===================================================
:Author: Corey Minyard <minyard@acm.org>
-:Author: Thomas Hellstrom <thellstrom@vmware.com>
+:Author: Thomas Hellström <thomas.hellstrom@linux.intel.com>
A lot of this was lifted from Greg Kroah-Hartman's 2004 OLS paper and
presentation on krefs, which can be found at:
by using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu()
before using kfree, but note that synchronize_rcu() may sleep for a
substantial amount of time.
+
+Functions and structures
+========================
+
+.. kernel-doc:: include/linux/kref.h
}
/**
- * kref_put - decrement refcount for object.
- * @kref: object.
- * @release: pointer to the function that will clean up the object when the
+ * kref_put - Decrement refcount for object
+ * @kref: Object
+ * @release: Pointer to the function that will clean up the object when the
* last reference to the object is released.
- * This pointer is required, and it is not acceptable to pass kfree
- * in as this function.
*
- * Decrement the refcount, and if 0, call release().
- * Return 1 if the object was removed, otherwise return 0. Beware, if this
- * function returns 0, you still can not count on the kref from remaining in
- * memory. Only use the return value if you want to see if the kref is now
- * gone, not present.
+ * Decrement the refcount, and if 0, call @release. The caller may not
+ * pass NULL or kfree() as the release function.
+ *
+ * Return: 1 if this call removed the object, otherwise return 0. Beware,
+ * if this function returns 0, another caller may have removed the object
+ * by the time this function returns. The return value is only certain
+ * if you want to see if the object is definitely released.
*/
static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref))
{
return 0;
}
+/**
+ * kref_put_mutex - Decrement refcount for object
+ * @kref: Object
+ * @release: Pointer to the function that will clean up the object when the
+ * last reference to the object is released.
+ * @mutex: Mutex which protects the release function.
+ *
+ * This variant of kref_lock() calls the @release function with the @mutex
+ * held. The @release function will release the mutex.
+ */
static inline int kref_put_mutex(struct kref *kref,
void (*release)(struct kref *kref),
- struct mutex *lock)
+ struct mutex *mutex)
{
- if (refcount_dec_and_mutex_lock(&kref->refcount, lock)) {
+ if (refcount_dec_and_mutex_lock(&kref->refcount, mutex)) {
release(kref);
return 1;
}
return 0;
}
+/**
+ * kref_put_lock - Decrement refcount for object
+ * @kref: Object
+ * @release: Pointer to the function that will clean up the object when the
+ * last reference to the object is released.
+ * @lock: Spinlock which protects the release function.
+ *
+ * This variant of kref_lock() calls the @release function with the @lock
+ * held. The @release function will release the lock.
+ */
static inline int kref_put_lock(struct kref *kref,
void (*release)(struct kref *kref),
spinlock_t *lock)
* kref_get_unless_zero - Increment refcount for object unless it is zero.
* @kref: object.
*
- * Return non-zero if the increment succeeded. Otherwise return 0.
- *
* This function is intended to simplify locking around refcounting for
* objects that can be looked up from a lookup structure, and which are
* removed from that lookup structure in the object destructor.
* With a lookup followed by a kref_get_unless_zero *with return value check*
* locking in the kref_put path can be deferred to the actual removal from
* the lookup structure and RCU lookups become trivial.
+ *
+ * Return: non-zero if the increment succeeded. Otherwise return 0.
*/
static inline int __must_check kref_get_unless_zero(struct kref *kref)
{