Some devices require more than 3 MRs to build a single 1MB I/O.
Ensure that rpcrdma_mrs_create() will add enough MRs to build that
I/O.
In a subsequent patch I'm changing the MR recovery logic to just
toss out the MRs. In that case it's possible for ->send_request to
loop acquiring some MRs, not getting enough, getting called again,
recycling the previous MRs, then not getting enough, lather rinse
repeat. Thus first we need to ensure enough MRs are created to
prevent that loop.
I'm "reusing" ia->ri_max_segs. All of its accessors seem to want the
maximum number of data segments plus two, so I'm going to bake that
into the initial calculation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
RPCRDMA_MAX_FMR_SGES);
+ ia->ri_max_segs += 2; /* segments for head and tail buffers */
return 0;
}
ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
ia->ri_max_frwr_depth);
+ ia->ri_max_segs += 2; /* segments for head and tail buffers */
return 0;
}
size = RPCRDMA_HDRLEN_MIN;
/* Maximum Read list size */
- maxsegs += 2; /* segment for head and tail buffers */
size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
/* Minimal Read chunk size */
size = RPCRDMA_HDRLEN_MIN;
/* Maximum Write list size */
- maxsegs += 2; /* segment for head and tail buffers */
size = sizeof(__be32); /* segment count */
size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
size += sizeof(__be32); /* list discriminator */
LIST_HEAD(free);
LIST_HEAD(all);
- for (count = 0; count < 3; count++) {
+ for (count = 0; count < ia->ri_max_segs; count++) {
struct rpcrdma_mr *mr;
int rc;