drm/amd/powerplay: update atomctrl for fiji
authorEric Huang <JinHuiEric.Huang@amd.com>
Mon, 9 Nov 2015 22:35:45 +0000 (17:35 -0500)
committerAlex Deucher <alexander.deucher@amd.com>
Mon, 21 Dec 2015 21:42:16 +0000 (16:42 -0500)
Add some new functions to support Fiji.  Split out
from the previous patch.

Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com>
Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c

index 9af2f5953d13f39487f0cde12efad0ce55867ca0..8b47ea0c8d3e21d84b2ee14314b45e7c855b93fd 100644 (file)
@@ -28,6 +28,8 @@
 #include "atombios.h"
 #include "cgs_common.h"
 #include "pp_debug.h"
+#include "ppevvmath.h"
+
 #define MEM_ID_MASK           0xff000000
 #define MEM_ID_SHIFT          24
 #define CLOCK_RANGE_MASK      0x00ffffff
@@ -94,7 +96,7 @@ static int atomctrl_retrieve_ac_timing(
  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
  * @param    reg_block the address ATOM_INIT_REG_BLOCK
  * @param    table the address of MCRegTable
- * @return   PP_Result_OK
+ * @return   0
  */
 static int atomctrl_set_mc_reg_address_table(
                ATOM_INIT_REG_BLOCK *reg_block,
@@ -286,6 +288,31 @@ int atomctrl_get_memory_pll_dividers_si(
        return result;
 }
 
+/** atomctrl_get_memory_pll_dividers_vi().
+ *
+ * @param hwmgr                 input parameter: pointer to HwMgr
+ * @param clock_value             input parameter: memory clock
+ * @param dividers               output parameter: memory PLL dividers
+ */
+int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
+               uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
+{
+       COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
+       int result;
+
+       mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
+                       &mpll_parameters);
+
+       if (!result)
+               mpll_param->mpll_post_divider =
+                               (uint32_t)mpll_parameters.ulClock.ucPostDiv;
+
+       return result;
+}
+
 int atomctrl_get_engine_pll_dividers_vi(
                struct pp_hwmgr *hwmgr,
                uint32_t clock_value,
@@ -387,7 +414,7 @@ uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
 }
 
 /**
- * Returns 0 if the given voltage type is controlled by GPIO pins.
+ * Returns true if the given voltage type is controlled by GPIO pins.
  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
@@ -402,10 +429,10 @@ bool atomctrl_is_voltage_controled_by_gpio_v3(
        bool ret;
 
        PP_ASSERT_WITH_CODE((NULL != voltage_info),
-                       "Could not find Voltage Table in BIOS.", return -1;);
+                       "Could not find Voltage Table in BIOS.", return false;);
 
        ret = (NULL != atomctrl_lookup_voltage_type_v3
-                       (voltage_info, voltage_type, voltage_mode)) ? 0 : 1;
+                       (voltage_info, voltage_type, voltage_mode)) ? true : false;
 
        return ret;
 }
@@ -525,6 +552,441 @@ bool atomctrl_get_pp_assign_pin(
        return bRet;
 }
 
+int atomctrl_calculate_voltage_evv_on_sclk(
+               struct pp_hwmgr *hwmgr,
+               uint8_t voltage_type,
+               uint32_t sclk,
+               uint16_t virtual_voltage_Id,
+               uint16_t *voltage,
+               uint16_t dpm_level,
+               bool debug)
+{
+       ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
+
+       EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
+       EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
+       EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
+       EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
+       EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
+       EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
+       EFUSE_INPUT_PARAMETER sInput_FuseValues;
+       READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
+
+       uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
+       fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
+       fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
+       fInt fLkg_FT, repeat;
+       fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
+       fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
+       fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
+       fInt fSclk_margin, fSclk, fEVV_V;
+       fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
+       uint32_t ul_FT_Lkg_V0NORM;
+       fInt fLn_MaxDivMin, fMin, fAverage, fRange;
+       fInt fRoots[2];
+       fInt fStepSize = GetScaledFraction(625, 100000);
+
+       int result;
+
+       getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
+                       cgs_atom_get_data_table(hwmgr->device,
+                                       GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
+                                       NULL, NULL, NULL);
+
+       if (!getASICProfilingInfo)
+               return -1;
+
+       if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
+                       (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
+                       getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
+               return -1;
+
+       /*-----------------------------------------------------------
+        *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
+        *-----------------------------------------------------------
+        */
+       fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
+
+       switch (dpm_level) {
+       case 1:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
+               break;
+       case 2:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
+               break;
+       case 3:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
+               break;
+       case 4:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
+               break;
+       case 5:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
+               break;
+       case 6:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
+               break;
+       case 7:
+               fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
+               break;
+       default:
+               printk(KERN_ERR "DPM Level not supported\n");
+               fPowerDPMx = Convert_ULONG_ToFraction(1);
+               fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
+       }
+
+       /*-------------------------
+        * DECODING FUSE VALUES
+        * ------------------------
+        */
+       /*Decode RO_Fused*/
+       sRO_fuse = getASICProfilingInfo->sRoFuse;
+
+       sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
+       sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
+
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+
+       if (result)
+               return result;
+
+       /* Finally, the actual fuse value */
+       ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
+       fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
+       fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
+       fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
+
+       sCACm_fuse = getASICProfilingInfo->sCACm;
+
+       sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
+       sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
+
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+
+       if (result)
+               return result;
+
+       ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
+       fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
+       fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
+
+       fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
+
+       sCACb_fuse = getASICProfilingInfo->sCACb;
+
+       sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
+       sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+
+       if (result)
+               return result;
+
+       ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
+       fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
+       fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
+
+       fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
+
+       sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
+
+       sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
+       sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
+
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+
+       if (result)
+               return result;
+
+       ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
+       fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
+       fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
+
+       fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
+                       fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
+
+       sKv_m_fuse = getASICProfilingInfo->sKv_m;
+
+       sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
+       sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
+
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+       if (result)
+               return result;
+
+       ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
+       fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
+       fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
+       fRange = fMultiply(fRange, ConvertToFraction(-1));
+
+       fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
+                       fAverage, fRange, sKv_m_fuse.ucEfuseLength);
+
+       sKv_b_fuse = getASICProfilingInfo->sKv_b;
+
+       sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
+       sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+
+       if (result)
+               return result;
+
+       ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
+       fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
+       fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
+
+       fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
+                       fAverage, fRange, sKv_b_fuse.ucEfuseLength);
+
+       /* Decoding the Leakage - No special struct container */
+       /*
+        * usLkgEuseIndex=56
+        * ucLkgEfuseBitLSB=6
+        * ucLkgEfuseLength=10
+        * ulLkgEncodeLn_MaxDivMin=69077
+        * ulLkgEncodeMax=1000000
+        * ulLkgEncodeMin=1000
+        * ulEfuseLogisticAlpha=13
+        */
+
+       sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
+       sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
+       sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
+
+       sOutput_FuseValues.sEfuse = sInput_FuseValues;
+
+       result = cgs_atom_exec_cmd_table(hwmgr->device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &sOutput_FuseValues);
+
+       if (result)
+               return result;
+
+       ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
+       fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
+       fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
+
+       fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
+                       fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
+       fLkg_FT = fFT_Lkg_V0NORM;
+
+       /*-------------------------------------------
+        * PART 2 - Grabbing all required values
+        *-------------------------------------------
+        */
+       fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
+       fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
+       fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
+       fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
+       fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
+       fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
+       fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
+       fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
+                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
+
+       fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
+       fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
+       fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
+
+       fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
+
+       fMargin_FMAX_mean = GetScaledFraction(
+                       getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
+       fMargin_Plat_mean = GetScaledFraction(
+                       getASICProfilingInfo->ulMargin_plat_mean, 10000);
+       fMargin_FMAX_sigma = GetScaledFraction(
+                       getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
+       fMargin_Plat_sigma = GetScaledFraction(
+                       getASICProfilingInfo->ulMargin_plat_sigma, 10000);
+
+       fMargin_DC_sigma = GetScaledFraction(
+                       getASICProfilingInfo->ulMargin_DC_sigma, 100);
+       fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
+
+       fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
+       fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
+       fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
+       fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
+       fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
+
+       fSclk = GetScaledFraction(sclk, 100);
+
+       fV_max = fDivide(GetScaledFraction(
+                       getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
+       fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
+       fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
+       fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
+       fV_FT = fDivide(GetScaledFraction(
+                       getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
+       fV_min = fDivide(GetScaledFraction(
+                       getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
+
+       /*-----------------------
+        * PART 3
+        *-----------------------
+        */
+
+       fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
+       fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
+       fC_Term = fAdd(fMargin_RO_c,
+                       fAdd(fMultiply(fSM_A0,fLkg_FT),
+                       fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
+                       fAdd(fMultiply(fSM_A3, fSclk),
+                       fSubtract(fSM_A7,fRO_fused)))));
+
+       fVDDC_base = fSubtract(fRO_fused,
+                       fSubtract(fMargin_RO_c,
+                                       fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
+       fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
+
+       repeat = fSubtract(fVDDC_base,
+                       fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
+
+       fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
+                       fGetSquare(repeat)),
+                       fAdd(fMultiply(fMargin_RO_b, repeat),
+                       fMargin_RO_c));
+
+       fDC_SCLK = fSubtract(fRO_fused,
+                       fSubtract(fRO_DC_margin,
+                       fSubtract(fSM_A3,
+                       fMultiply(fSM_A2, repeat))));
+       fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
+
+       fSigma_DC = fSubtract(fSclk, fDC_SCLK);
+
+       fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
+       fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
+       fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
+       fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
+
+       fSquared_Sigma_DC = fGetSquare(fSigma_DC);
+       fSquared_Sigma_CR = fGetSquare(fSigma_CR);
+       fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
+
+       fSclk_margin = fAdd(fMicro_FMAX,
+                       fAdd(fMicro_CR,
+                       fAdd(fMargin_fixed,
+                       fSqrt(fAdd(fSquared_Sigma_FMAX,
+                       fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
+       /*
+        fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
+        fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
+        fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
+        */
+
+       fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
+       fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
+       fC_Term = fAdd(fRO_DC_margin,
+                       fAdd(fMultiply(fSM_A0, fLkg_FT),
+                       fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
+                       fAdd(fSclk, fSclk_margin)),
+                       fAdd(fMultiply(fSM_A3,
+                       fAdd(fSclk, fSclk_margin)),
+                       fSubtract(fSM_A7, fRO_fused)))));
+
+       SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
+
+       if (GreaterThan(fRoots[0], fRoots[1]))
+               fEVV_V = fRoots[1];
+       else
+               fEVV_V = fRoots[0];
+
+       if (GreaterThan(fV_min, fEVV_V))
+               fEVV_V = fV_min;
+       else if (GreaterThan(fEVV_V, fV_max))
+               fEVV_V = fSubtract(fV_max, fStepSize);
+
+       fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
+
+       /*-----------------
+        * PART 4
+        *-----------------
+        */
+
+       fV_x = fV_min;
+
+       while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
+               fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
+                               fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
+                               fGetSquare(fV_x)), fDerateTDP);
+
+               fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
+                               fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
+                               fT_prod), fKv_b_fused), fV_x)), fV_x)));
+               fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
+                               fKt_Beta_fused, fT_prod)));
+               fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
+                               fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
+               fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
+                               fKt_Beta_fused, fT_FT)));
+
+               fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
+
+               fTDP_Current = fDivide(fTDP_Power, fV_x);
+
+               fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
+                               ConvertToFraction(10)));
+
+               fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
+
+               if (GreaterThan(fV_max, fV_NL) &&
+                       (GreaterThan(fV_NL,fEVV_V) ||
+                       Equal(fV_NL, fEVV_V))) {
+                       fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
+
+                       *voltage = (uint16_t)fV_NL.partial.real;
+                       break;
+               } else
+                       fV_x = fAdd(fV_x, fStepSize);
+       }
+
+       return result;
+}
+
 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
  * @param hwmgr                input: pointer to hwManager
  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
@@ -701,4 +1163,23 @@ int atomctrl_get_engine_clock_spread_spectrum(
                        ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
 }
 
+int atomctrl_read_efuse(void *device, uint16_t start_index,
+               uint16_t end_index, uint32_t mask, uint32_t *efuse)
+{
+       int result;
+       READ_EFUSE_VALUE_PARAMETER efuse_param;
+
+       efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
+       efuse_param.sEfuse.ucBitShift = (uint8_t)
+                       (start_index - ((start_index / 32) * 32));
+       efuse_param.sEfuse.ucBitLength  = (uint8_t)
+                       ((end_index - start_index) + 1);
 
+       result = cgs_atom_exec_cmd_table(device,
+                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
+                       &efuse_param);
+       if (!result)
+               *efuse = efuse_param.ulEfuseValue & mask;
+
+       return result;
+}
index 23da436e540d28584b496f121aaf24d31a11b579..b5ba37151190713b8631e574a61c9fbfc316ce02 100644 (file)
@@ -231,6 +231,12 @@ extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t
 extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
 extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode);
 extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table);
+extern int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
+               uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param);
+extern int atomctrl_read_efuse(void *device, uint16_t start_index,
+               uint16_t end_index, uint32_t mask, uint32_t *efuse);
+extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
+               uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug);
 
 
 #endif
index 0feb1a8c105e27974bdc684904715d3a456f60aa..1a02c7d557de399047ee448a75aadb72b623594d 100644 (file)
@@ -4507,14 +4507,14 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
        data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
        data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
 
-       if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+       if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
                                VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
                data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
        }
 
        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
                        PHM_PlatformCaps_ControlVDDGFX)) {
-               if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+               if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
                        VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
                        data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
                }
@@ -4527,7 +4527,7 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
 
        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
                        PHM_PlatformCaps_EnableMVDDControl)) {
-               if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+               if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
                                        VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
                        data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
                }
@@ -4540,10 +4540,10 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
 
        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
                        PHM_PlatformCaps_ControlVDDCI)) {
-               if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+               if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
                                        VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
                        data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
-               else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+               else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
                                                VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
                        data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
        }