement the request, return %true; otherwise, %false.
 +       */
 +      bool (*yield)(struct task_struct *from, struct task_struct *to);
 +
 +      /**
 +       * core_sched_before - Task ordering for core-sched
 +       * @a: task A
 +       * @b: task B
 +       *
 +       * Used by core-sched to determine the ordering between two tasks. See
 +       * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
 +       * core-sched.
 +       *
 +       * Both @a and @b are runnable and may or may not currently be queued on
 +       * the BPF scheduler. Should return %true if @a should run before @b.
 +       * %false if there's no required ordering or @b should run before @a.
 +       *
 +       * If not specified, the default is ordering them according to when they
 +       * became runnable.
 +       */
 +      bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
 +
 +      /**
 +       * set_weight - Set task weight
 +       * @p: task to set weight for
 +       * @weight: new weight [1..10000]
 +       *
 +       * Update @p's weight to @weight.
 +       */
 +      void (*set_weight)(struct task_struct *p, u32 weight);
 +
 +      /**
 +       * set_cpumask - Set CPU affinity
 +       * @p: task to set CPU affinity for
 +       * @cpumask: cpumask of cpus that @p can run on
 +       *
 +       * Update @p's CPU affinity to @cpumask.
 +       */
 +      void (*set_cpumask)(struct task_struct *p,
 +                          const struct cpumask *cpumask);
 +
 +      /**
 +       * update_idle - Update the idle state of a CPU
 +       * @cpu: CPU to udpate the idle state for
 +       * @idle: whether entering or exiting the idle state
 +       *
 +       * This operation is called when @rq's CPU goes or leaves the idle
 +       * state. By default, implementing this operation disables the built-in
 +       * idle CPU tracking and the following helpers become unavailable:
 +       *
 +       * - scx_bpf_select_cpu_dfl()
 +       * - scx_bpf_test_and_clear_cpu_idle()
 +       * - scx_bpf_pick_idle_cpu()
 +       *
 +       * The user also must implement ops.select_cpu() as the default
 +       * implementation relies on scx_bpf_select_cpu_dfl().
 +       *
 +       * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
 +       * tracking.
 +       */
 +      void (*update_idle)(s32 cpu, bool idle);
 +
 +      /**
 +       * cpu_acquire - A CPU is becoming available to the BPF scheduler
 +       * @cpu: The CPU being acquired by the BPF scheduler.
 +       * @args: Acquire arguments, see the struct definition.
 +       *
 +       * A CPU that was previously released from the BPF scheduler is now once
 +       * again under its control.
 +       */
 +      void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
 +
 +      /**
 +       * cpu_release - A CPU is taken away from the BPF scheduler
 +       * @cpu: The CPU being released by the BPF scheduler.
 +       * @args: Release arguments, see the struct definition.
 +       *
 +       * The specified CPU is no longer under the control of the BPF
 +       * scheduler. This could be because it was preempted by a higher
 +       * priority sched_class, though there may be other reasons as well. The
 +       * caller should consult @args->reason to determine the cause.
 +       */
 +      void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
 +
 +      /**
 +       * init_task - Initialize a task to run in a BPF scheduler
 +       * @p: task to initialize for BPF scheduling
 +       * @args: init arguments, see the struct definition
 +       *
 +       * Either we're loading a BPF scheduler or a new task is being forked.
 +       * Initialize @p for BPF scheduling. This operation may block and can
 +       * be used for allocations, and is called exactly once for a task.
 +       *
 +       * Return 0 for success, -errno for failure. An error return while
 +       * loading will abort loading of the BPF scheduler. During a fork, it
 +       * will abort that specific fork.
 +       */
 +      s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
 +
 +      /**
 +       * exit_task - Exit a previously-running task from the system
 +       * @p: task to exit
 +       *
 +       * @p is exiting or the BPF scheduler is being unloaded. Perform any
 +       * necessary cleanup for @p.
 +       */
 +      void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
 +
 +      /**
 +       * enable - Enable BPF scheduling for a task
 +       * @p: task to enable BPF scheduling for
 +       *
 +       * Enable @p for BPF scheduling. enable() is called on @p any time it
 +       * enters SCX, and is always paired with a matching disable().
 +       */
 +      void (*enable)(struct task_struct *p);
 +
 +      /**
 +       * disable - Disable BPF scheduling for a task
 +       * @p: task to disable BPF scheduling for
 +       *
 +       * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
 +       * Disable BPF scheduling for @p. A disable() call is always matched
 +       * with a prior enable() call.
 +       */
 +      void (*disable)(struct task_struct *p);
 +
 +      /**
 +       * dump - Dump BPF scheduler state on error
 +       * @ctx: debug dump context
 +       *
 +       * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
 +       */
 +      void (*dump)(struct scx_dump_ctx *ctx);
 +
 +      /**
 +       * dump_cpu - Dump BPF scheduler state for a CPU on error
 +       * @ctx: debug dump context
 +       * @cpu: CPU to generate debug dump for
 +       * @idle: @cpu is currently idle without any runnable tasks
 +       *
 +       * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
 +       * @cpu. If @idle is %true and this operation doesn't produce any
 +       * output, @cpu is skipped for dump.
 +       */
 +      void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
 +
 +      /**
 +       * dump_task - Dump BPF scheduler state for a runnable task on error
 +       * @ctx: debug dump context
 +       * @p: runnable task to generate debug dump for
 +       *
 +       * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
 +       * @p.
 +       */
 +      void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
 +
 +      /*
 +       * All online ops must come before ops.cpu_online().
 +       */
 +
 +      /**
 +       * cpu_online - A CPU became online
 +       * @cpu: CPU which just came up
 +       *
 +       * @cpu just came online. @cpu will not call ops.enqueue() or
 +       * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
 +       */
 +      void (*cpu_online)(s32 cpu);
 +
 +      /**
 +       * cpu_offline - A CPU is going offline
 +       * @cpu: CPU which is going offline
 +       *
 +       * @cpu is going offline. @cpu will not call ops.enqueue() or
 +       * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
 +       */
 +      void (*cpu_offline)(s32 cpu);
 +
 +      /*
 +       * All CPU hotplug ops must come before ops.init().
 +       */
 +
 +      /**
 +       * init - Initialize the BPF scheduler
 +       */
 +      s32 (*init)(void);
 +
 +      /**
 +       * exit - Clean up after the BPF scheduler
 +       * @info: Exit info
 +       */
 +      void (*exit)(struct scx_exit_info *info);
 +
 +      /**
 +       * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
 +       */
 +      u32 dispatch_max_batch;
 +
 +      /**
 +       * flags - %SCX_OPS_* flags
 +       */
 +      u64 flags;
 +
 +      /**
 +       * timeout_ms - The maximum amount of time, in milliseconds, that a
 +       * runnable task should be able to wait before being scheduled. The
 +       * maximum timeout may not exceed the default timeout of 30 seconds.
 +       *
 +       * Defaults to the maximum allowed timeout value of 30 seconds.
 +       */
 +      u32 timeout_ms;
 +
 +      /**
 +       * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
 +       * value of 32768 is used.
 +       */
 +      u32 exit_dump_len;
 +
 +      /**
 +       * hotplug_seq - A sequence number that may be set by the scheduler to
 +       * detect when a hotplug event has occurred during the loading process.
 +       * If 0, no detection occurs. Otherwise, the scheduler will fail to
 +       * load if the sequence number does not match @scx_hotplug_seq on the
 +       * enable path.
 +       */
 +      u64 hotplug_seq;
 +
 +      /**
 +       * name - BPF scheduler's name
 +       *
 +       * Must be a non-zero valid BPF object name including only isalnum(),
 +       * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
 +       * BPF scheduler is enabled.
 +       */
 +      char name[SCX_OPS_NAME_LEN];
 +};
 +
 +enum scx_opi {
 +      SCX_OPI_BEGIN                   = 0,
 +      SCX_OPI_NORMAL_BEGIN            = 0,
 +      SCX_OPI_NORMAL_END              = SCX_OP_IDX(cpu_online),
 +      SCX_OPI_CPU_HOTPLUG_BEGIN       = SCX_OP_IDX(cpu_online),
 +      SCX_OPI_CPU_HOTPLUG_END         = SCX_OP_IDX(init),
 +      SCX_OPI_END                     = SCX_OP_IDX(init),
 +};
 +
 +enum scx_wake_flags {
 +      /* expose select WF_* flags as enums */
 +      SCX_WAKE_FORK           = WF_FORK,
 +      SCX_WAKE_TTWU           = WF_TTWU,
 +      SCX_WAKE_SYNC           = WF_SYNC,
 +};
 +
 +enum scx_enq_flags {
 +      /* expose select ENQUEUE_* flags as enums */
 +      SCX_ENQ_WAKEUP          = ENQUEUE_WAKEUP,
 +      SCX_ENQ_HEAD            = ENQUEUE_HEAD,
 +
 +      /* high 32bits are SCX specific */
 +
 +      /*
 +       * Set the following to trigger preemption when calling
 +       * scx_bpf_dispatch() with a local dsq as the target. The slice of the
 +       * current task is cleared to zero and the CPU is kicked into the
 +       * scheduling path. Implies %SCX_ENQ_HEAD.
 +       */
 +      SCX_ENQ_PREEMPT         = 1LLU << 32,
 +
 +      /*
 +       * The task being enqueued was previously enqueued on the current CPU's
 +       * %SCX_DSQ_LOCAL, but was removed from it in a call to the
 +       * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
 +       * invoked in a ->cpu_release() callback, and the task is again
 +       * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
 +       * task will not be scheduled on the CPU until at least the next invocation
 +       * of the ->cpu_acquire() callback.
 +       */
 +      SCX_ENQ_REENQ           = 1LLU << 40,
 +
 +      /*
 +       * The task being enqueued is the only task available for the cpu. By
 +       * default, ext core keeps executing such tasks but when
 +       * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
 +       * %SCX_ENQ_LAST flag set.
 +       *
 +       * If the BPF scheduler wants to continue executing the task,
 +       * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately.
 +       * If the task gets queued on a different dsq or the BPF side, the BPF
 +       * scheduler is responsible for triggering a follow-up scheduling event.
 +       * Otherwise, Execution may stall.
 +       */
 +      SCX_ENQ_LAST            = 1LLU << 41,
 +
 +      /* high 8 bits are internal */
 +      __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
 +
 +      SCX_ENQ_CLEAR_OPSS      = 1LLU << 56,
 +      SCX_ENQ_DSQ_PRIQ        = 1LLU << 57,
 +};
 +
 +enum scx_deq_flags {
 +      /* expose select DEQUEUE_* flags as enums */
 +      SCX_DEQ_SLEEP           = DEQUEUE_SLEEP,
 +
 +      /* high 32bits are SCX specific */
 +
 +      /*
 +       * The generic core-sched layer decided to execute the task even though
 +       * it hasn't been dispatched yet. Dequeue from the BPF side.
 +       */
 +      SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
 +};
 +
 +enum scx_pick_idle_cpu_flags {
 +      SCX_PICK_IDLE_CORE      = 1LLU << 0,    /* pick a CPU whose SMT siblings are also idle */
 +};
 +
 +enum scx_kick_flags {
 +      /*
 +       * Kick the target CPU if idle. Guarantees that the target CPU goes
 +       * through at least one full scheduling cycle before going idle. If the
 +       * target CPU can be determined to be currently not idle and going to go
 +       * through a scheduling cycle before going idle, noop.
 +       */
 +      SCX_KICK_IDLE           = 1LLU << 0,
 +
 +      /*
 +       * Preempt the current task and execute the dispatch path. If the
 +       * current task of the target CPU is an SCX task, its ->scx.slice is
 +       * cleared to zero before the scheduling path is invoked so that the
 +       * task expires and the dispatch path is invoked.
 +       */
 +      SCX_KICK_PREEMPT        = 1LLU << 1,
 +
 +      /*
 +       * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
 +       * return after the target CPU finishes picking the next task.
 +       */
 +      SCX_KICK_WAIT           = 1LLU << 2,
 +};
 +
 +enum scx_ops_enable_state {
 +      SCX_OPS_PREPPING,
 +      SCX_OPS_ENABLING,
 +      SCX_OPS_ENABLED,
 +      SCX_OPS_DISABLING,
 +      SCX_OPS_DISABLED,
 +};
 +
 +static const char *scx_ops_enable_state_str[] = {
 +      [SCX_OPS_PREPPING]      = "prepping",
 +      [SCX_OPS_ENABLING]      = "enabling",
 +      [SCX_OPS_ENABLED]       = "enabled",
 +      [SCX_OPS_DISABLING]     = "disabling",
 +      [SCX_OPS_DISABLED]      = "disabled",
 +};
 +
 +/*
 + * sched_ext_entity->ops_state
 + *
 + * Used to track the task ownership between the SCX core and the BPF scheduler.
 + * State transitions look as follows:
 + *
 + * NONE -> QUEUEING -> QUEUED -> DISPATCHING
 + *   ^              |                 |
 + *   |              v                 v
 + *   \-------------------------------/
 + *
 + * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
 + * sites for explanations on the conditions being waited upon and why they are
 + * safe. Transitions out of them into NONE or QUEUED must store_release and the
 + * waiters should load_acquire.
 + *
 + * Tracking scx_ops_state enables sched_ext core to reliably determine whether
 + * any given task can be dispatched by the BPF scheduler at all times and thus
 + * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
 + * to try to dispatch any task anytime regardless of its state as the SCX core
 + * can safely reject invalid dispatches.
 + */
 +enum scx_ops_state {
 +      SCX_OPSS_NONE,          /* owned by the SCX core */
 +      SCX_OPSS_QUEUEING,      /* in transit to the BPF scheduler */
 +      SCX_OPSS_QUEUED,        /* owned by the BPF scheduler */
 +      SCX_OPSS_DISPATCHING,   /* in transit back to the SCX core */
 +
 +      /*
 +       * QSEQ brands each QUEUED instance so that, when dispatch races
 +       * dequeue/requeue, the dispatcher can tell whether it still has a claim
 +       * on the task being dispatched.
 +       *
 +       * As some 32bit archs can't do 64bit store_release/load_acquire,
 +       * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
 +       * 32bit machines. The dispatch race window QSEQ protects is very narrow
 +       * and runs with IRQ disabled. 30 bits should be sufficient.
 +       */
 +      SCX_OPSS_QSEQ_SHIFT     = 2,
 +};
 +
 +/* Use macros to ensure that the type is unsigned long for the masks */
 +#define SCX_OPSS_STATE_MASK   ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
 +#define SCX_OPSS_QSEQ_MASK    (~SCX_OPSS_STATE_MASK)
 +
 +/*
 + * During exit, a task may schedule after losing its PIDs. When disabling the
 + * BPF scheduler, we need to be able to iterate tasks in every state to
 + * guarantee system safety. Maintain a dedicated task list which contains every
 + * task between its fork and eventual free.
 + */
 +static DEFINE_SPINLOCK(scx_tasks_lock);
 +static LIST_HEAD(scx_tasks);
 +
 +/* ops enable/disable */
 +static struct kthread_worker *scx_ops_helper;
 +static DEFINE_MUTEX(scx_ops_enable_mutex);
 +DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
 +DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
 +static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
 +static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
 +static bool scx_switching_all;
 +DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
 +
 +static struct sched_ext_ops scx_ops;
 +static bool scx_warned_zero_slice;
 +
 +static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
 +static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
 +static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
 +static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
 +
 +struct static_key_false scx_has_op[SCX_OPI_END] =
 +      { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
 +
 +static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
 +static struct scx_exit_info *scx_exit_info;
 +
 +static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
 +static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
 +
 +/*
 + * The maximum amount of time in jiffies that a task may be runnable without
 + * being scheduled on a CPU. If this timeout is exceeded, it will trigger
 + * scx_ops_error().
 + */
 +static unsigned long scx_watchdog_timeout;
 +
 +/*
 + * The last time the delayed work was run. This delayed work relies on
 + * ksoftirqd being able to run to service timer interrupts, so it's possible
 + * that this work itself could get wedged. To account for this, we check that
 + * it's not stalled in the timer tick, and trigger an error if it is.
 + */
 +static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
 +
 +static struct delayed_work scx_watchdog_work;
 +
 +/* idle tracking */
 +#ifdef CONFIG_SMP
 +#ifdef CONFIG_CPUMASK_OFFSTACK
 +#define CL_ALIGNED_IF_ONSTACK
 +#else
 +#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
 +#endif
 +
 +static struct {
 +      cpumask_var_t cpu;
 +      cpumask_var_t smt;
 +} idle_masks CL_ALIGNED_IF_ONSTACK;
 +
 +#endif        /* CONFIG_SMP */
 +
 +/* for %SCX_KICK_WAIT */
 +static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
 +
 +/*
 + * Direct dispatch marker.
 + *
 + * Non-NULL values are used for direct dispatch from enqueue path. A valid
 + * pointer points to the task currently being enqueued. An ERR_PTR value is used
 + * to indicate that direct dispatch has already happened.
 + */
 +static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
 +
 +/* dispatch queues */
 +static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global;
 +
 +static const struct rhashtable_params dsq_hash_params = {
 +      .key_len                = 8,
 +      .key_offset             = offsetof(struct scx_dispatch_q, id),
 +      .head_offset            = offsetof(struct scx_dispatch_q, hash_node),
 +};
 +
 +static struct rhashtable dsq_hash;
 +static LLIST_HEAD(dsqs_to_free);
 +
 +/* dispatch buf */
 +struct scx_dsp_buf_ent {
 +      struct task_struct      *task;
 +      unsigned long           qseq;
 +      u64                     dsq_id;
 +      u64                     enq_flags;
 +};
 +
 +static u32 scx_dsp_max_batch;
 +
 +struct scx_dsp_ctx {
 +      struct rq               *rq;
 +      u32                     cursor;
 +      u32                     nr_tasks;
 +      struct scx_dsp_buf_ent  buf[];
 +};
 +
 +static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
 +
 +/* string formatting from BPF */
 +struct scx_bstr_buf {
 +      u64                     data[MAX_BPRINTF_VARARGS];
 +      char                    line[SCX_EXIT_MSG_LEN];
 +};
 +
 +static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
 +static struct scx_bstr_buf scx_exit_bstr_buf;
 +
 +/* ops debug dump */
 +struct scx_dump_data {
 +      s32                     cpu;
 +      bool                    first;
 +      s32                     cursor;
 +      struct seq_buf          *s;
 +      const char              *prefix;
 +      struct scx_bstr_buf     buf;
 +};
 +
 +struct scx_dump_data scx_dump_data = {
 +      .cpu                    = -1,
 +};
 +
 +/* /sys/kernel/sched_ext interface */
 +static struct kset *scx_kset;
 +static struct kobject *scx_root_kobj;
 +
 +#define CREATE_TRACE_POINTS
 +#include <trace/events/sched_ext.h>
 +
 +static void process_ddsp_deferred_locals(struct rq *rq);
 +static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
 +static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
 +                                           s64 exit_code,
 +                                           const char *fmt, ...);
 +
 +#define scx_ops_error_kind(err, fmt, args...)                                 \
 +      scx_ops_exit_kind((err), 0, fmt, ##args)
 +
 +#define scx_ops_exit(code, fmt, args...)                                      \
 +      scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
 +
 +#define scx_ops_error(fmt, args...)                                           \
 +      scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
 +
 +#define SCX_HAS_OP(op)        static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
 +
 +static long jiffies_delta_msecs(unsigned long at, unsigned long now)
 +{
 +      if (time_after(at, now))
 +              return jiffies_to_msecs(at - now);
 +      else
 +              return -(long)jiffies_to_msecs(now - at);
 +}
 +
 +/* if the highest set bit is N, return a mask with bits [N+1, 31] set */
 +static u32 higher_bits(u32 flags)
 +{
 +      return ~((1 << fls(flags)) - 1);
 +}
 +
 +/* return the mask with only the highest bit set */
 +static u32 highest_bit(u32 flags)
 +{
 +      int bit = fls(flags);
 +      return ((u64)1 << bit) >> 1;
 +}
 +
 +static bool u32_before(u32 a, u32 b)
 +{
 +      return (s32)(a - b) < 0;
 +}
 +
 +/*
 + * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
 + * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
 + * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
 + * whether it's running from an allowed context.
 + *
 + * @mask is constant, always inline to cull the mask calculations.
 + */
 +static __always_inline void scx_kf_allow(u32 mask)
 +{
 +      /* nesting is allowed only in increasing scx_kf_mask order */
 +      WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
 +                "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
 +                current->scx.kf_mask, mask);
 +      current->scx.kf_mask |= mask;
 +      barrier();
 +}
 +
 +static void scx_kf_disallow(u32 mask)
 +{
 +      barrier();
 +      current->scx.kf_mask &= ~mask;
 +}
 +
 +#define SCX_CALL_OP(mask, op, args...)                                                \
 +do {                                                                          \
 +      if (mask) {                                                             \
 +              scx_kf_allow(mask);                                             \
 +              scx_ops.op(args);                                               \
 +              scx_kf_disallow(mask);                                          \
 +      } else {                                                                \
 +              scx_ops.op(args);                                               \
 +      }                                                                       \
 +} while (0)
 +
 +#define SCX_CALL_OP_RET(mask, op, args...)                                    \
 +({                                                                            \
 +      __typeof__(scx_ops.op(args)) __ret;                                     \
 +      if (mask) {                                                             \
 +              scx_kf_allow(mask);                                             \
 +              __ret = scx_ops.op(args);                                       \
 +              scx_kf_disallow(mask);                                          \
 +      } else {                                                                \
 +              __ret = scx_ops.op(args);                                       \
 +      }                                                                       \
 +      __ret;                                                                  \
 +})
 +
 +/*
 + * Some kfuncs are allowed only on the tasks that are subjects of the
 + * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
 + * restrictions, the following SCX_CALL_OP_*() variants should be used when
 + * invoking scx_ops operations that take task arguments. These can only be used
 + * for non-nesting operations due to the way the tasks are tracked.
 + *
 + * kfuncs which can only operate on such tasks can in turn use
 + * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
 + * the specific task.
 + */
 +#define SCX_CALL_OP_TASK(mask, op, task, args...)                             \
 +do {                                                                          \
 +      BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);                              \
 +      current->scx.kf_tasks[0] = task;                                        \
 +      SCX_CALL_OP(mask, op, task, ##args);                                    \
 +      current->scx.kf_tasks[0] = NULL;                                        \
 +} while (0)
 +
 +#define SCX_CALL_OP_TASK_RET(mask, op, task, args...)                         \
 +({                                                                            \
 +      __typeof__(scx_ops.op(task, ##args)) __ret;                             \
 +      BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);                              \
 +      current->scx.kf_tasks[0] = task;                                        \
 +      __ret = SCX_CALL_OP_RET(mask, op, task, ##args);                        \
 +      current->scx.kf_tasks[0] = NULL;                                        \
 +      __ret;                                                                  \
 +})
 +
 +#define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)                       \
 +({                                                                            \
 +      __typeof__(scx_ops.op(task0, task1, ##args)) __ret;                     \
 +      BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);                              \
 +      current->scx.kf_tasks[0] = task0;                                       \
 +      current->scx.kf_tasks[1] = task1;                                       \
 +      __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);                \
 +      current->scx.kf_tasks[0] = NULL;                                        \
 +      current->scx.kf_tasks[1] = NULL;                                        \
 +      __ret;                                                                  \
 +})
 +
 +/* @mask is constant, always inline to cull unnecessary branches */
 +static __always_inline bool scx_kf_allowed(u32 mask)
 +{
 +      if (unlikely(!(current->scx.kf_mask & mask))) {
 +              scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
 +                            mask, current->scx.kf_mask);
 +              return false;
 +      }
 +
 +      /*
 +       * Enforce nesting boundaries. e.g. A kfunc which can be called from
 +       * DISPATCH must not be called if we're running DEQUEUE which is nested
 +       * inside ops.dispatch(). We don't need to check boundaries for any
 +       * blocking kfuncs as the verifier ensures they're only called from
 +       * sleepable progs.
 +       */
 +      if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
 +                   (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
 +              scx_ops_error("cpu_release kfunc called from a nested operation");
 +              return false;
 +      }
 +
 +      if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
 +                   (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
 +              scx_ops_error("dispatch kfunc called from a nested operation");
 +              return false;
 +      }
 +
 +      return true;
 +}
 +
 +/* see SCX_CALL_OP_TASK() */
 +static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
 +                                                      struct task_struct *p)
 +{
 +      if (!scx_kf_allowed(mask))
 +              return false;
 +
 +      if (unlikely((p != current->scx.kf_tasks[0] &&
 +                    p != current->scx.kf_tasks[1]))) {
 +              scx_ops_error("called on a task not being operated on");
 +              return false;
 +      }
 +
 +      return true;
 +}
 +
 +/**
 + * nldsq_next_task - Iterate to the next task in a non-local DSQ
 + * @dsq: user dsq being interated
 + * @cur: current position, %NULL to start iteration
 + * @rev: walk backwards
 + *
 + * Returns %NULL when iteration is finished.
 + */
 +static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
 +                                         struct task_struct *cur, bool rev)
 +{
 +      struct list_head *list_node;
 +      struct scx_dsq_list_node *dsq_lnode;
 +
 +      lockdep_assert_held(&dsq->lock);
 +
 +      if (cur)
 +              list_node = &cur->scx.dsq_list.node;
 +      else
 +              list_node = &dsq->list;
 +
 +      /* find the next task, need to skip BPF iteration cursors */
 +      do {
 +              if (rev)
 +                      list_node = list_node->prev;
 +              else
 +                      list_node = list_node->next;
 +
 +              if (list_node == &dsq->list)
 +                      return NULL;
 +
 +              dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
 +                                       node);
 +      } while (dsq_lnode->is_bpf_iter_cursor);
 +
 +      return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
 +}
 +
 +#define nldsq_for_each_task(p, dsq)                                           \
 +      for ((p) = nldsq_next_task((dsq), NULL, false); (p);                    \
 +           (p) = nldsq_next_task((dsq), (p), false))
 +
 +
 +/*
 + * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
 + * dispatch order. BPF-visible iterator is opaque and larger to allow future
 + * changes without breaking backward compatibility. Can be used with
 + * bpf_for_each(). See bpf_iter_scx_dsq_*().
 + */
 +enum scx_dsq_iter_flags {
 +      /* iterate in the reverse dispatch order */
 +      SCX_DSQ_ITER_REV                = 1U << 0,
 +
 +      __SCX_DSQ_ITER_ALL_FLAGS        = SCX_DSQ_ITER_REV,
 +};
 +
 +struct bpf_iter_scx_dsq_kern {
 +      struct scx_dsq_list_node        cursor;
 +      struct scx_dispatch_q           *dsq;
 +      u32                             dsq_seq;
 +      u32                             flags;
 +} __attribute__((aligned(8)));
 +
 +struct bpf_iter_scx_dsq {
 +      u64                             __opaque[6];
 +} __attribute__((aligned(8)));
 +
 +
 +/*
 + * SCX task iterator.
 + */
 +struct scx_task_iter {
 +      struct sched_ext_entity         cursor;
 +      struct task_struct              *locked;
 +      struct rq                       *rq;
 +      struct rq_flags                 rf;
 +};
 +
 +/**
 + * scx_task_iter_init - Initialize a task iterator
 + * @iter: iterator to init
 + *
 + * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized,
 + * @iter must eventually be exited with scx_task_iter_exit().
 + *
 + * scx_tasks_lock may be released between this and the first next() call or
 + * between any two next() calls. If scx_tasks_lock is released between two
 + * next() calls, the caller is responsible for ensuring that the task being
 + * iterated remains accessible either through RCU read lock or obtaining a
 + * reference count.
 + *
 + * All tasks which existed when the iteration started are guaranteed to be
 + * visited as long as they still exist.
 + */
 +static void scx_task_iter_init(struct scx_task_iter *iter)
 +{
 +      lockdep_assert_held(&scx_tasks_lock);
 +
 +      iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
 +      list_add(&iter->cursor.tasks_node, &scx_tasks);
 +      iter->locked = NULL;
 +}
 +
 +/**
 + * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator
 + * @iter: iterator to unlock rq for
 + *
 + * If @iter is in the middle of a locked iteration, it may be locking the rq of
 + * the task currently being visited. Unlock the rq if so. This function can be
 + * safely called anytime during an iteration.
 + *
 + * Returns %true if the rq @iter was locking is unlocked. %false if @iter was
 + * not locking an rq.
 + */
 +static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter)
 +{
 +      if (iter->locked) {
 +              task_rq_unlock(iter->rq, iter->locked, &iter->rf);
 +              iter->locked = NULL;
 +              return true;
 +      } else {
 +              return false;
 +      }
 +}
 +
 +/**
 + * scx_task_iter_exit - Exit a task iterator
 + * @iter: iterator to exit
 + *
 + * Exit a previously initialized @iter. Must be called with scx_tasks_lock held.
 + * If the iterator holds a task's rq lock, that rq lock is released. See
 + * scx_task_iter_init() for details.
 + */
 +static void scx_task_iter_exit(struct scx_task_iter *iter)
 +{
 +      lockdep_assert_held(&scx_tasks_lock);
 +
 +      scx_task_iter_rq_unlock(iter);
 +      list_del_init(&iter->cursor.tasks_node);
 +}
 +
 +/**
 + * scx_task_iter_next - Next task
 + * @iter: iterator to walk
 + *
 + * Visit the next task. See scx_task_iter_init() for details.
 + */
 +static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
 +{
 +      struct list_head *cursor = &iter->cursor.tasks_node;
 +      struct sched_ext_entity *pos;
 +
 +      lockdep_assert_held(&scx_tasks_lock);
 +
 +      list_for_each_entry(pos, cursor, tasks_node) {
 +              if (&pos->tasks_node == &scx_tasks)
 +                      return NULL;
 +              if (!(pos->flags & SCX_TASK_CURSOR)) {
 +                      list_move(cursor, &pos->tasks_node);
 +                      return container_of(pos, struct task_struct, scx);
 +              }
 +      }
 +
 +      /* can't happen, should always terminate at scx_tasks above */
 +      BUG();
 +}
 +
 +/**
 + * scx_task_iter_next_locked - Next non-idle task with its rq locked
 + * @iter: iterator to walk
 + * @include_dead: Whether we should include dead tasks in the iteration
 + *
 + * Visit the non-idle task with its rq lock held. Allows callers to specify
 + * whether they would like to filter out dead tasks. See scx_task_iter_init()
 + * for details.
 + */
 +static struct task_struct *
 +scx_task_iter_next_locked(struct scx_task_iter *iter, bool include_dead)
 +{
 +      struct task_struct *p;
 +retry:
 +      scx_task_iter_rq_unlock(iter);
 +
 +      while ((p = scx_task_iter_next(iter))) {
 +              /*
 +               * scx_task_iter is used to prepare and move tasks into SCX
 +               * while loading the BPF scheduler and vice-versa while
 +               * unloading. The init_tasks ("swappers") should be excluded
 +               * from the iteration because:
 +               *
 +               * - It's unsafe to use __setschduler_prio() on an init_task to
 +               *   determine the sched_class to use as it won't preserve its
 +               *   idle_sched_class.
 +               *
 +               * - ops.init/exit_task() can easily be confused if called with
 +               *   init_tasks as they, e.g., share PID 0.
 +               *
 +               * As init_tasks are never scheduled through SCX, they can be
 +               * skipped safely. Note that is_idle_task() which tests %PF_IDLE
 +               * doesn't work here:
 +               *
 +               * - %PF_IDLE may not be set for an init_task whose CPU hasn't
 +               *   yet been onlined.
 +               *
 +               * - %PF_IDLE can be set on tasks that are not init_tasks. See
 +               *   play_idle_precise() used by CONFIG_IDLE_INJECT.
 +               *
 +               * Test for idle_sched_class as only init_tasks are on it.
 +               */
 +              if (p->sched_class != &idle_sched_class)
 +                      break;
 +      }
 +      if (!p)
 +              return NULL;
 +
 +      iter->rq = task_rq_lock(p, &iter->rf);
 +      iter->locked = p;
 +
 +      /*
 +       * If we see %TASK_DEAD, @p already disabled preemption, is about to do
 +       * the final __schedule(), won't ever need to be scheduled again and can
 +       * thus be safely ignored. If we don't see %TASK_DEAD, @p can't enter
 +       * the final __schedle() while we're locking its rq and thus will stay
 +       * alive until the rq is unlocked.
 +       */
 +      if (!include_dead && READ_ONCE(p->__state) == TASK_DEAD)
 +              goto retry;
 +
 +      return p;
 +}
 +
 +static enum scx_ops_enable_state scx_ops_enable_state(void)
 +{
 +      return atomic_read(&scx_ops_enable_state_var);
 +}
 +
 +static enum scx_ops_enable_state
 +scx_ops_set_enable_state(enum scx_ops_enable_state to)
 +{
 +      return atomic_xchg(&scx_ops_enable_state_var, to);
 +}
 +
 +static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
 +                                      enum scx_ops_enable_state from)
 +{
 +      int from_v = from;
 +
 +      return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
 +}
 +
 +static bool scx_ops_bypassing(void)
 +{
 +      return unlikely(atomic_read(&scx_ops_bypass_depth));
 +}
 +
 +/**
 + * wait_ops_state - Busy-wait the specified ops state to end
 + * @p: target task
 + * @opss: state to wait the end of
 + *
 + * Busy-wait for @p to transition out of @opss. This can only be used when the
 + * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
 + * has load_acquire semantics to ensure that the caller can see the updates made
 + * in the enqueueing and dispatching paths.
 + */
 +static void wait_ops_state(struct task_struct *p, unsigned long opss)
 +{
 +      do {
 +              cpu_relax();
 +      } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
 +}
 +
 +/**
 + * ops_cpu_valid - Verify a cpu number
 + * @cpu: cpu number which came from a BPF ops
 + * @where: extra information reported on error
 + *
 + * @cpu is a cpu number which came from the BPF scheduler and can be any value.
 + * Verify that it is in range and one of the possible cpus. If invalid, trigger
 + * an ops error.
 + */
 +static bool ops_cpu_valid(s32 cpu, const char *where)
 +{
 +      if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
 +              return true;
 +      } else {
 +              scx_ops_error("invalid CPU %d%s%s", cpu,
 +                            where ? " " : "", where ?: "");
 +              return false;
 +      }
 +}
 +
 +/**
 + * ops_sanitize_err - Sanitize a -errno value
 + * @ops_name: operation to blame on failure
 + * @err: -errno value to sanitize
 + *
 + * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
 + * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
 + * cause misbehaviors. For an example, a large negative return from
 + * ops.init_task() triggers an oops when passed up the call chain because the
 + * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
 + * handled as a pointer.
 + */
 +static int ops_sanitize_err(const char *ops_name, s32 err)
 +{
 +      if (err < 0 && err >= -MAX_ERRNO)
 +              return err;
 +
 +      scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
 +      return -EPROTO;
 +}
 +
 +static void run_deferred(struct rq *rq)
 +{
 +      process_ddsp_deferred_locals(rq);
 +}
 +
 +#ifdef CONFIG_SMP
 +static void deferred_bal_cb_workfn(struct rq *rq)
 +{
 +      run_deferred(rq);
 +}
 +#endif
 +
 +static void deferred_irq_workfn(struct irq_work *irq_work)
 +{
 +      struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
 +
 +      raw_spin_rq_lock(rq);
 +      run_deferred(rq);
 +      raw_spin_rq_unlock(rq);
 +}
 +
 +/**
 + * schedule_deferred - Schedule execution of deferred actions on an rq
 + * @rq: target rq
 + *
 + * Schedule execution of deferred actions on @rq. Must be called with @rq
 + * locked. Deferred actions are executed with @rq locked but unpinned, and thus
 + * can unlock @rq to e.g. migrate tasks to other rqs.
 + */
 +static void schedule_deferred(struct rq *rq)
 +{
 +      lockdep_assert_rq_held(rq);
 +
 +#ifdef CONFIG_SMP
 +      /*
 +       * If in the middle of waking up a task, task_woken_scx() will be called
 +       * afterwards which will then run the deferred actions, no need to
 +       * schedule anything.
 +       */
 +      if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
 +              return;
 +
 +      /*
 +       * If in balance, the balance callbacks will be called before rq lock is
 +       * released. Schedule one.
 +       */
 +      if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
 +              queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
 +                                     deferred_bal_cb_workfn);
 +              return;
 +      }
 +#endif
 +      /*
 +       * No scheduler hooks available. Queue an irq work. They are executed on
 +       * IRQ re-enable which may take a bit longer than the scheduler hooks.
 +       * The above WAKEUP and BALANCE paths should cover most of the cases and
 +       * the time to IRQ re-enable shouldn't be long.
 +       */
 +      irq_work_queue(&rq->scx.deferred_irq_work);
 +}
 +
 +/**
 + * touch_core_sched - Update timestamp used for core-sched task ordering
 + * @rq: rq to read clock from, must be locked
 + * @p: task to update the timestamp for
 + *
 + * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
 + * implement global or local-DSQ FIFO ordering for core-sched. Should be called
 + * when a task becomes runnable and its turn on the CPU ends (e.g. slice
 + * exhaustion).
 + */
 +static void touch_core_sched(struct rq *rq, struct task_struct *p)
 +{
 +      lockdep_assert_rq_held(rq);
 +
 +#ifdef CONFIG_SCHED_CORE
 +      /*
 +       * It's okay to update the timestamp spuriously. Use
 +       * sched_core_disabled() which is cheaper than enabled().
 +       *
 +       * As this is used to determine ordering between tasks of sibling CPUs,
 +       * it may be better to use per-core dispatch sequence instead.
 +       */
 +      if (!sched_core_disabled())
 +              p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
 +#endif
 +}
 +
 +/**
 + * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
 + * @rq: rq to read clock from, must be locked
 + * @p: task being dispatched
 + *
 + * If the BPF scheduler implements custom core-sched ordering via
 + * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
 + * ordering within each local DSQ. This function is called from dispatch paths
 + * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
 + */
 +static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
 +{
 +      lockdep_assert_rq_held(rq);
 +
 +#ifdef CONFIG_SCHED_CORE
 +      if (SCX_HAS_OP(core_sched_before))
 +              touch_core_sched(rq, p);
 +#endif
 +}
 +
 +static void update_curr_scx(struct rq *rq)
 +{
 +      struct task_struct *curr = rq->curr;
 +      s64 delta_exec;
 +
 +      delta_exec = update_curr_common(rq);
 +      if (unlikely(delta_exec <= 0))
 +              return;
 +
 +      if (curr->scx.slice != SCX_SLICE_INF) {
 +              curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
 +              if (!curr->scx.slice)
 +                      touch_core_sched(rq, curr);
 +      }
 +}
 +
 +static bool scx_dsq_priq_less(struct rb_node *node_a,
 +                            const struct rb_node *node_b)
 +{
 +      const struct task_struct *a =
 +              container_of(node_a, struct task_struct, scx.dsq_priq);
 +      const struct task_struct *b =
 +              container_of(node_b, struct task_struct, scx.dsq_priq);
 +
 +      return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
 +}
 +
 +static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
 +{
 +      /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
 +      WRITE_ONCE(dsq->nr, dsq->nr + delta);
 +}
 +
 +static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
 +                           u64 enq_flags)
 +{
 +      bool is_local = dsq->id == SCX_DSQ_LOCAL;
 +
 +      WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
 +      WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
 +                   !RB_EMPTY_NODE(&p->scx.dsq_priq));
 +
 +      if (!is_local) {
 +              raw_spin_lock(&dsq->lock);
 +              if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
 +                      scx_ops_error("attempting to dispatch to a destroyed dsq");
 +                      /* fall back to the global dsq */
 +                      raw_spin_unlock(&dsq->lock);
 +                      dsq = &scx_dsq_global;
 +                      raw_spin_lock(&dsq->lock);
 +              }
 +      }
 +
 +      if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
 +                   (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
 +              /*
 +               * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
 +               * their FIFO queues. To avoid confusion and accidentally
 +               * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
 +               * disallow any internal DSQ from doing vtime ordering of
 +               * tasks.
 +               */
 +              scx_ops_error("cannot use vtime ordering for built-in DSQs");
 +              enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
 +      }
 +
 +      if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
 +              struct rb_node *rbp;
 +
 +              /*
 +               * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
 +               * linked to both the rbtree and list on PRIQs, this can only be
 +               * tested easily when adding the first task.
 +               */
 +              if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
 +                           nldsq_next_task(dsq, NULL, false)))
 +                      scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
 +                                    dsq->id);
 +
 +              p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
 +              rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
 +
 +              /*
 +               * Find the previous task and insert after it on the list so
 +               * that @dsq->list is vtime ordered.
 +               */
 +              rbp = rb_prev(&p->scx.dsq_priq);
 +              if (rbp) {
 +                      struct task_struct *prev =
 +                              container_of(rbp, struct task_struct,
 +                                           scx.dsq_priq);
 +                      list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
 +              } else {
 +                      list_add(&p->scx.dsq_list.node, &dsq->list);
 +              }
 +      } else {
 +              /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
 +              if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
 +                      scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
 +                                    dsq->id);
 +
 +              if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
 +                      list_add(&p->scx.dsq_list.node, &dsq->list);
 +              else
 +                      list_add_tail(&p->scx.dsq_list.node, &dsq->list);
 +      }
 +
 +      /* seq records the order tasks are queued, used by BPF DSQ iterator */
 +      dsq->seq++;
 +      p->scx.dsq_seq = dsq->seq;
 +
 +      dsq_mod_nr(dsq, 1);
 +      p->scx.dsq = dsq;
 +
 +      /*
 +       * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
 +       * direct dispatch path, but we clear them here because the direct
 +       * dispatch verdict may be overridden on the enqueue path during e.g.
 +       * bypass.
 +       */
 +      p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
 +      p->scx.ddsp_enq_flags = 0;
 +
 +      /*
 +       * We're transitioning out of QUEUEING or DISPATCHING. store_release to
 +       * match waiters' load_acquire.
 +       */
 +      if (enq_flags & SCX_ENQ_CLEAR_OPSS)
 +              atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 +
 +      if (is_local) {
 +              struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
 +              bool preempt = false;
 +
 +              if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
 +                  rq->curr->sched_class == &ext_sched_class) {
 +                      rq->curr->scx.slice = 0;
 +                      preempt = true;
 +              }
 +
 +              if (preempt || sched_class_above(&ext_sched_class,
 +                                               rq->curr->sched_class))
 +                      resched_curr(rq);
 +      } else {
 +              raw_spin_unlock(&dsq->lock);
 +      }
 +}
 +
 +static void task_unlink_from_dsq(struct task_struct *p,
 +                               struct scx_dispatch_q *dsq)
 +{
 +      if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
 +              rb_erase(&p->scx.dsq_priq, &dsq->priq);
 +              RB_CLEAR_NODE(&p->scx.dsq_priq);
 +              p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
 +      }
 +
 +      list_del_init(&p->scx.dsq_list.node);
 +}
 +
 +static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
 +{
 +      struct scx_dispatch_q *dsq = p->scx.dsq;
 +      bool is_local = dsq == &rq->scx.local_dsq;
 +
 +      if (!dsq) {
 +              /*
 +               * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
 +               * Unlinking is all that's needed to cancel.
 +               */
 +              if (unlikely(!list_empty(&p->scx.dsq_list.node)))
 +                      list_del_init(&p->scx.dsq_list.node);
 +
 +              /*
 +               * When dispatching directly from the BPF scheduler to a local
 +               * DSQ, the task isn't associated with any DSQ but
 +               * @p->scx.holding_cpu may be set under the protection of
 +               * %SCX_OPSS_DISPATCHING.
 +               */
 +              if (p->scx.holding_cpu >= 0)
 +                      p->scx.holding_cpu = -1;
 +
 +              return;
 +      }
 +
 +      if (!is_local)
 +              raw_spin_lock(&dsq->lock);
 +
 +      /*
 +       * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
 +       * change underneath us.
 +      */
 +      if (p->scx.holding_cpu < 0) {
 +              /* @p must still be on @dsq, dequeue */
 +              WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
 +              task_unlink_from_dsq(p, dsq);
 +              dsq_mod_nr(dsq, -1);
 +      } else {
 +              /*
 +               * We're racing against dispatch_to_local_dsq() which already
 +               * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
 +               * holding_cpu which tells dispatch_to_local_dsq() that it lost
 +               * the race.
 +               */
 +              WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
 +              p->scx.holding_cpu = -1;
 +      }
 +      p->scx.dsq = NULL;
 +
 +      if (!is_local)
 +              raw_spin_unlock(&dsq->lock);
 +}
 +
 +static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
 +{
 +      return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
 +}
 +
 +static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id)
 +{
 +      lockdep_assert(rcu_read_lock_any_held());
 +
 +      if (dsq_id == SCX_DSQ_GLOBAL)
 +              return &scx_dsq_global;
 +      else
 +              return find_user_dsq(dsq_id);
 +}
 +
 +static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
 +                                                  struct task_struct *p)
 +{
 +      struct scx_dispatch_q *dsq;
 +
 +      if (dsq_id == SCX_DSQ_LOCAL)
 +              return &rq->scx.local_dsq;
 +
 +      dsq = find_non_local_dsq(dsq_id);
 +      if (unlikely(!dsq)) {
 +              scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
 +                            dsq_id, p->comm, p->pid);
 +              return &scx_dsq_global;
 +      }
 +
 +      return dsq;
 +}
 +
 +static void mark_direct_dispatch(struct task_struct *ddsp_task,
 +                               struct task_struct *p, u64 dsq_id,
 +                               u64 enq_flags)
 +{
 +      /*
 +       * Mark that dispatch already happened from ops.select_cpu() or
 +       * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
 +       * which can never match a valid task pointer.
 +       */
 +      __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
 +
 +      /* @p must match the task on the enqueue path */
 +      if (unlikely(p != ddsp_task)) {
 +              if (IS_ERR(ddsp_task))
 +                      scx_ops_error("%s[%d] already direct-dispatched",
 +                                    p->comm, p->pid);
 +              else
 +                      scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
 +                                    ddsp_task->comm, ddsp_task->pid,
 +                                    p->comm, p->pid);
 +              return;
 +      }
 +
 +      WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
 +      WARN_ON_ONCE(p->scx.ddsp_enq_flags);
 +
 +      p->scx.ddsp_dsq_id = dsq_id;
 +      p->scx.ddsp_enq_flags = enq_flags;
 +}
 +
 +static void direct_dispatch(struct task_struct *p, u64 enq_flags)
 +{
 +      struct rq *rq = task_rq(p);
 +      struct scx_dispatch_q *dsq;
 +      u64 dsq_id = p->scx.ddsp_dsq_id;
 +
 +      touch_core_sched_dispatch(rq, p);
 +
 +      p->scx.ddsp_enq_flags |= enq_flags;
 +
 +      /*
 +       * We are in the enqueue path with @rq locked and pinned, and thus can't
 +       * double lock a remote rq and enqueue to its local DSQ. For
 +       * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
 +       * the enqueue so that it's executed when @rq can be unlocked.
 +       */
 +      if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
 +              s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
 +              unsigned long opss;
 +
 +              if (cpu == cpu_of(rq)) {
 +                      dsq_id = SCX_DSQ_LOCAL;
 +                      goto dispatch;
 +              }
 +
 +              opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
 +
 +              switch (opss & SCX_OPSS_STATE_MASK) {
 +              case SCX_OPSS_NONE:
 +                      break;
 +              case SCX_OPSS_QUEUEING:
 +                      /*
 +                       * As @p was never passed to the BPF side, _release is
 +                       * not strictly necessary. Still do it for consistency.
 +                       */
 +                      atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 +                      break;
 +              default:
 +                      WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
 +                                p->comm, p->pid, opss);
 +                      atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 +                      break;
 +              }
 +
 +              WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
 +              list_add_tail(&p->scx.dsq_list.node,
 +                            &rq->scx.ddsp_deferred_locals);
 +              schedule_deferred(rq);
 +              return;
 +      }
 +
 +dispatch:
 +      dsq = find_dsq_for_dispatch(rq, dsq_id, p);
 +      dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
 +}
 +
 +static bool scx_rq_online(struct rq *rq)
 +{
 +      /*
 +       * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
 +       * the online state as seen from the BPF scheduler. cpu_active() test
 +       * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
 +       * stay set until the current scheduling operation is complete even if
 +       * we aren't locking @rq.
 +       */
 +      return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
 +}
 +
 +static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
 +                          int sticky_cpu)
 +{
 +      struct task_struct **ddsp_taskp;
 +      unsigned long qseq;
 +
 +      WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
 +
 +      /* rq migration */
 +      if (sticky_cpu == cpu_of(rq))
 +              goto local_norefill;
 +
 +      /*
 +       * If !scx_rq_online(), we already told the BPF scheduler that the CPU
 +       * is offline and are just running the hotplug path. Don't bother the
 +       * BPF scheduler.
 +       */
 +      if (!scx_rq_online(rq))
 +              goto local;
 +
 +      if (scx_ops_bypassing()) {
 +              if (enq_flags & SCX_ENQ_LAST)
 +                      goto local;
 +              else
 +                      goto global;
 +      }
 +
 +      if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
 +              goto direct;
 +
 +      /* see %SCX_OPS_ENQ_EXITING */
 +      if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
 +          unlikely(p->flags & PF_EXITING))
 +              goto local;
 +
 +      /* see %SCX_OPS_ENQ_LAST */
 +      if (!static_branch_unlikely(&scx_ops_enq_last) &&
 +          (enq_flags & SCX_ENQ_LAST))
 +              goto local;
 +
 +      if (!SCX_HAS_OP(enqueue))
 +              goto global;
 +
 +      /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
 +      qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
 +
 +      WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
 +      atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
 +
 +      ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
 +      WARN_ON_ONCE(*ddsp_taskp);
 +      *ddsp_taskp = p;
 +
 +      SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
 +
 +      *ddsp_taskp = NULL;
 +      if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
 +              goto direct;
 +
 +      /*
 +       * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
 +       * dequeue may be waiting. The store_release matches their load_acquire.
 +       */
 +      atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
 +      return;
 +
 +direct:
 +      direct_dispatch(p, enq_flags);
 +      return;
 +
 +local:
 +      /*
 +       * For task-ordering, slice refill must be treated as implying the end
 +       * of the current slice. Otherwise, the longer @p stays on the CPU, the
 +       * higher priority it becomes from scx_prio_less()'s POV.
 +       */
 +      touch_core_sched(rq, p);
 +      p->scx.slice = SCX_SLICE_DFL;
 +local_norefill:
 +      dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
 +      return;
 +
 +global:
 +      touch_core_sched(rq, p);        /* see the comment in local: */
 +      p->scx.slice = SCX_SLICE_DFL;
 +      dispatch_enqueue(&scx_dsq_global, p, enq_flags);
 +}
 +
 +static bool task_runnable(const struct task_struct *p)
 +{
 +      return !list_empty(&p->scx.runnable_node);
 +}
 +
 +static void set_task_runnable(struct rq *rq, struct task_struct *p)
 +{
 +      lockdep_assert_rq_held(rq);
 +
 +      if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
 +              p->scx.runnable_at = jiffies;
 +              p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
 +      }
 +
 +      /*
 +       * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
 +       * appened to the runnable_list.
 +       */
 +      list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
 +}
 +
 +static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
 +{
 +      list_del_init(&p->scx.runnable_node);
 +      if (reset_runnable_at)
 +              p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
 +}
 +
 +static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
 +{
 +      int sticky_cpu = p->scx.sticky_cpu;
 +
 +      if (enq_flags & ENQUEUE_WAKEUP)
 +              rq->scx.flags |= SCX_RQ_IN_WAKEUP;
 +
 +      enq_flags |= rq->scx.extra_enq_flags;
 +
 +      if (sticky_cpu >= 0)
 +              p->scx.sticky_cpu = -1;
 +
 +      /*
 +       * Restoring a running task will be immediately followed by
 +       * set_next_task_scx() which expects the task to not be on the BPF
 +       * scheduler as tasks can only start running through local DSQs. Force
 +       * direct-dispatch into the local DSQ by setting the sticky_cpu.
 +       */
 +      if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
 +              sticky_cpu = cpu_of(rq);
 +
 +      if (p->scx.flags & SCX_TASK_QUEUED) {
 +              WARN_ON_ONCE(!task_runnable(p));
 +              goto out;
 +      }
 +
 +      set_task_runnable(rq, p);
 +      p->scx.flags |= SCX_TASK_QUEUED;
 +      rq->scx.nr_running++;
 +      add_nr_running(rq, 1);
 +
 +      if (SCX_HAS_OP(runnable))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
 +
 +      if (enq_flags & SCX_ENQ_WAKEUP)
 +              touch_core_sched(rq, p);
 +
 +      do_enqueue_task(rq, p, enq_flags, sticky_cpu);
 +out:
 +      rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
 +}
 +
 +static void ops_dequeue(struct task_struct *p, u64 deq_flags)
 +{
 +      unsigned long opss;
 +
 +      /* dequeue is always temporary, don't reset runnable_at */
 +      clr_task_runnable(p, false);
 +
 +      /* acquire ensures that we see the preceding updates on QUEUED */
 +      opss = atomic_long_read_acquire(&p->scx.ops_state);
 +
 +      switch (opss & SCX_OPSS_STATE_MASK) {
 +      case SCX_OPSS_NONE:
 +              break;
 +      case SCX_OPSS_QUEUEING:
 +              /*
 +               * QUEUEING is started and finished while holding @p's rq lock.
 +               * As we're holding the rq lock now, we shouldn't see QUEUEING.
 +               */
 +              BUG();
 +      case SCX_OPSS_QUEUED:
 +              if (SCX_HAS_OP(dequeue))
 +                      SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
 +
 +              if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
 +                                          SCX_OPSS_NONE))
 +                      break;
 +              fallthrough;
 +      case SCX_OPSS_DISPATCHING:
 +              /*
 +               * If @p is being dispatched from the BPF scheduler to a DSQ,
 +               * wait for the transfer to complete so that @p doesn't get
 +               * added to its DSQ after dequeueing is complete.
 +               *
 +               * As we're waiting on DISPATCHING with the rq locked, the
 +               * dispatching side shouldn't try to lock the rq while
 +               * DISPATCHING is set. See dispatch_to_local_dsq().
 +               *
 +               * DISPATCHING shouldn't have qseq set and control can reach
 +               * here with NONE @opss from the above QUEUED case block.
 +               * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
 +               */
 +              wait_ops_state(p, SCX_OPSS_DISPATCHING);
 +              BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
 +              break;
 +      }
 +}
 +
 +static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
 +{
 +      if (!(p->scx.flags & SCX_TASK_QUEUED)) {
 +              WARN_ON_ONCE(task_runnable(p));
 +              return true;
 +      }
 +
 +      ops_dequeue(p, deq_flags);
 +
 +      /*
 +       * A currently running task which is going off @rq first gets dequeued
 +       * and then stops running. As we want running <-> stopping transitions
 +       * to be contained within runnable <-> quiescent transitions, trigger
 +       * ->stopping() early here instead of in put_prev_task_scx().
 +       *
 +       * @p may go through multiple stopping <-> running transitions between
 +       * here and put_prev_task_scx() if task attribute changes occur while
 +       * balance_scx() leaves @rq unlocked. However, they don't contain any
 +       * information meaningful to the BPF scheduler and can be suppressed by
 +       * skipping the callbacks if the task is !QUEUED.
 +       */
 +      if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
 +              update_curr_scx(rq);
 +              SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
 +      }
 +
 +      if (SCX_HAS_OP(quiescent))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
 +
 +      if (deq_flags & SCX_DEQ_SLEEP)
 +              p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
 +      else
 +              p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
 +
 +      p->scx.flags &= ~SCX_TASK_QUEUED;
 +      rq->scx.nr_running--;
 +      sub_nr_running(rq, 1);
 +
 +      dispatch_dequeue(rq, p);
 +      return true;
 +}
 +
 +static void yield_task_scx(struct rq *rq)
 +{
 +      struct task_struct *p = rq->curr;
 +
 +      if (SCX_HAS_OP(yield))
 +              SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
 +      else
 +              p->scx.slice = 0;
 +}
 +
 +static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
 +{
 +      struct task_struct *from = rq->curr;
 +
 +      if (SCX_HAS_OP(yield))
 +              return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
 +      else
 +              return false;
 +}
 +
 +#ifdef CONFIG_SMP
 +/**
 + * move_task_to_local_dsq - Move a task from a different rq to a local DSQ
 + * @p: task to move
 + * @enq_flags: %SCX_ENQ_*
 + * @src_rq: rq to move the task from, locked on entry, released on return
 + * @dst_rq: rq to move the task into, locked on return
 + *
 + * Move @p which is currently on @src_rq to @dst_rq's local DSQ. The caller
 + * must:
 + *
 + * 1. Start with exclusive access to @p either through its DSQ lock or
 + *    %SCX_OPSS_DISPATCHING flag.
 + *
 + * 2. Set @p->scx.holding_cpu to raw_smp_processor_id().
 + *
 + * 3. Remember task_rq(@p) as @src_rq. Release the exclusive access so that we
 + *    don't deadlock with dequeue.
 + *
 + * 4. Lock @src_rq from #3.
 + *
 + * 5. Call this function.
 + *
 + * Returns %true if @p was successfully moved. %false after racing dequeue and
 + * losing. On return, @src_rq is unlocked and @dst_rq is locked.
 + */
 +static bool move_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
 +                                 struct rq *src_rq, struct rq *dst_rq)
 +{
 +      lockdep_assert_rq_held(src_rq);
 +
 +      /*
 +       * If dequeue got to @p while we were trying to lock @src_rq, it'd have
 +       * cleared @p->scx.holding_cpu to -1. While other cpus may have updated
 +       * it to different values afterwards, as this operation can't be
 +       * preempted or recurse, @p->scx.holding_cpu can never become
 +       * raw_smp_processor_id() again before we're done. Thus, we can tell
 +       * whether we lost to dequeue by testing whether @p->scx.holding_cpu is
 +       * still raw_smp_processor_id().
 +       *
 +       * @p->rq couldn't have changed if we're still the holding cpu.
 +       *
 +       * See dispatch_dequeue() for the counterpart.
 +       */
 +      if (unlikely(p->scx.holding_cpu != raw_smp_processor_id()) ||
 +          WARN_ON_ONCE(src_rq != task_rq(p))) {
 +              raw_spin_rq_unlock(src_rq);
 +              raw_spin_rq_lock(dst_rq);
 +              return false;
 +      }
 +
 +      /* the following marks @p MIGRATING which excludes dequeue */
 +      deactivate_task(src_rq, p, 0);
 +      set_task_cpu(p, cpu_of(dst_rq));
 +      p->scx.sticky_cpu = cpu_of(dst_rq);
 +
 +      raw_spin_rq_unlock(src_rq);
 +      raw_spin_rq_lock(dst_rq);
 +
 +      /*
 +       * We want to pass scx-specific enq_flags but activate_task() will
 +       * truncate the upper 32 bit. As we own @rq, we can pass them through
 +       * @rq->scx.extra_enq_flags instead.
 +       */
 +      WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
 +      WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
 +      dst_rq->scx.extra_enq_flags = enq_flags;
 +      activate_task(dst_rq, p, 0);
 +      dst_rq->scx.extra_enq_flags = 0;
 +
 +      return true;
 +}
 +
 +#endif        /* CONFIG_SMP */
 +
 +static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq,
 +                             struct task_struct *p)
 +{
 +      lockdep_assert_held(&dsq->lock);        /* released on return */
 +
 +      /* @dsq is locked and @p is on this rq */
 +      WARN_ON_ONCE(p->scx.holding_cpu >= 0);
 +      task_unlink_from_dsq(p, dsq);
 +      list_add_tail(&p->scx.dsq_list.node, &rq->scx.local_dsq.list);
 +      dsq_mod_nr(dsq, -1);
 +      dsq_mod_nr(&rq->scx.local_dsq, 1);
 +      p->scx.dsq = &rq->scx.local_dsq;
 +      raw_spin_unlock(&dsq->lock);
 +}
 +
 +#ifdef CONFIG_SMP
 +/*
 + * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
 + * differences:
 + *
 + * - is_cpu_allowed() asks "Can this task run on this CPU?" while
 + *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
 + *   this CPU?".
 + *
 + *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
 + *   must be allowed to finish on the CPU that it's currently on regardless of
 + *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
 + *   BPF scheduler shouldn't attempt to migrate a task which has migration
 + *   disabled.
 + *
 + * - The BPF scheduler is bypassed while the rq is offline and we can always say
 + *   no to the BPF scheduler initiated migrations while offline.
 + */
 +static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
 +                                    bool trigger_error)
 +{
 +      int cpu = cpu_of(rq);
 +
 +      /*
 +       * We don't require the BPF scheduler to avoid dispatching to offline
 +       * CPUs mostly for convenience but also because CPUs can go offline
 +       * between scx_bpf_dispatch() calls and here. Trigger error iff the
 +       * picked CPU is outside the allowed mask.
 +       */
 +      if (!task_allowed_on_cpu(p, cpu)) {
 +              if (trigger_error)
 +                      scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
 +                                    cpu_of(rq), p->comm, p->pid);
 +              return false;
 +      }
 +
 +      if (unlikely(is_migration_disabled(p)))
 +              return false;
 +
 +      if (!scx_rq_online(rq))
 +              return false;
 +
 +      return true;
 +}
 +
 +static bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq,
 +                              struct task_struct *p, struct rq *task_rq)
 +{
 +      lockdep_assert_held(&dsq->lock);        /* released on return */
 +
 +      /*
 +       * @dsq is locked and @p is on a remote rq. @p is currently protected by
 +       * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab
 +       * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the
 +       * rq lock or fail, do a little dancing from our side. See
 +       * move_task_to_local_dsq().
 +       */
 +      WARN_ON_ONCE(p->scx.holding_cpu >= 0);
 +      task_unlink_from_dsq(p, dsq);
 +      dsq_mod_nr(dsq, -1);
 +      p->scx.holding_cpu = raw_smp_processor_id();
 +      raw_spin_unlock(&dsq->lock);
 +
 +      raw_spin_rq_unlock(rq);
 +      raw_spin_rq_lock(task_rq);
 +
 +      return move_task_to_local_dsq(p, 0, task_rq, rq);
 +}
 +#else /* CONFIG_SMP */
 +static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
 +static inline bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq, struct task_struct *p, struct rq *task_rq) { return false; }
 +#endif        /* CONFIG_SMP */
 +
 +static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
 +{
 +      struct task_struct *p;
 +retry:
 +      /*
 +       * The caller can't expect to successfully consume a task if the task's
 +       * addition to @dsq isn't guaranteed to be visible somehow. Test
 +       * @dsq->list without locking and skip if it seems empty.
 +       */
 +      if (list_empty(&dsq->list))
 +              return false;
 +
 +      raw_spin_lock(&dsq->lock);
 +
 +      nldsq_for_each_task(p, dsq) {
 +              struct rq *task_rq = task_rq(p);
 +
 +              if (rq == task_rq) {
 +                      consume_local_task(rq, dsq, p);
 +                      return true;
 +              }
 +
 +              if (task_can_run_on_remote_rq(p, rq, false)) {
 +                      if (likely(consume_remote_task(rq, dsq, p, task_rq)))
 +                              return true;
 +                      goto retry;
 +              }
 +      }
 +
 +      raw_spin_unlock(&dsq->lock);
 +      return false;
 +}
 +
 +enum dispatch_to_local_dsq_ret {
 +      DTL_DISPATCHED,         /* successfully dispatched */
 +      DTL_LOST,               /* lost race to dequeue */
 +      DTL_NOT_LOCAL,          /* destination is not a local DSQ */
 +      DTL_INVALID,            /* invalid local dsq_id */
 +};
 +
 +/**
 + * dispatch_to_local_dsq - Dispatch a task to a local dsq
 + * @rq: current rq which is locked
 + * @dsq_id: destination dsq ID
 + * @p: task to dispatch
 + * @enq_flags: %SCX_ENQ_*
 + *
 + * We're holding @rq lock and want to dispatch @p to the local DSQ identified by
 + * @dsq_id. This function performs all the synchronization dancing needed
 + * because local DSQs are protected with rq locks.
 + *
 + * The caller must have exclusive ownership of @p (e.g. through
 + * %SCX_OPSS_DISPATCHING).
 + */
 +static enum dispatch_to_local_dsq_ret
 +dispatch_to_local_dsq(struct rq *rq, u64 dsq_id, struct task_struct *p,
 +                    u64 enq_flags)
 +{
 +      struct rq *src_rq = task_rq(p);
 +      struct rq *dst_rq;
 +
 +      /*
 +       * We're synchronized against dequeue through DISPATCHING. As @p can't
 +       * be dequeued, its task_rq and cpus_allowed are stable too.
 +       */
 +      if (dsq_id == SCX_DSQ_LOCAL) {
 +              dst_rq = rq;
 +      } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
 +              s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
 +
 +              if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
 +                      return DTL_INVALID;
 +              dst_rq = cpu_rq(cpu);
 +      } else {
 +              return DTL_NOT_LOCAL;
 +      }
 +
 +      /* if dispatching to @rq that @p is already on, no lock dancing needed */
 +      if (rq == src_rq && rq == dst_rq) {
 +              dispatch_enqueue(&dst_rq->scx.local_dsq, p,
 +                               enq_flags | SCX_ENQ_CLEAR_OPSS);
 +              return DTL_DISPATCHED;
 +      }
 +
 +#ifdef CONFIG_SMP
 +      if (likely(task_can_run_on_remote_rq(p, dst_rq, true))) {
 +              bool dsp;
 +
 +              /*
 +               * @p is on a possibly remote @src_rq which we need to lock to
 +               * move the task. If dequeue is in progress, it'd be locking
 +               * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq
 +               * lock while holding DISPATCHING.
 +               *
 +               * As DISPATCHING guarantees that @p is wholly ours, we can
 +               * pretend that we're moving from a DSQ and use the same
 +               * mechanism - mark the task under transfer with holding_cpu,
 +               * release DISPATCHING and then follow the same protocol.
 +               */
 +              p->scx.holding_cpu = raw_smp_processor_id();
 +
 +              /* store_release ensures that dequeue sees the above */
 +              atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
 +
 +              /* switch to @src_rq lock */
 +              if (rq != src_rq) {
 +                      raw_spin_rq_unlock(rq);
 +                      raw_spin_rq_lock(src_rq);
 +              }
 +
 +              if (src_rq == dst_rq) {
 +                      /*
 +                       * As @p is staying on the same rq, there's no need to
 +                       * go through the full deactivate/activate cycle.
 +                       * Optimize by abbreviating the operations in
 +                       * move_task_to_local_dsq().
 +                       */
 +                      dsp = p->scx.holding_cpu == raw_smp_processor_id();
 +                      if (likely(dsp)) {
 +                              p->scx.holding_cpu = -1;
 +                              dispatch_enqueue(&dst_rq->scx.local_dsq, p,
 +                                               enq_flags);
 +                      }
 +              } else {
 +                      dsp = move_task_to_local_dsq(p, enq_flags,
 +                                                   src_rq, dst_rq);
 +              }
 +
 +              /* if the destination CPU is idle, wake it up */
 +              if (dsp && sched_class_above(p->sched_class,
 +                                           dst_rq->curr->sched_class))
 +                      resched_curr(dst_rq);
 +
 +              /* switch back to @rq lock */
 +              if (rq != dst_rq) {
 +                      raw_spin_rq_unlock(dst_rq);
 +                      raw_spin_rq_lock(rq);
 +              }
 +
 +              return dsp ? DTL_DISPATCHED : DTL_LOST;
 +      }
 +#endif        /* CONFIG_SMP */
 +
 +      return DTL_INVALID;
 +}
 +
 +/**
 + * finish_dispatch - Asynchronously finish dispatching a task
 + * @rq: current rq which is locked
 + * @p: task to finish dispatching
 + * @qseq_at_dispatch: qseq when @p started getting dispatched
 + * @dsq_id: destination DSQ ID
 + * @enq_flags: %SCX_ENQ_*
 + *
 + * Dispatching to local DSQs may need to wait for queueing to complete or
 + * require rq lock dancing. As we don't wanna do either while inside
 + * ops.dispatch() to avoid locking order inversion, we split dispatching into
 + * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
 + * task and its qseq. Once ops.dispatch() returns, this function is called to
 + * finish up.
 + *
 + * There is no guarantee that @p is still valid for dispatching or even that it
 + * was valid in the first place. Make sure that the task is still owned by the
 + * BPF scheduler and claim the ownership before dispatching.
 + */
 +static void finish_dispatch(struct rq *rq, struct task_struct *p,
 +                          unsigned long qseq_at_dispatch,
 +                          u64 dsq_id, u64 enq_flags)
 +{
 +      struct scx_dispatch_q *dsq;
 +      unsigned long opss;
 +
 +      touch_core_sched_dispatch(rq, p);
 +retry:
 +      /*
 +       * No need for _acquire here. @p is accessed only after a successful
 +       * try_cmpxchg to DISPATCHING.
 +       */
 +      opss = atomic_long_read(&p->scx.ops_state);
 +
 +      switch (opss & SCX_OPSS_STATE_MASK) {
 +      case SCX_OPSS_DISPATCHING:
 +      case SCX_OPSS_NONE:
 +              /* someone else already got to it */
 +              return;
 +      case SCX_OPSS_QUEUED:
 +              /*
 +               * If qseq doesn't match, @p has gone through at least one
 +               * dispatch/dequeue and re-enqueue cycle between
 +               * scx_bpf_dispatch() and here and we have no claim on it.
 +               */
 +              if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
 +                      return;
 +
 +              /*
 +               * While we know @p is accessible, we don't yet have a claim on
 +               * it - the BPF scheduler is allowed to dispatch tasks
 +               * spuriously and there can be a racing dequeue attempt. Let's
 +               * claim @p by atomically transitioning it from QUEUED to
 +               * DISPATCHING.
 +               */
 +              if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
 +                                                 SCX_OPSS_DISPATCHING)))
 +                      break;
 +              goto retry;
 +      case SCX_OPSS_QUEUEING:
 +              /*
 +               * do_enqueue_task() is in the process of transferring the task
 +               * to the BPF scheduler while holding @p's rq lock. As we aren't
 +               * holding any kernel or BPF resource that the enqueue path may
 +               * depend upon, it's safe to wait.
 +               */
 +              wait_ops_state(p, opss);
 +              goto retry;
 +      }
 +
 +      BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
 +
 +      switch (dispatch_to_local_dsq(rq, dsq_id, p, enq_flags)) {
 +      case DTL_DISPATCHED:
 +              break;
 +      case DTL_LOST:
 +              break;
 +      case DTL_INVALID:
 +              dsq_id = SCX_DSQ_GLOBAL;
 +              fallthrough;
 +      case DTL_NOT_LOCAL:
 +              dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()),
 +                                          dsq_id, p);
 +              dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
 +              break;
 +      }
 +}
 +
 +static void flush_dispatch_buf(struct rq *rq)
 +{
 +      struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 +      u32 u;
 +
 +      for (u = 0; u < dspc->cursor; u++) {
 +              struct scx_dsp_buf_ent *ent = &dspc->buf[u];
 +
 +              finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
 +                              ent->enq_flags);
 +      }
 +
 +      dspc->nr_tasks += dspc->cursor;
 +      dspc->cursor = 0;
 +}
 +
 +static int balance_one(struct rq *rq, struct task_struct *prev, bool local)
 +{
 +      struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 +      bool prev_on_scx = prev->sched_class == &ext_sched_class;
 +      int nr_loops = SCX_DSP_MAX_LOOPS;
 +      bool has_tasks = false;
 +
 +      lockdep_assert_rq_held(rq);
 +      rq->scx.flags |= SCX_RQ_IN_BALANCE;
 +
 +      if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
 +          unlikely(rq->scx.cpu_released)) {
 +              /*
 +               * If the previous sched_class for the current CPU was not SCX,
 +               * notify the BPF scheduler that it again has control of the
 +               * core. This callback complements ->cpu_release(), which is
 +               * emitted in scx_next_task_picked().
 +               */
 +              if (SCX_HAS_OP(cpu_acquire))
 +                      SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
 +              rq->scx.cpu_released = false;
 +      }
 +
 +      if (prev_on_scx) {
 +              WARN_ON_ONCE(local && (prev->scx.flags & SCX_TASK_BAL_KEEP));
 +              update_curr_scx(rq);
 +
 +              /*
 +               * If @prev is runnable & has slice left, it has priority and
 +               * fetching more just increases latency for the fetched tasks.
 +               * Tell put_prev_task_scx() to put @prev on local_dsq. If the
 +               * BPF scheduler wants to handle this explicitly, it should
 +               * implement ->cpu_released().
 +               *
 +               * See scx_ops_disable_workfn() for the explanation on the
 +               * bypassing test.
 +               *
 +               * When balancing a remote CPU for core-sched, there won't be a
 +               * following put_prev_task_scx() call and we don't own
 +               * %SCX_TASK_BAL_KEEP. Instead, pick_task_scx() will test the
 +               * same conditions later and pick @rq->curr accordingly.
 +               */
 +              if ((prev->scx.flags & SCX_TASK_QUEUED) &&
 +                  prev->scx.slice && !scx_ops_bypassing()) {
 +                      if (local)
 +                              prev->scx.flags |= SCX_TASK_BAL_KEEP;
 +                      goto has_tasks;
 +              }
 +      }
 +
 +      /* if there already are tasks to run, nothing to do */
 +      if (rq->scx.local_dsq.nr)
 +              goto has_tasks;
 +
 +      if (consume_dispatch_q(rq, &scx_dsq_global))
 +              goto has_tasks;
 +
 +      if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq))
 +              goto out;
 +
 +      dspc->rq = rq;
 +
 +      /*
 +       * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
 +       * the local DSQ might still end up empty after a successful
 +       * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
 +       * produced some tasks, retry. The BPF scheduler may depend on this
 +       * looping behavior to simplify its implementation.
 +       */
 +      do {
 +              dspc->nr_tasks = 0;
 +
 +              SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
 +                          prev_on_scx ? prev : NULL);
 +
 +              flush_dispatch_buf(rq);
 +
 +              if (rq->scx.local_dsq.nr)
 +                      goto has_tasks;
 +              if (consume_dispatch_q(rq, &scx_dsq_global))
 +                      goto has_tasks;
 +
 +              /*
 +               * ops.dispatch() can trap us in this loop by repeatedly
 +               * dispatching ineligible tasks. Break out once in a while to
 +               * allow the watchdog to run. As IRQ can't be enabled in
 +               * balance(), we want to complete this scheduling cycle and then
 +               * start a new one. IOW, we want to call resched_curr() on the
 +               * next, most likely idle, task, not the current one. Use
 +               * scx_bpf_kick_cpu() for deferred kicking.
 +               */
 +              if (unlikely(!--nr_loops)) {
 +                      scx_bpf_kick_cpu(cpu_of(rq), 0);
 +                      break;
 +              }
 +      } while (dspc->nr_tasks);
 +
 +      goto out;
 +
 +has_tasks:
 +      has_tasks = true;
 +out:
 +      rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
 +      return has_tasks;
 +}
 +
 +static int balance_scx(struct rq *rq, struct task_struct *prev,
 +                     struct rq_flags *rf)
 +{
 +      int ret;
 +
 +      rq_unpin_lock(rq, rf);
 +
 +      ret = balance_one(rq, prev, true);
 +
 +#ifdef CONFIG_SCHED_SMT
 +      /*
 +       * When core-sched is enabled, this ops.balance() call will be followed
 +       * by put_prev_scx() and pick_task_scx() on this CPU and pick_task_scx()
 +       * on the SMT siblings. Balance the siblings too.
 +       */
 +      if (sched_core_enabled(rq)) {
 +              const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
 +              int scpu;
 +
 +              for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
 +                      struct rq *srq = cpu_rq(scpu);
 +                      struct task_struct *sprev = srq->curr;
 +
 +                      WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
 +                      update_rq_clock(srq);
 +                      balance_one(srq, sprev, false);
 +              }
 +      }
 +#endif
 +      rq_repin_lock(rq, rf);
 +
 +      return ret;
 +}
 +
 +static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
 +{
 +      if (p->scx.flags & SCX_TASK_QUEUED) {
 +              /*
 +               * Core-sched might decide to execute @p before it is
 +               * dispatched. Call ops_dequeue() to notify the BPF scheduler.
 +               */
 +              ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
 +              dispatch_dequeue(rq, p);
 +      }
 +
 +      p->se.exec_start = rq_clock_task(rq);
 +
 +      /* see dequeue_task_scx() on why we skip when !QUEUED */
 +      if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
 +
 +      clr_task_runnable(p, true);
 +
 +      /*
 +       * @p is getting newly scheduled or got kicked after someone updated its
 +       * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
 +       */
 +      if ((p->scx.slice == SCX_SLICE_INF) !=
 +          (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
 +              if (p->scx.slice == SCX_SLICE_INF)
 +                      rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
 +              else
 +                      rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
 +
 +              sched_update_tick_dependency(rq);
 +
 +              /*
 +               * For now, let's refresh the load_avgs just when transitioning
 +               * in and out of nohz. In the future, we might want to add a
 +               * mechanism which calls the following periodically on
 +               * tick-stopped CPUs.
 +               */
 +              update_other_load_avgs(rq);
 +      }
 +}
 +
 +static void process_ddsp_deferred_locals(struct rq *rq)
 +{
 +      struct task_struct *p;
 +
 +      lockdep_assert_rq_held(rq);
 +
 +      /*
 +       * Now that @rq can be unlocked, execute the deferred enqueueing of
 +       * tasks directly dispatched to the local DSQs of other CPUs. See
 +       * direct_dispatch(). Keep popping from the head instead of using
 +       * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
 +       * temporarily.
 +       */
 +      while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
 +                              struct task_struct, scx.dsq_list.node))) {
 +              s32 ret;
 +
 +              list_del_init(&p->scx.dsq_list.node);
 +
 +              ret = dispatch_to_local_dsq(rq, p->scx.ddsp_dsq_id, p,
 +                                          p->scx.ddsp_enq_flags);
 +              WARN_ON_ONCE(ret == DTL_NOT_LOCAL);
 +      }
 +}
 +
- static struct task_struct *pick_next_task_scx(struct rq *rq)
++static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
++                            struct task_struct *next)
 +{
 +      update_curr_scx(rq);
 +
 +      /* see dequeue_task_scx() on why we skip when !QUEUED */
 +      if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
 +
 +      /*
 +       * If we're being called from put_prev_task_balance(), balance_scx() may
 +       * have decided that @p should keep running.
 +       */
 +      if (p->scx.flags & SCX_TASK_BAL_KEEP) {
 +              p->scx.flags &= ~SCX_TASK_BAL_KEEP;
 +              set_task_runnable(rq, p);
 +              dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
 +              return;
 +      }
 +
 +      if (p->scx.flags & SCX_TASK_QUEUED) {
 +              set_task_runnable(rq, p);
 +
 +              /*
 +               * If @p has slice left and balance_scx() didn't tag it for
 +               * keeping, @p is getting preempted by a higher priority
 +               * scheduler class or core-sched forcing a different task. Leave
 +               * it at the head of the local DSQ.
 +               */
 +              if (p->scx.slice && !scx_ops_bypassing()) {
 +                      dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
 +                      return;
 +              }
 +
 +              /*
 +               * If we're in the pick_next_task path, balance_scx() should
 +               * have already populated the local DSQ if there are any other
 +               * available tasks. If empty, tell ops.enqueue() that @p is the
 +               * only one available for this cpu. ops.enqueue() should put it
 +               * on the local DSQ so that the subsequent pick_next_task_scx()
 +               * can find the task unless it wants to trigger a separate
 +               * follow-up scheduling event.
 +               */
 +              if (list_empty(&rq->scx.local_dsq.list))
 +                      do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
 +              else
 +                      do_enqueue_task(rq, p, 0, -1);
 +      }
 +}
 +
 +static struct task_struct *first_local_task(struct rq *rq)
 +{
 +      return list_first_entry_or_null(&rq->scx.local_dsq.list,
 +                                      struct task_struct, scx.dsq_list.node);
 +}
 +
++static struct task_struct *pick_next_task_scx(struct rq *rq,
++                                            struct task_struct *prev)
 +{
 +      struct task_struct *p;
 +
++      if (prev->sched_class == &ext_sched_class)
++              put_prev_task_scx(rq, prev, NULL);
++
 +      p = first_local_task(rq);
 +      if (!p)
 +              return NULL;
 +
++      if (prev->sched_class != &ext_sched_class)
++              prev->sched_class->put_prev_task(rq, prev, p);
++
 +      set_next_task_scx(rq, p, true);
 +
 +      if (unlikely(!p->scx.slice)) {
 +              if (!scx_ops_bypassing() && !scx_warned_zero_slice) {
 +                      printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n",
 +                                      p->comm, p->pid);
 +                      scx_warned_zero_slice = true;
 +              }
 +              p->scx.slice = SCX_SLICE_DFL;
 +      }
 +
 +      return p;
 +}
 +
 +#ifdef CONFIG_SCHED_CORE
 +/**
 + * scx_prio_less - Task ordering for core-sched
 + * @a: task A
 + * @b: task B
 + *
 + * Core-sched is implemented as an additional scheduling layer on top of the
 + * usual sched_class'es and needs to find out the expected task ordering. For
 + * SCX, core-sched calls this function to interrogate the task ordering.
 + *
 + * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
 + * to implement the default task ordering. The older the timestamp, the higher
 + * prority the task - the global FIFO ordering matching the default scheduling
 + * behavior.
 + *
 + * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
 + * implement FIFO ordering within each local DSQ. See pick_task_scx().
 + */
 +bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
 +                 bool in_fi)
 +{
 +      /*
 +       * The const qualifiers are dropped from task_struct pointers when
 +       * calling ops.core_sched_before(). Accesses are controlled by the
 +       * verifier.
 +       */
 +      if (SCX_HAS_OP(core_sched_before) && !scx_ops_bypassing())
 +              return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
 +                                            (struct task_struct *)a,
 +                                            (struct task_struct *)b);
 +      else
 +              return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
 +}
 +
 +/**
 + * pick_task_scx - Pick a candidate task for core-sched
 + * @rq: rq to pick the candidate task from
 + *
 + * Core-sched calls this function on each SMT sibling to determine the next
 + * tasks to run on the SMT siblings. balance_one() has been called on all
 + * siblings and put_prev_task_scx() has been called only for the current CPU.
 + *
 + * As put_prev_task_scx() hasn't been called on remote CPUs, we can't just look
 + * at the first task in the local dsq. @rq->curr has to be considered explicitly
 + * to mimic %SCX_TASK_BAL_KEEP.
 + */
 +static struct task_struct *pick_task_scx(struct rq *rq)
 +{
 +      struct task_struct *curr = rq->curr;
 +      struct task_struct *first = first_local_task(rq);
 +
 +      if (curr->scx.flags & SCX_TASK_QUEUED) {
 +              /* is curr the only runnable task? */
 +              if (!first)
 +                      return curr;
 +
 +              /*
 +               * Does curr trump first? We can always go by core_sched_at for
 +               * this comparison as it represents global FIFO ordering when
 +               * the default core-sched ordering is used and local-DSQ FIFO
 +               * ordering otherwise.
 +               *
 +               * We can have a task with an earlier timestamp on the DSQ. For
 +               * example, when a current task is preempted by a sibling
 +               * picking a different cookie, the task would be requeued at the
 +               * head of the local DSQ with an earlier timestamp than the
 +               * core-sched picked next task. Besides, the BPF scheduler may
 +               * dispatch any tasks to the local DSQ anytime.
 +               */
 +              if (curr->scx.slice && time_before64(curr->scx.core_sched_at,
 +                                                   first->scx.core_sched_at))
 +                      return curr;
 +      }
 +
 +      return first;   /* this may be %NULL */
 +}
 +#endif        /* CONFIG_SCHED_CORE */
 +
 +static enum scx_cpu_preempt_reason
 +preempt_reason_from_class(const struct sched_class *class)
 +{
 +#ifdef CONFIG_SMP
 +      if (class == &stop_sched_class)
 +              return SCX_CPU_PREEMPT_STOP;
 +#endif
 +      if (class == &dl_sched_class)
 +              return SCX_CPU_PREEMPT_DL;
 +      if (class == &rt_sched_class)
 +              return SCX_CPU_PREEMPT_RT;
 +      return SCX_CPU_PREEMPT_UNKNOWN;
 +}
 +
 +static void switch_class_scx(struct rq *rq, struct task_struct *next)
 +{
 +      const struct sched_class *next_class = next->sched_class;
 +
 +      if (!scx_enabled())
 +              return;
 +#ifdef CONFIG_SMP
 +      /*
 +       * Pairs with the smp_load_acquire() issued by a CPU in
 +       * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
 +       * resched.
 +       */
 +      smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
 +#endif
 +      if (!static_branch_unlikely(&scx_ops_cpu_preempt))
 +              return;
 +
 +      /*
 +       * The callback is conceptually meant to convey that the CPU is no
 +       * longer under the control of SCX. Therefore, don't invoke the callback
 +       * if the next class is below SCX (in which case the BPF scheduler has
 +       * actively decided not to schedule any tasks on the CPU).
 +       */
 +      if (sched_class_above(&ext_sched_class, next_class))
 +              return;
 +
 +      /*
 +       * At this point we know that SCX was preempted by a higher priority
 +       * sched_class, so invoke the ->cpu_release() callback if we have not
 +       * done so already. We only send the callback once between SCX being
 +       * preempted, and it regaining control of the CPU.
 +       *
 +       * ->cpu_release() complements ->cpu_acquire(), which is emitted the
 +       *  next time that balance_scx() is invoked.
 +       */
 +      if (!rq->scx.cpu_released) {
 +              if (SCX_HAS_OP(cpu_release)) {
 +                      struct scx_cpu_release_args args = {
 +                              .reason = preempt_reason_from_class(next_class),
 +                              .task = next,
 +                      };
 +
 +                      SCX_CALL_OP(SCX_KF_CPU_RELEASE,
 +                                  cpu_release, cpu_of(rq), &args);
 +              }
 +              rq->scx.cpu_released = true;
 +      }
 +}
 +
 +#ifdef CONFIG_SMP
 +
 +static bool test_and_clear_cpu_idle(int cpu)
 +{
 +#ifdef CONFIG_SCHED_SMT
 +      /*
 +       * SMT mask should be cleared whether we can claim @cpu or not. The SMT
 +       * cluster is not wholly idle either way. This also prevents
 +       * scx_pick_idle_cpu() from getting caught in an infinite loop.
 +       */
 +      if (sched_smt_active()) {
 +              const struct cpumask *smt = cpu_smt_mask(cpu);
 +
 +              /*
 +               * If offline, @cpu is not its own sibling and
 +               * scx_pick_idle_cpu() can get caught in an infinite loop as
 +               * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
 +               * is eventually cleared.
 +               */
 +              if (cpumask_intersects(smt, idle_masks.smt))
 +                      cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
 +              else if (cpumask_test_cpu(cpu, idle_masks.smt))
 +                      __cpumask_clear_cpu(cpu, idle_masks.smt);
 +      }
 +#endif
 +      return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
 +}
 +
 +static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
 +{
 +      int cpu;
 +
 +retry:
 +      if (sched_smt_active()) {
 +              cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
 +              if (cpu < nr_cpu_ids)
 +                      goto found;
 +
 +              if (flags & SCX_PICK_IDLE_CORE)
 +                      return -EBUSY;
 +      }
 +
 +      cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
 +      if (cpu >= nr_cpu_ids)
 +              return -EBUSY;
 +
 +found:
 +      if (test_and_clear_cpu_idle(cpu))
 +              return cpu;
 +      else
 +              goto retry;
 +}
 +
 +static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
 +                            u64 wake_flags, bool *found)
 +{
 +      s32 cpu;
 +
 +      *found = false;
 +
 +      if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 +              scx_ops_error("built-in idle tracking is disabled");
 +              return prev_cpu;
 +      }
 +
 +      /*
 +       * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
 +       * under utilized, wake up @p to the local DSQ of the waker. Checking
 +       * only for an empty local DSQ is insufficient as it could give the
 +       * wakee an unfair advantage when the system is oversaturated.
 +       * Checking only for the presence of idle CPUs is also insufficient as
 +       * the local DSQ of the waker could have tasks piled up on it even if
 +       * there is an idle core elsewhere on the system.
 +       */
 +      cpu = smp_processor_id();
 +      if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 &&
 +          !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
 +          cpu_rq(cpu)->scx.local_dsq.nr == 0) {
 +              if (cpumask_test_cpu(cpu, p->cpus_ptr))
 +                      goto cpu_found;
 +      }
 +
 +      if (p->nr_cpus_allowed == 1) {
 +              if (test_and_clear_cpu_idle(prev_cpu)) {
 +                      cpu = prev_cpu;
 +                      goto cpu_found;
 +              } else {
 +                      return prev_cpu;
 +              }
 +      }
 +
 +      /*
 +       * If CPU has SMT, any wholly idle CPU is likely a better pick than
 +       * partially idle @prev_cpu.
 +       */
 +      if (sched_smt_active()) {
 +              if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
 +                  test_and_clear_cpu_idle(prev_cpu)) {
 +                      cpu = prev_cpu;
 +                      goto cpu_found;
 +              }
 +
 +              cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
 +              if (cpu >= 0)
 +                      goto cpu_found;
 +      }
 +
 +      if (test_and_clear_cpu_idle(prev_cpu)) {
 +              cpu = prev_cpu;
 +              goto cpu_found;
 +      }
 +
 +      cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
 +      if (cpu >= 0)
 +              goto cpu_found;
 +
 +      return prev_cpu;
 +
 +cpu_found:
 +      *found = true;
 +      return cpu;
 +}
 +
 +static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
 +{
 +      /*
 +       * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
 +       * can be a good migration opportunity with low cache and memory
 +       * footprint. Returning a CPU different than @prev_cpu triggers
 +       * immediate rq migration. However, for SCX, as the current rq
 +       * association doesn't dictate where the task is going to run, this
 +       * doesn't fit well. If necessary, we can later add a dedicated method
 +       * which can decide to preempt self to force it through the regular
 +       * scheduling path.
 +       */
 +      if (unlikely(wake_flags & WF_EXEC))
 +              return prev_cpu;
 +
 +      if (SCX_HAS_OP(select_cpu)) {
 +              s32 cpu;
 +              struct task_struct **ddsp_taskp;
 +
 +              ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
 +              WARN_ON_ONCE(*ddsp_taskp);
 +              *ddsp_taskp = p;
 +
 +              cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
 +                                         select_cpu, p, prev_cpu, wake_flags);
 +              *ddsp_taskp = NULL;
 +              if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
 +                      return cpu;
 +              else
 +                      return prev_cpu;
 +      } else {
 +              bool found;
 +              s32 cpu;
 +
 +              cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
 +              if (found) {
 +                      p->scx.slice = SCX_SLICE_DFL;
 +                      p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
 +              }
 +              return cpu;
 +      }
 +}
 +
 +static void task_woken_scx(struct rq *rq, struct task_struct *p)
 +{
 +      run_deferred(rq);
 +}
 +
 +static void set_cpus_allowed_scx(struct task_struct *p,
 +                               struct affinity_context *ac)
 +{
 +      set_cpus_allowed_common(p, ac);
 +
 +      /*
 +       * The effective cpumask is stored in @p->cpus_ptr which may temporarily
 +       * differ from the configured one in @p->cpus_mask. Always tell the bpf
 +       * scheduler the effective one.
 +       *
 +       * Fine-grained memory write control is enforced by BPF making the const
 +       * designation pointless. Cast it away when calling the operation.
 +       */
 +      if (SCX_HAS_OP(set_cpumask))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
 +                               (struct cpumask *)p->cpus_ptr);
 +}
 +
 +static void reset_idle_masks(void)
 +{
 +      /*
 +       * Consider all online cpus idle. Should converge to the actual state
 +       * quickly.
 +       */
 +      cpumask_copy(idle_masks.cpu, cpu_online_mask);
 +      cpumask_copy(idle_masks.smt, cpu_online_mask);
 +}
 +
 +void __scx_update_idle(struct rq *rq, bool idle)
 +{
 +      int cpu = cpu_of(rq);
 +
 +      if (SCX_HAS_OP(update_idle)) {
 +              SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
 +              if (!static_branch_unlikely(&scx_builtin_idle_enabled))
 +                      return;
 +      }
 +
 +      if (idle)
 +              cpumask_set_cpu(cpu, idle_masks.cpu);
 +      else
 +              cpumask_clear_cpu(cpu, idle_masks.cpu);
 +
 +#ifdef CONFIG_SCHED_SMT
 +      if (sched_smt_active()) {
 +              const struct cpumask *smt = cpu_smt_mask(cpu);
 +
 +              if (idle) {
 +                      /*
 +                       * idle_masks.smt handling is racy but that's fine as
 +                       * it's only for optimization and self-correcting.
 +                       */
 +                      for_each_cpu(cpu, smt) {
 +                              if (!cpumask_test_cpu(cpu, idle_masks.cpu))
 +                                      return;
 +                      }
 +                      cpumask_or(idle_masks.smt, idle_masks.smt, smt);
 +              } else {
 +                      cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
 +              }
 +      }
 +#endif
 +}
 +
 +static void handle_hotplug(struct rq *rq, bool online)
 +{
 +      int cpu = cpu_of(rq);
 +
 +      atomic_long_inc(&scx_hotplug_seq);
 +
 +      if (online && SCX_HAS_OP(cpu_online))
 +              SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
 +      else if (!online && SCX_HAS_OP(cpu_offline))
 +              SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
 +      else
 +              scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
 +                           "cpu %d going %s, exiting scheduler", cpu,
 +                           online ? "online" : "offline");
 +}
 +
 +void scx_rq_activate(struct rq *rq)
 +{
 +      handle_hotplug(rq, true);
 +}
 +
 +void scx_rq_deactivate(struct rq *rq)
 +{
 +      handle_hotplug(rq, false);
 +}
 +
 +static void rq_online_scx(struct rq *rq)
 +{
 +      rq->scx.flags |= SCX_RQ_ONLINE;
 +}
 +
 +static void rq_offline_scx(struct rq *rq)
 +{
 +      rq->scx.flags &= ~SCX_RQ_ONLINE;
 +}
 +
 +#else /* CONFIG_SMP */
 +
 +static bool test_and_clear_cpu_idle(int cpu) { return false; }
 +static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
 +static void reset_idle_masks(void) {}
 +
 +#endif        /* CONFIG_SMP */
 +
 +static bool check_rq_for_timeouts(struct rq *rq)
 +{
 +      struct task_struct *p;
 +      struct rq_flags rf;
 +      bool timed_out = false;
 +
 +      rq_lock_irqsave(rq, &rf);
 +      list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
 +              unsigned long last_runnable = p->scx.runnable_at;
 +
 +              if (unlikely(time_after(jiffies,
 +                                      last_runnable + scx_watchdog_timeout))) {
 +                      u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
 +
 +                      scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
 +                                         "%s[%d] failed to run for %u.%03us",
 +                                         p->comm, p->pid,
 +                                         dur_ms / 1000, dur_ms % 1000);
 +                      timed_out = true;
 +                      break;
 +              }
 +      }
 +      rq_unlock_irqrestore(rq, &rf);
 +
 +      return timed_out;
 +}
 +
 +static void scx_watchdog_workfn(struct work_struct *work)
 +{
 +      int cpu;
 +
 +      WRITE_ONCE(scx_watchdog_timestamp, jiffies);
 +
 +      for_each_online_cpu(cpu) {
 +              if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
 +                      break;
 +
 +              cond_resched();
 +      }
 +      queue_delayed_work(system_unbound_wq, to_delayed_work(work),
 +                         scx_watchdog_timeout / 2);
 +}
 +
 +void scx_tick(struct rq *rq)
 +{
 +      unsigned long last_check;
 +
 +      if (!scx_enabled())
 +              return;
 +
 +      last_check = READ_ONCE(scx_watchdog_timestamp);
 +      if (unlikely(time_after(jiffies,
 +                              last_check + READ_ONCE(scx_watchdog_timeout)))) {
 +              u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
 +
 +              scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
 +                                 "watchdog failed to check in for %u.%03us",
 +                                 dur_ms / 1000, dur_ms % 1000);
 +      }
 +
 +      update_other_load_avgs(rq);
 +}
 +
 +static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
 +{
 +      update_curr_scx(rq);
 +
 +      /*
 +       * While disabling, always resched and refresh core-sched timestamp as
 +       * we can't trust the slice management or ops.core_sched_before().
 +       */
 +      if (scx_ops_bypassing()) {
 +              curr->scx.slice = 0;
 +              touch_core_sched(rq, curr);
 +      } else if (SCX_HAS_OP(tick)) {
 +              SCX_CALL_OP(SCX_KF_REST, tick, curr);
 +      }
 +
 +      if (!curr->scx.slice)
 +              resched_curr(rq);
 +}
 +
 +static enum scx_task_state scx_get_task_state(const struct task_struct *p)
 +{
 +      return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
 +}
 +
 +static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
 +{
 +      enum scx_task_state prev_state = scx_get_task_state(p);
 +      bool warn = false;
 +
 +      BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
 +
 +      switch (state) {
 +      case SCX_TASK_NONE:
 +              break;
 +      case SCX_TASK_INIT:
 +              warn = prev_state != SCX_TASK_NONE;
 +              break;
 +      case SCX_TASK_READY:
 +              warn = prev_state == SCX_TASK_NONE;
 +              break;
 +      case SCX_TASK_ENABLED:
 +              warn = prev_state != SCX_TASK_READY;
 +              break;
 +      default:
 +              warn = true;
 +              return;
 +      }
 +
 +      WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
 +                prev_state, state, p->comm, p->pid);
 +
 +      p->scx.flags &= ~SCX_TASK_STATE_MASK;
 +      p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
 +}
 +
 +static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
 +{
 +      int ret;
 +
 +      p->scx.disallow = false;
 +
 +      if (SCX_HAS_OP(init_task)) {
 +              struct scx_init_task_args args = {
 +                      .fork = fork,
 +              };
 +
 +              ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
 +              if (unlikely(ret)) {
 +                      ret = ops_sanitize_err("init_task", ret);
 +                      return ret;
 +              }
 +      }
 +
 +      scx_set_task_state(p, SCX_TASK_INIT);
 +
 +      if (p->scx.disallow) {
 +              if (!fork) {
 +                      struct rq *rq;
 +                      struct rq_flags rf;
 +
 +                      rq = task_rq_lock(p, &rf);
 +
 +                      /*
 +                       * We're in the load path and @p->policy will be applied
 +                       * right after. Reverting @p->policy here and rejecting
 +                       * %SCHED_EXT transitions from scx_check_setscheduler()
 +                       * guarantees that if ops.init_task() sets @p->disallow,
 +                       * @p can never be in SCX.
 +                       */
 +                      if (p->policy == SCHED_EXT) {
 +                              p->policy = SCHED_NORMAL;
 +                              atomic_long_inc(&scx_nr_rejected);
 +                      }
 +
 +                      task_rq_unlock(rq, p, &rf);
 +              } else if (p->policy == SCHED_EXT) {
 +                      scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
 +                                    p->comm, p->pid);
 +              }
 +      }
 +
 +      p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
 +      return 0;
 +}
 +
 +static void scx_ops_enable_task(struct task_struct *p)
 +{
 +      u32 weight;
 +
 +      lockdep_assert_rq_held(task_rq(p));
 +
 +      /*
 +       * Set the weight before calling ops.enable() so that the scheduler
 +       * doesn't see a stale value if they inspect the task struct.
 +       */
 +      if (task_has_idle_policy(p))
 +              weight = WEIGHT_IDLEPRIO;
 +      else
 +              weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
 +
 +      p->scx.weight = sched_weight_to_cgroup(weight);
 +
 +      if (SCX_HAS_OP(enable))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
 +      scx_set_task_state(p, SCX_TASK_ENABLED);
 +
 +      if (SCX_HAS_OP(set_weight))
 +              SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight);
 +}
 +
 +static void scx_ops_disable_task(struct task_struct *p)
 +{
 +      lockdep_assert_rq_held(task_rq(p));
 +      WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
 +
 +      if (SCX_HAS_OP(disable))
 +              SCX_CALL_OP(SCX_KF_REST, disable, p);
 +      scx_set_task_state(p, SCX_TASK_READY);
 +}
 +
 +static void scx_ops_exit_task(struct task_struct *p)
 +{
 +      struct scx_exit_task_args args = {
 +              .cancelled = false,
 +      };
 +
 +      lockdep_assert_rq_held(task_rq(p));
 +
 +      switch (scx_get_task_state(p)) {
 +      case SCX_TASK_NONE:
 +              return;
 +      case SCX_TASK_INIT:
 +              args.cancelled = true;
 +              break;
 +      case SCX_TASK_READY:
 +              break;
 +      case SCX_TASK_ENABLED:
 +              scx_ops_disable_task(p);
 +              break;
 +      default:
 +              WARN_ON_ONCE(true);
 +              return;
 +      }
 +
 +      if (SCX_HAS_OP(exit_task))
 +              SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
 +      scx_set_task_state(p, SCX_TASK_NONE);
 +}
 +
 +void init_scx_entity(struct sched_ext_entity *scx)
 +{
 +      /*
 +       * init_idle() calls this function again after fork sequence is
 +       * complete. Don't touch ->tasks_node as it's already linked.
 +       */
 +      memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
 +
 +      INIT_LIST_HEAD(&scx->dsq_list.node);
 +      RB_CLEAR_NODE(&scx->dsq_priq);
 +      scx->sticky_cpu = -1;
 +      scx->holding_cpu = -1;
 +      INIT_LIST_HEAD(&scx->runnable_node);
 +      scx->runnable_at = jiffies;
 +      scx->ddsp_dsq_id = SCX_DSQ_INVALID;
 +      scx->slice = SCX_SLICE_DFL;
 +}
 +
 +void scx_pre_fork(struct task_struct *p)
 +{
 +      /*
 +       * BPF scheduler enable/disable paths want to be able to iterate and
 +       * update all tasks which can become complex when racing forks. As
 +       * enable/disable are very cold paths, let's use a percpu_rwsem to
 +       * exclude forks.
 +       */
 +      percpu_down_read(&scx_fork_rwsem);
 +}
 +
 +int scx_fork(struct task_struct *p)
 +{
 +      percpu_rwsem_assert_held(&scx_fork_rwsem);
 +
 +      if (scx_enabled())
 +              return scx_ops_init_task(p, task_group(p), true);
 +      else
 +              return 0;
 +}
 +
 +void scx_post_fork(struct task_struct *p)
 +{
 +      if (scx_enabled()) {
 +              scx_set_task_state(p, SCX_TASK_READY);
 +
 +              /*
 +               * Enable the task immediately if it's running on sched_ext.
 +               * Otherwise, it'll be enabled in switching_to_scx() if and
 +               * when it's ever configured to run with a SCHED_EXT policy.
 +               */
 +              if (p->sched_class == &ext_sched_class) {
 +                      struct rq_flags rf;
 +                      struct rq *rq;
 +
 +                      rq = task_rq_lock(p, &rf);
 +                      scx_ops_enable_task(p);
 +                      task_rq_unlock(rq, p, &rf);
 +              }
 +      }
 +
 +      spin_lock_irq(&scx_tasks_lock);
 +      list_add_tail(&p->scx.tasks_node, &scx_tasks);
 +      spin_unlock_irq(&scx_tasks_lock);
 +
 +      percpu_up_read(&scx_fork_rwsem);
 +}
 +
 +void scx_cancel_fork(struct task_struct *p)
 +{
 +      if (scx_enabled()) {
 +              struct rq *rq;
 +              struct rq_flags rf;
 +
 +              rq = task_rq_lock(p, &rf);
 +              WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
 +              scx_ops_exit_task(p);
 +              task_rq_unlock(rq, p, &rf);
 +      }
 +
 +      percpu_up_read(&scx_fork_rwsem);
 +}
 +
 +void sched_ext_free(struct task_struct *p)
 +{
 +      unsigned long flags;
 +
 +      spin_lock_irqsave(&scx_tasks_lock, flags);
 +      list_del_init(&p->scx.tasks_node);
 +      spin_unlock_irqrestore(&scx_tasks_lock, flags);
 +
 +      /*
 +       * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
 +       * ENABLED transitions can't race us. Disable ops for @p.
 +       */
 +      if (scx_get_task_state(p) != SCX_TASK_NONE) {
 +              struct rq_flags rf;
 +              struct rq *rq;
 +
 +              rq = task_rq_lock(p, &rf);
 +              scx_ops_exit_task(p);
 +              task_rq_unlock(rq, p, &rf);
 +      }
 +}
 +
 +static void reweight_task_scx(struct rq *rq, struct task_struct *p,
 +                            const struct load_weight *lw)
 +{
 +      lockdep_assert_rq_held(task_rq(p));
 +
 +      p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
 +      if (SCX_HAS_OP(set_weight))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
 +}
 +
 +static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
 +{
 +}
 +
 +static void switching_to_scx(struct rq *rq, struct task_struct *p)
 +{
 +      scx_ops_enable_task(p);
 +
 +      /*
 +       * set_cpus_allowed_scx() is not called while @p is associated with a
 +       * different scheduler class. Keep the BPF scheduler up-to-date.
 +       */
 +      if (SCX_HAS_OP(set_cpumask))
 +              SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
 +                               (struct cpumask *)p->cpus_ptr);
 +}
 +
 +static void switched_from_scx(struct rq *rq, struct task_struct *p)
 +{
 +      scx_ops_disable_task(p);
 +}
 +
 +static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
 +static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
 +
 +int scx_check_setscheduler(struct task_struct *p, int policy)
 +{
 +      lockdep_assert_rq_held(task_rq(p));
 +
 +      /* if disallow, reject transitioning into SCX */
 +      if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
 +          p->policy != policy && policy == SCHED_EXT)
 +              return -EACCES;
 +
 +      return 0;
 +}
 +
 +#ifdef CONFIG_NO_HZ_FULL
 +bool scx_can_stop_tick(struct rq *rq)
 +{
 +      struct task_struct *p = rq->curr;
 +
 +      if (scx_ops_bypassing())
 +              return false;
 +
 +      if (p->sched_class != &ext_sched_class)
 +              return true;
 +
 +      /*
 +       * @rq can dispatch from different DSQs, so we can't tell whether it
 +       * needs the tick or not by looking at nr_running. Allow stopping ticks
 +       * iff the BPF scheduler indicated so. See set_next_task_scx().
 +       */
 +      return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
 +}
 +#endif
 +
 +/*
 + * Omitted operations:
 + *
 + * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
 + *   isn't tied to the CPU at that point. Preemption is implemented by resetting
 + *   the victim task's slice to 0 and triggering reschedule on the target CPU.
 + *
 + * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
 + *
 + * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
 + *   their current sched_class. Call them directly from sched core instead.
 + */
 +DEFINE_SCHED_CLASS(ext) = {
 +      .enqueue_task           = enqueue_task_scx,
 +      .dequeue_task           = dequeue_task_scx,
 +      .yield_task             = yield_task_scx,
 +      .yield_to_task          = yield_to_task_scx,
 +
 +      .wakeup_preempt         = wakeup_preempt_scx,
 +
 +      .balance                = balance_scx,
 +      .pick_next_task         = pick_next_task_scx,
 +
 +      .put_prev_task          = put_prev_task_scx,
 +      .set_next_task          = set_next_task_scx,
 +
 +      .switch_class           = switch_class_scx,
 +
 +#ifdef CONFIG_SMP
 +      .select_task_rq         = select_task_rq_scx,
 +      .task_woken             = task_woken_scx,
 +      .set_cpus_allowed       = set_cpus_allowed_scx,
 +
 +      .rq_online              = rq_online_scx,
 +      .rq_offline             = rq_offline_scx,
 +#endif
 +
 +#ifdef CONFIG_SCHED_CORE
 +      .pick_task              = pick_task_scx,
 +#endif
 +
 +      .task_tick              = task_tick_scx,
 +
 +      .switching_to           = switching_to_scx,
 +      .switched_from          = switched_from_scx,
 +      .switched_to            = switched_to_scx,
 +      .reweight_task          = reweight_task_scx,
 +      .prio_changed           = prio_changed_scx,
 +
 +      .update_curr            = update_curr_scx,
 +
 +#ifdef CONFIG_UCLAMP_TASK
 +      .uclamp_enabled         = 1,
 +#endif
 +};
 +
 +static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
 +{
 +      memset(dsq, 0, sizeof(*dsq));
 +
 +      raw_spin_lock_init(&dsq->lock);
 +      INIT_LIST_HEAD(&dsq->list);
 +      dsq->id = dsq_id;
 +}
 +
 +static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
 +{
 +      struct scx_dispatch_q *dsq;
 +      int ret;
 +
 +      if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
 +              return ERR_PTR(-EINVAL);
 +
 +      dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
 +      if (!dsq)
 +              return ERR_PTR(-ENOMEM);
 +
 +      init_dsq(dsq, dsq_id);
 +
 +      ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
 +                                   dsq_hash_params);
 +      if (ret) {
 +              kfree(dsq);
 +              return ERR_PTR(ret);
 +      }
 +      return dsq;
 +}
 +
 +static void free_dsq_irq_workfn(struct irq_work *irq_work)
 +{
 +      struct llist_node *to_free = llist_del_all(&dsqs_to_free);
 +      struct scx_dispatch_q *dsq, *tmp_dsq;
 +
 +      llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
 +              kfree_rcu(dsq, rcu);
 +}
 +
 +static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
 +
 +static void destroy_dsq(u64 dsq_id)
 +{
 +      struct scx_dispatch_q *dsq;
 +      unsigned long flags;
 +
 +      rcu_read_lock();
 +
 +      dsq = find_user_dsq(dsq_id);
 +      if (!dsq)
 +              goto out_unlock_rcu;
 +
 +      raw_spin_lock_irqsave(&dsq->lock, flags);
 +
 +      if (dsq->nr) {
 +              scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
 +                            dsq->id, dsq->nr);
 +              goto out_unlock_dsq;
 +      }
 +
 +      if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
 +              goto out_unlock_dsq;
 +
 +      /*
 +       * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
 +       * queueing more tasks. As this function can be called from anywhere,
 +       * freeing is bounced through an irq work to avoid nesting RCU
 +       * operations inside scheduler locks.
 +       */
 +      dsq->id = SCX_DSQ_INVALID;
 +      llist_add(&dsq->free_node, &dsqs_to_free);
 +      irq_work_queue(&free_dsq_irq_work);
 +
 +out_unlock_dsq:
 +      raw_spin_unlock_irqrestore(&dsq->lock, flags);
 +out_unlock_rcu:
 +      rcu_read_unlock();
 +}
 +
 +
 +/********************************************************************************
 + * Sysfs interface and ops enable/disable.
 + */
 +
 +#define SCX_ATTR(_name)                                                               \
 +      static struct kobj_attribute scx_attr_##_name = {                       \
 +              .attr = { .name = __stringify(_name), .mode = 0444 },           \
 +              .show = scx_attr_##_name##_show,                                \
 +      }
 +
 +static ssize_t scx_attr_state_show(struct kobject *kobj,
 +                                 struct kobj_attribute *ka, char *buf)
 +{
 +      return sysfs_emit(buf, "%s\n",
 +                        scx_ops_enable_state_str[scx_ops_enable_state()]);
 +}
 +SCX_ATTR(state);
 +
 +static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
 +                                      struct kobj_attribute *ka, char *buf)
 +{
 +      return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
 +}
 +SCX_ATTR(switch_all);
 +
 +static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
 +                                       struct kobj_attribute *ka, char *buf)
 +{
 +      return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
 +}
 +SCX_ATTR(nr_rejected);
 +
 +static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
 +                                       struct kobj_attribute *ka, char *buf)
 +{
 +      return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
 +}
 +SCX_ATTR(hotplug_seq);
 +
 +static struct attribute *scx_global_attrs[] = {
 +      &scx_attr_state.attr,
 +      &scx_attr_switch_all.attr,
 +      &scx_attr_nr_rejected.attr,
 +      &scx_attr_hotplug_seq.attr,
 +      NULL,
 +};
 +
 +static const struct attribute_group scx_global_attr_group = {
 +      .attrs = scx_global_attrs,
 +};
 +
 +static void scx_kobj_release(struct kobject *kobj)
 +{
 +      kfree(kobj);
 +}
 +
 +static ssize_t scx_attr_ops_show(struct kobject *kobj,
 +                               struct kobj_attribute *ka, char *buf)
 +{
 +      return sysfs_emit(buf, "%s\n", scx_ops.name);
 +}
 +SCX_ATTR(ops);
 +
 +static struct attribute *scx_sched_attrs[] = {
 +      &scx_attr_ops.attr,
 +      NULL,
 +};
 +ATTRIBUTE_GROUPS(scx_sched);
 +
 +static const struct kobj_type scx_ktype = {
 +      .release = scx_kobj_release,
 +      .sysfs_ops = &kobj_sysfs_ops,
 +      .default_groups = scx_sched_groups,
 +};
 +
 +static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
 +{
 +      return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
 +}
 +
 +static const struct kset_uevent_ops scx_uevent_ops = {
 +      .uevent = scx_uevent,
 +};
 +
 +/*
 + * Used by sched_fork() and __setscheduler_prio() to pick the matching
 + * sched_class. dl/rt are already handled.
 + */
 +bool task_should_scx(struct task_struct *p)
 +{
 +      if (!scx_enabled() ||
 +          unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
 +              return false;
 +      if (READ_ONCE(scx_switching_all))
 +              return true;
 +      return p->policy == SCHED_EXT;
 +}
 +
 +/**
 + * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
 + *
 + * Bypassing guarantees that all runnable tasks make forward progress without
 + * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
 + * be held by tasks that the BPF scheduler is forgetting to run, which
 + * unfortunately also excludes toggling the static branches.
 + *
 + * Let's work around by overriding a couple ops and modifying behaviors based on
 + * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
 + * to force global FIFO scheduling.
 + *
 + * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
 + *
 + * b. ops.dispatch() is ignored.
 + *
 + * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be
 + *    trusted. Whenever a tick triggers, the running task is rotated to the tail
 + *    of the queue with core_sched_at touched.
 + *
 + * d. pick_next_task() suppresses zero slice warning.
 + *
 + * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
 + *    operations.
 + *
 + * f. scx_prio_less() reverts to the default core_sched_at order.
 + */
 +static void scx_ops_bypass(bool bypass)
 +{
 +      int depth, cpu;
 +
 +      if (bypass) {
 +              depth = atomic_inc_return(&scx_ops_bypass_depth);
 +              WARN_ON_ONCE(depth <= 0);
 +              if (depth != 1)
 +                      return;
 +      } else {
 +              depth = atomic_dec_return(&scx_ops_bypass_depth);
 +              WARN_ON_ONCE(depth < 0);
 +              if (depth != 0)
 +                      return;
 +      }
 +
 +      /*
 +       * We need to guarantee that no tasks are on the BPF scheduler while
 +       * bypassing. Either we see enabled or the enable path sees the
 +       * increased bypass_depth before moving tasks to SCX.
 +       */
 +      if (!scx_enabled())
 +              return;
 +
 +      /*
 +       * No task property is changing. We just need to make sure all currently
 +       * queued tasks are re-queued according to the new scx_ops_bypassing()
 +       * state. As an optimization, walk each rq's runnable_list instead of
 +       * the scx_tasks list.
 +       *
 +       * This function can't trust the scheduler and thus can't use
 +       * cpus_read_lock(). Walk all possible CPUs instead of online.
 +       */
 +      for_each_possible_cpu(cpu) {
 +              struct rq *rq = cpu_rq(cpu);
 +              struct rq_flags rf;
 +              struct task_struct *p, *n;
 +
 +              rq_lock_irqsave(rq, &rf);
 +
 +              /*
 +               * The use of list_for_each_entry_safe_reverse() is required
 +               * because each task is going to be removed from and added back
 +               * to the runnable_list during iteration. Because they're added
 +               * to the tail of the list, safe reverse iteration can still
 +               * visit all nodes.
 +               */
 +              list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
 +                                               scx.runnable_node) {
 +                      struct sched_enq_and_set_ctx ctx;
 +
 +                      /* cycling deq/enq is enough, see the function comment */
 +                      sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
 +                      sched_enq_and_set_task(&ctx);
 +              }
 +
 +              rq_unlock_irqrestore(rq, &rf);
 +
 +              /* kick to restore ticks */
 +              resched_cpu(cpu);
 +      }
 +}
 +
 +static void free_exit_info(struct scx_exit_info *ei)
 +{
 +      kfree(ei->dump);
 +      kfree(ei->msg);
 +      kfree(ei->bt);
 +      kfree(ei);
 +}
 +
 +static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
 +{
 +      struct scx_exit_info *ei;
 +
 +      ei = kzalloc(sizeof(*ei), GFP_KERNEL);
 +      if (!ei)
 +              return NULL;
 +
 +      ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
 +      ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
 +      ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
 +
 +      if (!ei->bt || !ei->msg || !ei->dump) {
 +              free_exit_info(ei);
 +              return NULL;
 +      }
 +
 +      return ei;
 +}
 +
 +static const char *scx_exit_reason(enum scx_exit_kind kind)
 +{
 +      switch (kind) {
 +      case SCX_EXIT_UNREG:
 +              return "unregistered from user space";
 +      case SCX_EXIT_UNREG_BPF:
 +              return "unregistered from BPF";
 +      case SCX_EXIT_UNREG_KERN:
 +              return "unregistered from the main kernel";
 +      case SCX_EXIT_SYSRQ:
 +              return "disabled by sysrq-S";
 +      case SCX_EXIT_ERROR:
 +              return "runtime error";
 +      case SCX_EXIT_ERROR_BPF:
 +              return "scx_bpf_error";
 +      case SCX_EXIT_ERROR_STALL:
 +              return "runnable task stall";
 +      default:
 +              return "<UNKNOWN>";
 +      }
 +}
 +
 +static void scx_ops_disable_workfn(struct kthread_work *work)
 +{
 +      struct scx_exit_info *ei = scx_exit_info;
 +      struct scx_task_iter sti;
 +      struct task_struct *p;
 +      struct rhashtable_iter rht_iter;
 +      struct scx_dispatch_q *dsq;
 +      int i, kind;
 +
 +      kind = atomic_read(&scx_exit_kind);
 +      while (true) {
 +              /*
 +               * NONE indicates that a new scx_ops has been registered since
 +               * disable was scheduled - don't kill the new ops. DONE
 +               * indicates that the ops has already been disabled.
 +               */
 +              if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
 +                      return;
 +              if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
 +                      break;
 +      }
 +      ei->kind = kind;
 +      ei->reason = scx_exit_reason(ei->kind);
 +
 +      /* guarantee forward progress by bypassing scx_ops */
 +      scx_ops_bypass(true);
 +
 +      switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
 +      case SCX_OPS_DISABLING:
 +              WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
 +              break;
 +      case SCX_OPS_DISABLED:
 +              pr_warn("sched_ext: ops error detected without ops (%s)\n",
 +                      scx_exit_info->msg);
 +              WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
 +                           SCX_OPS_DISABLING);
 +              goto done;
 +      default:
 +              break;
 +      }
 +
 +      /*
 +       * Here, every runnable task is guaranteed to make forward progress and
 +       * we can safely use blocking synchronization constructs. Actually
 +       * disable ops.
 +       */
 +      mutex_lock(&scx_ops_enable_mutex);
 +
 +      static_branch_disable(&__scx_switched_all);
 +      WRITE_ONCE(scx_switching_all, false);
 +
 +      /*
 +       * Avoid racing against fork. See scx_ops_enable() for explanation on
 +       * the locking order.
 +       */
 +      percpu_down_write(&scx_fork_rwsem);
 +      cpus_read_lock();
 +
 +      spin_lock_irq(&scx_tasks_lock);
 +      scx_task_iter_init(&sti);
 +      /*
 +       * Invoke scx_ops_exit_task() on all non-idle tasks, including
 +       * TASK_DEAD tasks. Because dead tasks may have a nonzero refcount,
 +       * we may not have invoked sched_ext_free() on them by the time a
 +       * scheduler is disabled. We must therefore exit the task here, or we'd
 +       * fail to invoke ops.exit_task(), as the scheduler will have been
 +       * unloaded by the time the task is subsequently exited on the
 +       * sched_ext_free() path.
 +       */
 +      while ((p = scx_task_iter_next_locked(&sti, true))) {
 +              const struct sched_class *old_class = p->sched_class;
 +              struct sched_enq_and_set_ctx ctx;
 +
 +              if (READ_ONCE(p->__state) != TASK_DEAD) {
 +                      sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE,
 +                                             &ctx);
 +
 +                      p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL);
 +                      __setscheduler_prio(p, p->prio);
 +                      check_class_changing(task_rq(p), p, old_class);
 +
 +                      sched_enq_and_set_task(&ctx);
 +
 +                      check_class_changed(task_rq(p), p, old_class, p->prio);
 +              }
 +              scx_ops_exit_task(p);
 +      }
 +      scx_task_iter_exit(&sti);
 +      spin_unlock_irq(&scx_tasks_lock);
 +
 +      /* no task is on scx, turn off all the switches and flush in-progress calls */
 +      static_branch_disable_cpuslocked(&__scx_ops_enabled);
 +      for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
 +              static_branch_disable_cpuslocked(&scx_has_op[i]);
 +      static_branch_disable_cpuslocked(&scx_ops_enq_last);
 +      static_branch_disable_cpuslocked(&scx_ops_enq_exiting);
 +      static_branch_disable_cpuslocked(&scx_ops_cpu_preempt);
 +      static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
 +      synchronize_rcu();
 +
 +      cpus_read_unlock();
 +      percpu_up_write(&scx_fork_rwsem);
 +
 +      if (ei->kind >= SCX_EXIT_ERROR) {
 +              pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
 +                     scx_ops.name, ei->reason);
 +
 +              if (ei->msg[0] != '\0')
 +                      pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
 +
 +              stack_trace_print(ei->bt, ei->bt_len, 2);
 +      } else {
 +              pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
 +                      scx_ops.name, ei->reason);
 +      }
 +
 +      if (scx_ops.exit)
 +              SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
 +
 +      cancel_delayed_work_sync(&scx_watchdog_work);
 +
 +      /*
 +       * Delete the kobject from the hierarchy eagerly in addition to just
 +       * dropping a reference. Otherwise, if the object is deleted
 +       * asynchronously, sysfs could observe an object of the same name still
 +       * in the hierarchy when another scheduler is loaded.
 +       */
 +      kobject_del(scx_root_kobj);
 +      kobject_put(scx_root_kobj);
 +      scx_root_kobj = NULL;
 +
 +      memset(&scx_ops, 0, sizeof(scx_ops));
 +
 +      rhashtable_walk_enter(&dsq_hash, &rht_iter);
 +      do {
 +              rhashtable_walk_start(&rht_iter);
 +
 +              while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
 +                      destroy_dsq(dsq->id);
 +
 +              rhashtable_walk_stop(&rht_iter);
 +      } while (dsq == ERR_PTR(-EAGAIN));
 +      rhashtable_walk_exit(&rht_iter);
 +
 +      free_percpu(scx_dsp_ctx);
 +      scx_dsp_ctx = NULL;
 +      scx_dsp_max_batch = 0;
 +
 +      free_exit_info(scx_exit_info);
 +      scx_exit_info = NULL;
 +
 +      mutex_unlock(&scx_ops_enable_mutex);
 +
 +      WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
 +                   SCX_OPS_DISABLING);
 +done:
 +      scx_ops_bypass(false);
 +}
 +
 +static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
 +
 +static void schedule_scx_ops_disable_work(void)
 +{
 +      struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
 +
 +      /*
 +       * We may be called spuriously before the first bpf_sched_ext_reg(). If
 +       * scx_ops_helper isn't set up yet, there's nothing to do.
 +       */
 +      if (helper)
 +              kthread_queue_work(helper, &scx_ops_disable_work);
 +}
 +
 +static void scx_ops_disable(enum scx_exit_kind kind)
 +{
 +      int none = SCX_EXIT_NONE;
 +
 +      if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
 +              kind = SCX_EXIT_ERROR;
 +
 +      atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
 +
 +      schedule_scx_ops_disable_work();
 +}
 +
 +static void dump_newline(struct seq_buf *s)
 +{
 +      trace_sched_ext_dump("");
 +
 +      /* @s may be zero sized and seq_buf triggers WARN if so */
 +      if (s->size)
 +              seq_buf_putc(s, '\n');
 +}
 +
 +static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
 +{
 +      va_list args;
 +
 +#ifdef CONFIG_TRACEPOINTS
 +      if (trace_sched_ext_dump_enabled()) {
 +              /* protected by scx_dump_state()::dump_lock */
 +              static char line_buf[SCX_EXIT_MSG_LEN];
 +
 +              va_start(args, fmt);
 +              vscnprintf(line_buf, sizeof(line_buf), fmt, args);
 +              va_end(args);
 +
 +              trace_sched_ext_dump(line_buf);
 +      }
 +#endif
 +      /* @s may be zero sized and seq_buf triggers WARN if so */
 +      if (s->size) {
 +              va_start(args, fmt);
 +              seq_buf_vprintf(s, fmt, args);
 +              va_end(args);
 +
 +              seq_buf_putc(s, '\n');
 +      }
 +}
 +
 +static void dump_stack_trace(struct seq_buf *s, const char *prefix,
 +                           const unsigned long *bt, unsigned int len)
 +{
 +      unsigned int i;
 +
 +      for (i = 0; i < len; i++)
 +              dump_line(s, "%s%pS", prefix, (void *)bt[i]);
 +}
 +
 +static void ops_dump_init(struct seq_buf *s, const char *prefix)
 +{
 +      struct scx_dump_data *dd = &scx_dump_data;
 +
 +      lockdep_assert_irqs_disabled();
 +
 +      dd->cpu = smp_processor_id();           /* allow scx_bpf_dump() */
 +      dd->first = true;
 +      dd->cursor = 0;
 +      dd->s = s;
 +      dd->prefix = prefix;
 +}
 +
 +static void ops_dump_flush(void)
 +{
 +      struct scx_dump_data *dd = &scx_dump_data;
 +      char *line = dd->buf.line;
 +
 +      if (!dd->cursor)
 +              return;
 +
 +      /*
 +       * There's something to flush and this is the first line. Insert a blank
 +       * line to distinguish ops dump.
 +       */
 +      if (dd->first) {
 +              dump_newline(dd->s);
 +              dd->first = false;
 +      }
 +
 +      /*
 +       * There may be multiple lines in $line. Scan and emit each line
 +       * separately.
 +       */
 +      while (true) {
 +              char *end = line;
 +              char c;
 +
 +              while (*end != '\n' && *end != '\0')
 +                      end++;
 +
 +              /*
 +               * If $line overflowed, it may not have newline at the end.
 +               * Always emit with a newline.
 +               */
 +              c = *end;
 +              *end = '\0';
 +              dump_line(dd->s, "%s%s", dd->prefix, line);
 +              if (c == '\0')
 +                      break;
 +
 +              /* move to the next line */
 +              end++;
 +              if (*end == '\0')
 +                      break;
 +              line = end;
 +      }
 +
 +      dd->cursor = 0;
 +}
 +
 +static void ops_dump_exit(void)
 +{
 +      ops_dump_flush();
 +      scx_dump_data.cpu = -1;
 +}
 +
 +static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
 +                        struct task_struct *p, char marker)
 +{
 +      static unsigned long bt[SCX_EXIT_BT_LEN];
 +      char dsq_id_buf[19] = "(n/a)";
 +      unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
 +      unsigned int bt_len = 0;
 +
 +      if (p->scx.dsq)
 +              scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
 +                        (unsigned long long)p->scx.dsq->id);
 +
 +      dump_newline(s);
 +      dump_line(s, " %c%c %s[%d] %+ldms",
 +                marker, task_state_to_char(p), p->comm, p->pid,
 +                jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
 +      dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
 +                scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
 +                p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
 +                ops_state >> SCX_OPSS_QSEQ_SHIFT);
 +      dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
 +                p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
 +                p->scx.dsq_vtime);
 +      dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
 +
 +      if (SCX_HAS_OP(dump_task)) {
 +              ops_dump_init(s, "    ");
 +              SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
 +              ops_dump_exit();
 +      }
 +
 +#ifdef CONFIG_STACKTRACE
 +      bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
 +#endif
 +      if (bt_len) {
 +              dump_newline(s);
 +              dump_stack_trace(s, "    ", bt, bt_len);
 +      }
 +}
 +
 +static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
 +{
 +      static DEFINE_SPINLOCK(dump_lock);
 +      static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
 +      struct scx_dump_ctx dctx = {
 +              .kind = ei->kind,
 +              .exit_code = ei->exit_code,
 +              .reason = ei->reason,
 +              .at_ns = ktime_get_ns(),
 +              .at_jiffies = jiffies,
 +      };
 +      struct seq_buf s;
 +      unsigned long flags;
 +      char *buf;
 +      int cpu;
 +
 +      spin_lock_irqsave(&dump_lock, flags);
 +
 +      seq_buf_init(&s, ei->dump, dump_len);
 +
 +      if (ei->kind == SCX_EXIT_NONE) {
 +              dump_line(&s, "Debug dump triggered by %s", ei->reason);
 +      } else {
 +              dump_line(&s, "%s[%d] triggered exit kind %d:",
 +                        current->comm, current->pid, ei->kind);
 +              dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
 +              dump_newline(&s);
 +              dump_line(&s, "Backtrace:");
 +              dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
 +      }
 +
 +      if (SCX_HAS_OP(dump)) {
 +              ops_dump_init(&s, "");
 +              SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
 +              ops_dump_exit();
 +      }
 +
 +      dump_newline(&s);
 +      dump_line(&s, "CPU states");
 +      dump_line(&s, "----------");
 +
 +      for_each_possible_cpu(cpu) {
 +              struct rq *rq = cpu_rq(cpu);
 +              struct rq_flags rf;
 +              struct task_struct *p;
 +              struct seq_buf ns;
 +              size_t avail, used;
 +              bool idle;
 +
 +              rq_lock(rq, &rf);
 +
 +              idle = list_empty(&rq->scx.runnable_list) &&
 +                      rq->curr->sched_class == &idle_sched_class;
 +
 +              if (idle && !SCX_HAS_OP(dump_cpu))
 +                      goto next;
 +
 +              /*
 +               * We don't yet know whether ops.dump_cpu() will produce output
 +               * and we may want to skip the default CPU dump if it doesn't.
 +               * Use a nested seq_buf to generate the standard dump so that we
 +               * can decide whether to commit later.
 +               */
 +              avail = seq_buf_get_buf(&s, &buf);
 +              seq_buf_init(&ns, buf, avail);
 +
 +              dump_newline(&ns);
 +              dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
 +                        cpu, rq->scx.nr_running, rq->scx.flags,
 +                        rq->scx.cpu_released, rq->scx.ops_qseq,
 +                        rq->scx.pnt_seq);
 +              dump_line(&ns, "          curr=%s[%d] class=%ps",
 +                        rq->curr->comm, rq->curr->pid,
 +                        rq->curr->sched_class);
 +              if (!cpumask_empty(rq->scx.cpus_to_kick))
 +                      dump_line(&ns, "  cpus_to_kick   : %*pb",
 +                                cpumask_pr_args(rq->scx.cpus_to_kick));
 +              if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
 +                      dump_line(&ns, "  idle_to_kick   : %*pb",
 +                                cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
 +              if (!cpumask_empty(rq->scx.cpus_to_preempt))
 +                      dump_line(&ns, "  cpus_to_preempt: %*pb",
 +                                cpumask_pr_args(rq->scx.cpus_to_preempt));
 +              if (!cpumask_empty(rq->scx.cpus_to_wait))
 +                      dump_line(&ns, "  cpus_to_wait   : %*pb",
 +                                cpumask_pr_args(rq->scx.cpus_to_wait));
 +
 +              used = seq_buf_used(&ns);
 +              if (SCX_HAS_OP(dump_cpu)) {
 +                      ops_dump_init(&ns, "  ");
 +                      SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
 +                      ops_dump_exit();
 +              }
 +
 +              /*
 +               * If idle && nothing generated by ops.dump_cpu(), there's
 +               * nothing interesting. Skip.
 +               */
 +              if (idle && used == seq_buf_used(&ns))
 +                      goto next;
 +
 +              /*
 +               * $s may already have overflowed when $ns was created. If so,
 +               * calling commit on it will trigger BUG.
 +               */
 +              if (avail) {
 +                      seq_buf_commit(&s, seq_buf_used(&ns));
 +                      if (seq_buf_has_overflowed(&ns))
 +                              seq_buf_set_overflow(&s);
 +              }
 +
 +              if (rq->curr->sched_class == &ext_sched_class)
 +                      scx_dump_task(&s, &dctx, rq->curr, '*');
 +
 +              list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
 +                      scx_dump_task(&s, &dctx, p, ' ');
 +      next:
 +              rq_unlock(rq, &rf);
 +      }
 +
 +      if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
 +              memcpy(ei->dump + dump_len - sizeof(trunc_marker),
 +                     trunc_marker, sizeof(trunc_marker));
 +
 +      spin_unlock_irqrestore(&dump_lock, flags);
 +}
 +
 +static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
 +{
 +      struct scx_exit_info *ei = scx_exit_info;
 +
 +      if (ei->kind >= SCX_EXIT_ERROR)
 +              scx_dump_state(ei, scx_ops.exit_dump_len);
 +
 +      schedule_scx_ops_disable_work();
 +}
 +
 +static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
 +
 +static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
 +                                           s64 exit_code,
 +                                           const char *fmt, ...)
 +{
 +      struct scx_exit_info *ei = scx_exit_info;
 +      int none = SCX_EXIT_NONE;
 +      va_list args;
 +
 +      if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
 +              return;
 +
 +      ei->exit_code = exit_code;
 +
 +      if (kind >= SCX_EXIT_ERROR)
 +              ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
 +
 +      va_start(args, fmt);
 +      vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
 +      va_end(args);
 +
 +      /*
 +       * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
 +       * in scx_ops_disable_workfn().
 +       */
 +      ei->kind = kind;
 +      ei->reason = scx_exit_reason(ei->kind);
 +
 +      irq_work_queue(&scx_ops_error_irq_work);
 +}
 +
 +static struct kthread_worker *scx_create_rt_helper(const char *name)
 +{
 +      struct kthread_worker *helper;
 +
 +      helper = kthread_create_worker(0, name);
 +      if (helper)
 +              sched_set_fifo(helper->task);
 +      return helper;
 +}
 +
 +static void check_hotplug_seq(const struct sched_ext_ops *ops)
 +{
 +      unsigned long long global_hotplug_seq;
 +
 +      /*
 +       * If a hotplug event has occurred between when a scheduler was
 +       * initialized, and when we were able to attach, exit and notify user
 +       * space about it.
 +       */
 +      if (ops->hotplug_seq) {
 +              global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
 +              if (ops->hotplug_seq != global_hotplug_seq) {
 +                      scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
 +                                   "expected hotplug seq %llu did not match actual %llu",
 +                                   ops->hotplug_seq, global_hotplug_seq);
 +              }
 +      }
 +}
 +
 +static int validate_ops(const struct sched_ext_ops *ops)
 +{
 +      /*
 +       * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
 +       * ops.enqueue() callback isn't implemented.
 +       */
 +      if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
 +              scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
 +              return -EINVAL;
 +      }
 +
 +      return 0;
 +}
 +
 +static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
 +{
 +      struct scx_task_iter sti;
 +      struct task_struct *p;
 +      unsigned long timeout;
 +      int i, cpu, ret;
 +
 +      if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
 +                         cpu_possible_mask)) {
 +              pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
 +              return -EINVAL;
 +      }
 +
 +      mutex_lock(&scx_ops_enable_mutex);
 +
 +      if (!scx_ops_helper) {
 +              WRITE_ONCE(scx_ops_helper,
 +                         scx_create_rt_helper("sched_ext_ops_helper"));
 +              if (!scx_ops_helper) {
 +                      ret = -ENOMEM;
 +                      goto err_unlock;
 +              }
 +      }
 +
 +      if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
 +              ret = -EBUSY;
 +              goto err_unlock;
 +      }
 +
 +      scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
 +      if (!scx_root_kobj) {
 +              ret = -ENOMEM;
 +              goto err_unlock;
 +      }
 +
 +      scx_root_kobj->kset = scx_kset;
 +      ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
 +      if (ret < 0)
 +              goto err;
 +
 +      scx_exit_info = alloc_exit_info(ops->exit_dump_len);
 +      if (!scx_exit_info) {
 +              ret = -ENOMEM;
 +              goto err_del;
 +      }
 +
 +      /*
 +       * Set scx_ops, transition to PREPPING and clear exit info to arm the
 +       * disable path. Failure triggers full disabling from here on.
 +       */
 +      scx_ops = *ops;
 +
 +      WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) !=
 +                   SCX_OPS_DISABLED);
 +
 +      atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
 +      scx_warned_zero_slice = false;
 +
 +      atomic_long_set(&scx_nr_rejected, 0);
 +
 +      for_each_possible_cpu(cpu)
 +              cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
 +
 +      /*
 +       * Keep CPUs stable during enable so that the BPF scheduler can track
 +       * online CPUs by watching ->on/offline_cpu() after ->init().
 +       */
 +      cpus_read_lock();
 +
 +      if (scx_ops.init) {
 +              ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
 +              if (ret) {
 +                      ret = ops_sanitize_err("init", ret);
 +                      goto err_disable_unlock_cpus;
 +              }
 +      }
 +
 +      for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
 +              if (((void (**)(void))ops)[i])
 +                      static_branch_enable_cpuslocked(&scx_has_op[i]);
 +
 +      cpus_read_unlock();
 +
 +      ret = validate_ops(ops);
 +      if (ret)
 +              goto err_disable;
 +
 +      WARN_ON_ONCE(scx_dsp_ctx);
 +      scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
 +      scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
 +                                                 scx_dsp_max_batch),
 +                                   __alignof__(struct scx_dsp_ctx));
 +      if (!scx_dsp_ctx) {
 +              ret = -ENOMEM;
 +              goto err_disable;
 +      }
 +
 +      if (ops->timeout_ms)
 +              timeout = msecs_to_jiffies(ops->timeout_ms);
 +      else
 +              timeout = SCX_WATCHDOG_MAX_TIMEOUT;
 +
 +      WRITE_ONCE(scx_watchdog_timeout, timeout);
 +      WRITE_ONCE(scx_watchdog_timestamp, jiffies);
 +      queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
 +                         scx_watchdog_timeout / 2);
 +
 +      /*
 +       * Lock out forks before opening the floodgate so that they don't wander
 +       * into the operations prematurely.
 +       *
 +       * We don't need to keep the CPUs stable but grab cpus_read_lock() to
 +       * ease future locking changes for cgroup suport.
 +       *
 +       * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the
 +       * following dependency chain:
 +       *
 +       *   scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock
 +       */
 +      percpu_down_write(&scx_fork_rwsem);
 +      cpus_read_lock();
 +
 +      check_hotplug_seq(ops);
 +
 +      for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
 +              if (((void (**)(void))ops)[i])
 +                      static_branch_enable_cpuslocked(&scx_has_op[i]);
 +
 +      if (ops->flags & SCX_OPS_ENQ_LAST)
 +              static_branch_enable_cpuslocked(&scx_ops_enq_last);
 +
 +      if (ops->flags & SCX_OPS_ENQ_EXITING)
 +              static_branch_enable_cpuslocked(&scx_ops_enq_exiting);
 +      if (scx_ops.cpu_acquire || scx_ops.cpu_release)
 +              static_branch_enable_cpuslocked(&scx_ops_cpu_preempt);
 +
 +      if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
 +              reset_idle_masks();
 +              static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
 +      } else {
 +              static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
 +      }
 +
 +      static_branch_enable_cpuslocked(&__scx_ops_enabled);
 +
 +      /*
 +       * Enable ops for every task. Fork is excluded by scx_fork_rwsem
 +       * preventing new tasks from being added. No need to exclude tasks
 +       * leaving as sched_ext_free() can handle both prepped and enabled
 +       * tasks. Prep all tasks first and then enable them with preemption
 +       * disabled.
 +       */
 +      spin_lock_irq(&scx_tasks_lock);
 +
 +      scx_task_iter_init(&sti);
 +      while ((p = scx_task_iter_next_locked(&sti, false))) {
 +              get_task_struct(p);
 +              scx_task_iter_rq_unlock(&sti);
 +              spin_unlock_irq(&scx_tasks_lock);
 +
 +              ret = scx_ops_init_task(p, task_group(p), false);
 +              if (ret) {
 +                      put_task_struct(p);
 +                      spin_lock_irq(&scx_tasks_lock);
 +                      scx_task_iter_exit(&sti);
 +                      spin_unlock_irq(&scx_tasks_lock);
 +                      pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n",
 +                             ret, p->comm, p->pid);
 +                      goto err_disable_unlock_all;
 +              }
 +
 +              put_task_struct(p);
 +              spin_lock_irq(&scx_tasks_lock);
 +      }
 +      scx_task_iter_exit(&sti);
 +
 +      /*
 +       * All tasks are prepped but are still ops-disabled. Ensure that
 +       * %current can't be scheduled out and switch everyone.
 +       * preempt_disable() is necessary because we can't guarantee that
 +       * %current won't be starved if scheduled out while switching.
 +       */
 +      preempt_disable();
 +
 +      /*
 +       * From here on, the disable path must assume that tasks have ops
 +       * enabled and need to be recovered.
 +       *
 +       * Transition to ENABLING fails iff the BPF scheduler has already
 +       * triggered scx_bpf_error(). Returning an error code here would lose
 +       * the recorded error information. Exit indicating success so that the
 +       * error is notified through ops.exit() with all the details.
 +       */
 +      if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) {
 +              preempt_enable();
 +              spin_unlock_irq(&scx_tasks_lock);
 +              WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
 +              ret = 0;
 +              goto err_disable_unlock_all;
 +      }
 +
 +      /*
 +       * We're fully committed and can't fail. The PREPPED -> ENABLED
 +       * transitions here are synchronized against sched_ext_free() through
 +       * scx_tasks_lock.
 +       */
 +      WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
 +
 +      scx_task_iter_init(&sti);
 +      while ((p = scx_task_iter_next_locked(&sti, false))) {
 +              const struct sched_class *old_class = p->sched_class;
 +              struct sched_enq_and_set_ctx ctx;
 +
 +              sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
 +
 +              scx_set_task_state(p, SCX_TASK_READY);
 +              __setscheduler_prio(p, p->prio);
 +              check_class_changing(task_rq(p), p, old_class);
 +
 +              sched_enq_and_set_task(&ctx);
 +
 +              check_class_changed(task_rq(p), p, old_class, p->prio);
 +      }
 +      scx_task_iter_exit(&sti);
 +
 +      spin_unlock_irq(&scx_tasks_lock);
 +      preempt_enable();
 +      cpus_read_unlock();
 +      percpu_up_write(&scx_fork_rwsem);
 +
 +      /* see above ENABLING transition for the explanation on exiting with 0 */
 +      if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
 +              WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
 +              ret = 0;
 +              goto err_disable;
 +      }
 +
 +      if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
 +              static_branch_enable(&__scx_switched_all);
 +
 +      pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
 +              scx_ops.name, scx_switched_all() ? "" : " (partial)");
 +      kobject_uevent(scx_root_kobj, KOBJ_ADD);
 +      mutex_unlock(&scx_ops_enable_mutex);
 +
 +      return 0;
 +
 +err_del:
 +      kobject_del(scx_root_kobj);
 +err:
 +      kobject_put(scx_root_kobj);
 +      scx_root_kobj = NULL;
 +      if (scx_exit_info) {
 +              free_exit_info(scx_exit_info);
 +              scx_exit_info = NULL;
 +      }
 +err_unlock:
 +      mutex_unlock(&scx_ops_enable_mutex);
 +      return ret;
 +
 +err_disable_unlock_all:
 +      percpu_up_write(&scx_fork_rwsem);
 +err_disable_unlock_cpus:
 +      cpus_read_unlock();
 +err_disable:
 +      mutex_unlock(&scx_ops_enable_mutex);
 +      /* must be fully disabled before returning */
 +      scx_ops_disable(SCX_EXIT_ERROR);
 +      kthread_flush_work(&scx_ops_disable_work);
 +      return ret;
 +}
 +
 +
 +/********************************************************************************
 + * bpf_struct_ops plumbing.
 + */
 +#include <linux/bpf_verifier.h>
 +#include <linux/bpf.h>
 +#include <linux/btf.h>
 +
 +extern struct btf *btf_vmlinux;
 +static const struct btf_type *task_struct_type;
 +static u32 task_struct_type_id;
 +
 +static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
 +                             enum bpf_access_type type,
 +                             const struct bpf_prog *prog,
 +                             struct bpf_insn_access_aux *info)
 +{
 +      struct btf *btf = bpf_get_btf_vmlinux();
 +      const struct bpf_struct_ops_desc *st_ops_desc;
 +      const struct btf_member *member;
 +      const struct btf_type *t;
 +      u32 btf_id, member_idx;
 +      const char *mname;
 +
 +      /* struct_ops op args are all sequential, 64-bit numbers */
 +      if (off != arg_n * sizeof(__u64))
 +              return false;
 +
 +      /* btf_id should be the type id of struct sched_ext_ops */
 +      btf_id = prog->aux->attach_btf_id;
 +      st_ops_desc = bpf_struct_ops_find(btf, btf_id);
 +      if (!st_ops_desc)
 +              return false;
 +
 +      /* BTF type of struct sched_ext_ops */
 +      t = st_ops_desc->type;
 +
 +      member_idx = prog->expected_attach_type;
 +      if (member_idx >= btf_type_vlen(t))
 +              return false;
 +
 +      /*
 +       * Get the member name of this struct_ops program, which corresponds to
 +       * a field in struct sched_ext_ops. For example, the member name of the
 +       * dispatch struct_ops program (callback) is "dispatch".
 +       */
 +      member = &btf_type_member(t)[member_idx];
 +      mname = btf_name_by_offset(btf_vmlinux, member->name_off);
 +
 +      if (!strcmp(mname, op)) {
 +              /*
 +               * The value is a pointer to a type (struct task_struct) given
 +               * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
 +               * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
 +               * should check the pointer to make sure it is not NULL before
 +               * using it, or the verifier will reject the program.
 +               *
 +               * Longer term, this is something that should be addressed by
 +               * BTF, and be fully contained within the verifier.
 +               */
 +              info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
 +              info->btf = btf_vmlinux;
 +              info->btf_id = task_struct_type_id;
 +
 +              return true;
 +      }
 +
 +      return false;
 +}
 +
 +static bool bpf_scx_is_valid_access(int off, int size,
 +                                  enum bpf_access_type type,
 +                                  const struct bpf_prog *prog,
 +                                  struct bpf_insn_access_aux *info)
 +{
 +      if (type != BPF_READ)
 +              return false;
 +      if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
 +          set_arg_maybe_null("yield", 1, off, size, type, prog, info))
 +              return true;
 +      if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
 +              return false;
 +      if (off % size != 0)
 +              return false;
 +
 +      return btf_ctx_access(off, size, type, prog, info);
 +}
 +
 +static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
 +                                   const struct bpf_reg_state *reg, int off,
 +                                   int size)
 +{
 +      const struct btf_type *t;
 +
 +      t = btf_type_by_id(reg->btf, reg->btf_id);
 +      if (t == task_struct_type) {
 +              if (off >= offsetof(struct task_struct, scx.slice) &&
 +                  off + size <= offsetofend(struct task_struct, scx.slice))
 +                      return SCALAR_VALUE;
 +              if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
 +                  off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
 +                      return SCALAR_VALUE;
 +              if (off >= offsetof(struct task_struct, scx.disallow) &&
 +                  off + size <= offsetofend(struct task_struct, scx.disallow))
 +                      return SCALAR_VALUE;
 +      }
 +
 +      return -EACCES;
 +}
 +
 +static const struct bpf_func_proto *
 +bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 +{
 +      switch (func_id) {
 +      case BPF_FUNC_task_storage_get:
 +              return &bpf_task_storage_get_proto;
 +      case BPF_FUNC_task_storage_delete:
 +              return &bpf_task_storage_delete_proto;
 +      default:
 +              return bpf_base_func_proto(func_id, prog);
 +      }
 +}
 +
 +static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
 +      .get_func_proto = bpf_scx_get_func_proto,
 +      .is_valid_access = bpf_scx_is_valid_access,
 +      .btf_struct_access = bpf_scx_btf_struct_access,
 +};
 +
 +static int bpf_scx_init_member(const struct btf_type *t,
 +                             const struct btf_member *member,
 +                             void *kdata, const void *udata)
 +{
 +      const struct sched_ext_ops *uops = udata;
 +      struct sched_ext_ops *ops = kdata;
 +      u32 moff = __btf_member_bit_offset(t, member) / 8;
 +      int ret;
 +
 +      switch (moff) {
 +      case offsetof(struct sched_ext_ops, dispatch_max_batch):
 +              if (*(u32 *)(udata + moff) > INT_MAX)
 +                      return -E2BIG;
 +              ops->dispatch_max_batch = *(u32 *)(udata + moff);
 +              return 1;
 +      case offsetof(struct sched_ext_ops, flags):
 +              if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
 +                      return -EINVAL;
 +              ops->flags = *(u64 *)(udata + moff);
 +              return 1;
 +      case offsetof(struct sched_ext_ops, name):
 +              ret = bpf_obj_name_cpy(ops->name, uops->name,
 +                                     sizeof(ops->name));
 +              if (ret < 0)
 +                      return ret;
 +              if (ret == 0)
 +                      return -EINVAL;
 +              return 1;
 +      case offsetof(struct sched_ext_ops, timeout_ms):
 +              if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
 +                  SCX_WATCHDOG_MAX_TIMEOUT)
 +                      return -E2BIG;
 +              ops->timeout_ms = *(u32 *)(udata + moff);
 +              return 1;
 +      case offsetof(struct sched_ext_ops, exit_dump_len):
 +              ops->exit_dump_len =
 +                      *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
 +              return 1;
 +      case offsetof(struct sched_ext_ops, hotplug_seq):
 +              ops->hotplug_seq = *(u64 *)(udata + moff);
 +              return 1;
 +      }
 +
 +      return 0;
 +}
 +
 +static int bpf_scx_check_member(const struct btf_type *t,
 +                              const struct btf_member *member,
 +                              const struct bpf_prog *prog)
 +{
 +      u32 moff = __btf_member_bit_offset(t, member) / 8;
 +
 +      switch (moff) {
 +      case offsetof(struct sched_ext_ops, init_task):
 +      case offsetof(struct sched_ext_ops, cpu_online):
 +      case offsetof(struct sched_ext_ops, cpu_offline):
 +      case offsetof(struct sched_ext_ops, init):
 +      case offsetof(struct sched_ext_ops, exit):
 +              break;
 +      default:
 +              if (prog->sleepable)
 +                      return -EINVAL;
 +      }
 +
 +      return 0;
 +}
 +
 +static int bpf_scx_reg(void *kdata, struct bpf_link *link)
 +{
 +      return scx_ops_enable(kdata, link);
 +}
 +
 +static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
 +{
 +      scx_ops_disable(SCX_EXIT_UNREG);
 +      kthread_flush_work(&scx_ops_disable_work);
 +}
 +
 +static int bpf_scx_init(struct btf *btf)
 +{
 +      s32 type_id;
 +
 +      type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
 +      if (type_id < 0)
 +              return -EINVAL;
 +      task_struct_type = btf_type_by_id(btf, type_id);
 +      task_struct_type_id = type_id;
 +
 +      return 0;
 +}
 +
 +static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
 +{
 +      /*
 +       * sched_ext does not support updating the actively-loaded BPF
 +       * scheduler, as registering a BPF scheduler can always fail if the
 +       * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
 +       * etc. Similarly, we can always race with unregistration happening
 +       * elsewhere, such as with sysrq.
 +       */
 +      return -EOPNOTSUPP;
 +}
 +
 +static int bpf_scx_validate(void *kdata)
 +{
 +      return 0;
 +}
 +
 +static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
 +static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
 +static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
 +static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
 +static void tick_stub(struct task_struct *p) {}
 +static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
 +static void running_stub(struct task_struct *p) {}
 +static void stopping_stub(struct task_struct *p, bool runnable) {}
 +static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
 +static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
 +static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
 +static void set_weight_stub(struct task_struct *p, u32 weight) {}
 +static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
 +static void update_idle_stub(s32 cpu, bool idle) {}
 +static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
 +static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
 +static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
 +static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
 +static void enable_stub(struct task_struct *p) {}
 +static void disable_stub(struct task_struct *p) {}
 +static void cpu_online_stub(s32 cpu) {}
 +static void cpu_offline_stub(s32 cpu) {}
 +static s32 init_stub(void) { return -EINVAL; }
 +static void exit_stub(struct scx_exit_info *info) {}
 +static void dump_stub(struct scx_dump_ctx *ctx) {}
 +static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
 +static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
 +
 +static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
 +      .select_cpu = select_cpu_stub,
 +      .enqueue = enqueue_stub,
 +      .dequeue = dequeue_stub,
 +      .dispatch = dispatch_stub,
 +      .tick = tick_stub,
 +      .runnable = runnable_stub,
 +      .running = running_stub,
 +      .stopping = stopping_stub,
 +      .quiescent = quiescent_stub,
 +      .yield = yield_stub,
 +      .core_sched_before = core_sched_before_stub,
 +      .set_weight = set_weight_stub,
 +      .set_cpumask = set_cpumask_stub,
 +      .update_idle = update_idle_stub,
 +      .cpu_acquire = cpu_acquire_stub,
 +      .cpu_release = cpu_release_stub,
 +      .init_task = init_task_stub,
 +      .exit_task = exit_task_stub,
 +      .enable = enable_stub,
 +      .disable = disable_stub,
 +      .cpu_online = cpu_online_stub,
 +      .cpu_offline = cpu_offline_stub,
 +      .init = init_stub,
 +      .exit = exit_stub,
 +      .dump = dump_stub,
 +      .dump_cpu = dump_cpu_stub,
 +      .dump_task = dump_task_stub,
 +};
 +
 +static struct bpf_struct_ops bpf_sched_ext_ops = {
 +      .verifier_ops = &bpf_scx_verifier_ops,
 +      .reg = bpf_scx_reg,
 +      .unreg = bpf_scx_unreg,
 +      .check_member = bpf_scx_check_member,
 +      .init_member = bpf_scx_init_member,
 +      .init = bpf_scx_init,
 +      .update = bpf_scx_update,
 +      .validate = bpf_scx_validate,
 +      .name = "sched_ext_ops",
 +      .owner = THIS_MODULE,
 +      .cfi_stubs = &__bpf_ops_sched_ext_ops
 +};
 +
 +
 +/********************************************************************************
 + * System integration and init.
 + */
 +
 +static void sysrq_handle_sched_ext_reset(u8 key)
 +{
 +      if (scx_ops_helper)
 +              scx_ops_disable(SCX_EXIT_SYSRQ);
 +      else
 +              pr_info("sched_ext: BPF scheduler not yet used\n");
 +}
 +
 +static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
 +      .handler        = sysrq_handle_sched_ext_reset,
 +      .help_msg       = "reset-sched-ext(S)",
 +      .action_msg     = "Disable sched_ext and revert all tasks to CFS",
 +      .enable_mask    = SYSRQ_ENABLE_RTNICE,
 +};
 +
 +static void sysrq_handle_sched_ext_dump(u8 key)
 +{
 +      struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
 +
 +      if (scx_enabled())
 +              scx_dump_state(&ei, 0);
 +}
 +
 +static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
 +      .handler        = sysrq_handle_sched_ext_dump,
 +      .help_msg       = "dump-sched-ext(D)",
 +      .action_msg     = "Trigger sched_ext debug dump",
 +      .enable_mask    = SYSRQ_ENABLE_RTNICE,
 +};
 +
 +static bool can_skip_idle_kick(struct rq *rq)
 +{
 +      lockdep_assert_rq_held(rq);
 +
 +      /*
 +       * We can skip idle kicking if @rq is going to go through at least one
 +       * full SCX scheduling cycle before going idle. Just checking whether
 +       * curr is not idle is insufficient because we could be racing
 +       * balance_one() trying to pull the next task from a remote rq, which
 +       * may fail, and @rq may become idle afterwards.
 +       *
 +       * The race window is small and we don't and can't guarantee that @rq is
 +       * only kicked while idle anyway. Skip only when sure.
 +       */
 +      return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
 +}
 +
 +static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
 +{
 +      struct rq *rq = cpu_rq(cpu);
 +      struct scx_rq *this_scx = &this_rq->scx;
 +      bool should_wait = false;
 +      unsigned long flags;
 +
 +      raw_spin_rq_lock_irqsave(rq, flags);
 +
 +      /*
 +       * During CPU hotplug, a CPU may depend on kicking itself to make
 +       * forward progress. Allow kicking self regardless of online state.
 +       */
 +      if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
 +              if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
 +                      if (rq->curr->sched_class == &ext_sched_class)
 +                              rq->curr->scx.slice = 0;
 +                      cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
 +              }
 +
 +              if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
 +                      pseqs[cpu] = rq->scx.pnt_seq;
 +                      should_wait = true;
 +              }
 +
 +              resched_curr(rq);
 +      } else {
 +              cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
 +              cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
 +      }
 +
 +      raw_spin_rq_unlock_irqrestore(rq, flags);
 +
 +      return should_wait;
 +}
 +
 +static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
 +{
 +      struct rq *rq = cpu_rq(cpu);
 +      unsigned long flags;
 +
 +      raw_spin_rq_lock_irqsave(rq, flags);
 +
 +      if (!can_skip_idle_kick(rq) &&
 +          (cpu_online(cpu) || cpu == cpu_of(this_rq)))
 +              resched_curr(rq);
 +
 +      raw_spin_rq_unlock_irqrestore(rq, flags);
 +}
 +
 +static void kick_cpus_irq_workfn(struct irq_work *irq_work)
 +{
 +      struct rq *this_rq = this_rq();
 +      struct scx_rq *this_scx = &this_rq->scx;
 +      unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
 +      bool should_wait = false;
 +      s32 cpu;
 +
 +      for_each_cpu(cpu, this_scx->cpus_to_kick) {
 +              should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
 +              cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
 +              cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
 +      }
 +
 +      for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
 +              kick_one_cpu_if_idle(cpu, this_rq);
 +              cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
 +      }
 +
 +      if (!should_wait)
 +              return;
 +
 +      for_each_cpu(cpu, this_scx->cpus_to_wait) {
 +              unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
 +
 +              if (cpu != cpu_of(this_rq)) {
 +                      /*
 +                       * Pairs with smp_store_release() issued by this CPU in
 +                       * scx_next_task_picked() on the resched path.
 +                       *
 +                       * We busy-wait here to guarantee that no other task can
 +                       * be scheduled on our core before the target CPU has
 +                       * entered the resched path.
 +                       */
 +                      while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
 +                              cpu_relax();
 +              }
 +
 +              cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
 +      }
 +}
 +
 +/**
 + * print_scx_info - print out sched_ext scheduler state
 + * @log_lvl: the log level to use when printing
 + * @p: target task
 + *
 + * If a sched_ext scheduler is enabled, print the name and state of the
 + * scheduler. If @p is on sched_ext, print further information about the task.
 + *
 + * This function can be safely called on any task as long as the task_struct
 + * itself is accessible. While safe, this function isn't synchronized and may
 + * print out mixups or garbages of limited length.
 + */
 +void print_scx_info(const char *log_lvl, struct task_struct *p)
 +{
 +      enum scx_ops_enable_state state = scx_ops_enable_state();
 +      const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
 +      char runnable_at_buf[22] = "?";
 +      struct sched_class *class;
 +      unsigned long runnable_at;
 +
 +      if (state == SCX_OPS_DISABLED)
 +              return;
 +
 +      /*
 +       * Carefully check if the task was running on sched_ext, and then
 +       * carefully copy the time it's been runnable, and its state.
 +       */
 +      if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
 +          class != &ext_sched_class) {
 +              printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
 +                     scx_ops_enable_state_str[state], all);
 +              return;
 +      }
 +
 +      if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
 +                                    sizeof(runnable_at)))
 +              scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
 +                        jiffies_delta_msecs(runnable_at, jiffies));
 +
 +      /* print everything onto one line to conserve console space */
 +      printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
 +             log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
 +             runnable_at_buf);
 +}
 +
 +static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
 +{
 +      /*
 +       * SCX schedulers often have userspace components which are sometimes
 +       * involved in critial scheduling paths. PM operations involve freezing
 +       * userspace which can lead to scheduling misbehaviors including stalls.
 +       * Let's bypass while PM operations are in progress.
 +       */
 +      switch (event) {
 +      case PM_HIBERNATION_PREPARE:
 +      case PM_SUSPEND_PREPARE:
 +      case PM_RESTORE_PREPARE:
 +              scx_ops_bypass(true);
 +              break;
 +      case PM_POST_HIBERNATION:
 +      case PM_POST_SUSPEND:
 +      case PM_POST_RESTORE:
 +              scx_ops_bypass(false);
 +              break;
 +      }
 +
 +      return NOTIFY_OK;
 +}
 +
 +static struct notifier_block scx_pm_notifier = {
 +      .notifier_call = scx_pm_handler,
 +};
 +
 +void __init init_sched_ext_class(void)
 +{
 +      s32 cpu, v;
 +
 +      /*
 +       * The following is to prevent the compiler from optimizing out the enum
 +       * definitions so that BPF scheduler implementations can use them
 +       * through the generated vmlinux.h.
 +       */
 +      WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT);
 +
 +      BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
 +      init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL);
 +#ifdef CONFIG_SMP
 +      BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
 +      BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
 +#endif
 +      scx_kick_cpus_pnt_seqs =
 +              __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
 +                             __alignof__(scx_kick_cpus_pnt_seqs[0]));
 +      BUG_ON(!scx_kick_cpus_pnt_seqs);
 +
 +      for_each_possible_cpu(cpu) {
 +              struct rq *rq = cpu_rq(cpu);
 +
 +              init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
 +              INIT_LIST_HEAD(&rq->scx.runnable_list);
 +              INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
 +
 +              BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
 +              BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
 +              BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
 +              BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
 +              init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
 +              init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
 +
 +              if (cpu_online(cpu))
 +                      cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
 +      }
 +
 +      register_sysrq_key('S', &sysrq_sched_ext_reset_op);
 +      register_sysrq_key('D', &sysrq_sched_ext_dump_op);
 +      INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
 +}
 +
 +
 +/********************************************************************************
 + * Helpers that can be called from the BPF scheduler.
 + */
 +#include <linux/btf_ids.h>
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_create_dsq - Create a custom DSQ
 + * @dsq_id: DSQ to create
 + * @node: NUMA node to allocate from
 + *
 + * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
 + * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
 + */
 +__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
 +{
 +      if (unlikely(node >= (int)nr_node_ids ||
 +                   (node < 0 && node != NUMA_NO_NODE)))
 +              return -EINVAL;
 +      return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +BTF_KFUNCS_START(scx_kfunc_ids_sleepable)
 +BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
 +BTF_KFUNCS_END(scx_kfunc_ids_sleepable)
 +
 +static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = {
 +      .owner                  = THIS_MODULE,
 +      .set                    = &scx_kfunc_ids_sleepable,
 +};
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
 + * @p: task_struct to select a CPU for
 + * @prev_cpu: CPU @p was on previously
 + * @wake_flags: %SCX_WAKE_* flags
 + * @is_idle: out parameter indicating whether the returned CPU is idle
 + *
 + * Can only be called from ops.select_cpu() if the built-in CPU selection is
 + * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
 + * @p, @prev_cpu and @wake_flags match ops.select_cpu().
 + *
 + * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
 + * currently idle and thus a good candidate for direct dispatching.
 + */
 +__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
 +                                     u64 wake_flags, bool *is_idle)
 +{
 +      if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) {
 +              *is_idle = false;
 +              return prev_cpu;
 +      }
 +#ifdef CONFIG_SMP
 +      return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
 +#else
 +      *is_idle = false;
 +      return prev_cpu;
 +#endif
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
 +BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
 +BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
 +
 +static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
 +      .owner                  = THIS_MODULE,
 +      .set                    = &scx_kfunc_ids_select_cpu,
 +};
 +
 +static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
 +{
 +      if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
 +              return false;
 +
 +      lockdep_assert_irqs_disabled();
 +
 +      if (unlikely(!p)) {
 +              scx_ops_error("called with NULL task");
 +              return false;
 +      }
 +
 +      if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
 +              scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
 +              return false;
 +      }
 +
 +      return true;
 +}
 +
 +static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
 +{
 +      struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 +      struct task_struct *ddsp_task;
 +
 +      ddsp_task = __this_cpu_read(direct_dispatch_task);
 +      if (ddsp_task) {
 +              mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
 +              return;
 +      }
 +
 +      if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
 +              scx_ops_error("dispatch buffer overflow");
 +              return;
 +      }
 +
 +      dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
 +              .task = p,
 +              .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
 +              .dsq_id = dsq_id,
 +              .enq_flags = enq_flags,
 +      };
 +}
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
 + * @p: task_struct to dispatch
 + * @dsq_id: DSQ to dispatch to
 + * @slice: duration @p can run for in nsecs
 + * @enq_flags: SCX_ENQ_*
 + *
 + * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
 + * to call this function spuriously. Can be called from ops.enqueue(),
 + * ops.select_cpu(), and ops.dispatch().
 + *
 + * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
 + * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
 + * used to target the local DSQ of a CPU other than the enqueueing one. Use
 + * ops.select_cpu() to be on the target CPU in the first place.
 + *
 + * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
 + * will be directly dispatched to the corresponding dispatch queue after
 + * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
 + * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
 + * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
 + * task is dispatched.
 + *
 + * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
 + * and this function can be called upto ops.dispatch_max_batch times to dispatch
 + * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
 + * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
 + *
 + * This function doesn't have any locking restrictions and may be called under
 + * BPF locks (in the future when BPF introduces more flexible locking).
 + *
 + * @p is allowed to run for @slice. The scheduling path is triggered on slice
 + * exhaustion. If zero, the current residual slice is maintained. If
 + * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
 + * scx_bpf_kick_cpu() to trigger scheduling.
 + */
 +__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
 +                                u64 enq_flags)
 +{
 +      if (!scx_dispatch_preamble(p, enq_flags))
 +              return;
 +
 +      if (slice)
 +              p->scx.slice = slice;
 +      else
 +              p->scx.slice = p->scx.slice ?: 1;
 +
 +      scx_dispatch_commit(p, dsq_id, enq_flags);
 +}
 +
 +/**
 + * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
 + * @p: task_struct to dispatch
 + * @dsq_id: DSQ to dispatch to
 + * @slice: duration @p can run for in nsecs
 + * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
 + * @enq_flags: SCX_ENQ_*
 + *
 + * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
 + * Tasks queued into the priority queue are ordered by @vtime and always
 + * consumed after the tasks in the FIFO queue. All other aspects are identical
 + * to scx_bpf_dispatch().
 + *
 + * @vtime ordering is according to time_before64() which considers wrapping. A
 + * numerically larger vtime may indicate an earlier position in the ordering and
 + * vice-versa.
 + */
 +__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
 +                                      u64 slice, u64 vtime, u64 enq_flags)
 +{
 +      if (!scx_dispatch_preamble(p, enq_flags))
 +              return;
 +
 +      if (slice)
 +              p->scx.slice = slice;
 +      else
 +              p->scx.slice = p->scx.slice ?: 1;
 +
 +      p->scx.dsq_vtime = vtime;
 +
 +      scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
 +BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
 +BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
 +BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
 +
 +static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
 +      .owner                  = THIS_MODULE,
 +      .set                    = &scx_kfunc_ids_enqueue_dispatch,
 +};
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
 + *
 + * Can only be called from ops.dispatch().
 + */
 +__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
 +{
 +      if (!scx_kf_allowed(SCX_KF_DISPATCH))
 +              return 0;
 +
 +      return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
 +}
 +
 +/**
 + * scx_bpf_dispatch_cancel - Cancel the latest dispatch
 + *
 + * Cancel the latest dispatch. Can be called multiple times to cancel further
 + * dispatches. Can only be called from ops.dispatch().
 + */
 +__bpf_kfunc void scx_bpf_dispatch_cancel(void)
 +{
 +      struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 +
 +      if (!scx_kf_allowed(SCX_KF_DISPATCH))
 +              return;
 +
 +      if (dspc->cursor > 0)
 +              dspc->cursor--;
 +      else
 +              scx_ops_error("dispatch buffer underflow");
 +}
 +
 +/**
 + * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
 + * @dsq_id: DSQ to consume
 + *
 + * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
 + * to the current CPU's local DSQ for execution. Can only be called from
 + * ops.dispatch().
 + *
 + * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
 + * trying to consume the specified DSQ. It may also grab rq locks and thus can't
 + * be called under any BPF locks.
 + *
 + * Returns %true if a task has been consumed, %false if there isn't any task to
 + * consume.
 + */
 +__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
 +{
 +      struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
 +      struct scx_dispatch_q *dsq;
 +
 +      if (!scx_kf_allowed(SCX_KF_DISPATCH))
 +              return false;
 +
 +      flush_dispatch_buf(dspc->rq);
 +
 +      dsq = find_non_local_dsq(dsq_id);
 +      if (unlikely(!dsq)) {
 +              scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
 +              return false;
 +      }
 +
 +      if (consume_dispatch_q(dspc->rq, dsq)) {
 +              /*
 +               * A successfully consumed task can be dequeued before it starts
 +               * running while the CPU is trying to migrate other dispatched
 +               * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
 +               * local DSQ.
 +               */
 +              dspc->nr_tasks++;
 +              return true;
 +      } else {
 +              return false;
 +      }
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
 +BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
 +BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
 +BTF_ID_FLAGS(func, scx_bpf_consume)
 +BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
 +
 +static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
 +      .owner                  = THIS_MODULE,
 +      .set                    = &scx_kfunc_ids_dispatch,
 +};
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
 + *
 + * Iterate over all of the tasks currently enqueued on the local DSQ of the
 + * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
 + * processed tasks. Can only be called from ops.cpu_release().
 + */
 +__bpf_kfunc u32 scx_bpf_reenqueue_local(void)
 +{
 +      LIST_HEAD(tasks);
 +      u32 nr_enqueued = 0;
 +      struct rq *rq;
 +      struct task_struct *p, *n;
 +
 +      if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
 +              return 0;
 +
 +      rq = cpu_rq(smp_processor_id());
 +      lockdep_assert_rq_held(rq);
 +
 +      /*
 +       * The BPF scheduler may choose to dispatch tasks back to
 +       * @rq->scx.local_dsq. Move all candidate tasks off to a private list
 +       * first to avoid processing the same tasks repeatedly.
 +       */
 +      list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
 +                               scx.dsq_list.node) {
 +              /*
 +               * If @p is being migrated, @p's current CPU may not agree with
 +               * its allowed CPUs and the migration_cpu_stop is about to
 +               * deactivate and re-activate @p anyway. Skip re-enqueueing.
 +               *
 +               * While racing sched property changes may also dequeue and
 +               * re-enqueue a migrating task while its current CPU and allowed
 +               * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
 +               * the current local DSQ for running tasks and thus are not
 +               * visible to the BPF scheduler.
 +               */
 +              if (p->migration_pending)
 +                      continue;
 +
 +              dispatch_dequeue(rq, p);
 +              list_add_tail(&p->scx.dsq_list.node, &tasks);
 +      }
 +
 +      list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
 +              list_del_init(&p->scx.dsq_list.node);
 +              do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
 +              nr_enqueued++;
 +      }
 +
 +      return nr_enqueued;
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
 +BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
 +BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
 +
 +static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
 +      .owner                  = THIS_MODULE,
 +      .set                    = &scx_kfunc_ids_cpu_release,
 +};
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_kick_cpu - Trigger reschedule on a CPU
 + * @cpu: cpu to kick
 + * @flags: %SCX_KICK_* flags
 + *
 + * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
 + * trigger rescheduling on a busy CPU. This can be called from any online
 + * scx_ops operation and the actual kicking is performed asynchronously through
 + * an irq work.
 + */
 +__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
 +{
 +      struct rq *this_rq;
 +      unsigned long irq_flags;
 +
 +      if (!ops_cpu_valid(cpu, NULL))
 +              return;
 +
 +      /*
 +       * While bypassing for PM ops, IRQ handling may not be online which can
 +       * lead to irq_work_queue() malfunction such as infinite busy wait for
 +       * IRQ status update. Suppress kicking.
 +       */
 +      if (scx_ops_bypassing())
 +              return;
 +
 +      local_irq_save(irq_flags);
 +
 +      this_rq = this_rq();
 +
 +      /*
 +       * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
 +       * rq locks. We can probably be smarter and avoid bouncing if called
 +       * from ops which don't hold a rq lock.
 +       */
 +      if (flags & SCX_KICK_IDLE) {
 +              struct rq *target_rq = cpu_rq(cpu);
 +
 +              if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
 +                      scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
 +
 +              if (raw_spin_rq_trylock(target_rq)) {
 +                      if (can_skip_idle_kick(target_rq)) {
 +                              raw_spin_rq_unlock(target_rq);
 +                              goto out;
 +                      }
 +                      raw_spin_rq_unlock(target_rq);
 +              }
 +              cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
 +      } else {
 +              cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
 +
 +              if (flags & SCX_KICK_PREEMPT)
 +                      cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
 +              if (flags & SCX_KICK_WAIT)
 +                      cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
 +      }
 +
 +      irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
 +out:
 +      local_irq_restore(irq_flags);
 +}
 +
 +/**
 + * scx_bpf_dsq_nr_queued - Return the number of queued tasks
 + * @dsq_id: id of the DSQ
 + *
 + * Return the number of tasks in the DSQ matching @dsq_id. If not found,
 + * -%ENOENT is returned.
 + */
 +__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
 +{
 +      struct scx_dispatch_q *dsq;
 +      s32 ret;
 +
 +      preempt_disable();
 +
 +      if (dsq_id == SCX_DSQ_LOCAL) {
 +              ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
 +              goto out;
 +      } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
 +              s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
 +
 +              if (ops_cpu_valid(cpu, NULL)) {
 +                      ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
 +                      goto out;
 +              }
 +      } else {
 +              dsq = find_non_local_dsq(dsq_id);
 +              if (dsq) {
 +                      ret = READ_ONCE(dsq->nr);
 +                      goto out;
 +              }
 +      }
 +      ret = -ENOENT;
 +out:
 +      preempt_enable();
 +      return ret;
 +}
 +
 +/**
 + * scx_bpf_destroy_dsq - Destroy a custom DSQ
 + * @dsq_id: DSQ to destroy
 + *
 + * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
 + * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
 + * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
 + * which doesn't exist. Can be called from any online scx_ops operations.
 + */
 +__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
 +{
 +      destroy_dsq(dsq_id);
 +}
 +
 +/**
 + * bpf_iter_scx_dsq_new - Create a DSQ iterator
 + * @it: iterator to initialize
 + * @dsq_id: DSQ to iterate
 + * @flags: %SCX_DSQ_ITER_*
 + *
 + * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
 + * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
 + * tasks which are already queued when this function is invoked.
 + */
 +__bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
 +                                   u64 flags)
 +{
 +      struct bpf_iter_scx_dsq_kern *kit = (void *)it;
 +
 +      BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
 +                   sizeof(struct bpf_iter_scx_dsq));
 +      BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
 +                   __alignof__(struct bpf_iter_scx_dsq));
 +
 +      if (flags & ~__SCX_DSQ_ITER_ALL_FLAGS)
 +              return -EINVAL;
 +
 +      kit->dsq = find_non_local_dsq(dsq_id);
 +      if (!kit->dsq)
 +              return -ENOENT;
 +
 +      INIT_LIST_HEAD(&kit->cursor.node);
 +      kit->cursor.is_bpf_iter_cursor = true;
 +      kit->dsq_seq = READ_ONCE(kit->dsq->seq);
 +      kit->flags = flags;
 +
 +      return 0;
 +}
 +
 +/**
 + * bpf_iter_scx_dsq_next - Progress a DSQ iterator
 + * @it: iterator to progress
 + *
 + * Return the next task. See bpf_iter_scx_dsq_new().
 + */
 +__bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
 +{
 +      struct bpf_iter_scx_dsq_kern *kit = (void *)it;
 +      bool rev = kit->flags & SCX_DSQ_ITER_REV;
 +      struct task_struct *p;
 +      unsigned long flags;
 +
 +      if (!kit->dsq)
 +              return NULL;
 +
 +      raw_spin_lock_irqsave(&kit->dsq->lock, flags);
 +
 +      if (list_empty(&kit->cursor.node))
 +              p = NULL;
 +      else
 +              p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
 +
 +      /*
 +       * Only tasks which were queued before the iteration started are
 +       * visible. This bounds BPF iterations and guarantees that vtime never
 +       * jumps in the other direction while iterating.
 +       */
 +      do {
 +              p = nldsq_next_task(kit->dsq, p, rev);
 +      } while (p && unlikely(u32_before(kit->dsq_seq, p->scx.dsq_seq)));
 +
 +      if (p) {
 +              if (rev)
 +                      list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
 +              else
 +                      list_move(&kit->cursor.node, &p->scx.dsq_list.node);
 +      } else {
 +              list_del_init(&kit->cursor.node);
 +      }
 +
 +      raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
 +
 +      return p;
 +}
 +
 +/**
 + * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
 + * @it: iterator to destroy
 + *
 + * Undo scx_iter_scx_dsq_new().
 + */
 +__bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
 +{
 +      struct bpf_iter_scx_dsq_kern *kit = (void *)it;
 +
 +      if (!kit->dsq)
 +              return;
 +
 +      if (!list_empty(&kit->cursor.node)) {
 +              unsigned long flags;
 +
 +              raw_spin_lock_irqsave(&kit->dsq->lock, flags);
 +              list_del_init(&kit->cursor.node);
 +              raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
 +      }
 +      kit->dsq = NULL;
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
 +                       char *fmt, unsigned long long *data, u32 data__sz)
 +{
 +      struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
 +      s32 ret;
 +
 +      if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
 +          (data__sz && !data)) {
 +              scx_ops_error("invalid data=%p and data__sz=%u",
 +                            (void *)data, data__sz);
 +              return -EINVAL;
 +      }
 +
 +      ret = copy_from_kernel_nofault(data_buf, data, data__sz);
 +      if (ret < 0) {
 +              scx_ops_error("failed to read data fields (%d)", ret);
 +              return ret;
 +      }
 +
 +      ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
 +                                &bprintf_data);
 +      if (ret < 0) {
 +              scx_ops_error("format preparation failed (%d)", ret);
 +              return ret;
 +      }
 +
 +      ret = bstr_printf(line_buf, line_size, fmt,
 +                        bprintf_data.bin_args);
 +      bpf_bprintf_cleanup(&bprintf_data);
 +      if (ret < 0) {
 +              scx_ops_error("(\"%s\", %p, %u) failed to format",
 +                            fmt, data, data__sz);
 +              return ret;
 +      }
 +
 +      return ret;
 +}
 +
 +static s32 bstr_format(struct scx_bstr_buf *buf,
 +                     char *fmt, unsigned long long *data, u32 data__sz)
 +{
 +      return __bstr_format(buf->data, buf->line, sizeof(buf->line),
 +                           fmt, data, data__sz);
 +}
 +
 +__bpf_kfunc_start_defs();
 +
 +/**
 + * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
 + * @exit_code: Exit value to pass to user space via struct scx_exit_info.
 + * @fmt: error message format string
 + * @data: format string parameters packaged using ___bpf_fill() macro
 + * @data__sz: @data len, must end in '__sz' for the verifier
 + *
 + * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
 + * disabling.
 + */
 +__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
 +                                 unsigned long long *data, u32 data__sz)
 +{
 +      unsigned long flags;
 +
 +      raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
 +      if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
 +              scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
 +                                scx_exit_bstr_buf.line);
 +      raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
 +}
 +
 +/**
 + * scx_bpf_error_bstr - Indicate fatal error
 + * @fmt: error message format string
 + * @data: format string parameters packaged using ___bpf_fill() macro
 + * @data__sz: @data len, must end in '__sz' for the verifier
 + *
 + * Indicate that the BPF scheduler encountered a fatal error and initiate ops
 + * disabling.
 + */
 +__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
 +                                  u32 data__sz)
 +{
 +      unsigned long flags;
 +
 +      raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
 +      if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
 +              scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
 +                                scx_exit_bstr_buf.line);
 +      raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
 +}
 +
 +/**
 + * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
 + * @fmt: format string
 + * @data: format string parameters packaged using ___bpf_fill() macro
 + * @data__sz: @data len, must end in '__sz' for the verifier
 + *
 + * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
 + * dump_task() to generate extra debug dump specific to the BPF scheduler.
 + *
 + * The extra dump may be multiple lines. A single line may be split over
 + * multiple calls. The last line is automatically terminated.
 + */
 +__bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
 +                                 u32 data__sz)
 +{
 +      struct scx_dump_data *dd = &scx_dump_data;
 +      struct scx_bstr_buf *buf = &dd->buf;
 +      s32 ret;
 +
 +      if (raw_smp_processor_id() != dd->cpu) {
 +              scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
 +              return;
 +      }
 +
 +      /* append the formatted string to the line buf */
 +      ret = __bstr_format(buf->data, buf->line + dd->cursor,
 +                          sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
 +      if (ret < 0) {
 +              dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
 +                        dd->prefix, fmt, data, data__sz, ret);
 +              return;
 +      }
 +
 +      dd->cursor += ret;
 +      dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
 +
 +      if (!dd->cursor)
 +              return;
 +
 +      /*
 +       * If the line buf overflowed or ends in a newline, flush it into the
 +       * dump. This is to allow the caller to generate a single line over
 +       * multiple calls. As ops_dump_flush() can also handle multiple lines in
 +       * the line buf, the only case which can lead to an unexpected
 +       * truncation is when the caller keeps generating newlines in the middle
 +       * instead of the end consecutively. Don't do that.
 +       */
 +      if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
 +              ops_dump_flush();
 +}
 +
 +/**
 + * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
 + * @cpu: CPU of interest
 + *
 + * Return the maximum relative capacity of @cpu in relation to the most
 + * performant CPU in the system. The return value is in the range [1,
 + * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
 + */
 +__bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
 +{
 +      if (ops_cpu_valid(cpu, NULL))
 +              return arch_scale_cpu_capacity(cpu);
 +      else
 +              return SCX_CPUPERF_ONE;
 +}
 +
 +/**
 + * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
 + * @cpu: CPU of interest
 + *
 + * Return the current relative performance of @cpu in relation to its maximum.
 + * The return value is in the range [1, %SCX_CPUPERF_ONE].
 + *
 + * The current performance level of a CPU in relation to the maximum performance
 + * available in the system can be calculated as follows:
 + *
 + *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
 + *
 + * The result is in the range [1, %SCX_CPUPERF_ONE].
 + */
 +__bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
 +{
 +      if (ops_cpu_valid(cpu, NULL))
 +              return arch_scale_freq_capacity(cpu);
 +      else
 +              return SCX_CPUPERF_ONE;
 +}
 +
 +/**
 + * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
 + * @cpu: CPU of interest
 + * @perf: target performance level [0, %SCX_CPUPERF_ONE]
 + * @flags: %SCX_CPUPERF_* flags
 + *
 + * Set the target performance level of @cpu to @perf. @perf is in linear
 + * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
 + * schedutil cpufreq governor chooses the target frequency.
 + *
 + * The actual performance level chosen, CPU grouping, and the overhead and
 + * latency of the operations are dependent on the hardware and cpufreq driver in
 + * use. Consult hardware and cpufreq documentation for more information. The
 + * current performance level can be monitored using scx_bpf_cpuperf_cur().
 + */
 +__bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
 +{
 +      if (unlikely(perf > SCX_CPUPERF_ONE)) {
 +              scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
 +              return;
 +      }
 +
 +      if (ops_cpu_valid(cpu, NULL)) {
 +              struct rq *rq = cpu_rq(cpu);
 +
 +              rq->scx.cpuperf_target = perf;
 +
 +              rcu_read_lock_sched_notrace();
 +              cpufreq_update_util(cpu_rq(cpu), 0);
 +              rcu_read_unlock_sched_notrace();
 +      }
 +}
 +
 +/**
 + * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
 + *
 + * All valid CPU IDs in the system are smaller than the returned value.
 + */
 +__bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
 +{
 +      return nr_cpu_ids;
 +}
 +
 +/**
 + * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
 + */
 +__bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
 +{
 +      return cpu_possible_mask;
 +}
 +
 +/**
 + * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
 + */
 +__bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
 +{
 +      return cpu_online_mask;
 +}
 +
 +/**
 + * scx_bpf_put_cpumask - Release a possible/online cpumask
 + * @cpumask: cpumask to release
 + */
 +__bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
 +{
 +      /*
 +       * Empty function body because we aren't actually acquiring or releasing
 +       * a reference to a global cpumask, which is read-only in the caller and
 +       * is never released. The acquire / release semantics here are just used
 +       * to make the cpumask is a trusted pointer in the caller.
 +       */
 +}
 +
 +/**
 + * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
 + * per-CPU cpumask.
 + *
 + * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
 + */
 +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
 +{
 +      if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 +              scx_ops_error("built-in idle tracking is disabled");
 +              return cpu_none_mask;
 +      }
 +
 +#ifdef CONFIG_SMP
 +      return idle_masks.cpu;
 +#else
 +      return cpu_none_mask;
 +#endif
 +}
 +
 +/**
 + * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
 + * per-physical-core cpumask. Can be used to determine if an entire physical
 + * core is free.
 + *
 + * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
 + */
 +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
 +{
 +      if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 +              scx_ops_error("built-in idle tracking is disabled");
 +              return cpu_none_mask;
 +      }
 +
 +#ifdef CONFIG_SMP
 +      if (sched_smt_active())
 +              return idle_masks.smt;
 +      else
 +              return idle_masks.cpu;
 +#else
 +      return cpu_none_mask;
 +#endif
 +}
 +
 +/**
 + * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
 + * either the percpu, or SMT idle-tracking cpumask.
 + */
 +__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
 +{
 +      /*
 +       * Empty function body because we aren't actually acquiring or releasing
 +       * a reference to a global idle cpumask, which is read-only in the
 +       * caller and is never released. The acquire / release semantics here
 +       * are just used to make the cpumask a trusted pointer in the caller.
 +       */
 +}
 +
 +/**
 + * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
 + * @cpu: cpu to test and clear idle for
 + *
 + * Returns %true if @cpu was idle and its idle state was successfully cleared.
 + * %false otherwise.
 + *
 + * Unavailable if ops.update_idle() is implemented and
 + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 + */
 +__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
 +{
 +      if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 +              scx_ops_error("built-in idle tracking is disabled");
 +              return false;
 +      }
 +
 +      if (ops_cpu_valid(cpu, NULL))
 +              return test_and_clear_cpu_idle(cpu);
 +      else
 +              return false;
 +}
 +
 +/**
 + * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
 + * @cpus_allowed: Allowed cpumask
 + * @flags: %SCX_PICK_IDLE_CPU_* flags
 + *
 + * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
 + * number on success. -%EBUSY if no matching cpu was found.
 + *
 + * Idle CPU tracking may race against CPU scheduling state transitions. For
 + * example, this function may return -%EBUSY as CPUs are transitioning into the
 + * idle state. If the caller then assumes that there will be dispatch events on
 + * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
 + * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
 + * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
 + * event in the near future.
 + *
 + * Unavailable if ops.update_idle() is implemented and
 + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 + */
 +__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
 +                                    u64 flags)
 +{
 +      if (!static_branch_likely(&scx_builtin_idle_enabled)) {
 +              scx_ops_error("built-in idle tracking is disabled");
 +              return -EBUSY;
 +      }
 +
 +      return scx_pick_idle_cpu(cpus_allowed, flags);
 +}
 +
 +/**
 + * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
 + * @cpus_allowed: Allowed cpumask
 + * @flags: %SCX_PICK_IDLE_CPU_* flags
 + *
 + * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
 + * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
 + * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
 + * empty.
 + *
 + * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
 + * set, this function can't tell which CPUs are idle and will always pick any
 + * CPU.
 + */
 +__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
 +                                   u64 flags)
 +{
 +      s32 cpu;
 +
 +      if (static_branch_likely(&scx_builtin_idle_enabled)) {
 +              cpu = scx_pick_idle_cpu(cpus_allowed, flags);
 +              if (cpu >= 0)
 +                      return cpu;
 +      }
 +
 +      cpu = cpumask_any_distribute(cpus_allowed);
 +      if (cpu < nr_cpu_ids)
 +              return cpu;
 +      else
 +              return -EBUSY;
 +}
 +
 +/**
 + * scx_bpf_task_running - Is task currently running?
 + * @p: task of interest
 + */
 +__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
 +{
 +      return task_rq(p)->curr == p;
 +}
 +
 +/**
 + * scx_bpf_task_cpu - CPU a task is currently associated with
 + * @p: task of interest
 + */
 +__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
 +{
 +      return task_cpu(p);
 +}
 +
 +/**
 + * scx_bpf_cpu_rq - Fetch the rq of a CPU
 + * @cpu: CPU of the rq
 + */
 +__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
 +{
 +      if (!ops_cpu_valid(cpu, NULL))
 +              return NULL;
 +
 +      return cpu_rq(cpu);
 +}
 +
 +__bpf_kfunc_end_defs();
 +
 +BTF_KFUNCS_START(scx_kfunc_ids_any)
 +BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
 +BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
 +BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
 +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
 +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
 +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
 +BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
 +BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
 +BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
 +BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
 +BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
 +BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
 +BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
 +BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
 +BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
 +BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
 +BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
 +BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
 +BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
 +BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
 +BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
 +BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
 +BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
 +BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
 +BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
 +BTF_KFUNCS_END(scx_kfunc_ids_any)
 +
 +static const struct btf_kfunc_id_set scx_kfunc_set_any = {
 +      .owner                  = THIS_MODULE,
 +      .set                    = &scx_kfunc_ids_any,
 +};
 +
 +static int __init scx_init(void)
 +{
 +      int ret;
 +
 +      /*
 +       * kfunc registration can't be done from init_sched_ext_class() as
 +       * register_btf_kfunc_id_set() needs most of the system to be up.
 +       *
 +       * Some kfuncs are context-sensitive and can only be called from
 +       * specific SCX ops. They are grouped into BTF sets accordingly.
 +       * Unfortunately, BPF currently doesn't have a way of enforcing such
 +       * restrictions. Eventually, the verifier should be able to enforce
 +       * them. For now, register them the same and make each kfunc explicitly
 +       * check using scx_kf_allowed().
 +       */
 +      if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 +                                           &scx_kfunc_set_sleepable)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
 +                                           &scx_kfunc_set_sleepable)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 +                                           &scx_kfunc_set_select_cpu)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 +                                           &scx_kfunc_set_enqueue_dispatch)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 +                                           &scx_kfunc_set_dispatch)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 +                                           &scx_kfunc_set_cpu_release)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
 +                                           &scx_kfunc_set_any)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
 +                                           &scx_kfunc_set_any)) ||
 +          (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
 +                                           &scx_kfunc_set_any))) {
 +              pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
 +              return ret;
 +      }
 +
 +      ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
 +      if (ret) {
 +              pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
 +              return ret;
 +      }
 +
 +      ret = register_pm_notifier(&scx_pm_notifier);
 +      if (ret) {
 +              pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
 +              return ret;
 +      }
 +
 +      scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
 +      if (!scx_kset) {
 +              pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
 +              return -ENOMEM;
 +      }
 +
 +      ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
 +      if (ret < 0) {
 +              pr_err("sched_ext: Failed to add global attributes\n");
 +              return ret;
 +      }
 +
 +      return 0;
 +}
 +__initcall(scx_init);
Simple merge
index 06e70d5b5c5f229ae6f9d193708214a06e970e2f,7a105a0123aa5318a186f2d1c9629ed1568b77ea..d2f096bb274c3f42390ccf0ba6d0d14dccb0b816
@@@ -450,10 -450,9 +450,10 @@@ static void wakeup_preempt_idle(struct 
        resched_curr(rq);
  }
  
- static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
+ static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
  {
        dl_server_update_idle_time(rq, prev);
 +      scx_update_idle(rq, false);
  }
  
  static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
index 2416b38662566309ca327a102d4fea39b1e60c5e,3744f16a12933487166735d426815798d5702099..1eda2ce3178766c362595420b7ceb42ae2c20bd8
@@@ -2367,19 -2302,25 +2368,27 @@@ struct sched_class 
  
        void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
  
-       struct task_struct *(*pick_next_task)(struct rq *rq);
 +      int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
+       struct task_struct *(*pick_task)(struct rq *rq);
+       /*
+        * Optional! When implemented pick_next_task() should be equivalent to:
+        *
+        *   next = pick_task();
+        *   if (next) {
+        *       put_prev_task(prev);
+        *       set_next_task_first(next);
+        *   }
+        */
+       struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
  
-       void (*put_prev_task)(struct rq *rq, struct task_struct *p);
+       void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
        void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
  
 +      void (*switch_class)(struct rq *rq, struct task_struct *next);
 +
  #ifdef CONFIG_SMP
 -      int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
        int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
  
-       struct task_struct * (*pick_task)(struct rq *rq);
        void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
  
        void (*task_woken)(struct rq *this_rq, struct task_struct *task);