genirq/affinity: Move group_cpus_evenly() into lib/
[linux-2.6-block.git] / kernel / irq / affinity.c
index d9a5c1d65a79db075f002cbd82b346429c4fb26b..44a4eba80315cc098ecfa366ca1d88483641b12a 100644 (file)
@@ -7,398 +7,7 @@
 #include <linux/kernel.h>
 #include <linux/slab.h>
 #include <linux/cpu.h>
-#include <linux/sort.h>
-
-static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
-                               unsigned int cpus_per_vec)
-{
-       const struct cpumask *siblmsk;
-       int cpu, sibl;
-
-       for ( ; cpus_per_vec > 0; ) {
-               cpu = cpumask_first(nmsk);
-
-               /* Should not happen, but I'm too lazy to think about it */
-               if (cpu >= nr_cpu_ids)
-                       return;
-
-               cpumask_clear_cpu(cpu, nmsk);
-               cpumask_set_cpu(cpu, irqmsk);
-               cpus_per_vec--;
-
-               /* If the cpu has siblings, use them first */
-               siblmsk = topology_sibling_cpumask(cpu);
-               for (sibl = -1; cpus_per_vec > 0; ) {
-                       sibl = cpumask_next(sibl, siblmsk);
-                       if (sibl >= nr_cpu_ids)
-                               break;
-                       if (!cpumask_test_and_clear_cpu(sibl, nmsk))
-                               continue;
-                       cpumask_set_cpu(sibl, irqmsk);
-                       cpus_per_vec--;
-               }
-       }
-}
-
-static cpumask_var_t *alloc_node_to_cpumask(void)
-{
-       cpumask_var_t *masks;
-       int node;
-
-       masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
-       if (!masks)
-               return NULL;
-
-       for (node = 0; node < nr_node_ids; node++) {
-               if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
-                       goto out_unwind;
-       }
-
-       return masks;
-
-out_unwind:
-       while (--node >= 0)
-               free_cpumask_var(masks[node]);
-       kfree(masks);
-       return NULL;
-}
-
-static void free_node_to_cpumask(cpumask_var_t *masks)
-{
-       int node;
-
-       for (node = 0; node < nr_node_ids; node++)
-               free_cpumask_var(masks[node]);
-       kfree(masks);
-}
-
-static void build_node_to_cpumask(cpumask_var_t *masks)
-{
-       int cpu;
-
-       for_each_possible_cpu(cpu)
-               cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
-}
-
-static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
-                               const struct cpumask *mask, nodemask_t *nodemsk)
-{
-       int n, nodes = 0;
-
-       /* Calculate the number of nodes in the supplied affinity mask */
-       for_each_node(n) {
-               if (cpumask_intersects(mask, node_to_cpumask[n])) {
-                       node_set(n, *nodemsk);
-                       nodes++;
-               }
-       }
-       return nodes;
-}
-
-struct node_vectors {
-       unsigned id;
-
-       union {
-               unsigned nvectors;
-               unsigned ncpus;
-       };
-};
-
-static int ncpus_cmp_func(const void *l, const void *r)
-{
-       const struct node_vectors *ln = l;
-       const struct node_vectors *rn = r;
-
-       return ln->ncpus - rn->ncpus;
-}
-
-/*
- * Allocate vector number for each node, so that for each node:
- *
- * 1) the allocated number is >= 1
- *
- * 2) the allocated numbver is <= active CPU number of this node
- *
- * The actual allocated total vectors may be less than @numvecs when
- * active total CPU number is less than @numvecs.
- *
- * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
- * for each node.
- */
-static void alloc_nodes_vectors(unsigned int numvecs,
-                               cpumask_var_t *node_to_cpumask,
-                               const struct cpumask *cpu_mask,
-                               const nodemask_t nodemsk,
-                               struct cpumask *nmsk,
-                               struct node_vectors *node_vectors)
-{
-       unsigned n, remaining_ncpus = 0;
-
-       for (n = 0; n < nr_node_ids; n++) {
-               node_vectors[n].id = n;
-               node_vectors[n].ncpus = UINT_MAX;
-       }
-
-       for_each_node_mask(n, nodemsk) {
-               unsigned ncpus;
-
-               cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
-               ncpus = cpumask_weight(nmsk);
-
-               if (!ncpus)
-                       continue;
-               remaining_ncpus += ncpus;
-               node_vectors[n].ncpus = ncpus;
-       }
-
-       numvecs = min_t(unsigned, remaining_ncpus, numvecs);
-
-       sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
-            ncpus_cmp_func, NULL);
-
-       /*
-        * Allocate vectors for each node according to the ratio of this
-        * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
-        * bigger than number of active numa nodes. Always start the
-        * allocation from the node with minimized nr_cpus.
-        *
-        * This way guarantees that each active node gets allocated at
-        * least one vector, and the theory is simple: over-allocation
-        * is only done when this node is assigned by one vector, so
-        * other nodes will be allocated >= 1 vector, since 'numvecs' is
-        * bigger than number of numa nodes.
-        *
-        * One perfect invariant is that number of allocated vectors for
-        * each node is <= CPU count of this node:
-        *
-        * 1) suppose there are two nodes: A and B
-        *      ncpu(X) is CPU count of node X
-        *      vecs(X) is the vector count allocated to node X via this
-        *      algorithm
-        *
-        *      ncpu(A) <= ncpu(B)
-        *      ncpu(A) + ncpu(B) = N
-        *      vecs(A) + vecs(B) = V
-        *
-        *      vecs(A) = max(1, round_down(V * ncpu(A) / N))
-        *      vecs(B) = V - vecs(A)
-        *
-        *      both N and V are integer, and 2 <= V <= N, suppose
-        *      V = N - delta, and 0 <= delta <= N - 2
-        *
-        * 2) obviously vecs(A) <= ncpu(A) because:
-        *
-        *      if vecs(A) is 1, then vecs(A) <= ncpu(A) given
-        *      ncpu(A) >= 1
-        *
-        *      otherwise,
-        *              vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
-        *
-        * 3) prove how vecs(B) <= ncpu(B):
-        *
-        *      if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
-        *      over-allocated, so vecs(B) <= ncpu(B),
-        *
-        *      otherwise:
-        *
-        *      vecs(A) =
-        *              round_down(V * ncpu(A) / N) =
-        *              round_down((N - delta) * ncpu(A) / N) =
-        *              round_down((N * ncpu(A) - delta * ncpu(A)) / N)  >=
-        *              round_down((N * ncpu(A) - delta * N) / N)        =
-        *              cpu(A) - delta
-        *
-        *      then:
-        *
-        *      vecs(A) - V >= ncpu(A) - delta - V
-        *      =>
-        *      V - vecs(A) <= V + delta - ncpu(A)
-        *      =>
-        *      vecs(B) <= N - ncpu(A)
-        *      =>
-        *      vecs(B) <= cpu(B)
-        *
-        * For nodes >= 3, it can be thought as one node and another big
-        * node given that is exactly what this algorithm is implemented,
-        * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
-        * finally for each node X: vecs(X) <= ncpu(X).
-        *
-        */
-       for (n = 0; n < nr_node_ids; n++) {
-               unsigned nvectors, ncpus;
-
-               if (node_vectors[n].ncpus == UINT_MAX)
-                       continue;
-
-               WARN_ON_ONCE(numvecs == 0);
-
-               ncpus = node_vectors[n].ncpus;
-               nvectors = max_t(unsigned, 1,
-                                numvecs * ncpus / remaining_ncpus);
-               WARN_ON_ONCE(nvectors > ncpus);
-
-               node_vectors[n].nvectors = nvectors;
-
-               remaining_ncpus -= ncpus;
-               numvecs -= nvectors;
-       }
-}
-
-static int __irq_build_affinity_masks(unsigned int startvec,
-                                     unsigned int numvecs,
-                                     unsigned int firstvec,
-                                     cpumask_var_t *node_to_cpumask,
-                                     const struct cpumask *cpu_mask,
-                                     struct cpumask *nmsk,
-                                     struct irq_affinity_desc *masks)
-{
-       unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
-       unsigned int last_affv = firstvec + numvecs;
-       unsigned int curvec = startvec;
-       nodemask_t nodemsk = NODE_MASK_NONE;
-       struct node_vectors *node_vectors;
-
-       if (cpumask_empty(cpu_mask))
-               return 0;
-
-       nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
-
-       /*
-        * If the number of nodes in the mask is greater than or equal the
-        * number of vectors we just spread the vectors across the nodes.
-        */
-       if (numvecs <= nodes) {
-               for_each_node_mask(n, nodemsk) {
-                       /* Ensure that only CPUs which are in both masks are set */
-                       cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
-                       cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
-                       if (++curvec == last_affv)
-                               curvec = firstvec;
-               }
-               return numvecs;
-       }
-
-       node_vectors = kcalloc(nr_node_ids,
-                              sizeof(struct node_vectors),
-                              GFP_KERNEL);
-       if (!node_vectors)
-               return -ENOMEM;
-
-       /* allocate vector number for each node */
-       alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
-                           nodemsk, nmsk, node_vectors);
-
-       for (i = 0; i < nr_node_ids; i++) {
-               unsigned int ncpus, v;
-               struct node_vectors *nv = &node_vectors[i];
-
-               if (nv->nvectors == UINT_MAX)
-                       continue;
-
-               /* Get the cpus on this node which are in the mask */
-               cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
-               ncpus = cpumask_weight(nmsk);
-               if (!ncpus)
-                       continue;
-
-               WARN_ON_ONCE(nv->nvectors > ncpus);
-
-               /* Account for rounding errors */
-               extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
-
-               /* Spread allocated vectors on CPUs of the current node */
-               for (v = 0; v < nv->nvectors; v++, curvec++) {
-                       cpus_per_vec = ncpus / nv->nvectors;
-
-                       /* Account for extra vectors to compensate rounding errors */
-                       if (extra_vecs) {
-                               cpus_per_vec++;
-                               --extra_vecs;
-                       }
-
-                       /*
-                        * wrapping has to be considered given 'startvec'
-                        * may start anywhere
-                        */
-                       if (curvec >= last_affv)
-                               curvec = firstvec;
-                       irq_spread_init_one(&masks[curvec].mask, nmsk,
-                                               cpus_per_vec);
-               }
-               done += nv->nvectors;
-       }
-       kfree(node_vectors);
-       return done;
-}
-
-/*
- * build affinity in two stages:
- *     1) spread present CPU on these vectors
- *     2) spread other possible CPUs on these vectors
- */
-static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
-                                   unsigned int firstvec,
-                                   struct irq_affinity_desc *masks)
-{
-       unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
-       cpumask_var_t *node_to_cpumask;
-       cpumask_var_t nmsk, npresmsk;
-       int ret = -ENOMEM;
-
-       if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
-               return ret;
-
-       if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
-               goto fail_nmsk;
-
-       node_to_cpumask = alloc_node_to_cpumask();
-       if (!node_to_cpumask)
-               goto fail_npresmsk;
-
-       /* Stabilize the cpumasks */
-       cpus_read_lock();
-       build_node_to_cpumask(node_to_cpumask);
-
-       /* Spread on present CPUs starting from affd->pre_vectors */
-       ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
-                                        node_to_cpumask, cpu_present_mask,
-                                        nmsk, masks);
-       if (ret < 0)
-               goto fail_build_affinity;
-       nr_present = ret;
-
-       /*
-        * Spread on non present CPUs starting from the next vector to be
-        * handled. If the spreading of present CPUs already exhausted the
-        * vector space, assign the non present CPUs to the already spread
-        * out vectors.
-        */
-       if (nr_present >= numvecs)
-               curvec = firstvec;
-       else
-               curvec = firstvec + nr_present;
-       cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
-       ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
-                                        node_to_cpumask, npresmsk, nmsk,
-                                        masks);
-       if (ret >= 0)
-               nr_others = ret;
-
- fail_build_affinity:
-       cpus_read_unlock();
-
-       if (ret >= 0)
-               WARN_ON(nr_present + nr_others < numvecs);
-
-       free_node_to_cpumask(node_to_cpumask);
-
- fail_npresmsk:
-       free_cpumask_var(npresmsk);
-
- fail_nmsk:
-       free_cpumask_var(nmsk);
-       return ret < 0 ? ret : 0;
-}
+#include <linux/group_cpus.h>
 
 static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
 {
@@ -461,14 +70,18 @@ irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
         */
        for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
                unsigned int this_vecs = affd->set_size[i];
-               int ret;
+               int j;
+               struct cpumask *result = group_cpus_evenly(this_vecs);
 
-               ret = irq_build_affinity_masks(curvec, this_vecs,
-                                              curvec, masks);
-               if (ret) {
+               if (!result) {
                        kfree(masks);
                        return NULL;
                }
+
+               for (j = 0; j < this_vecs; j++)
+                       cpumask_copy(&masks[curvec + j].mask, &result[j]);
+               kfree(result);
+
                curvec += this_vecs;
                usedvecs += this_vecs;
        }