/* Whether to overlap the regions of memory vCPUs access. */
static bool overlap_memory_access;
+/*
+ * If the test should only warn if there are too many idle pages (i.e., it is
+ * expected).
+ * -1: Not yet set.
+ * 0: We do not expect too many idle pages, so FAIL if too many idle pages.
+ * 1: Having too many idle pages is expected, so merely print a warning if
+ * too many idle pages are found.
+ */
+static int idle_pages_warn_only = -1;
+
struct test_params {
/* The backing source for the region of memory. */
enum vm_mem_backing_src_type backing_src;
* arbitrary; high enough that we ensure most memory access went through
* access tracking but low enough as to not make the test too brittle
* over time and across architectures.
- *
- * When running the guest as a nested VM, "warn" instead of asserting
- * as the TLB size is effectively unlimited and the KVM doesn't
- * explicitly flush the TLB when aging SPTEs. As a result, more pages
- * are cached and the guest won't see the "idle" bit cleared.
*/
if (still_idle >= pages / 10) {
-#ifdef __x86_64__
- TEST_ASSERT(this_cpu_has(X86_FEATURE_HYPERVISOR),
+ TEST_ASSERT(idle_pages_warn_only,
"vCPU%d: Too many pages still idle (%lu out of %lu)",
vcpu_idx, still_idle, pages);
-#endif
+
printf("WARNING: vCPU%d: Too many pages still idle (%lu out of %lu), "
"this will affect performance results.\n",
vcpu_idx, still_idle, pages);
memstress_destroy_vm(vm);
}
+static int access_tracking_unreliable(void)
+{
+#ifdef __x86_64__
+ /*
+ * When running nested, the TLB size may be effectively unlimited (for
+ * example, this is the case when running on KVM L0), and KVM doesn't
+ * explicitly flush the TLB when aging SPTEs. As a result, more pages
+ * are cached and the guest won't see the "idle" bit cleared.
+ */
+ if (this_cpu_has(X86_FEATURE_HYPERVISOR)) {
+ puts("Skipping idle page count sanity check, because the test is run nested");
+ return 1;
+ }
+#endif
+ /*
+ * When NUMA balancing is enabled, guest memory will be unmapped to get
+ * NUMA faults, dropping the Accessed bits.
+ */
+ if (is_numa_balancing_enabled()) {
+ puts("Skipping idle page count sanity check, because NUMA balancing is enabled");
+ return 1;
+ }
+
+ return 0;
+}
+
static void help(char *name)
{
puts("");
printf(" -v: specify the number of vCPUs to run.\n");
printf(" -o: Overlap guest memory accesses instead of partitioning\n"
" them into a separate region of memory for each vCPU.\n");
+ printf(" -w: Control whether the test warns or fails if more than 10%%\n"
+ " of pages are still seen as idle/old after accessing guest\n"
+ " memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n"
+ " mode, the test fails by default, but switches to warn only\n"
+ " if NUMA balancing is enabled or the test detects it's running\n"
+ " in a VM.\n");
backing_src_help("-s");
puts("");
exit(0);
guest_modes_append_default();
- while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) {
+ while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) {
switch (opt) {
case 'm':
guest_modes_cmdline(optarg);
case 's':
params.backing_src = parse_backing_src_type(optarg);
break;
+ case 'w':
+ idle_pages_warn_only =
+ atoi_non_negative("Idle pages warning",
+ optarg);
+ break;
case 'h':
default:
help(argv[0]);
"CONFIG_IDLE_PAGE_TRACKING is not enabled");
close(page_idle_fd);
+ if (idle_pages_warn_only == -1)
+ idle_pages_warn_only = access_tracking_unreliable();
+
for_each_guest_mode(run_test, ¶ms);
return 0;