select ARCH_ENABLE_MEMORY_HOTPLUG
select ARCH_ENABLE_MEMORY_HOTREMOVE
select ARCH_HAS_COPY_MC if PPC64
+ select ARCH_HAS_CRC32 if PPC64 && ALTIVEC
select ARCH_HAS_CURRENT_STACK_POINTER
select ARCH_HAS_DEBUG_VIRTUAL
select ARCH_HAS_DEBUG_VM_PGTABLE
CONFIG_CRYPTO_TEST=m
CONFIG_CRYPTO_PCBC=m
CONFIG_CRYPTO_HMAC=y
-CONFIG_CRYPTO_CRC32C_VPMSUM=m
CONFIG_CRYPTO_CRCT10DIF_VPMSUM=m
CONFIG_CRYPTO_MD5_PPC=m
CONFIG_CRYPTO_MICHAEL_MIC=m
CONFIG_CRYPTO_SHA256=y
CONFIG_CRYPTO_WP512=m
CONFIG_CRYPTO_LZO=m
-CONFIG_CRYPTO_CRC32C_VPMSUM=m
CONFIG_CRYPTO_CRCT10DIF_VPMSUM=m
CONFIG_CRYPTO_VPMSUM_TESTER=m
CONFIG_CRYPTO_MD5_PPC=m
Architecture: PowerPC64
- Little-endian
-config CRYPTO_CRC32C_VPMSUM
- tristate "CRC32c"
- depends on PPC64 && ALTIVEC
- select CRYPTO_HASH
- select CRC32
- help
- CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
-
- Architecture: powerpc64 using
- - AltiVec extensions
-
- Enable on POWER8 and newer processors for improved performance.
-
config CRYPTO_CRCT10DIF_VPMSUM
tristate "CRC32T10DIF"
depends on PPC64 && ALTIVEC && CRC_T10DIF
config CRYPTO_VPMSUM_TESTER
tristate "CRC32c and CRC32T10DIF hardware acceleration tester"
- depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
+ depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C && CRC32_ARCH
help
Stress test for CRC32c and CRCT10DIF algorithms implemented with
powerpc64 AltiVec extensions (POWER8 vpmsum instructions).
obj-$(CONFIG_CRYPTO_SHA1_PPC) += sha1-powerpc.o
obj-$(CONFIG_CRYPTO_SHA1_PPC_SPE) += sha1-ppc-spe.o
obj-$(CONFIG_CRYPTO_SHA256_PPC_SPE) += sha256-ppc-spe.o
-obj-$(CONFIG_CRYPTO_CRC32C_VPMSUM) += crc32c-vpmsum.o
obj-$(CONFIG_CRYPTO_CRCT10DIF_VPMSUM) += crct10dif-vpmsum.o
obj-$(CONFIG_CRYPTO_VPMSUM_TESTER) += crc-vpmsum_test.o
obj-$(CONFIG_CRYPTO_AES_GCM_P10) += aes-gcm-p10-crypto.o
sha1-powerpc-y := sha1-powerpc-asm.o sha1.o
sha1-ppc-spe-y := sha1-spe-asm.o sha1-spe-glue.o
sha256-ppc-spe-y := sha256-spe-asm.o sha256-spe-glue.o
-crc32c-vpmsum-y := crc32c-vpmsum_asm.o crc32c-vpmsum_glue.o
crct10dif-vpmsum-y := crct10dif-vpmsum_asm.o crct10dif-vpmsum_glue.o
aes-gcm-p10-crypto-y := aes-gcm-p10-glue.o aes-gcm-p10.o ghashp10-ppc.o aesp10-ppc.o
chacha-p10-crypto-y := chacha-p10-glue.o chacha-p10le-8x.o
+++ /dev/null
-/* SPDX-License-Identifier: GPL-2.0-or-later */
-/*
- * Core of the accelerated CRC algorithm.
- * In your file, define the constants and CRC_FUNCTION_NAME
- * Then include this file.
- *
- * Calculate the checksum of data that is 16 byte aligned and a multiple of
- * 16 bytes.
- *
- * The first step is to reduce it to 1024 bits. We do this in 8 parallel
- * chunks in order to mask the latency of the vpmsum instructions. If we
- * have more than 32 kB of data to checksum we repeat this step multiple
- * times, passing in the previous 1024 bits.
- *
- * The next step is to reduce the 1024 bits to 64 bits. This step adds
- * 32 bits of 0s to the end - this matches what a CRC does. We just
- * calculate constants that land the data in this 32 bits.
- *
- * We then use fixed point Barrett reduction to compute a mod n over GF(2)
- * for n = CRC using POWER8 instructions. We use x = 32.
- *
- * https://en.wikipedia.org/wiki/Barrett_reduction
- *
- * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
-*/
-
-#include <asm/ppc_asm.h>
-#include <asm/ppc-opcode.h>
-
-#define MAX_SIZE 32768
-
- .text
-
-#if defined(__BIG_ENDIAN__) && defined(REFLECT)
-#define BYTESWAP_DATA
-#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
-#define BYTESWAP_DATA
-#else
-#undef BYTESWAP_DATA
-#endif
-
-#define off16 r25
-#define off32 r26
-#define off48 r27
-#define off64 r28
-#define off80 r29
-#define off96 r30
-#define off112 r31
-
-#define const1 v24
-#define const2 v25
-
-#define byteswap v26
-#define mask_32bit v27
-#define mask_64bit v28
-#define zeroes v29
-
-#ifdef BYTESWAP_DATA
-#define VPERM(A, B, C, D) vperm A, B, C, D
-#else
-#define VPERM(A, B, C, D)
-#endif
-
-/* unsigned int CRC_FUNCTION_NAME(unsigned int crc, void *p, unsigned long len) */
-FUNC_START(CRC_FUNCTION_NAME)
- std r31,-8(r1)
- std r30,-16(r1)
- std r29,-24(r1)
- std r28,-32(r1)
- std r27,-40(r1)
- std r26,-48(r1)
- std r25,-56(r1)
-
- li off16,16
- li off32,32
- li off48,48
- li off64,64
- li off80,80
- li off96,96
- li off112,112
- li r0,0
-
- /* Enough room for saving 10 non volatile VMX registers */
- subi r6,r1,56+10*16
- subi r7,r1,56+2*16
-
- stvx v20,0,r6
- stvx v21,off16,r6
- stvx v22,off32,r6
- stvx v23,off48,r6
- stvx v24,off64,r6
- stvx v25,off80,r6
- stvx v26,off96,r6
- stvx v27,off112,r6
- stvx v28,0,r7
- stvx v29,off16,r7
-
- mr r10,r3
-
- vxor zeroes,zeroes,zeroes
- vspltisw v0,-1
-
- vsldoi mask_32bit,zeroes,v0,4
- vsldoi mask_64bit,zeroes,v0,8
-
- /* Get the initial value into v8 */
- vxor v8,v8,v8
- MTVRD(v8, R3)
-#ifdef REFLECT
- vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
-#else
- vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */
-#endif
-
-#ifdef BYTESWAP_DATA
- LOAD_REG_ADDR(r3, .byteswap_constant)
- lvx byteswap,0,r3
- addi r3,r3,16
-#endif
-
- cmpdi r5,256
- blt .Lshort
-
- rldicr r6,r5,0,56
-
- /* Checksum in blocks of MAX_SIZE */
-1: lis r7,MAX_SIZE@h
- ori r7,r7,MAX_SIZE@l
- mr r9,r7
- cmpd r6,r7
- bgt 2f
- mr r7,r6
-2: subf r6,r7,r6
-
- /* our main loop does 128 bytes at a time */
- srdi r7,r7,7
-
- /*
- * Work out the offset into the constants table to start at. Each
- * constant is 16 bytes, and it is used against 128 bytes of input
- * data - 128 / 16 = 8
- */
- sldi r8,r7,4
- srdi r9,r9,3
- subf r8,r8,r9
-
- /* We reduce our final 128 bytes in a separate step */
- addi r7,r7,-1
- mtctr r7
-
- LOAD_REG_ADDR(r3, .constants)
-
- /* Find the start of our constants */
- add r3,r3,r8
-
- /* zero v0-v7 which will contain our checksums */
- vxor v0,v0,v0
- vxor v1,v1,v1
- vxor v2,v2,v2
- vxor v3,v3,v3
- vxor v4,v4,v4
- vxor v5,v5,v5
- vxor v6,v6,v6
- vxor v7,v7,v7
-
- lvx const1,0,r3
-
- /*
- * If we are looping back to consume more data we use the values
- * already in v16-v23.
- */
- cmpdi r0,1
- beq 2f
-
- /* First warm up pass */
- lvx v16,0,r4
- lvx v17,off16,r4
- VPERM(v16,v16,v16,byteswap)
- VPERM(v17,v17,v17,byteswap)
- lvx v18,off32,r4
- lvx v19,off48,r4
- VPERM(v18,v18,v18,byteswap)
- VPERM(v19,v19,v19,byteswap)
- lvx v20,off64,r4
- lvx v21,off80,r4
- VPERM(v20,v20,v20,byteswap)
- VPERM(v21,v21,v21,byteswap)
- lvx v22,off96,r4
- lvx v23,off112,r4
- VPERM(v22,v22,v22,byteswap)
- VPERM(v23,v23,v23,byteswap)
- addi r4,r4,8*16
-
- /* xor in initial value */
- vxor v16,v16,v8
-
-2: bdz .Lfirst_warm_up_done
-
- addi r3,r3,16
- lvx const2,0,r3
-
- /* Second warm up pass */
- VPMSUMD(v8,v16,const1)
- lvx v16,0,r4
- VPERM(v16,v16,v16,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v9,v17,const1)
- lvx v17,off16,r4
- VPERM(v17,v17,v17,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v10,v18,const1)
- lvx v18,off32,r4
- VPERM(v18,v18,v18,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v11,v19,const1)
- lvx v19,off48,r4
- VPERM(v19,v19,v19,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v12,v20,const1)
- lvx v20,off64,r4
- VPERM(v20,v20,v20,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v13,v21,const1)
- lvx v21,off80,r4
- VPERM(v21,v21,v21,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v14,v22,const1)
- lvx v22,off96,r4
- VPERM(v22,v22,v22,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v15,v23,const1)
- lvx v23,off112,r4
- VPERM(v23,v23,v23,byteswap)
-
- addi r4,r4,8*16
-
- bdz .Lfirst_cool_down
-
- /*
- * main loop. We modulo schedule it such that it takes three iterations
- * to complete - first iteration load, second iteration vpmsum, third
- * iteration xor.
- */
- .balign 16
-4: lvx const1,0,r3
- addi r3,r3,16
- ori r2,r2,0
-
- vxor v0,v0,v8
- VPMSUMD(v8,v16,const2)
- lvx v16,0,r4
- VPERM(v16,v16,v16,byteswap)
- ori r2,r2,0
-
- vxor v1,v1,v9
- VPMSUMD(v9,v17,const2)
- lvx v17,off16,r4
- VPERM(v17,v17,v17,byteswap)
- ori r2,r2,0
-
- vxor v2,v2,v10
- VPMSUMD(v10,v18,const2)
- lvx v18,off32,r4
- VPERM(v18,v18,v18,byteswap)
- ori r2,r2,0
-
- vxor v3,v3,v11
- VPMSUMD(v11,v19,const2)
- lvx v19,off48,r4
- VPERM(v19,v19,v19,byteswap)
- lvx const2,0,r3
- ori r2,r2,0
-
- vxor v4,v4,v12
- VPMSUMD(v12,v20,const1)
- lvx v20,off64,r4
- VPERM(v20,v20,v20,byteswap)
- ori r2,r2,0
-
- vxor v5,v5,v13
- VPMSUMD(v13,v21,const1)
- lvx v21,off80,r4
- VPERM(v21,v21,v21,byteswap)
- ori r2,r2,0
-
- vxor v6,v6,v14
- VPMSUMD(v14,v22,const1)
- lvx v22,off96,r4
- VPERM(v22,v22,v22,byteswap)
- ori r2,r2,0
-
- vxor v7,v7,v15
- VPMSUMD(v15,v23,const1)
- lvx v23,off112,r4
- VPERM(v23,v23,v23,byteswap)
-
- addi r4,r4,8*16
-
- bdnz 4b
-
-.Lfirst_cool_down:
- /* First cool down pass */
- lvx const1,0,r3
- addi r3,r3,16
-
- vxor v0,v0,v8
- VPMSUMD(v8,v16,const1)
- ori r2,r2,0
-
- vxor v1,v1,v9
- VPMSUMD(v9,v17,const1)
- ori r2,r2,0
-
- vxor v2,v2,v10
- VPMSUMD(v10,v18,const1)
- ori r2,r2,0
-
- vxor v3,v3,v11
- VPMSUMD(v11,v19,const1)
- ori r2,r2,0
-
- vxor v4,v4,v12
- VPMSUMD(v12,v20,const1)
- ori r2,r2,0
-
- vxor v5,v5,v13
- VPMSUMD(v13,v21,const1)
- ori r2,r2,0
-
- vxor v6,v6,v14
- VPMSUMD(v14,v22,const1)
- ori r2,r2,0
-
- vxor v7,v7,v15
- VPMSUMD(v15,v23,const1)
- ori r2,r2,0
-
-.Lsecond_cool_down:
- /* Second cool down pass */
- vxor v0,v0,v8
- vxor v1,v1,v9
- vxor v2,v2,v10
- vxor v3,v3,v11
- vxor v4,v4,v12
- vxor v5,v5,v13
- vxor v6,v6,v14
- vxor v7,v7,v15
-
-#ifdef REFLECT
- /*
- * vpmsumd produces a 96 bit result in the least significant bits
- * of the register. Since we are bit reflected we have to shift it
- * left 32 bits so it occupies the least significant bits in the
- * bit reflected domain.
- */
- vsldoi v0,v0,zeroes,4
- vsldoi v1,v1,zeroes,4
- vsldoi v2,v2,zeroes,4
- vsldoi v3,v3,zeroes,4
- vsldoi v4,v4,zeroes,4
- vsldoi v5,v5,zeroes,4
- vsldoi v6,v6,zeroes,4
- vsldoi v7,v7,zeroes,4
-#endif
-
- /* xor with last 1024 bits */
- lvx v8,0,r4
- lvx v9,off16,r4
- VPERM(v8,v8,v8,byteswap)
- VPERM(v9,v9,v9,byteswap)
- lvx v10,off32,r4
- lvx v11,off48,r4
- VPERM(v10,v10,v10,byteswap)
- VPERM(v11,v11,v11,byteswap)
- lvx v12,off64,r4
- lvx v13,off80,r4
- VPERM(v12,v12,v12,byteswap)
- VPERM(v13,v13,v13,byteswap)
- lvx v14,off96,r4
- lvx v15,off112,r4
- VPERM(v14,v14,v14,byteswap)
- VPERM(v15,v15,v15,byteswap)
-
- addi r4,r4,8*16
-
- vxor v16,v0,v8
- vxor v17,v1,v9
- vxor v18,v2,v10
- vxor v19,v3,v11
- vxor v20,v4,v12
- vxor v21,v5,v13
- vxor v22,v6,v14
- vxor v23,v7,v15
-
- li r0,1
- cmpdi r6,0
- addi r6,r6,128
- bne 1b
-
- /* Work out how many bytes we have left */
- andi. r5,r5,127
-
- /* Calculate where in the constant table we need to start */
- subfic r6,r5,128
- add r3,r3,r6
-
- /* How many 16 byte chunks are in the tail */
- srdi r7,r5,4
- mtctr r7
-
- /*
- * Reduce the previously calculated 1024 bits to 64 bits, shifting
- * 32 bits to include the trailing 32 bits of zeros
- */
- lvx v0,0,r3
- lvx v1,off16,r3
- lvx v2,off32,r3
- lvx v3,off48,r3
- lvx v4,off64,r3
- lvx v5,off80,r3
- lvx v6,off96,r3
- lvx v7,off112,r3
- addi r3,r3,8*16
-
- VPMSUMW(v0,v16,v0)
- VPMSUMW(v1,v17,v1)
- VPMSUMW(v2,v18,v2)
- VPMSUMW(v3,v19,v3)
- VPMSUMW(v4,v20,v4)
- VPMSUMW(v5,v21,v5)
- VPMSUMW(v6,v22,v6)
- VPMSUMW(v7,v23,v7)
-
- /* Now reduce the tail (0 - 112 bytes) */
- cmpdi r7,0
- beq 1f
-
- lvx v16,0,r4
- lvx v17,0,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off16,r4
- lvx v17,off16,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off32,r4
- lvx v17,off32,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off48,r4
- lvx v17,off48,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off64,r4
- lvx v17,off64,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off80,r4
- lvx v17,off80,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off96,r4
- lvx v17,off96,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
-
- /* Now xor all the parallel chunks together */
-1: vxor v0,v0,v1
- vxor v2,v2,v3
- vxor v4,v4,v5
- vxor v6,v6,v7
-
- vxor v0,v0,v2
- vxor v4,v4,v6
-
- vxor v0,v0,v4
-
-.Lbarrett_reduction:
- /* Barrett constants */
- LOAD_REG_ADDR(r3, .barrett_constants)
-
- lvx const1,0,r3
- lvx const2,off16,r3
-
- vsldoi v1,v0,v0,8
- vxor v0,v0,v1 /* xor two 64 bit results together */
-
-#ifdef REFLECT
- /* shift left one bit */
- vspltisb v1,1
- vsl v0,v0,v1
-#endif
-
- vand v0,v0,mask_64bit
-#ifndef REFLECT
- /*
- * Now for the Barrett reduction algorithm. The idea is to calculate q,
- * the multiple of our polynomial that we need to subtract. By
- * doing the computation 2x bits higher (ie 64 bits) and shifting the
- * result back down 2x bits, we round down to the nearest multiple.
- */
- VPMSUMD(v1,v0,const1) /* ma */
- vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */
- VPMSUMD(v1,v1,const2) /* qn */
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
-
- /*
- * Get the result into r3. We need to shift it left 8 bytes:
- * V0 [ 0 1 2 X ]
- * V0 [ 0 X 2 3 ]
- */
- vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */
-#else
- /*
- * The reflected version of Barrett reduction. Instead of bit
- * reflecting our data (which is expensive to do), we bit reflect our
- * constants and our algorithm, which means the intermediate data in
- * our vector registers goes from 0-63 instead of 63-0. We can reflect
- * the algorithm because we don't carry in mod 2 arithmetic.
- */
- vand v1,v0,mask_32bit /* bottom 32 bits of a */
- VPMSUMD(v1,v1,const1) /* ma */
- vand v1,v1,mask_32bit /* bottom 32bits of ma */
- VPMSUMD(v1,v1,const2) /* qn */
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
-
- /*
- * Since we are bit reflected, the result (ie the low 32 bits) is in
- * the high 32 bits. We just need to shift it left 4 bytes
- * V0 [ 0 1 X 3 ]
- * V0 [ 0 X 2 3 ]
- */
- vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
-#endif
-
- /* Get it into r3 */
- MFVRD(R3, v0)
-
-.Lout:
- subi r6,r1,56+10*16
- subi r7,r1,56+2*16
-
- lvx v20,0,r6
- lvx v21,off16,r6
- lvx v22,off32,r6
- lvx v23,off48,r6
- lvx v24,off64,r6
- lvx v25,off80,r6
- lvx v26,off96,r6
- lvx v27,off112,r6
- lvx v28,0,r7
- lvx v29,off16,r7
-
- ld r31,-8(r1)
- ld r30,-16(r1)
- ld r29,-24(r1)
- ld r28,-32(r1)
- ld r27,-40(r1)
- ld r26,-48(r1)
- ld r25,-56(r1)
-
- blr
-
-.Lfirst_warm_up_done:
- lvx const1,0,r3
- addi r3,r3,16
-
- VPMSUMD(v8,v16,const1)
- VPMSUMD(v9,v17,const1)
- VPMSUMD(v10,v18,const1)
- VPMSUMD(v11,v19,const1)
- VPMSUMD(v12,v20,const1)
- VPMSUMD(v13,v21,const1)
- VPMSUMD(v14,v22,const1)
- VPMSUMD(v15,v23,const1)
-
- b .Lsecond_cool_down
-
-.Lshort:
- cmpdi r5,0
- beq .Lzero
-
- LOAD_REG_ADDR(r3, .short_constants)
-
- /* Calculate where in the constant table we need to start */
- subfic r6,r5,256
- add r3,r3,r6
-
- /* How many 16 byte chunks? */
- srdi r7,r5,4
- mtctr r7
-
- vxor v19,v19,v19
- vxor v20,v20,v20
-
- lvx v0,0,r4
- lvx v16,0,r3
- VPERM(v0,v0,v16,byteswap)
- vxor v0,v0,v8 /* xor in initial value */
- VPMSUMW(v0,v0,v16)
- bdz .Lv0
-
- lvx v1,off16,r4
- lvx v17,off16,r3
- VPERM(v1,v1,v17,byteswap)
- VPMSUMW(v1,v1,v17)
- bdz .Lv1
-
- lvx v2,off32,r4
- lvx v16,off32,r3
- VPERM(v2,v2,v16,byteswap)
- VPMSUMW(v2,v2,v16)
- bdz .Lv2
-
- lvx v3,off48,r4
- lvx v17,off48,r3
- VPERM(v3,v3,v17,byteswap)
- VPMSUMW(v3,v3,v17)
- bdz .Lv3
-
- lvx v4,off64,r4
- lvx v16,off64,r3
- VPERM(v4,v4,v16,byteswap)
- VPMSUMW(v4,v4,v16)
- bdz .Lv4
-
- lvx v5,off80,r4
- lvx v17,off80,r3
- VPERM(v5,v5,v17,byteswap)
- VPMSUMW(v5,v5,v17)
- bdz .Lv5
-
- lvx v6,off96,r4
- lvx v16,off96,r3
- VPERM(v6,v6,v16,byteswap)
- VPMSUMW(v6,v6,v16)
- bdz .Lv6
-
- lvx v7,off112,r4
- lvx v17,off112,r3
- VPERM(v7,v7,v17,byteswap)
- VPMSUMW(v7,v7,v17)
- bdz .Lv7
-
- addi r3,r3,128
- addi r4,r4,128
-
- lvx v8,0,r4
- lvx v16,0,r3
- VPERM(v8,v8,v16,byteswap)
- VPMSUMW(v8,v8,v16)
- bdz .Lv8
-
- lvx v9,off16,r4
- lvx v17,off16,r3
- VPERM(v9,v9,v17,byteswap)
- VPMSUMW(v9,v9,v17)
- bdz .Lv9
-
- lvx v10,off32,r4
- lvx v16,off32,r3
- VPERM(v10,v10,v16,byteswap)
- VPMSUMW(v10,v10,v16)
- bdz .Lv10
-
- lvx v11,off48,r4
- lvx v17,off48,r3
- VPERM(v11,v11,v17,byteswap)
- VPMSUMW(v11,v11,v17)
- bdz .Lv11
-
- lvx v12,off64,r4
- lvx v16,off64,r3
- VPERM(v12,v12,v16,byteswap)
- VPMSUMW(v12,v12,v16)
- bdz .Lv12
-
- lvx v13,off80,r4
- lvx v17,off80,r3
- VPERM(v13,v13,v17,byteswap)
- VPMSUMW(v13,v13,v17)
- bdz .Lv13
-
- lvx v14,off96,r4
- lvx v16,off96,r3
- VPERM(v14,v14,v16,byteswap)
- VPMSUMW(v14,v14,v16)
- bdz .Lv14
-
- lvx v15,off112,r4
- lvx v17,off112,r3
- VPERM(v15,v15,v17,byteswap)
- VPMSUMW(v15,v15,v17)
-
-.Lv15: vxor v19,v19,v15
-.Lv14: vxor v20,v20,v14
-.Lv13: vxor v19,v19,v13
-.Lv12: vxor v20,v20,v12
-.Lv11: vxor v19,v19,v11
-.Lv10: vxor v20,v20,v10
-.Lv9: vxor v19,v19,v9
-.Lv8: vxor v20,v20,v8
-.Lv7: vxor v19,v19,v7
-.Lv6: vxor v20,v20,v6
-.Lv5: vxor v19,v19,v5
-.Lv4: vxor v20,v20,v4
-.Lv3: vxor v19,v19,v3
-.Lv2: vxor v20,v20,v2
-.Lv1: vxor v19,v19,v1
-.Lv0: vxor v20,v20,v0
-
- vxor v0,v19,v20
-
- b .Lbarrett_reduction
-
-.Lzero:
- mr r3,r10
- b .Lout
-
-FUNC_END(CRC_FUNCTION_NAME)
+++ /dev/null
-/* SPDX-License-Identifier: GPL-2.0-or-later */
-/*
- * Calculate a crc32c with vpmsum acceleration
- *
- * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
- */
- .section .rodata
-.balign 16
-
-.byteswap_constant:
- /* byte reverse permute constant */
- .octa 0x0F0E0D0C0B0A09080706050403020100
-
-.constants:
-
- /* Reduce 262144 kbits to 1024 bits */
- /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
- .octa 0x00000000b6ca9e20000000009c37c408
-
- /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
- .octa 0x00000000350249a800000001b51df26c
-
- /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
- .octa 0x00000001862dac54000000000724b9d0
-
- /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
- .octa 0x00000001d87fb48c00000001c00532fe
-
- /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
- .octa 0x00000001f39b699e00000000f05a9362
-
- /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
- .octa 0x0000000101da11b400000001e1007970
-
- /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
- .octa 0x00000001cab571e000000000a57366ee
-
- /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
- .octa 0x00000000c7020cfe0000000192011284
-
- /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
- .octa 0x00000000cdaed1ae0000000162716d9a
-
- /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
- .octa 0x00000001e804effc00000000cd97ecde
-
- /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
- .octa 0x0000000077c3ea3a0000000058812bc0
-
- /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
- .octa 0x0000000068df31b40000000088b8c12e
-
- /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
- .octa 0x00000000b059b6c200000001230b234c
-
- /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
- .octa 0x0000000145fb8ed800000001120b416e
-
- /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
- .octa 0x00000000cbc0916800000001974aecb0
-
- /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
- .octa 0x000000005ceeedc2000000008ee3f226
-
- /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
- .octa 0x0000000047d74e8600000001089aba9a
-
- /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
- .octa 0x00000001407e9e220000000065113872
-
- /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
- .octa 0x00000001da967bda000000005c07ec10
-
- /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
- .octa 0x000000006c8983680000000187590924
-
- /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
- .octa 0x00000000f2d14c9800000000e35da7c6
-
- /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
- .octa 0x00000001993c6ad4000000000415855a
-
- /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
- .octa 0x000000014683d1ac0000000073617758
-
- /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
- .octa 0x00000001a7c93e6c0000000176021d28
-
- /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
- .octa 0x000000010211e90a00000001c358fd0a
-
- /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
- .octa 0x000000001119403e00000001ff7a2c18
-
- /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
- .octa 0x000000001c3261aa00000000f2d9f7e4
-
- /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
- .octa 0x000000014e37a634000000016cf1f9c8
-
- /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
- .octa 0x0000000073786c0c000000010af9279a
-
- /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
- .octa 0x000000011dc037f80000000004f101e8
-
- /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
- .octa 0x0000000031433dfc0000000070bcf184
-
- /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
- .octa 0x000000009cde8348000000000a8de642
-
- /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
- .octa 0x0000000038d3c2a60000000062ea130c
-
- /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
- .octa 0x000000011b25f26000000001eb31cbb2
-
- /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
- .octa 0x000000001629e6f00000000170783448
-
- /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
- .octa 0x0000000160838b4c00000001a684b4c6
-
- /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
- .octa 0x000000007a44011c00000000253ca5b4
-
- /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
- .octa 0x00000000226f417a0000000057b4b1e2
-
- /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
- .octa 0x0000000045eb2eb400000000b6bd084c
-
- /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
- .octa 0x000000014459d70c0000000123c2d592
-
- /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
- .octa 0x00000001d406ed8200000000159dafce
-
- /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
- .octa 0x0000000160c8e1a80000000127e1a64e
-
- /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
- .octa 0x0000000027ba80980000000056860754
-
- /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
- .octa 0x000000006d92d01800000001e661aae8
-
- /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
- .octa 0x000000012ed7e3f200000000f82c6166
-
- /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
- .octa 0x000000002dc8778800000000c4f9c7ae
-
- /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
- .octa 0x0000000018240bb80000000074203d20
-
- /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
- .octa 0x000000001ad381580000000198173052
-
- /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
- .octa 0x00000001396b78f200000001ce8aba54
-
- /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
- .octa 0x000000011a68133400000001850d5d94
-
- /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
- .octa 0x000000012104732e00000001d609239c
-
- /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
- .octa 0x00000000a140d90c000000001595f048
-
- /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
- .octa 0x00000001b7215eda0000000042ccee08
-
- /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
- .octa 0x00000001aaf1df3c000000010a389d74
-
- /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
- .octa 0x0000000029d15b8a000000012a840da6
-
- /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
- .octa 0x00000000f1a96922000000001d181c0c
-
- /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
- .octa 0x00000001ac80d03c0000000068b7d1f6
-
- /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
- .octa 0x000000000f11d56a000000005b0f14fc
-
- /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
- .octa 0x00000001f1c022a20000000179e9e730
-
- /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
- .octa 0x0000000173d00ae200000001ce1368d6
-
- /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
- .octa 0x00000001d4ffe4ac0000000112c3a84c
-
- /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
- .octa 0x000000016edc5ae400000000de940fee
-
- /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
- .octa 0x00000001f1a0214000000000fe896b7e
-
- /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
- .octa 0x00000000ca0b28a000000001f797431c
-
- /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
- .octa 0x00000001928e30a20000000053e989ba
-
- /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
- .octa 0x0000000097b1b002000000003920cd16
-
- /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
- .octa 0x00000000b15bf90600000001e6f579b8
-
- /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
- .octa 0x00000000411c5d52000000007493cb0a
-
- /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
- .octa 0x00000001c36f330000000001bdd376d8
-
- /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
- .octa 0x00000001119227e0000000016badfee6
-
- /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
- .octa 0x00000000114d47020000000071de5c58
-
- /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
- .octa 0x00000000458b5b9800000000453f317c
-
- /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
- .octa 0x000000012e31fb8e0000000121675cce
-
- /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
- .octa 0x000000005cf619d800000001f409ee92
-
- /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
- .octa 0x0000000063f4d8b200000000f36b9c88
-
- /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
- .octa 0x000000004138dc8a0000000036b398f4
-
- /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
- .octa 0x00000001d29ee8e000000001748f9adc
-
- /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
- .octa 0x000000006a08ace800000001be94ec00
-
- /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
- .octa 0x0000000127d4201000000000b74370d6
-
- /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
- .octa 0x0000000019d76b6200000001174d0b98
-
- /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
- .octa 0x00000001b1471f6e00000000befc06a4
-
- /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
- .octa 0x00000001f64c19cc00000001ae125288
-
- /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
- .octa 0x00000000003c0ea00000000095c19b34
-
- /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
- .octa 0x000000014d73abf600000001a78496f2
-
- /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
- .octa 0x00000001620eb84400000001ac5390a0
-
- /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
- .octa 0x0000000147655048000000002a80ed6e
-
- /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
- .octa 0x0000000067b5077e00000001fa9b0128
-
- /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
- .octa 0x0000000010ffe20600000001ea94929e
-
- /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
- .octa 0x000000000fee8f1e0000000125f4305c
-
- /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
- .octa 0x00000001da26fbae00000001471e2002
-
- /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
- .octa 0x00000001b3a8bd880000000132d2253a
-
- /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
- .octa 0x00000000e8f3898e00000000f26b3592
-
- /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
- .octa 0x00000000b0d0d28c00000000bc8b67b0
-
- /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
- .octa 0x0000000030f2a798000000013a826ef2
-
- /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
- .octa 0x000000000fba10020000000081482c84
-
- /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
- .octa 0x00000000bdb9bd7200000000e77307c2
-
- /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
- .octa 0x0000000075d3bf5a00000000d4a07ec8
-
- /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
- .octa 0x00000000ef1f98a00000000017102100
-
- /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
- .octa 0x00000000689c760200000000db406486
-
- /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
- .octa 0x000000016d5fa5fe0000000192db7f88
-
- /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
- .octa 0x00000001d0d2b9ca000000018bf67b1e
-
- /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
- .octa 0x0000000041e7b470000000007c09163e
-
- /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
- .octa 0x00000001cbb6495e000000000adac060
-
- /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
- .octa 0x000000010052a0b000000000bd8316ae
-
- /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
- .octa 0x00000001d8effb5c000000019f09ab54
-
- /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
- .octa 0x00000001d969853c0000000125155542
-
- /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
- .octa 0x00000000523ccce2000000018fdb5882
-
- /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
- .octa 0x000000001e2436bc00000000e794b3f4
-
- /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
- .octa 0x00000000ddd1c3a2000000016f9bb022
-
- /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
- .octa 0x0000000019fcfe3800000000290c9978
-
- /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
- .octa 0x00000001ce95db640000000083c0f350
-
- /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
- .octa 0x00000000af5828060000000173ea6628
-
- /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
- .octa 0x00000001006388f600000001c8b4e00a
-
- /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
- .octa 0x0000000179eca00a00000000de95d6aa
-
- /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
- .octa 0x0000000122410a6a000000010b7f7248
-
- /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
- .octa 0x000000004288e87c00000001326e3a06
-
- /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
- .octa 0x000000016c5490da00000000bb62c2e6
-
- /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
- .octa 0x00000000d1c71f6e0000000156a4b2c2
-
- /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
- .octa 0x00000001b4ce08a6000000011dfe763a
-
- /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
- .octa 0x00000001466ba60c000000007bcca8e2
-
- /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
- .octa 0x00000001f6c488a40000000186118faa
-
- /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
- .octa 0x000000013bfb06820000000111a65a88
-
- /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
- .octa 0x00000000690e9e54000000003565e1c4
-
- /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
- .octa 0x00000000281346b6000000012ed02a82
-
- /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
- .octa 0x000000015646402400000000c486ecfc
-
- /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
- .octa 0x000000016063a8dc0000000001b951b2
-
- /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
- .octa 0x0000000116a663620000000048143916
-
- /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
- .octa 0x000000017e8aa4d200000001dc2ae124
-
- /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
- .octa 0x00000001728eb10c00000001416c58d6
-
- /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
- .octa 0x00000001b08fd7fa00000000a479744a
-
- /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
- .octa 0x00000001092a16e80000000096ca3a26
-
- /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
- .octa 0x00000000a505637c00000000ff223d4e
-
- /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
- .octa 0x00000000d94869b2000000010e84da42
-
- /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
- .octa 0x00000001c8b203ae00000001b61ba3d0
-
- /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
- .octa 0x000000005704aea000000000680f2de8
-
- /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
- .octa 0x000000012e295fa2000000008772a9a8
-
- /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
- .octa 0x000000011d0908bc0000000155f295bc
-
- /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
- .octa 0x0000000193ed97ea00000000595f9282
-
- /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
- .octa 0x000000013a0f1c520000000164b1c25a
-
- /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
- .octa 0x000000010c2c40c000000000fbd67c50
-
- /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
- .octa 0x00000000ff6fac3e0000000096076268
-
- /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
- .octa 0x000000017b3609c000000001d288e4cc
-
- /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
- .octa 0x0000000088c8c92200000001eaac1bdc
-
- /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
- .octa 0x00000001751baae600000001f1ea39e2
-
- /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
- .octa 0x000000010795297200000001eb6506fc
-
- /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
- .octa 0x0000000162b00abe000000010f806ffe
-
- /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
- .octa 0x000000000d7b404c000000010408481e
-
- /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
- .octa 0x00000000763b13d40000000188260534
-
- /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
- .octa 0x00000000f6dc22d80000000058fc73e0
-
- /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
- .octa 0x000000007daae06000000000391c59b8
-
- /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
- .octa 0x000000013359ab7c000000018b638400
-
- /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
- .octa 0x000000008add438a000000011738f5c4
-
- /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
- .octa 0x00000001edbefdea000000008cf7c6da
-
- /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
- .octa 0x000000004104e0f800000001ef97fb16
-
- /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
- .octa 0x00000000b48a82220000000102130e20
-
- /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
- .octa 0x00000001bcb4684400000000db968898
-
- /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
- .octa 0x000000013293ce0a00000000b5047b5e
-
- /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
- .octa 0x00000001710d0844000000010b90fdb2
-
- /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
- .octa 0x0000000117907f6e000000004834a32e
-
- /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
- .octa 0x0000000087ddf93e0000000059c8f2b0
-
- /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
- .octa 0x000000005970e9b00000000122cec508
-
- /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
- .octa 0x0000000185b2b7d0000000000a330cda
-
- /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
- .octa 0x00000001dcee0efc000000014a47148c
-
- /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
- .octa 0x0000000030da27220000000042c61cb8
-
- /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
- .octa 0x000000012f925a180000000012fe6960
-
- /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
- .octa 0x00000000dd2e357c00000000dbda2c20
-
- /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
- .octa 0x00000000071c80de000000011122410c
-
- /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
- .octa 0x000000011513140a00000000977b2070
-
- /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
- .octa 0x00000001df876e8e000000014050438e
-
- /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
- .octa 0x000000015f81d6ce0000000147c840e8
-
- /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
- .octa 0x000000019dd94dbe00000001cc7c88ce
-
- /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
- .octa 0x00000001373d206e00000001476b35a4
-
- /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
- .octa 0x00000000668ccade000000013d52d508
-
- /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
- .octa 0x00000001b192d268000000008e4be32e
-
- /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
- .octa 0x00000000e30f3a7800000000024120fe
-
- /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
- .octa 0x000000010ef1f7bc00000000ddecddb4
-
- /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
- .octa 0x00000001f5ac738000000000d4d403bc
-
- /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
- .octa 0x000000011822ea7000000001734b89aa
-
- /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
- .octa 0x00000000c3a33848000000010e7a58d6
-
- /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
- .octa 0x00000001bd151c2400000001f9f04e9c
-
- /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
- .octa 0x0000000056002d7600000000b692225e
-
- /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
- .octa 0x000000014657c4f4000000019b8d3f3e
-
- /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
- .octa 0x0000000113742d7c00000001a874f11e
-
- /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
- .octa 0x000000019c5920ba000000010d5a4254
-
- /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
- .octa 0x000000005216d2d600000000bbb2f5d6
-
- /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
- .octa 0x0000000136f5ad8a0000000179cc0e36
-
- /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
- .octa 0x000000018b07beb600000001dca1da4a
-
- /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
- .octa 0x00000000db1e93b000000000feb1a192
-
- /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
- .octa 0x000000000b96fa3a00000000d1eeedd6
-
- /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
- .octa 0x00000001d9968af0000000008fad9bb4
-
- /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
- .octa 0x000000000e4a77a200000001884938e4
-
- /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
- .octa 0x00000000508c2ac800000001bc2e9bc0
-
- /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
- .octa 0x0000000021572a8000000001f9658a68
-
- /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
- .octa 0x00000001b859daf2000000001b9224fc
-
- /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
- .octa 0x000000016f7884740000000055b2fb84
-
- /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
- .octa 0x00000001b438810e000000018b090348
-
- /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
- .octa 0x0000000095ddc6f2000000011ccbd5ea
-
- /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
- .octa 0x00000001d977c20c0000000007ae47f8
-
- /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
- .octa 0x00000000ebedb99a0000000172acbec0
-
- /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
- .octa 0x00000001df9e9e9200000001c6e3ff20
-
- /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
- .octa 0x00000001a4a3f95200000000e1b38744
-
- /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
- .octa 0x00000000e2f5122000000000791585b2
-
- /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
- .octa 0x000000004aa01f3e00000000ac53b894
-
- /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
- .octa 0x00000000b3e90a5800000001ed5f2cf4
-
- /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
- .octa 0x000000000c9ca2aa00000001df48b2e0
-
- /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
- .octa 0x000000015168231600000000049c1c62
-
- /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
- .octa 0x0000000036fce78c000000017c460c12
-
- /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
- .octa 0x000000009037dc10000000015be4da7e
-
- /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
- .octa 0x00000000d3298582000000010f38f668
-
- /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
- .octa 0x00000001b42e8ad60000000039f40a00
-
- /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
- .octa 0x00000000142a983800000000bd4c10c4
-
- /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
- .octa 0x0000000109c7f1900000000042db1d98
-
- /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
- .octa 0x0000000056ff931000000001c905bae6
-
- /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
- .octa 0x00000001594513aa00000000069d40ea
-
- /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
- .octa 0x00000001e3b5b1e8000000008e4fbad0
-
- /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
- .octa 0x000000011dd5fc080000000047bedd46
-
- /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
- .octa 0x00000001675f0cc20000000026396bf8
-
- /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
- .octa 0x00000000d1c8dd4400000000379beb92
-
- /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
- .octa 0x0000000115ebd3d8000000000abae54a
-
- /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
- .octa 0x00000001ecbd0dac0000000007e6a128
-
- /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
- .octa 0x00000000cdf67af2000000000ade29d2
-
- /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
- .octa 0x000000004c01ff4c00000000f974c45c
-
- /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
- .octa 0x00000000f2d8657e00000000e77ac60a
-
- /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
- .octa 0x000000006bae74c40000000145895816
-
- /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
- .octa 0x0000000152af8aa00000000038e362be
-
- /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
- .octa 0x0000000004663802000000007f991a64
-
- /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
- .octa 0x00000001ab2f5afc00000000fa366d3a
-
- /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
- .octa 0x0000000074a4ebd400000001a2bb34f0
-
- /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
- .octa 0x00000001d7ab3a4c0000000028a9981e
-
- /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
- .octa 0x00000001a8da60c600000001dbc672be
-
- /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
- .octa 0x000000013cf6382000000000b04d77f6
-
- /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
- .octa 0x00000000bec12e1e0000000124400d96
-
- /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
- .octa 0x00000001c6368010000000014ca4b414
-
- /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
- .octa 0x00000001e6e78758000000012fe2c938
-
- /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
- .octa 0x000000008d7f2b3c00000001faed01e6
-
- /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
- .octa 0x000000016b4a156e000000007e80ecfe
-
- /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
- .octa 0x00000001c63cfeb60000000098daee94
-
- /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
- .octa 0x000000015f902670000000010a04edea
-
- /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
- .octa 0x00000001cd5de11e00000001c00b4524
-
- /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
- .octa 0x000000001acaec540000000170296550
-
- /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
- .octa 0x000000002bd0ca780000000181afaa48
-
- /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
- .octa 0x0000000032d63d5c0000000185a31ffa
-
- /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
- .octa 0x000000001c6d4e4c000000002469f608
-
- /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
- .octa 0x0000000106a60b92000000006980102a
-
- /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
- .octa 0x00000000d3855e120000000111ea9ca8
-
- /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
- .octa 0x00000000e312563600000001bd1d29ce
-
- /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
- .octa 0x000000009e8f7ea400000001b34b9580
-
- /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
- .octa 0x00000001c82e562c000000003076054e
-
- /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
- .octa 0x00000000ca9f09ce000000012a608ea4
-
- /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
- .octa 0x00000000c63764e600000000784d05fe
-
- /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
- .octa 0x0000000168d2e49e000000016ef0d82a
-
- /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
- .octa 0x00000000e986c1480000000075bda454
-
- /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
- .octa 0x00000000cfb65894000000003dc0a1c4
-
- /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
- .octa 0x0000000111cadee400000000e9a5d8be
-
- /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
- .octa 0x0000000171fb63ce00000001609bc4b4
-
-.short_constants:
-
- /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
- /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
- .octa 0x7fec2963e5bf80485cf015c388e56f72
-
- /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
- .octa 0x38e888d4844752a9963a18920246e2e6
-
- /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
- .octa 0x42316c00730206ad419a441956993a31
-
- /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
- .octa 0x543d5c543e65ddf9924752ba2b830011
-
- /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
- .octa 0x78e87aaf56767c9255bd7f9518e4a304
-
- /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
- .octa 0x8f68fcec1903da7f6d76739fe0553f1e
-
- /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
- .octa 0x3f4840246791d588c133722b1fe0b5c3
-
- /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
- .octa 0x34c96751b04de25a64b67ee0e55ef1f3
-
- /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
- .octa 0x156c8e180b4a395b069db049b8fdb1e7
-
- /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
- .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
-
- /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
- .octa 0x041d37768cd75659817cdc5119b29a35
-
- /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
- .octa 0x3a0777818cfaa9651ce9d94b36c41f1c
-
- /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
- .octa 0x0e148e8252377a554f256efcb82be955
-
- /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
- .octa 0x9c25531d19e65ddeec1631edb2dea967
-
- /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
- .octa 0x790606ff9957c0a65d27e147510ac59a
-
- /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
- .octa 0x82f63b786ea2d55ca66805eb18b8ea18
-
-
-.barrett_constants:
- /* 33 bit reflected Barrett constant m - (4^32)/n */
- .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
- /* 33 bit reflected Barrett constant n */
- .octa 0x00000000000000000000000105ec76f1
-
-#define CRC_FUNCTION_NAME __crc32c_vpmsum
-#define REFLECT
-#include "crc32-vpmsum_core.S"
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0-only
-#include <linux/crc32.h>
-#include <crypto/internal/hash.h>
-#include <crypto/internal/simd.h>
-#include <linux/init.h>
-#include <linux/module.h>
-#include <linux/string.h>
-#include <linux/kernel.h>
-#include <linux/cpufeature.h>
-#include <asm/simd.h>
-#include <asm/switch_to.h>
-
-#define CHKSUM_BLOCK_SIZE 1
-#define CHKSUM_DIGEST_SIZE 4
-
-#define VMX_ALIGN 16
-#define VMX_ALIGN_MASK (VMX_ALIGN-1)
-
-#define VECTOR_BREAKPOINT 512
-
-u32 __crc32c_vpmsum(u32 crc, unsigned char const *p, size_t len);
-
-static u32 crc32c_vpmsum(u32 crc, unsigned char const *p, size_t len)
-{
- unsigned int prealign;
- unsigned int tail;
-
- if (len < (VECTOR_BREAKPOINT + VMX_ALIGN) || !crypto_simd_usable())
- return __crc32c_le(crc, p, len);
-
- if ((unsigned long)p & VMX_ALIGN_MASK) {
- prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
- crc = __crc32c_le(crc, p, prealign);
- len -= prealign;
- p += prealign;
- }
-
- if (len & ~VMX_ALIGN_MASK) {
- preempt_disable();
- pagefault_disable();
- enable_kernel_altivec();
- crc = __crc32c_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
- disable_kernel_altivec();
- pagefault_enable();
- preempt_enable();
- }
-
- tail = len & VMX_ALIGN_MASK;
- if (tail) {
- p += len & ~VMX_ALIGN_MASK;
- crc = __crc32c_le(crc, p, tail);
- }
-
- return crc;
-}
-
-static int crc32c_vpmsum_cra_init(struct crypto_tfm *tfm)
-{
- u32 *key = crypto_tfm_ctx(tfm);
-
- *key = ~0;
-
- return 0;
-}
-
-/*
- * Setting the seed allows arbitrary accumulators and flexible XOR policy
- * If your algorithm starts with ~0, then XOR with ~0 before you set
- * the seed.
- */
-static int crc32c_vpmsum_setkey(struct crypto_shash *hash, const u8 *key,
- unsigned int keylen)
-{
- u32 *mctx = crypto_shash_ctx(hash);
-
- if (keylen != sizeof(u32))
- return -EINVAL;
- *mctx = le32_to_cpup((__le32 *)key);
- return 0;
-}
-
-static int crc32c_vpmsum_init(struct shash_desc *desc)
-{
- u32 *mctx = crypto_shash_ctx(desc->tfm);
- u32 *crcp = shash_desc_ctx(desc);
-
- *crcp = *mctx;
-
- return 0;
-}
-
-static int crc32c_vpmsum_update(struct shash_desc *desc, const u8 *data,
- unsigned int len)
-{
- u32 *crcp = shash_desc_ctx(desc);
-
- *crcp = crc32c_vpmsum(*crcp, data, len);
-
- return 0;
-}
-
-static int __crc32c_vpmsum_finup(u32 *crcp, const u8 *data, unsigned int len,
- u8 *out)
-{
- *(__le32 *)out = ~cpu_to_le32(crc32c_vpmsum(*crcp, data, len));
-
- return 0;
-}
-
-static int crc32c_vpmsum_finup(struct shash_desc *desc, const u8 *data,
- unsigned int len, u8 *out)
-{
- return __crc32c_vpmsum_finup(shash_desc_ctx(desc), data, len, out);
-}
-
-static int crc32c_vpmsum_final(struct shash_desc *desc, u8 *out)
-{
- u32 *crcp = shash_desc_ctx(desc);
-
- *(__le32 *)out = ~cpu_to_le32p(crcp);
-
- return 0;
-}
-
-static int crc32c_vpmsum_digest(struct shash_desc *desc, const u8 *data,
- unsigned int len, u8 *out)
-{
- return __crc32c_vpmsum_finup(crypto_shash_ctx(desc->tfm), data, len,
- out);
-}
-
-static struct shash_alg alg = {
- .setkey = crc32c_vpmsum_setkey,
- .init = crc32c_vpmsum_init,
- .update = crc32c_vpmsum_update,
- .final = crc32c_vpmsum_final,
- .finup = crc32c_vpmsum_finup,
- .digest = crc32c_vpmsum_digest,
- .descsize = sizeof(u32),
- .digestsize = CHKSUM_DIGEST_SIZE,
- .base = {
- .cra_name = "crc32c",
- .cra_driver_name = "crc32c-vpmsum",
- .cra_priority = 200,
- .cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
- .cra_blocksize = CHKSUM_BLOCK_SIZE,
- .cra_ctxsize = sizeof(u32),
- .cra_module = THIS_MODULE,
- .cra_init = crc32c_vpmsum_cra_init,
- }
-};
-
-static int __init crc32c_vpmsum_mod_init(void)
-{
- if (!cpu_has_feature(CPU_FTR_ARCH_207S))
- return -ENODEV;
-
- return crypto_register_shash(&alg);
-}
-
-static void __exit crc32c_vpmsum_mod_fini(void)
-{
- crypto_unregister_shash(&alg);
-}
-
-module_cpu_feature_match(PPC_MODULE_FEATURE_VEC_CRYPTO, crc32c_vpmsum_mod_init);
-module_exit(crc32c_vpmsum_mod_fini);
-
-MODULE_AUTHOR("Anton Blanchard <anton@samba.org>");
-MODULE_DESCRIPTION("CRC32C using vector polynomial multiply-sum instructions");
-MODULE_LICENSE("GPL");
-MODULE_ALIAS_CRYPTO("crc32c");
-MODULE_ALIAS_CRYPTO("crc32c-vpmsum");
.octa 0x0000000000000000000000018bb70000
#define CRC_FUNCTION_NAME __crct10dif_vpmsum
-#include "crc32-vpmsum_core.S"
+#include "../lib/crc32-vpmsum_core.S"
# Enable <altivec.h>
CFLAGS_xor_vmx.o += -isystem $(shell $(CC) -print-file-name=include)
+obj-$(CONFIG_CRC32_ARCH) += crc32-powerpc.o
+crc32-powerpc-y := crc32-glue.o crc32c-vpmsum_asm.o
+
obj-$(CONFIG_PPC64) += $(obj64-y)
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/crc32.h>
+#include <crypto/internal/simd.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/cpufeature.h>
+#include <asm/simd.h>
+#include <asm/switch_to.h>
+
+#define VMX_ALIGN 16
+#define VMX_ALIGN_MASK (VMX_ALIGN-1)
+
+#define VECTOR_BREAKPOINT 512
+
+static DEFINE_STATIC_KEY_FALSE(have_vec_crypto);
+
+u32 __crc32c_vpmsum(u32 crc, const u8 *p, size_t len);
+
+u32 crc32_le_arch(u32 crc, const u8 *p, size_t len)
+{
+ return crc32_le_base(crc, p, len);
+}
+EXPORT_SYMBOL(crc32_le_arch);
+
+u32 crc32c_le_arch(u32 crc, const u8 *p, size_t len)
+{
+ unsigned int prealign;
+ unsigned int tail;
+
+ if (len < (VECTOR_BREAKPOINT + VMX_ALIGN) ||
+ !static_branch_likely(&have_vec_crypto) || !crypto_simd_usable())
+ return crc32c_le_base(crc, p, len);
+
+ if ((unsigned long)p & VMX_ALIGN_MASK) {
+ prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
+ crc = crc32c_le_base(crc, p, prealign);
+ len -= prealign;
+ p += prealign;
+ }
+
+ if (len & ~VMX_ALIGN_MASK) {
+ preempt_disable();
+ pagefault_disable();
+ enable_kernel_altivec();
+ crc = __crc32c_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
+ disable_kernel_altivec();
+ pagefault_enable();
+ preempt_enable();
+ }
+
+ tail = len & VMX_ALIGN_MASK;
+ if (tail) {
+ p += len & ~VMX_ALIGN_MASK;
+ crc = crc32c_le_base(crc, p, tail);
+ }
+
+ return crc;
+}
+EXPORT_SYMBOL(crc32c_le_arch);
+
+u32 crc32_be_arch(u32 crc, const u8 *p, size_t len)
+{
+ return crc32_be_base(crc, p, len);
+}
+EXPORT_SYMBOL(crc32_be_arch);
+
+static int __init crc32_powerpc_init(void)
+{
+ if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
+ (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_VEC_CRYPTO))
+ static_branch_enable(&have_vec_crypto);
+ return 0;
+}
+arch_initcall(crc32_powerpc_init);
+
+static void __exit crc32_powerpc_exit(void)
+{
+}
+module_exit(crc32_powerpc_exit);
+
+u32 crc32_optimizations(void)
+{
+ if (static_key_enabled(&have_vec_crypto))
+ return CRC32C_OPTIMIZATION;
+ return 0;
+}
+EXPORT_SYMBOL(crc32_optimizations);
+
+MODULE_AUTHOR("Anton Blanchard <anton@samba.org>");
+MODULE_DESCRIPTION("CRC32C using vector polynomial multiply-sum instructions");
+MODULE_LICENSE("GPL");
--- /dev/null
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Core of the accelerated CRC algorithm.
+ * In your file, define the constants and CRC_FUNCTION_NAME
+ * Then include this file.
+ *
+ * Calculate the checksum of data that is 16 byte aligned and a multiple of
+ * 16 bytes.
+ *
+ * The first step is to reduce it to 1024 bits. We do this in 8 parallel
+ * chunks in order to mask the latency of the vpmsum instructions. If we
+ * have more than 32 kB of data to checksum we repeat this step multiple
+ * times, passing in the previous 1024 bits.
+ *
+ * The next step is to reduce the 1024 bits to 64 bits. This step adds
+ * 32 bits of 0s to the end - this matches what a CRC does. We just
+ * calculate constants that land the data in this 32 bits.
+ *
+ * We then use fixed point Barrett reduction to compute a mod n over GF(2)
+ * for n = CRC using POWER8 instructions. We use x = 32.
+ *
+ * https://en.wikipedia.org/wiki/Barrett_reduction
+ *
+ * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
+*/
+
+#include <asm/ppc_asm.h>
+#include <asm/ppc-opcode.h>
+
+#define MAX_SIZE 32768
+
+ .text
+
+#if defined(__BIG_ENDIAN__) && defined(REFLECT)
+#define BYTESWAP_DATA
+#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
+#define BYTESWAP_DATA
+#else
+#undef BYTESWAP_DATA
+#endif
+
+#define off16 r25
+#define off32 r26
+#define off48 r27
+#define off64 r28
+#define off80 r29
+#define off96 r30
+#define off112 r31
+
+#define const1 v24
+#define const2 v25
+
+#define byteswap v26
+#define mask_32bit v27
+#define mask_64bit v28
+#define zeroes v29
+
+#ifdef BYTESWAP_DATA
+#define VPERM(A, B, C, D) vperm A, B, C, D
+#else
+#define VPERM(A, B, C, D)
+#endif
+
+/* unsigned int CRC_FUNCTION_NAME(unsigned int crc, void *p, unsigned long len) */
+FUNC_START(CRC_FUNCTION_NAME)
+ std r31,-8(r1)
+ std r30,-16(r1)
+ std r29,-24(r1)
+ std r28,-32(r1)
+ std r27,-40(r1)
+ std r26,-48(r1)
+ std r25,-56(r1)
+
+ li off16,16
+ li off32,32
+ li off48,48
+ li off64,64
+ li off80,80
+ li off96,96
+ li off112,112
+ li r0,0
+
+ /* Enough room for saving 10 non volatile VMX registers */
+ subi r6,r1,56+10*16
+ subi r7,r1,56+2*16
+
+ stvx v20,0,r6
+ stvx v21,off16,r6
+ stvx v22,off32,r6
+ stvx v23,off48,r6
+ stvx v24,off64,r6
+ stvx v25,off80,r6
+ stvx v26,off96,r6
+ stvx v27,off112,r6
+ stvx v28,0,r7
+ stvx v29,off16,r7
+
+ mr r10,r3
+
+ vxor zeroes,zeroes,zeroes
+ vspltisw v0,-1
+
+ vsldoi mask_32bit,zeroes,v0,4
+ vsldoi mask_64bit,zeroes,v0,8
+
+ /* Get the initial value into v8 */
+ vxor v8,v8,v8
+ MTVRD(v8, R3)
+#ifdef REFLECT
+ vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
+#else
+ vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */
+#endif
+
+#ifdef BYTESWAP_DATA
+ LOAD_REG_ADDR(r3, .byteswap_constant)
+ lvx byteswap,0,r3
+ addi r3,r3,16
+#endif
+
+ cmpdi r5,256
+ blt .Lshort
+
+ rldicr r6,r5,0,56
+
+ /* Checksum in blocks of MAX_SIZE */
+1: lis r7,MAX_SIZE@h
+ ori r7,r7,MAX_SIZE@l
+ mr r9,r7
+ cmpd r6,r7
+ bgt 2f
+ mr r7,r6
+2: subf r6,r7,r6
+
+ /* our main loop does 128 bytes at a time */
+ srdi r7,r7,7
+
+ /*
+ * Work out the offset into the constants table to start at. Each
+ * constant is 16 bytes, and it is used against 128 bytes of input
+ * data - 128 / 16 = 8
+ */
+ sldi r8,r7,4
+ srdi r9,r9,3
+ subf r8,r8,r9
+
+ /* We reduce our final 128 bytes in a separate step */
+ addi r7,r7,-1
+ mtctr r7
+
+ LOAD_REG_ADDR(r3, .constants)
+
+ /* Find the start of our constants */
+ add r3,r3,r8
+
+ /* zero v0-v7 which will contain our checksums */
+ vxor v0,v0,v0
+ vxor v1,v1,v1
+ vxor v2,v2,v2
+ vxor v3,v3,v3
+ vxor v4,v4,v4
+ vxor v5,v5,v5
+ vxor v6,v6,v6
+ vxor v7,v7,v7
+
+ lvx const1,0,r3
+
+ /*
+ * If we are looping back to consume more data we use the values
+ * already in v16-v23.
+ */
+ cmpdi r0,1
+ beq 2f
+
+ /* First warm up pass */
+ lvx v16,0,r4
+ lvx v17,off16,r4
+ VPERM(v16,v16,v16,byteswap)
+ VPERM(v17,v17,v17,byteswap)
+ lvx v18,off32,r4
+ lvx v19,off48,r4
+ VPERM(v18,v18,v18,byteswap)
+ VPERM(v19,v19,v19,byteswap)
+ lvx v20,off64,r4
+ lvx v21,off80,r4
+ VPERM(v20,v20,v20,byteswap)
+ VPERM(v21,v21,v21,byteswap)
+ lvx v22,off96,r4
+ lvx v23,off112,r4
+ VPERM(v22,v22,v22,byteswap)
+ VPERM(v23,v23,v23,byteswap)
+ addi r4,r4,8*16
+
+ /* xor in initial value */
+ vxor v16,v16,v8
+
+2: bdz .Lfirst_warm_up_done
+
+ addi r3,r3,16
+ lvx const2,0,r3
+
+ /* Second warm up pass */
+ VPMSUMD(v8,v16,const1)
+ lvx v16,0,r4
+ VPERM(v16,v16,v16,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v9,v17,const1)
+ lvx v17,off16,r4
+ VPERM(v17,v17,v17,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v10,v18,const1)
+ lvx v18,off32,r4
+ VPERM(v18,v18,v18,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v11,v19,const1)
+ lvx v19,off48,r4
+ VPERM(v19,v19,v19,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v12,v20,const1)
+ lvx v20,off64,r4
+ VPERM(v20,v20,v20,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v13,v21,const1)
+ lvx v21,off80,r4
+ VPERM(v21,v21,v21,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v14,v22,const1)
+ lvx v22,off96,r4
+ VPERM(v22,v22,v22,byteswap)
+ ori r2,r2,0
+
+ VPMSUMD(v15,v23,const1)
+ lvx v23,off112,r4
+ VPERM(v23,v23,v23,byteswap)
+
+ addi r4,r4,8*16
+
+ bdz .Lfirst_cool_down
+
+ /*
+ * main loop. We modulo schedule it such that it takes three iterations
+ * to complete - first iteration load, second iteration vpmsum, third
+ * iteration xor.
+ */
+ .balign 16
+4: lvx const1,0,r3
+ addi r3,r3,16
+ ori r2,r2,0
+
+ vxor v0,v0,v8
+ VPMSUMD(v8,v16,const2)
+ lvx v16,0,r4
+ VPERM(v16,v16,v16,byteswap)
+ ori r2,r2,0
+
+ vxor v1,v1,v9
+ VPMSUMD(v9,v17,const2)
+ lvx v17,off16,r4
+ VPERM(v17,v17,v17,byteswap)
+ ori r2,r2,0
+
+ vxor v2,v2,v10
+ VPMSUMD(v10,v18,const2)
+ lvx v18,off32,r4
+ VPERM(v18,v18,v18,byteswap)
+ ori r2,r2,0
+
+ vxor v3,v3,v11
+ VPMSUMD(v11,v19,const2)
+ lvx v19,off48,r4
+ VPERM(v19,v19,v19,byteswap)
+ lvx const2,0,r3
+ ori r2,r2,0
+
+ vxor v4,v4,v12
+ VPMSUMD(v12,v20,const1)
+ lvx v20,off64,r4
+ VPERM(v20,v20,v20,byteswap)
+ ori r2,r2,0
+
+ vxor v5,v5,v13
+ VPMSUMD(v13,v21,const1)
+ lvx v21,off80,r4
+ VPERM(v21,v21,v21,byteswap)
+ ori r2,r2,0
+
+ vxor v6,v6,v14
+ VPMSUMD(v14,v22,const1)
+ lvx v22,off96,r4
+ VPERM(v22,v22,v22,byteswap)
+ ori r2,r2,0
+
+ vxor v7,v7,v15
+ VPMSUMD(v15,v23,const1)
+ lvx v23,off112,r4
+ VPERM(v23,v23,v23,byteswap)
+
+ addi r4,r4,8*16
+
+ bdnz 4b
+
+.Lfirst_cool_down:
+ /* First cool down pass */
+ lvx const1,0,r3
+ addi r3,r3,16
+
+ vxor v0,v0,v8
+ VPMSUMD(v8,v16,const1)
+ ori r2,r2,0
+
+ vxor v1,v1,v9
+ VPMSUMD(v9,v17,const1)
+ ori r2,r2,0
+
+ vxor v2,v2,v10
+ VPMSUMD(v10,v18,const1)
+ ori r2,r2,0
+
+ vxor v3,v3,v11
+ VPMSUMD(v11,v19,const1)
+ ori r2,r2,0
+
+ vxor v4,v4,v12
+ VPMSUMD(v12,v20,const1)
+ ori r2,r2,0
+
+ vxor v5,v5,v13
+ VPMSUMD(v13,v21,const1)
+ ori r2,r2,0
+
+ vxor v6,v6,v14
+ VPMSUMD(v14,v22,const1)
+ ori r2,r2,0
+
+ vxor v7,v7,v15
+ VPMSUMD(v15,v23,const1)
+ ori r2,r2,0
+
+.Lsecond_cool_down:
+ /* Second cool down pass */
+ vxor v0,v0,v8
+ vxor v1,v1,v9
+ vxor v2,v2,v10
+ vxor v3,v3,v11
+ vxor v4,v4,v12
+ vxor v5,v5,v13
+ vxor v6,v6,v14
+ vxor v7,v7,v15
+
+#ifdef REFLECT
+ /*
+ * vpmsumd produces a 96 bit result in the least significant bits
+ * of the register. Since we are bit reflected we have to shift it
+ * left 32 bits so it occupies the least significant bits in the
+ * bit reflected domain.
+ */
+ vsldoi v0,v0,zeroes,4
+ vsldoi v1,v1,zeroes,4
+ vsldoi v2,v2,zeroes,4
+ vsldoi v3,v3,zeroes,4
+ vsldoi v4,v4,zeroes,4
+ vsldoi v5,v5,zeroes,4
+ vsldoi v6,v6,zeroes,4
+ vsldoi v7,v7,zeroes,4
+#endif
+
+ /* xor with last 1024 bits */
+ lvx v8,0,r4
+ lvx v9,off16,r4
+ VPERM(v8,v8,v8,byteswap)
+ VPERM(v9,v9,v9,byteswap)
+ lvx v10,off32,r4
+ lvx v11,off48,r4
+ VPERM(v10,v10,v10,byteswap)
+ VPERM(v11,v11,v11,byteswap)
+ lvx v12,off64,r4
+ lvx v13,off80,r4
+ VPERM(v12,v12,v12,byteswap)
+ VPERM(v13,v13,v13,byteswap)
+ lvx v14,off96,r4
+ lvx v15,off112,r4
+ VPERM(v14,v14,v14,byteswap)
+ VPERM(v15,v15,v15,byteswap)
+
+ addi r4,r4,8*16
+
+ vxor v16,v0,v8
+ vxor v17,v1,v9
+ vxor v18,v2,v10
+ vxor v19,v3,v11
+ vxor v20,v4,v12
+ vxor v21,v5,v13
+ vxor v22,v6,v14
+ vxor v23,v7,v15
+
+ li r0,1
+ cmpdi r6,0
+ addi r6,r6,128
+ bne 1b
+
+ /* Work out how many bytes we have left */
+ andi. r5,r5,127
+
+ /* Calculate where in the constant table we need to start */
+ subfic r6,r5,128
+ add r3,r3,r6
+
+ /* How many 16 byte chunks are in the tail */
+ srdi r7,r5,4
+ mtctr r7
+
+ /*
+ * Reduce the previously calculated 1024 bits to 64 bits, shifting
+ * 32 bits to include the trailing 32 bits of zeros
+ */
+ lvx v0,0,r3
+ lvx v1,off16,r3
+ lvx v2,off32,r3
+ lvx v3,off48,r3
+ lvx v4,off64,r3
+ lvx v5,off80,r3
+ lvx v6,off96,r3
+ lvx v7,off112,r3
+ addi r3,r3,8*16
+
+ VPMSUMW(v0,v16,v0)
+ VPMSUMW(v1,v17,v1)
+ VPMSUMW(v2,v18,v2)
+ VPMSUMW(v3,v19,v3)
+ VPMSUMW(v4,v20,v4)
+ VPMSUMW(v5,v21,v5)
+ VPMSUMW(v6,v22,v6)
+ VPMSUMW(v7,v23,v7)
+
+ /* Now reduce the tail (0 - 112 bytes) */
+ cmpdi r7,0
+ beq 1f
+
+ lvx v16,0,r4
+ lvx v17,0,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+ bdz 1f
+
+ lvx v16,off16,r4
+ lvx v17,off16,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+ bdz 1f
+
+ lvx v16,off32,r4
+ lvx v17,off32,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+ bdz 1f
+
+ lvx v16,off48,r4
+ lvx v17,off48,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+ bdz 1f
+
+ lvx v16,off64,r4
+ lvx v17,off64,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+ bdz 1f
+
+ lvx v16,off80,r4
+ lvx v17,off80,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+ bdz 1f
+
+ lvx v16,off96,r4
+ lvx v17,off96,r3
+ VPERM(v16,v16,v16,byteswap)
+ VPMSUMW(v16,v16,v17)
+ vxor v0,v0,v16
+
+ /* Now xor all the parallel chunks together */
+1: vxor v0,v0,v1
+ vxor v2,v2,v3
+ vxor v4,v4,v5
+ vxor v6,v6,v7
+
+ vxor v0,v0,v2
+ vxor v4,v4,v6
+
+ vxor v0,v0,v4
+
+.Lbarrett_reduction:
+ /* Barrett constants */
+ LOAD_REG_ADDR(r3, .barrett_constants)
+
+ lvx const1,0,r3
+ lvx const2,off16,r3
+
+ vsldoi v1,v0,v0,8
+ vxor v0,v0,v1 /* xor two 64 bit results together */
+
+#ifdef REFLECT
+ /* shift left one bit */
+ vspltisb v1,1
+ vsl v0,v0,v1
+#endif
+
+ vand v0,v0,mask_64bit
+#ifndef REFLECT
+ /*
+ * Now for the Barrett reduction algorithm. The idea is to calculate q,
+ * the multiple of our polynomial that we need to subtract. By
+ * doing the computation 2x bits higher (ie 64 bits) and shifting the
+ * result back down 2x bits, we round down to the nearest multiple.
+ */
+ VPMSUMD(v1,v0,const1) /* ma */
+ vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */
+ VPMSUMD(v1,v1,const2) /* qn */
+ vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
+
+ /*
+ * Get the result into r3. We need to shift it left 8 bytes:
+ * V0 [ 0 1 2 X ]
+ * V0 [ 0 X 2 3 ]
+ */
+ vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */
+#else
+ /*
+ * The reflected version of Barrett reduction. Instead of bit
+ * reflecting our data (which is expensive to do), we bit reflect our
+ * constants and our algorithm, which means the intermediate data in
+ * our vector registers goes from 0-63 instead of 63-0. We can reflect
+ * the algorithm because we don't carry in mod 2 arithmetic.
+ */
+ vand v1,v0,mask_32bit /* bottom 32 bits of a */
+ VPMSUMD(v1,v1,const1) /* ma */
+ vand v1,v1,mask_32bit /* bottom 32bits of ma */
+ VPMSUMD(v1,v1,const2) /* qn */
+ vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
+
+ /*
+ * Since we are bit reflected, the result (ie the low 32 bits) is in
+ * the high 32 bits. We just need to shift it left 4 bytes
+ * V0 [ 0 1 X 3 ]
+ * V0 [ 0 X 2 3 ]
+ */
+ vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
+#endif
+
+ /* Get it into r3 */
+ MFVRD(R3, v0)
+
+.Lout:
+ subi r6,r1,56+10*16
+ subi r7,r1,56+2*16
+
+ lvx v20,0,r6
+ lvx v21,off16,r6
+ lvx v22,off32,r6
+ lvx v23,off48,r6
+ lvx v24,off64,r6
+ lvx v25,off80,r6
+ lvx v26,off96,r6
+ lvx v27,off112,r6
+ lvx v28,0,r7
+ lvx v29,off16,r7
+
+ ld r31,-8(r1)
+ ld r30,-16(r1)
+ ld r29,-24(r1)
+ ld r28,-32(r1)
+ ld r27,-40(r1)
+ ld r26,-48(r1)
+ ld r25,-56(r1)
+
+ blr
+
+.Lfirst_warm_up_done:
+ lvx const1,0,r3
+ addi r3,r3,16
+
+ VPMSUMD(v8,v16,const1)
+ VPMSUMD(v9,v17,const1)
+ VPMSUMD(v10,v18,const1)
+ VPMSUMD(v11,v19,const1)
+ VPMSUMD(v12,v20,const1)
+ VPMSUMD(v13,v21,const1)
+ VPMSUMD(v14,v22,const1)
+ VPMSUMD(v15,v23,const1)
+
+ b .Lsecond_cool_down
+
+.Lshort:
+ cmpdi r5,0
+ beq .Lzero
+
+ LOAD_REG_ADDR(r3, .short_constants)
+
+ /* Calculate where in the constant table we need to start */
+ subfic r6,r5,256
+ add r3,r3,r6
+
+ /* How many 16 byte chunks? */
+ srdi r7,r5,4
+ mtctr r7
+
+ vxor v19,v19,v19
+ vxor v20,v20,v20
+
+ lvx v0,0,r4
+ lvx v16,0,r3
+ VPERM(v0,v0,v16,byteswap)
+ vxor v0,v0,v8 /* xor in initial value */
+ VPMSUMW(v0,v0,v16)
+ bdz .Lv0
+
+ lvx v1,off16,r4
+ lvx v17,off16,r3
+ VPERM(v1,v1,v17,byteswap)
+ VPMSUMW(v1,v1,v17)
+ bdz .Lv1
+
+ lvx v2,off32,r4
+ lvx v16,off32,r3
+ VPERM(v2,v2,v16,byteswap)
+ VPMSUMW(v2,v2,v16)
+ bdz .Lv2
+
+ lvx v3,off48,r4
+ lvx v17,off48,r3
+ VPERM(v3,v3,v17,byteswap)
+ VPMSUMW(v3,v3,v17)
+ bdz .Lv3
+
+ lvx v4,off64,r4
+ lvx v16,off64,r3
+ VPERM(v4,v4,v16,byteswap)
+ VPMSUMW(v4,v4,v16)
+ bdz .Lv4
+
+ lvx v5,off80,r4
+ lvx v17,off80,r3
+ VPERM(v5,v5,v17,byteswap)
+ VPMSUMW(v5,v5,v17)
+ bdz .Lv5
+
+ lvx v6,off96,r4
+ lvx v16,off96,r3
+ VPERM(v6,v6,v16,byteswap)
+ VPMSUMW(v6,v6,v16)
+ bdz .Lv6
+
+ lvx v7,off112,r4
+ lvx v17,off112,r3
+ VPERM(v7,v7,v17,byteswap)
+ VPMSUMW(v7,v7,v17)
+ bdz .Lv7
+
+ addi r3,r3,128
+ addi r4,r4,128
+
+ lvx v8,0,r4
+ lvx v16,0,r3
+ VPERM(v8,v8,v16,byteswap)
+ VPMSUMW(v8,v8,v16)
+ bdz .Lv8
+
+ lvx v9,off16,r4
+ lvx v17,off16,r3
+ VPERM(v9,v9,v17,byteswap)
+ VPMSUMW(v9,v9,v17)
+ bdz .Lv9
+
+ lvx v10,off32,r4
+ lvx v16,off32,r3
+ VPERM(v10,v10,v16,byteswap)
+ VPMSUMW(v10,v10,v16)
+ bdz .Lv10
+
+ lvx v11,off48,r4
+ lvx v17,off48,r3
+ VPERM(v11,v11,v17,byteswap)
+ VPMSUMW(v11,v11,v17)
+ bdz .Lv11
+
+ lvx v12,off64,r4
+ lvx v16,off64,r3
+ VPERM(v12,v12,v16,byteswap)
+ VPMSUMW(v12,v12,v16)
+ bdz .Lv12
+
+ lvx v13,off80,r4
+ lvx v17,off80,r3
+ VPERM(v13,v13,v17,byteswap)
+ VPMSUMW(v13,v13,v17)
+ bdz .Lv13
+
+ lvx v14,off96,r4
+ lvx v16,off96,r3
+ VPERM(v14,v14,v16,byteswap)
+ VPMSUMW(v14,v14,v16)
+ bdz .Lv14
+
+ lvx v15,off112,r4
+ lvx v17,off112,r3
+ VPERM(v15,v15,v17,byteswap)
+ VPMSUMW(v15,v15,v17)
+
+.Lv15: vxor v19,v19,v15
+.Lv14: vxor v20,v20,v14
+.Lv13: vxor v19,v19,v13
+.Lv12: vxor v20,v20,v12
+.Lv11: vxor v19,v19,v11
+.Lv10: vxor v20,v20,v10
+.Lv9: vxor v19,v19,v9
+.Lv8: vxor v20,v20,v8
+.Lv7: vxor v19,v19,v7
+.Lv6: vxor v20,v20,v6
+.Lv5: vxor v19,v19,v5
+.Lv4: vxor v20,v20,v4
+.Lv3: vxor v19,v19,v3
+.Lv2: vxor v20,v20,v2
+.Lv1: vxor v19,v19,v1
+.Lv0: vxor v20,v20,v0
+
+ vxor v0,v19,v20
+
+ b .Lbarrett_reduction
+
+.Lzero:
+ mr r3,r10
+ b .Lout
+
+FUNC_END(CRC_FUNCTION_NAME)
--- /dev/null
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Calculate a crc32c with vpmsum acceleration
+ *
+ * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
+ */
+ .section .rodata
+.balign 16
+
+.byteswap_constant:
+ /* byte reverse permute constant */
+ .octa 0x0F0E0D0C0B0A09080706050403020100
+
+.constants:
+
+ /* Reduce 262144 kbits to 1024 bits */
+ /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
+ .octa 0x00000000b6ca9e20000000009c37c408
+
+ /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
+ .octa 0x00000000350249a800000001b51df26c
+
+ /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
+ .octa 0x00000001862dac54000000000724b9d0
+
+ /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
+ .octa 0x00000001d87fb48c00000001c00532fe
+
+ /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
+ .octa 0x00000001f39b699e00000000f05a9362
+
+ /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
+ .octa 0x0000000101da11b400000001e1007970
+
+ /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
+ .octa 0x00000001cab571e000000000a57366ee
+
+ /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
+ .octa 0x00000000c7020cfe0000000192011284
+
+ /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
+ .octa 0x00000000cdaed1ae0000000162716d9a
+
+ /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
+ .octa 0x00000001e804effc00000000cd97ecde
+
+ /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
+ .octa 0x0000000077c3ea3a0000000058812bc0
+
+ /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
+ .octa 0x0000000068df31b40000000088b8c12e
+
+ /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
+ .octa 0x00000000b059b6c200000001230b234c
+
+ /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
+ .octa 0x0000000145fb8ed800000001120b416e
+
+ /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
+ .octa 0x00000000cbc0916800000001974aecb0
+
+ /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
+ .octa 0x000000005ceeedc2000000008ee3f226
+
+ /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
+ .octa 0x0000000047d74e8600000001089aba9a
+
+ /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
+ .octa 0x00000001407e9e220000000065113872
+
+ /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
+ .octa 0x00000001da967bda000000005c07ec10
+
+ /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
+ .octa 0x000000006c8983680000000187590924
+
+ /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
+ .octa 0x00000000f2d14c9800000000e35da7c6
+
+ /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
+ .octa 0x00000001993c6ad4000000000415855a
+
+ /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
+ .octa 0x000000014683d1ac0000000073617758
+
+ /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
+ .octa 0x00000001a7c93e6c0000000176021d28
+
+ /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
+ .octa 0x000000010211e90a00000001c358fd0a
+
+ /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
+ .octa 0x000000001119403e00000001ff7a2c18
+
+ /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
+ .octa 0x000000001c3261aa00000000f2d9f7e4
+
+ /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
+ .octa 0x000000014e37a634000000016cf1f9c8
+
+ /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
+ .octa 0x0000000073786c0c000000010af9279a
+
+ /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
+ .octa 0x000000011dc037f80000000004f101e8
+
+ /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
+ .octa 0x0000000031433dfc0000000070bcf184
+
+ /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
+ .octa 0x000000009cde8348000000000a8de642
+
+ /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
+ .octa 0x0000000038d3c2a60000000062ea130c
+
+ /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
+ .octa 0x000000011b25f26000000001eb31cbb2
+
+ /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
+ .octa 0x000000001629e6f00000000170783448
+
+ /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
+ .octa 0x0000000160838b4c00000001a684b4c6
+
+ /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
+ .octa 0x000000007a44011c00000000253ca5b4
+
+ /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
+ .octa 0x00000000226f417a0000000057b4b1e2
+
+ /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
+ .octa 0x0000000045eb2eb400000000b6bd084c
+
+ /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
+ .octa 0x000000014459d70c0000000123c2d592
+
+ /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
+ .octa 0x00000001d406ed8200000000159dafce
+
+ /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
+ .octa 0x0000000160c8e1a80000000127e1a64e
+
+ /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
+ .octa 0x0000000027ba80980000000056860754
+
+ /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
+ .octa 0x000000006d92d01800000001e661aae8
+
+ /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
+ .octa 0x000000012ed7e3f200000000f82c6166
+
+ /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
+ .octa 0x000000002dc8778800000000c4f9c7ae
+
+ /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
+ .octa 0x0000000018240bb80000000074203d20
+
+ /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
+ .octa 0x000000001ad381580000000198173052
+
+ /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
+ .octa 0x00000001396b78f200000001ce8aba54
+
+ /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
+ .octa 0x000000011a68133400000001850d5d94
+
+ /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
+ .octa 0x000000012104732e00000001d609239c
+
+ /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
+ .octa 0x00000000a140d90c000000001595f048
+
+ /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
+ .octa 0x00000001b7215eda0000000042ccee08
+
+ /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
+ .octa 0x00000001aaf1df3c000000010a389d74
+
+ /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
+ .octa 0x0000000029d15b8a000000012a840da6
+
+ /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
+ .octa 0x00000000f1a96922000000001d181c0c
+
+ /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
+ .octa 0x00000001ac80d03c0000000068b7d1f6
+
+ /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
+ .octa 0x000000000f11d56a000000005b0f14fc
+
+ /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
+ .octa 0x00000001f1c022a20000000179e9e730
+
+ /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
+ .octa 0x0000000173d00ae200000001ce1368d6
+
+ /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
+ .octa 0x00000001d4ffe4ac0000000112c3a84c
+
+ /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
+ .octa 0x000000016edc5ae400000000de940fee
+
+ /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
+ .octa 0x00000001f1a0214000000000fe896b7e
+
+ /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
+ .octa 0x00000000ca0b28a000000001f797431c
+
+ /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
+ .octa 0x00000001928e30a20000000053e989ba
+
+ /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
+ .octa 0x0000000097b1b002000000003920cd16
+
+ /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
+ .octa 0x00000000b15bf90600000001e6f579b8
+
+ /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
+ .octa 0x00000000411c5d52000000007493cb0a
+
+ /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
+ .octa 0x00000001c36f330000000001bdd376d8
+
+ /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
+ .octa 0x00000001119227e0000000016badfee6
+
+ /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
+ .octa 0x00000000114d47020000000071de5c58
+
+ /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
+ .octa 0x00000000458b5b9800000000453f317c
+
+ /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
+ .octa 0x000000012e31fb8e0000000121675cce
+
+ /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
+ .octa 0x000000005cf619d800000001f409ee92
+
+ /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
+ .octa 0x0000000063f4d8b200000000f36b9c88
+
+ /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
+ .octa 0x000000004138dc8a0000000036b398f4
+
+ /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
+ .octa 0x00000001d29ee8e000000001748f9adc
+
+ /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
+ .octa 0x000000006a08ace800000001be94ec00
+
+ /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
+ .octa 0x0000000127d4201000000000b74370d6
+
+ /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
+ .octa 0x0000000019d76b6200000001174d0b98
+
+ /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
+ .octa 0x00000001b1471f6e00000000befc06a4
+
+ /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
+ .octa 0x00000001f64c19cc00000001ae125288
+
+ /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
+ .octa 0x00000000003c0ea00000000095c19b34
+
+ /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
+ .octa 0x000000014d73abf600000001a78496f2
+
+ /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
+ .octa 0x00000001620eb84400000001ac5390a0
+
+ /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
+ .octa 0x0000000147655048000000002a80ed6e
+
+ /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
+ .octa 0x0000000067b5077e00000001fa9b0128
+
+ /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
+ .octa 0x0000000010ffe20600000001ea94929e
+
+ /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
+ .octa 0x000000000fee8f1e0000000125f4305c
+
+ /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
+ .octa 0x00000001da26fbae00000001471e2002
+
+ /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
+ .octa 0x00000001b3a8bd880000000132d2253a
+
+ /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
+ .octa 0x00000000e8f3898e00000000f26b3592
+
+ /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
+ .octa 0x00000000b0d0d28c00000000bc8b67b0
+
+ /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
+ .octa 0x0000000030f2a798000000013a826ef2
+
+ /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
+ .octa 0x000000000fba10020000000081482c84
+
+ /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
+ .octa 0x00000000bdb9bd7200000000e77307c2
+
+ /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
+ .octa 0x0000000075d3bf5a00000000d4a07ec8
+
+ /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
+ .octa 0x00000000ef1f98a00000000017102100
+
+ /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
+ .octa 0x00000000689c760200000000db406486
+
+ /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
+ .octa 0x000000016d5fa5fe0000000192db7f88
+
+ /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
+ .octa 0x00000001d0d2b9ca000000018bf67b1e
+
+ /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
+ .octa 0x0000000041e7b470000000007c09163e
+
+ /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
+ .octa 0x00000001cbb6495e000000000adac060
+
+ /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
+ .octa 0x000000010052a0b000000000bd8316ae
+
+ /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
+ .octa 0x00000001d8effb5c000000019f09ab54
+
+ /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
+ .octa 0x00000001d969853c0000000125155542
+
+ /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
+ .octa 0x00000000523ccce2000000018fdb5882
+
+ /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
+ .octa 0x000000001e2436bc00000000e794b3f4
+
+ /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
+ .octa 0x00000000ddd1c3a2000000016f9bb022
+
+ /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
+ .octa 0x0000000019fcfe3800000000290c9978
+
+ /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
+ .octa 0x00000001ce95db640000000083c0f350
+
+ /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
+ .octa 0x00000000af5828060000000173ea6628
+
+ /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
+ .octa 0x00000001006388f600000001c8b4e00a
+
+ /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
+ .octa 0x0000000179eca00a00000000de95d6aa
+
+ /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
+ .octa 0x0000000122410a6a000000010b7f7248
+
+ /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
+ .octa 0x000000004288e87c00000001326e3a06
+
+ /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
+ .octa 0x000000016c5490da00000000bb62c2e6
+
+ /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
+ .octa 0x00000000d1c71f6e0000000156a4b2c2
+
+ /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
+ .octa 0x00000001b4ce08a6000000011dfe763a
+
+ /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
+ .octa 0x00000001466ba60c000000007bcca8e2
+
+ /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
+ .octa 0x00000001f6c488a40000000186118faa
+
+ /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
+ .octa 0x000000013bfb06820000000111a65a88
+
+ /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
+ .octa 0x00000000690e9e54000000003565e1c4
+
+ /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
+ .octa 0x00000000281346b6000000012ed02a82
+
+ /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
+ .octa 0x000000015646402400000000c486ecfc
+
+ /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
+ .octa 0x000000016063a8dc0000000001b951b2
+
+ /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
+ .octa 0x0000000116a663620000000048143916
+
+ /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
+ .octa 0x000000017e8aa4d200000001dc2ae124
+
+ /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
+ .octa 0x00000001728eb10c00000001416c58d6
+
+ /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
+ .octa 0x00000001b08fd7fa00000000a479744a
+
+ /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
+ .octa 0x00000001092a16e80000000096ca3a26
+
+ /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
+ .octa 0x00000000a505637c00000000ff223d4e
+
+ /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
+ .octa 0x00000000d94869b2000000010e84da42
+
+ /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
+ .octa 0x00000001c8b203ae00000001b61ba3d0
+
+ /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
+ .octa 0x000000005704aea000000000680f2de8
+
+ /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
+ .octa 0x000000012e295fa2000000008772a9a8
+
+ /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
+ .octa 0x000000011d0908bc0000000155f295bc
+
+ /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
+ .octa 0x0000000193ed97ea00000000595f9282
+
+ /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
+ .octa 0x000000013a0f1c520000000164b1c25a
+
+ /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
+ .octa 0x000000010c2c40c000000000fbd67c50
+
+ /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
+ .octa 0x00000000ff6fac3e0000000096076268
+
+ /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
+ .octa 0x000000017b3609c000000001d288e4cc
+
+ /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
+ .octa 0x0000000088c8c92200000001eaac1bdc
+
+ /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
+ .octa 0x00000001751baae600000001f1ea39e2
+
+ /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
+ .octa 0x000000010795297200000001eb6506fc
+
+ /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
+ .octa 0x0000000162b00abe000000010f806ffe
+
+ /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
+ .octa 0x000000000d7b404c000000010408481e
+
+ /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
+ .octa 0x00000000763b13d40000000188260534
+
+ /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
+ .octa 0x00000000f6dc22d80000000058fc73e0
+
+ /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
+ .octa 0x000000007daae06000000000391c59b8
+
+ /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
+ .octa 0x000000013359ab7c000000018b638400
+
+ /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
+ .octa 0x000000008add438a000000011738f5c4
+
+ /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
+ .octa 0x00000001edbefdea000000008cf7c6da
+
+ /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
+ .octa 0x000000004104e0f800000001ef97fb16
+
+ /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
+ .octa 0x00000000b48a82220000000102130e20
+
+ /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
+ .octa 0x00000001bcb4684400000000db968898
+
+ /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
+ .octa 0x000000013293ce0a00000000b5047b5e
+
+ /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
+ .octa 0x00000001710d0844000000010b90fdb2
+
+ /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
+ .octa 0x0000000117907f6e000000004834a32e
+
+ /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
+ .octa 0x0000000087ddf93e0000000059c8f2b0
+
+ /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
+ .octa 0x000000005970e9b00000000122cec508
+
+ /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
+ .octa 0x0000000185b2b7d0000000000a330cda
+
+ /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
+ .octa 0x00000001dcee0efc000000014a47148c
+
+ /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
+ .octa 0x0000000030da27220000000042c61cb8
+
+ /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
+ .octa 0x000000012f925a180000000012fe6960
+
+ /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
+ .octa 0x00000000dd2e357c00000000dbda2c20
+
+ /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
+ .octa 0x00000000071c80de000000011122410c
+
+ /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
+ .octa 0x000000011513140a00000000977b2070
+
+ /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
+ .octa 0x00000001df876e8e000000014050438e
+
+ /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
+ .octa 0x000000015f81d6ce0000000147c840e8
+
+ /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
+ .octa 0x000000019dd94dbe00000001cc7c88ce
+
+ /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
+ .octa 0x00000001373d206e00000001476b35a4
+
+ /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
+ .octa 0x00000000668ccade000000013d52d508
+
+ /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
+ .octa 0x00000001b192d268000000008e4be32e
+
+ /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
+ .octa 0x00000000e30f3a7800000000024120fe
+
+ /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
+ .octa 0x000000010ef1f7bc00000000ddecddb4
+
+ /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
+ .octa 0x00000001f5ac738000000000d4d403bc
+
+ /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
+ .octa 0x000000011822ea7000000001734b89aa
+
+ /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
+ .octa 0x00000000c3a33848000000010e7a58d6
+
+ /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
+ .octa 0x00000001bd151c2400000001f9f04e9c
+
+ /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
+ .octa 0x0000000056002d7600000000b692225e
+
+ /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
+ .octa 0x000000014657c4f4000000019b8d3f3e
+
+ /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
+ .octa 0x0000000113742d7c00000001a874f11e
+
+ /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
+ .octa 0x000000019c5920ba000000010d5a4254
+
+ /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
+ .octa 0x000000005216d2d600000000bbb2f5d6
+
+ /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
+ .octa 0x0000000136f5ad8a0000000179cc0e36
+
+ /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
+ .octa 0x000000018b07beb600000001dca1da4a
+
+ /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
+ .octa 0x00000000db1e93b000000000feb1a192
+
+ /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
+ .octa 0x000000000b96fa3a00000000d1eeedd6
+
+ /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
+ .octa 0x00000001d9968af0000000008fad9bb4
+
+ /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
+ .octa 0x000000000e4a77a200000001884938e4
+
+ /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
+ .octa 0x00000000508c2ac800000001bc2e9bc0
+
+ /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
+ .octa 0x0000000021572a8000000001f9658a68
+
+ /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
+ .octa 0x00000001b859daf2000000001b9224fc
+
+ /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
+ .octa 0x000000016f7884740000000055b2fb84
+
+ /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
+ .octa 0x00000001b438810e000000018b090348
+
+ /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
+ .octa 0x0000000095ddc6f2000000011ccbd5ea
+
+ /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
+ .octa 0x00000001d977c20c0000000007ae47f8
+
+ /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
+ .octa 0x00000000ebedb99a0000000172acbec0
+
+ /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
+ .octa 0x00000001df9e9e9200000001c6e3ff20
+
+ /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
+ .octa 0x00000001a4a3f95200000000e1b38744
+
+ /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
+ .octa 0x00000000e2f5122000000000791585b2
+
+ /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
+ .octa 0x000000004aa01f3e00000000ac53b894
+
+ /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
+ .octa 0x00000000b3e90a5800000001ed5f2cf4
+
+ /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
+ .octa 0x000000000c9ca2aa00000001df48b2e0
+
+ /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
+ .octa 0x000000015168231600000000049c1c62
+
+ /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
+ .octa 0x0000000036fce78c000000017c460c12
+
+ /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
+ .octa 0x000000009037dc10000000015be4da7e
+
+ /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
+ .octa 0x00000000d3298582000000010f38f668
+
+ /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
+ .octa 0x00000001b42e8ad60000000039f40a00
+
+ /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
+ .octa 0x00000000142a983800000000bd4c10c4
+
+ /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
+ .octa 0x0000000109c7f1900000000042db1d98
+
+ /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
+ .octa 0x0000000056ff931000000001c905bae6
+
+ /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
+ .octa 0x00000001594513aa00000000069d40ea
+
+ /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
+ .octa 0x00000001e3b5b1e8000000008e4fbad0
+
+ /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
+ .octa 0x000000011dd5fc080000000047bedd46
+
+ /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
+ .octa 0x00000001675f0cc20000000026396bf8
+
+ /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
+ .octa 0x00000000d1c8dd4400000000379beb92
+
+ /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
+ .octa 0x0000000115ebd3d8000000000abae54a
+
+ /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
+ .octa 0x00000001ecbd0dac0000000007e6a128
+
+ /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
+ .octa 0x00000000cdf67af2000000000ade29d2
+
+ /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
+ .octa 0x000000004c01ff4c00000000f974c45c
+
+ /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
+ .octa 0x00000000f2d8657e00000000e77ac60a
+
+ /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
+ .octa 0x000000006bae74c40000000145895816
+
+ /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
+ .octa 0x0000000152af8aa00000000038e362be
+
+ /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
+ .octa 0x0000000004663802000000007f991a64
+
+ /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
+ .octa 0x00000001ab2f5afc00000000fa366d3a
+
+ /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
+ .octa 0x0000000074a4ebd400000001a2bb34f0
+
+ /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
+ .octa 0x00000001d7ab3a4c0000000028a9981e
+
+ /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
+ .octa 0x00000001a8da60c600000001dbc672be
+
+ /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
+ .octa 0x000000013cf6382000000000b04d77f6
+
+ /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
+ .octa 0x00000000bec12e1e0000000124400d96
+
+ /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
+ .octa 0x00000001c6368010000000014ca4b414
+
+ /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
+ .octa 0x00000001e6e78758000000012fe2c938
+
+ /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
+ .octa 0x000000008d7f2b3c00000001faed01e6
+
+ /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
+ .octa 0x000000016b4a156e000000007e80ecfe
+
+ /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
+ .octa 0x00000001c63cfeb60000000098daee94
+
+ /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
+ .octa 0x000000015f902670000000010a04edea
+
+ /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
+ .octa 0x00000001cd5de11e00000001c00b4524
+
+ /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
+ .octa 0x000000001acaec540000000170296550
+
+ /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
+ .octa 0x000000002bd0ca780000000181afaa48
+
+ /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
+ .octa 0x0000000032d63d5c0000000185a31ffa
+
+ /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
+ .octa 0x000000001c6d4e4c000000002469f608
+
+ /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
+ .octa 0x0000000106a60b92000000006980102a
+
+ /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
+ .octa 0x00000000d3855e120000000111ea9ca8
+
+ /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
+ .octa 0x00000000e312563600000001bd1d29ce
+
+ /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
+ .octa 0x000000009e8f7ea400000001b34b9580
+
+ /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
+ .octa 0x00000001c82e562c000000003076054e
+
+ /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
+ .octa 0x00000000ca9f09ce000000012a608ea4
+
+ /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
+ .octa 0x00000000c63764e600000000784d05fe
+
+ /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
+ .octa 0x0000000168d2e49e000000016ef0d82a
+
+ /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
+ .octa 0x00000000e986c1480000000075bda454
+
+ /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
+ .octa 0x00000000cfb65894000000003dc0a1c4
+
+ /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
+ .octa 0x0000000111cadee400000000e9a5d8be
+
+ /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
+ .octa 0x0000000171fb63ce00000001609bc4b4
+
+.short_constants:
+
+ /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
+ /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
+ .octa 0x7fec2963e5bf80485cf015c388e56f72
+
+ /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
+ .octa 0x38e888d4844752a9963a18920246e2e6
+
+ /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
+ .octa 0x42316c00730206ad419a441956993a31
+
+ /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
+ .octa 0x543d5c543e65ddf9924752ba2b830011
+
+ /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
+ .octa 0x78e87aaf56767c9255bd7f9518e4a304
+
+ /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
+ .octa 0x8f68fcec1903da7f6d76739fe0553f1e
+
+ /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
+ .octa 0x3f4840246791d588c133722b1fe0b5c3
+
+ /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
+ .octa 0x34c96751b04de25a64b67ee0e55ef1f3
+
+ /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
+ .octa 0x156c8e180b4a395b069db049b8fdb1e7
+
+ /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
+ .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
+
+ /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
+ .octa 0x041d37768cd75659817cdc5119b29a35
+
+ /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
+ .octa 0x3a0777818cfaa9651ce9d94b36c41f1c
+
+ /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
+ .octa 0x0e148e8252377a554f256efcb82be955
+
+ /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
+ .octa 0x9c25531d19e65ddeec1631edb2dea967
+
+ /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
+ .octa 0x790606ff9957c0a65d27e147510ac59a
+
+ /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
+ .octa 0x82f63b786ea2d55ca66805eb18b8ea18
+
+
+.barrett_constants:
+ /* 33 bit reflected Barrett constant m - (4^32)/n */
+ .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
+ /* 33 bit reflected Barrett constant n */
+ .octa 0x00000000000000000000000105ec76f1
+
+#define CRC_FUNCTION_NAME __crc32c_vpmsum
+#define REFLECT
+#include "crc32-vpmsum_core.S"