--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+
+//! Intrusive high resolution timers.
+//!
+//! Allows running timer callbacks without doing allocations at the time of
+//! starting the timer. For now, only one timer per type is allowed.
+//!
+//! # Vocabulary
+//!
+//! States:
+//!
+//! - Stopped: initialized but not started, or cancelled, or not restarted.
+//! - Started: initialized and started or restarted.
+//! - Running: executing the callback.
+//!
+//! Operations:
+//!
+//! * Start
+//! * Cancel
+//! * Restart
+//!
+//! Events:
+//!
+//! * Expire
+//!
+//! ## State Diagram
+//!
+//! ```text
+//! Return NoRestart
+//! +---------------------------------------------------------------------+
+//! | |
+//! | |
+//! | |
+//! | Return Restart |
+//! | +------------------------+ |
+//! | | | |
+//! | | | |
+//! v v | |
+//! +-----------------+ Start +------------------+ +--------+-----+--+
+//! | +---------------->| | | |
+//! Init | | | | Expire | |
+//! --------->| Stopped | | Started +---------->| Running |
+//! | | Cancel | | | |
+//! | |<----------------+ | | |
+//! +-----------------+ +---------------+--+ +-----------------+
+//! ^ |
+//! | |
+//! +---------+
+//! Restart
+//! ```
+//!
+//!
+//! A timer is initialized in the **stopped** state. A stopped timer can be
+//! **started** by the `start` operation, with an **expiry** time. After the
+//! `start` operation, the timer is in the **started** state. When the timer
+//! **expires**, the timer enters the **running** state and the handler is
+//! executed. After the handler has returned, the timer may enter the
+//! **started* or **stopped** state, depending on the return value of the
+//! handler. A timer in the **started** or **running** state may be **canceled**
+//! by the `cancel` operation. A timer that is cancelled enters the **stopped**
+//! state.
+//!
+//! A `cancel` or `restart` operation on a timer in the **running** state takes
+//! effect after the handler has returned and the timer has transitioned
+//! out of the **running** state.
+//!
+//! A `restart` operation on a timer in the **stopped** state is equivalent to a
+//! `start` operation.
+
+use crate::{init::PinInit, prelude::*, time::Ktime, types::Opaque};
+use core::marker::PhantomData;
+
+/// A timer backed by a C `struct hrtimer`.
+///
+/// # Invariants
+///
+/// * `self.timer` is initialized by `bindings::hrtimer_setup`.
+#[pin_data]
+#[repr(C)]
+pub struct HrTimer<T> {
+ #[pin]
+ timer: Opaque<bindings::hrtimer>,
+ _t: PhantomData<T>,
+}
+
+// SAFETY: Ownership of an `HrTimer` can be moved to other threads and
+// used/dropped from there.
+unsafe impl<T> Send for HrTimer<T> {}
+
+// SAFETY: Timer operations are locked on the C side, so it is safe to operate
+// on a timer from multiple threads.
+unsafe impl<T> Sync for HrTimer<T> {}
+
+impl<T> HrTimer<T> {
+ /// Return an initializer for a new timer instance.
+ pub fn new() -> impl PinInit<Self>
+ where
+ T: HrTimerCallback,
+ {
+ pin_init!(Self {
+ // INVARIANT: We initialize `timer` with `hrtimer_setup` below.
+ timer <- Opaque::ffi_init(move |place: *mut bindings::hrtimer| {
+ // SAFETY: By design of `pin_init!`, `place` is a pointer to a
+ // live allocation. hrtimer_setup will initialize `place` and
+ // does not require `place` to be initialized prior to the call.
+ unsafe {
+ bindings::hrtimer_setup(
+ place,
+ Some(T::Pointer::run),
+ bindings::CLOCK_MONOTONIC as i32,
+ bindings::hrtimer_mode_HRTIMER_MODE_REL,
+ );
+ }
+ }),
+ _t: PhantomData,
+ })
+ }
+
+ /// Get a pointer to the contained `bindings::hrtimer`.
+ ///
+ /// This function is useful to get access to the value without creating
+ /// intermediate references.
+ ///
+ /// # Safety
+ ///
+ /// `this` must point to a live allocation of at least the size of `Self`.
+ unsafe fn raw_get(this: *const Self) -> *mut bindings::hrtimer {
+ // SAFETY: The field projection to `timer` does not go out of bounds,
+ // because the caller of this function promises that `this` points to an
+ // allocation of at least the size of `Self`.
+ unsafe { Opaque::raw_get(core::ptr::addr_of!((*this).timer)) }
+ }
+
+ /// Cancel an initialized and potentially running timer.
+ ///
+ /// If the timer handler is running, this function will block until the
+ /// handler returns.
+ ///
+ /// Note that the timer might be started by a concurrent start operation. If
+ /// so, the timer might not be in the **stopped** state when this function
+ /// returns.
+ ///
+ /// Users of the `HrTimer` API would not usually call this method directly.
+ /// Instead they would use the safe [`HrTimerHandle::cancel`] on the handle
+ /// returned when the timer was started.
+ ///
+ /// This function is useful to get access to the value without creating
+ /// intermediate references.
+ ///
+ /// # Safety
+ ///
+ /// `this` must point to a valid `Self`.
+ #[allow(dead_code)]
+ pub(crate) unsafe fn raw_cancel(this: *const Self) -> bool {
+ // SAFETY: `this` points to an allocation of at least `HrTimer` size.
+ let c_timer_ptr = unsafe { HrTimer::raw_get(this) };
+
+ // If the handler is running, this will wait for the handler to return
+ // before returning.
+ // SAFETY: `c_timer_ptr` is initialized and valid. Synchronization is
+ // handled on the C side.
+ unsafe { bindings::hrtimer_cancel(c_timer_ptr) != 0 }
+ }
+}
+
+/// Implemented by pointer types that point to structs that contain a [`HrTimer`].
+///
+/// `Self` must be [`Sync`] because it is passed to timer callbacks in another
+/// thread of execution (hard or soft interrupt context).
+///
+/// Starting a timer returns a [`HrTimerHandle`] that can be used to manipulate
+/// the timer. Note that it is OK to call the start function repeatedly, and
+/// that more than one [`HrTimerHandle`] associated with a [`HrTimerPointer`] may
+/// exist. A timer can be manipulated through any of the handles, and a handle
+/// may represent a cancelled timer.
+pub trait HrTimerPointer: Sync + Sized {
+ /// A handle representing a started or restarted timer.
+ ///
+ /// If the timer is running or if the timer callback is executing when the
+ /// handle is dropped, the drop method of [`HrTimerHandle`] should not return
+ /// until the timer is stopped and the callback has completed.
+ ///
+ /// Note: When implementing this trait, consider that it is not unsafe to
+ /// leak the handle.
+ type TimerHandle: HrTimerHandle;
+
+ /// Start the timer with expiry after `expires` time units. If the timer was
+ /// already running, it is restarted with the new expiry time.
+ fn start(self, expires: Ktime) -> Self::TimerHandle;
+}
+
+/// Implemented by [`HrTimerPointer`] implementers to give the C timer callback a
+/// function to call.
+// This is split from `HrTimerPointer` to make it easier to specify trait bounds.
+pub trait RawHrTimerCallback {
+ /// Type of the parameter passed to [`HrTimerCallback::run`]. It may be
+ /// [`Self`], or a pointer type derived from [`Self`].
+ type CallbackTarget<'a>;
+
+ /// Callback to be called from C when timer fires.
+ ///
+ /// # Safety
+ ///
+ /// Only to be called by C code in the `hrtimer` subsystem. `this` must point
+ /// to the `bindings::hrtimer` structure that was used to start the timer.
+ unsafe extern "C" fn run(this: *mut bindings::hrtimer) -> bindings::hrtimer_restart;
+}
+
+/// Implemented by structs that can be the target of a timer callback.
+pub trait HrTimerCallback {
+ /// The type whose [`RawHrTimerCallback::run`] method will be invoked when
+ /// the timer expires.
+ type Pointer<'a>: RawHrTimerCallback;
+
+ /// Called by the timer logic when the timer fires.
+ fn run(this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>)
+ where
+ Self: Sized;
+}
+
+/// A handle representing a potentially running timer.
+///
+/// More than one handle representing the same timer might exist.
+///
+/// # Safety
+///
+/// When dropped, the timer represented by this handle must be cancelled, if it
+/// is running. If the timer handler is running when the handle is dropped, the
+/// drop method must wait for the handler to return before returning.
+///
+/// Note: One way to satisfy the safety requirement is to call `Self::cancel` in
+/// the drop implementation for `Self.`
+pub unsafe trait HrTimerHandle {
+ /// Cancel the timer. If the timer is in the running state, block till the
+ /// handler has returned.
+ ///
+ /// Note that the timer might be started by a concurrent start operation. If
+ /// so, the timer might not be in the **stopped** state when this function
+ /// returns.
+ fn cancel(&mut self) -> bool;
+}
+
+/// Implemented by structs that contain timer nodes.
+///
+/// Clients of the timer API would usually safely implement this trait by using
+/// the [`crate::impl_has_hr_timer`] macro.
+///
+/// # Safety
+///
+/// Implementers of this trait must ensure that the implementer has a
+/// [`HrTimer`] field and that all trait methods are implemented according to
+/// their documentation. All the methods of this trait must operate on the same
+/// field.
+pub unsafe trait HasHrTimer<T> {
+ /// Return a pointer to the [`HrTimer`] within `Self`.
+ ///
+ /// This function is useful to get access to the value without creating
+ /// intermediate references.
+ ///
+ /// # Safety
+ ///
+ /// `this` must be a valid pointer.
+ unsafe fn raw_get_timer(this: *const Self) -> *const HrTimer<T>;
+
+ /// Return a pointer to the struct that is containing the [`HrTimer`] pointed
+ /// to by `ptr`.
+ ///
+ /// This function is useful to get access to the value without creating
+ /// intermediate references.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must point to a [`HrTimer<T>`] field in a struct of type `Self`.
+ unsafe fn timer_container_of(ptr: *mut HrTimer<T>) -> *mut Self
+ where
+ Self: Sized;
+
+ /// Get pointer to the contained `bindings::hrtimer` struct.
+ ///
+ /// This function is useful to get access to the value without creating
+ /// intermediate references.
+ ///
+ /// # Safety
+ ///
+ /// `this` must be a valid pointer.
+ unsafe fn c_timer_ptr(this: *const Self) -> *const bindings::hrtimer {
+ // SAFETY: `this` is a valid pointer to a `Self`.
+ let timer_ptr = unsafe { Self::raw_get_timer(this) };
+
+ // SAFETY: timer_ptr points to an allocation of at least `HrTimer` size.
+ unsafe { HrTimer::raw_get(timer_ptr) }
+ }
+
+ /// Start the timer contained in the `Self` pointed to by `self_ptr`. If
+ /// it is already running it is removed and inserted.
+ ///
+ /// # Safety
+ ///
+ /// - `this` must point to a valid `Self`.
+ /// - Caller must ensure that the pointee of `this` lives until the timer
+ /// fires or is canceled.
+ unsafe fn start(this: *const Self, expires: Ktime) {
+ // SAFETY: By function safety requirement, `this` is a valid `Self`.
+ unsafe {
+ bindings::hrtimer_start_range_ns(
+ Self::c_timer_ptr(this).cast_mut(),
+ expires.to_ns(),
+ 0,
+ bindings::hrtimer_mode_HRTIMER_MODE_REL,
+ );
+ }
+ }
+}
+
+/// Use to implement the [`HasHrTimer<T>`] trait.
+///
+/// See [`module`] documentation for an example.
+///
+/// [`module`]: crate::time::hrtimer
+#[macro_export]
+macro_rules! impl_has_hr_timer {
+ (
+ impl$({$($generics:tt)*})?
+ HasHrTimer<$timer_type:ty>
+ for $self:ty
+ { self.$field:ident }
+ $($rest:tt)*
+ ) => {
+ // SAFETY: This implementation of `raw_get_timer` only compiles if the
+ // field has the right type.
+ unsafe impl$(<$($generics)*>)? $crate::time::hrtimer::HasHrTimer<$timer_type> for $self {
+
+ #[inline]
+ unsafe fn raw_get_timer(
+ this: *const Self,
+ ) -> *const $crate::time::hrtimer::HrTimer<$timer_type> {
+ // SAFETY: The caller promises that the pointer is not dangling.
+ unsafe { ::core::ptr::addr_of!((*this).$field) }
+ }
+
+ #[inline]
+ unsafe fn timer_container_of(
+ ptr: *mut $crate::time::hrtimer::HrTimer<$timer_type>,
+ ) -> *mut Self {
+ // SAFETY: As per the safety requirement of this function, `ptr`
+ // is pointing inside a `$timer_type`.
+ unsafe { ::kernel::container_of!(ptr, $timer_type, $field).cast_mut() }
+ }
+ }
+ }
+}