*/
struct fpstate init_fpstate __ro_after_init;
-/* Track in-kernel FPU usage */
-static DEFINE_PER_CPU(bool, in_kernel_fpu);
+/*
+ * Track FPU initialization and kernel-mode usage. 'true' means the FPU is
+ * initialized and is not currently being used by the kernel:
+ */
+DEFINE_PER_CPU(bool, kernel_fpu_allowed);
/*
* Track which context is using the FPU on the CPU:
return false;
/*
- * In kernel FPU usage already active? This detects any explicitly
- * nested usage in task or softirq context, which is unsupported. It
- * also detects attempted usage in a hardirq that has interrupted a
- * kernel-mode FPU section.
+ * Return false in the following cases:
+ *
+ * - FPU is not yet initialized. This can happen only when the call is
+ * coming from CPU onlining, for example for microcode checksumming.
+ * - The kernel is already using the FPU, either because of explicit
+ * nesting (which should never be done), or because of implicit
+ * nesting when a hardirq interrupted a kernel-mode FPU section.
+ *
+ * The single boolean check below handles both cases:
*/
- if (this_cpu_read(in_kernel_fpu)) {
- WARN_ON_FPU(!in_hardirq());
+ if (!this_cpu_read(kernel_fpu_allowed))
return false;
- }
/*
* When not in NMI or hard interrupt context, FPU can be used in:
fpregs_lock();
WARN_ON_FPU(!irq_fpu_usable());
- WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
- this_cpu_write(in_kernel_fpu, true);
+ /* Toggle kernel_fpu_allowed to false: */
+ WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed));
+ this_cpu_write(kernel_fpu_allowed, false);
if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
void kernel_fpu_end(void)
{
- WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
+ /* Toggle kernel_fpu_allowed back to true: */
+ WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed));
+ this_cpu_write(kernel_fpu_allowed, true);
- this_cpu_write(in_kernel_fpu, false);
if (!irqs_disabled())
fpregs_unlock();
}