for direct I2C access to the IPMI management controller. Some boards
support this, but it is unknown if it will work on every board. For
this, choose 'IPMI SMBus handler', but be ready to try to do some
-figuring to see if it will work on your system if the SMBIOS/APCI
+figuring to see if it will work on your system if the SMBIOS/ACPI
information is wrong or not present. It is fairly safe to have both
these enabled and let the drivers auto-detect what is present.
IPMI defines a standard watchdog timer. You can enable this with the
'IPMI Watchdog Timer' config option. If you compile the driver into
the kernel, then via a kernel command-line option you can have the
-watchdog timer start as soon as it initializes. It also have a lot
+watchdog timer start as soon as it initializes. It also has a lot
of other options, see the 'Watchdog' section below for more details.
Note that you can also have the watchdog continue to run if it is
closed (by default it is disabled on close). Go into the 'Watchdog
If the message cannot fit into the data you provide, you will get an
EMSGSIZE error and the driver will leave the data in the receive
-queue. If you want to get it and have it truncate the message, us
+queue. If you want to get it and have it truncate the message, use
the IPMICTL_RECEIVE_MSG_TRUNC ioctl.
When you send a command (which is defined by the lowest-order bit of
the netfn per the IPMI spec) on the IPMB bus, the driver will
automatically assign the sequence number to the command and save the
-command. If the response is not receive in the IPMI-specified 5
+command. If the response is not received in the IPMI-specified 5
seconds, it will generate a response automatically saying the command
timed out. If an unsolicited response comes in (if it was after 5
seconds, for instance), that response will be ignored.
To respond to a received command, set the response bit in the returned
netfn, use the address from the received message, and use the same
-msgid that you got in the receive message.
+msgid that you got in the received message.
From userland, equivalent IOCTLs are provided to do these functions.
The regsizes parameter gives the size of a register, in bytes. The
data used by IPMI is 8-bits wide, but it may be inside a larger
-register. This parameter allows the read and write type to specified.
+register. This parameter allows the read and write type to be specified.
It may be 1, 2, 4, or 8. The default is 1.
Since the register size may be larger than 32 bits, the IPMI data may not
SMIC interface, the IPMI driver will start a kernel thread for the
interface to help speed things up. This is a low-priority kernel
thread that constantly polls the IPMI driver while an IPMI operation
-is in progress. The force_kipmid module parameter will all the user to
-force this thread on or off. If you force it off and don't have
+is in progress. The force_kipmid module parameter will allow the user
+to force this thread on or off. If you force it off and don't have
interrupts, the driver will run VERY slowly. Don't blame me,
these interfaces suck.
These are the same options as on the module command line.
The I2C driver does not support non-blocking access or polling, so
-this driver cannod to IPMI panic events, extend the watchdog at panic
+this driver cannot do IPMI panic events, extend the watchdog at panic
time, or other panic-related IPMI functions without special kernel
patches and driver modifications. You can get those at the openipmi
web page.
ipmi_ipmb.retry_time_ms=<Time between retries on IPMB>
ipmi_ipmb.max_retries=<Number of times to retry a message>
-Loading the module will not result in the driver automatcially
+Loading the module will not result in the driver automatically
starting unless there is device tree information setting it up. If
you want to instantiate one of these by hand, do::