[media] doc-rst: Move v4l docs to media/v4l-drivers
[linux-2.6-block.git] / Documentation / video4linux / vivid.txt
diff --git a/Documentation/video4linux/vivid.txt b/Documentation/video4linux/vivid.txt
deleted file mode 100644 (file)
index 1b26519..0000000
+++ /dev/null
@@ -1,1161 +0,0 @@
-vivid: Virtual Video Test Driver
-================================
-
-This driver emulates video4linux hardware of various types: video capture, video
-output, vbi capture and output, radio receivers and transmitters and a software
-defined radio receiver. In addition a simple framebuffer device is available for
-testing capture and output overlays.
-
-Up to 64 vivid instances can be created, each with up to 16 inputs and 16 outputs.
-
-Each input can be a webcam, TV capture device, S-Video capture device or an HDMI
-capture device. Each output can be an S-Video output device or an HDMI output
-device.
-
-These inputs and outputs act exactly as a real hardware device would behave. This
-allows you to use this driver as a test input for application development, since
-you can test the various features without requiring special hardware.
-
-This document describes the features implemented by this driver:
-
-- Support for read()/write(), MMAP, USERPTR and DMABUF streaming I/O.
-- A large list of test patterns and variations thereof
-- Working brightness, contrast, saturation and hue controls
-- Support for the alpha color component
-- Full colorspace support, including limited/full RGB range
-- All possible control types are present
-- Support for various pixel aspect ratios and video aspect ratios
-- Error injection to test what happens if errors occur
-- Supports crop/compose/scale in any combination for both input and output
-- Can emulate up to 4K resolutions
-- All Field settings are supported for testing interlaced capturing
-- Supports all standard YUV and RGB formats, including two multiplanar YUV formats
-- Raw and Sliced VBI capture and output support
-- Radio receiver and transmitter support, including RDS support
-- Software defined radio (SDR) support
-- Capture and output overlay support
-
-These features will be described in more detail below.
-
-
-Table of Contents
------------------
-
-Section 1: Configuring the driver
-Section 2: Video Capture
-Section 2.1: Webcam Input
-Section 2.2: TV and S-Video Inputs
-Section 2.3: HDMI Input
-Section 3: Video Output
-Section 3.1: S-Video Output
-Section 3.2: HDMI Output
-Section 4: VBI Capture
-Section 5: VBI Output
-Section 6: Radio Receiver
-Section 7: Radio Transmitter
-Section 8: Software Defined Radio Receiver
-Section 9: Controls
-Section 9.1: User Controls - Test Controls
-Section 9.2: User Controls - Video Capture
-Section 9.3: User Controls - Audio
-Section 9.4: Vivid Controls
-Section 9.4.1: Test Pattern Controls
-Section 9.4.2: Capture Feature Selection Controls
-Section 9.4.3: Output Feature Selection Controls
-Section 9.4.4: Error Injection Controls
-Section 9.4.5: VBI Raw Capture Controls
-Section 9.5: Digital Video Controls
-Section 9.6: FM Radio Receiver Controls
-Section 9.7: FM Radio Modulator
-Section 10: Video, VBI and RDS Looping
-Section 10.1: Video and Sliced VBI looping
-Section 10.2: Radio & RDS Looping
-Section 11: Cropping, Composing, Scaling
-Section 12: Formats
-Section 13: Capture Overlay
-Section 14: Output Overlay
-Section 15: CEC (Consumer Electronics Control)
-Section 16: Some Future Improvements
-
-
-Section 1: Configuring the driver
----------------------------------
-
-By default the driver will create a single instance that has a video capture
-device with webcam, TV, S-Video and HDMI inputs, a video output device with
-S-Video and HDMI outputs, one vbi capture device, one vbi output device, one
-radio receiver device, one radio transmitter device and one SDR device.
-
-The number of instances, devices, video inputs and outputs and their types are
-all configurable using the following module options:
-
-n_devs: number of driver instances to create. By default set to 1. Up to 64
-       instances can be created.
-
-node_types: which devices should each driver instance create. An array of
-       hexadecimal values, one for each instance. The default is 0x1d3d.
-       Each value is a bitmask with the following meaning:
-               bit 0: Video Capture node
-               bit 2-3: VBI Capture node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
-               bit 4: Radio Receiver node
-               bit 5: Software Defined Radio Receiver node
-               bit 8: Video Output node
-               bit 10-11: VBI Output node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
-               bit 12: Radio Transmitter node
-               bit 16: Framebuffer for testing overlays
-
-       So to create four instances, the first two with just one video capture
-       device, the second two with just one video output device you would pass
-       these module options to vivid:
-
-               n_devs=4 node_types=0x1,0x1,0x100,0x100
-
-num_inputs: the number of inputs, one for each instance. By default 4 inputs
-       are created for each video capture device. At most 16 inputs can be created,
-       and there must be at least one.
-
-input_types: the input types for each instance, the default is 0xe4. This defines
-       what the type of each input is when the inputs are created for each driver
-       instance. This is a hexadecimal value with up to 16 pairs of bits, each
-       pair gives the type and bits 0-1 map to input 0, bits 2-3 map to input 1,
-       30-31 map to input 15. Each pair of bits has the following meaning:
-
-               00: this is a webcam input
-               01: this is a TV tuner input
-               10: this is an S-Video input
-               11: this is an HDMI input
-
-       So to create a video capture device with 8 inputs where input 0 is a TV
-       tuner, inputs 1-3 are S-Video inputs and inputs 4-7 are HDMI inputs you
-       would use the following module options:
-
-               num_inputs=8 input_types=0xffa9
-
-num_outputs: the number of outputs, one for each instance. By default 2 outputs
-       are created for each video output device. At most 16 outputs can be
-       created, and there must be at least one.
-
-output_types: the output types for each instance, the default is 0x02. This defines
-       what the type of each output is when the outputs are created for each
-       driver instance. This is a hexadecimal value with up to 16 bits, each bit
-       gives the type and bit 0 maps to output 0, bit 1 maps to output 1, bit
-       15 maps to output 15. The meaning of each bit is as follows:
-
-               0: this is an S-Video output
-               1: this is an HDMI output
-
-       So to create a video output device with 8 outputs where outputs 0-3 are
-       S-Video outputs and outputs 4-7 are HDMI outputs you would use the
-       following module options:
-
-               num_outputs=8 output_types=0xf0
-
-vid_cap_nr: give the desired videoX start number for each video capture device.
-       The default is -1 which will just take the first free number. This allows
-       you to map capture video nodes to specific videoX device nodes. Example:
-
-               n_devs=4 vid_cap_nr=2,4,6,8
-
-       This will attempt to assign /dev/video2 for the video capture device of
-       the first vivid instance, video4 for the next up to video8 for the last
-       instance. If it can't succeed, then it will just take the next free
-       number.
-
-vid_out_nr: give the desired videoX start number for each video output device.
-        The default is -1 which will just take the first free number.
-
-vbi_cap_nr: give the desired vbiX start number for each vbi capture device.
-        The default is -1 which will just take the first free number.
-
-vbi_out_nr: give the desired vbiX start number for each vbi output device.
-        The default is -1 which will just take the first free number.
-
-radio_rx_nr: give the desired radioX start number for each radio receiver device.
-        The default is -1 which will just take the first free number.
-
-radio_tx_nr: give the desired radioX start number for each radio transmitter
-       device. The default is -1 which will just take the first free number.
-
-sdr_cap_nr: give the desired swradioX start number for each SDR capture device.
-        The default is -1 which will just take the first free number.
-
-ccs_cap_mode: specify the allowed video capture crop/compose/scaling combination
-       for each driver instance. Video capture devices can have any combination
-       of cropping, composing and scaling capabilities and this will tell the
-       vivid driver which of those is should emulate. By default the user can
-       select this through controls.
-
-       The value is either -1 (controlled by the user) or a set of three bits,
-       each enabling (1) or disabling (0) one of the features:
-
-               bit 0: Enable crop support. Cropping will take only part of the
-                      incoming picture.
-               bit 1: Enable compose support. Composing will copy the incoming
-                      picture into a larger buffer.
-               bit 2: Enable scaling support. Scaling can scale the incoming
-                      picture. The scaler of the vivid driver can enlarge up
-                      or down to four times the original size. The scaler is
-                      very simple and low-quality. Simplicity and speed were
-                      key, not quality.
-
-       Note that this value is ignored by webcam inputs: those enumerate
-       discrete framesizes and that is incompatible with cropping, composing
-       or scaling.
-
-ccs_out_mode: specify the allowed video output crop/compose/scaling combination
-       for each driver instance. Video output devices can have any combination
-       of cropping, composing and scaling capabilities and this will tell the
-       vivid driver which of those is should emulate. By default the user can
-       select this through controls.
-
-       The value is either -1 (controlled by the user) or a set of three bits,
-       each enabling (1) or disabling (0) one of the features:
-
-               bit 0: Enable crop support. Cropping will take only part of the
-                      outgoing buffer.
-               bit 1: Enable compose support. Composing will copy the incoming
-                      buffer into a larger picture frame.
-               bit 2: Enable scaling support. Scaling can scale the incoming
-                      buffer. The scaler of the vivid driver can enlarge up
-                      or down to four times the original size. The scaler is
-                      very simple and low-quality. Simplicity and speed were
-                      key, not quality.
-
-multiplanar: select whether each device instance supports multi-planar formats,
-       and thus the V4L2 multi-planar API. By default device instances are
-       single-planar.
-
-       This module option can override that for each instance. Values are:
-
-               1: this is a single-planar instance.
-               2: this is a multi-planar instance.
-
-vivid_debug: enable driver debugging info
-
-no_error_inj: if set disable the error injecting controls. This option is
-       needed in order to run a tool like v4l2-compliance. Tools like that
-       exercise all controls including a control like 'Disconnect' which
-       emulates a USB disconnect, making the device inaccessible and so
-       all tests that v4l2-compliance is doing will fail afterwards.
-
-       There may be other situations as well where you want to disable the
-       error injection support of vivid. When this option is set, then the
-       controls that select crop, compose and scale behavior are also
-       removed. Unless overridden by ccs_cap_mode and/or ccs_out_mode the
-       will default to enabling crop, compose and scaling.
-
-Taken together, all these module options allow you to precisely customize
-the driver behavior and test your application with all sorts of permutations.
-It is also very suitable to emulate hardware that is not yet available, e.g.
-when developing software for a new upcoming device.
-
-
-Section 2: Video Capture
-------------------------
-
-This is probably the most frequently used feature. The video capture device
-can be configured by using the module options num_inputs, input_types and
-ccs_cap_mode (see section 1 for more detailed information), but by default
-four inputs are configured: a webcam, a TV tuner, an S-Video and an HDMI
-input, one input for each input type. Those are described in more detail
-below.
-
-Special attention has been given to the rate at which new frames become
-available. The jitter will be around 1 jiffie (that depends on the HZ
-configuration of your kernel, so usually 1/100, 1/250 or 1/1000 of a second),
-but the long-term behavior is exactly following the framerate. So a
-framerate of 59.94 Hz is really different from 60 Hz. If the framerate
-exceeds your kernel's HZ value, then you will get dropped frames, but the
-frame/field sequence counting will keep track of that so the sequence
-count will skip whenever frames are dropped.
-
-
-Section 2.1: Webcam Input
--------------------------
-
-The webcam input supports three framesizes: 320x180, 640x360 and 1280x720. It
-supports frames per second settings of 10, 15, 25, 30, 50 and 60 fps. Which ones
-are available depends on the chosen framesize: the larger the framesize, the
-lower the maximum frames per second.
-
-The initially selected colorspace when you switch to the webcam input will be
-sRGB.
-
-
-Section 2.2: TV and S-Video Inputs
-----------------------------------
-
-The only difference between the TV and S-Video input is that the TV has a
-tuner. Otherwise they behave identically.
-
-These inputs support audio inputs as well: one TV and one Line-In. They
-both support all TV standards. If the standard is queried, then the Vivid
-controls 'Standard Signal Mode' and 'Standard' determine what
-the result will be.
-
-These inputs support all combinations of the field setting. Special care has
-been taken to faithfully reproduce how fields are handled for the different
-TV standards. This is particularly noticeable when generating a horizontally
-moving image so the temporal effect of using interlaced formats becomes clearly
-visible. For 50 Hz standards the top field is the oldest and the bottom field
-is the newest in time. For 60 Hz standards that is reversed: the bottom field
-is the oldest and the top field is the newest in time.
-
-When you start capturing in V4L2_FIELD_ALTERNATE mode the first buffer will
-contain the top field for 50 Hz standards and the bottom field for 60 Hz
-standards. This is what capture hardware does as well.
-
-Finally, for PAL/SECAM standards the first half of the top line contains noise.
-This simulates the Wide Screen Signal that is commonly placed there.
-
-The initially selected colorspace when you switch to the TV or S-Video input
-will be SMPTE-170M.
-
-The pixel aspect ratio will depend on the TV standard. The video aspect ratio
-can be selected through the 'Standard Aspect Ratio' Vivid control.
-Choices are '4x3', '16x9' which will give letterboxed widescreen video and
-'16x9 Anamorphic' which will give full screen squashed anamorphic widescreen
-video that will need to be scaled accordingly.
-
-The TV 'tuner' supports a frequency range of 44-958 MHz. Channels are available
-every 6 MHz, starting from 49.25 MHz. For each channel the generated image
-will be in color for the +/- 0.25 MHz around it, and in grayscale for
-+/- 1 MHz around the channel. Beyond that it is just noise. The VIDIOC_G_TUNER
-ioctl will return 100% signal strength for +/- 0.25 MHz and 50% for +/- 1 MHz.
-It will also return correct afc values to show whether the frequency is too
-low or too high.
-
-The audio subchannels that are returned are MONO for the +/- 1 MHz range around
-a valid channel frequency. When the frequency is within +/- 0.25 MHz of the
-channel it will return either MONO, STEREO, either MONO | SAP (for NTSC) or
-LANG1 | LANG2 (for others), or STEREO | SAP.
-
-Which one is returned depends on the chosen channel, each next valid channel
-will cycle through the possible audio subchannel combinations. This allows
-you to test the various combinations by just switching channels..
-
-Finally, for these inputs the v4l2_timecode struct is filled in in the
-dequeued v4l2_buffer struct.
-
-
-Section 2.3: HDMI Input
------------------------
-
-The HDMI inputs supports all CEA-861 and DMT timings, both progressive and
-interlaced, for pixelclock frequencies between 25 and 600 MHz. The field
-mode for interlaced formats is always V4L2_FIELD_ALTERNATE. For HDMI the
-field order is always top field first, and when you start capturing an
-interlaced format you will receive the top field first.
-
-The initially selected colorspace when you switch to the HDMI input or
-select an HDMI timing is based on the format resolution: for resolutions
-less than or equal to 720x576 the colorspace is set to SMPTE-170M, for
-others it is set to REC-709 (CEA-861 timings) or sRGB (VESA DMT timings).
-
-The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it
-set as for the NTSC TV standard, for 720x576 it is set as for the PAL TV
-standard, and for all others a 1:1 pixel aspect ratio is returned.
-
-The video aspect ratio can be selected through the 'DV Timings Aspect Ratio'
-Vivid control. Choices are 'Source Width x Height' (just use the
-same ratio as the chosen format), '4x3' or '16x9', either of which can
-result in pillarboxed or letterboxed video.
-
-For HDMI inputs it is possible to set the EDID. By default a simple EDID
-is provided. You can only set the EDID for HDMI inputs. Internally, however,
-the EDID is shared between all HDMI inputs.
-
-No interpretation is done of the EDID data with the exception of the
-physical address. See the CEC section for more details.
-
-There is a maximum of 15 HDMI inputs (if there are more, then they will be
-reduced to 15) since that's the limitation of the EDID physical address.
-
-
-Section 3: Video Output
------------------------
-
-The video output device can be configured by using the module options
-num_outputs, output_types and ccs_out_mode (see section 1 for more detailed
-information), but by default two outputs are configured: an S-Video and an
-HDMI input, one output for each output type. Those are described in more detail
-below.
-
-Like with video capture the framerate is also exact in the long term.
-
-
-Section 3.1: S-Video Output
----------------------------
-
-This output supports audio outputs as well: "Line-Out 1" and "Line-Out 2".
-The S-Video output supports all TV standards.
-
-This output supports all combinations of the field setting.
-
-The initially selected colorspace when you switch to the TV or S-Video input
-will be SMPTE-170M.
-
-
-Section 3.2: HDMI Output
-------------------------
-
-The HDMI output supports all CEA-861 and DMT timings, both progressive and
-interlaced, for pixelclock frequencies between 25 and 600 MHz. The field
-mode for interlaced formats is always V4L2_FIELD_ALTERNATE.
-
-The initially selected colorspace when you switch to the HDMI output or
-select an HDMI timing is based on the format resolution: for resolutions
-less than or equal to 720x576 the colorspace is set to SMPTE-170M, for
-others it is set to REC-709 (CEA-861 timings) or sRGB (VESA DMT timings).
-
-The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it
-set as for the NTSC TV standard, for 720x576 it is set as for the PAL TV
-standard, and for all others a 1:1 pixel aspect ratio is returned.
-
-An HDMI output has a valid EDID which can be obtained through VIDIOC_G_EDID.
-
-There is a maximum of 15 HDMI outputs (if there are more, then they will be
-reduced to 15) since that's the limitation of the EDID physical address. See
-also the CEC section for more details.
-
-Section 4: VBI Capture
-----------------------
-
-There are three types of VBI capture devices: those that only support raw
-(undecoded) VBI, those that only support sliced (decoded) VBI and those that
-support both. This is determined by the node_types module option. In all
-cases the driver will generate valid VBI data: for 60 Hz standards it will
-generate Closed Caption and XDS data. The closed caption stream will
-alternate between "Hello world!" and "Closed captions test" every second.
-The XDS stream will give the current time once a minute. For 50 Hz standards
-it will generate the Wide Screen Signal which is based on the actual Video
-Aspect Ratio control setting and teletext pages 100-159, one page per frame.
-
-The VBI device will only work for the S-Video and TV inputs, it will give
-back an error if the current input is a webcam or HDMI.
-
-
-Section 5: VBI Output
----------------------
-
-There are three types of VBI output devices: those that only support raw
-(undecoded) VBI, those that only support sliced (decoded) VBI and those that
-support both. This is determined by the node_types module option.
-
-The sliced VBI output supports the Wide Screen Signal and the teletext signal
-for 50 Hz standards and Closed Captioning + XDS for 60 Hz standards.
-
-The VBI device will only work for the S-Video output, it will give
-back an error if the current output is HDMI.
-
-
-Section 6: Radio Receiver
--------------------------
-
-The radio receiver emulates an FM/AM/SW receiver. The FM band also supports RDS.
-The frequency ranges are:
-
-       FM: 64 MHz - 108 MHz
-       AM: 520 kHz - 1710 kHz
-       SW: 2300 kHz - 26.1 MHz
-
-Valid channels are emulated every 1 MHz for FM and every 100 kHz for AM and SW.
-The signal strength decreases the further the frequency is from the valid
-frequency until it becomes 0% at +/- 50 kHz (FM) or 5 kHz (AM/SW) from the
-ideal frequency. The initial frequency when the driver is loaded is set to
-95 MHz.
-
-The FM receiver supports RDS as well, both using 'Block I/O' and 'Controls'
-modes. In the 'Controls' mode the RDS information is stored in read-only
-controls. These controls are updated every time the frequency is changed,
-or when the tuner status is requested. The Block I/O method uses the read()
-interface to pass the RDS blocks on to the application for decoding.
-
-The RDS signal is 'detected' for +/- 12.5 kHz around the channel frequency,
-and the further the frequency is away from the valid frequency the more RDS
-errors are randomly introduced into the block I/O stream, up to 50% of all
-blocks if you are +/- 12.5 kHz from the channel frequency. All four errors
-can occur in equal proportions: blocks marked 'CORRECTED', blocks marked
-'ERROR', blocks marked 'INVALID' and dropped blocks.
-
-The generated RDS stream contains all the standard fields contained in a
-0B group, and also radio text and the current time.
-
-The receiver supports HW frequency seek, either in Bounded mode, Wrap Around
-mode or both, which is configurable with the "Radio HW Seek Mode" control.
-
-
-Section 7: Radio Transmitter
-----------------------------
-
-The radio transmitter emulates an FM/AM/SW transmitter. The FM band also supports RDS.
-The frequency ranges are:
-
-       FM: 64 MHz - 108 MHz
-       AM: 520 kHz - 1710 kHz
-       SW: 2300 kHz - 26.1 MHz
-
-The initial frequency when the driver is loaded is 95.5 MHz.
-
-The FM transmitter supports RDS as well, both using 'Block I/O' and 'Controls'
-modes. In the 'Controls' mode the transmitted RDS information is configured
-using controls, and in 'Block I/O' mode the blocks are passed to the driver
-using write().
-
-
-Section 8: Software Defined Radio Receiver
-------------------------------------------
-
-The SDR receiver has three frequency bands for the ADC tuner:
-
-       - 300 kHz
-       - 900 kHz - 2800 kHz
-       - 3200 kHz
-
-The RF tuner supports 50 MHz - 2000 MHz.
-
-The generated data contains the In-phase and Quadrature components of a
-1 kHz tone that has an amplitude of sqrt(2).
-
-
-Section 9: Controls
--------------------
-
-Different devices support different controls. The sections below will describe
-each control and which devices support them.
-
-
-Section 9.1: User Controls - Test Controls
-------------------------------------------
-
-The Button, Boolean, Integer 32 Bits, Integer 64 Bits, Menu, String, Bitmask and
-Integer Menu are controls that represent all possible control types. The Menu
-control and the Integer Menu control both have 'holes' in their menu list,
-meaning that one or more menu items return EINVAL when VIDIOC_QUERYMENU is called.
-Both menu controls also have a non-zero minimum control value.  These features
-allow you to check if your application can handle such things correctly.
-These controls are supported for every device type.
-
-
-Section 9.2: User Controls - Video Capture
-------------------------------------------
-
-The following controls are specific to video capture.
-
-The Brightness, Contrast, Saturation and Hue controls actually work and are
-standard. There is one special feature with the Brightness control: each
-video input has its own brightness value, so changing input will restore
-the brightness for that input. In addition, each video input uses a different
-brightness range (minimum and maximum control values). Switching inputs will
-cause a control event to be sent with the V4L2_EVENT_CTRL_CH_RANGE flag set.
-This allows you to test controls that can change their range.
-
-The 'Gain, Automatic' and Gain controls can be used to test volatile controls:
-if 'Gain, Automatic' is set, then the Gain control is volatile and changes
-constantly. If 'Gain, Automatic' is cleared, then the Gain control is a normal
-control.
-
-The 'Horizontal Flip' and 'Vertical Flip' controls can be used to flip the
-image. These combine with the 'Sensor Flipped Horizontally/Vertically' Vivid
-controls.
-
-The 'Alpha Component' control can be used to set the alpha component for
-formats containing an alpha channel.
-
-
-Section 9.3: User Controls - Audio
-----------------------------------
-
-The following controls are specific to video capture and output and radio
-receivers and transmitters.
-
-The 'Volume' and 'Mute' audio controls are typical for such devices to
-control the volume and mute the audio. They don't actually do anything in
-the vivid driver.
-
-
-Section 9.4: Vivid Controls
----------------------------
-
-These vivid custom controls control the image generation, error injection, etc.
-
-
-Section 9.4.1: Test Pattern Controls
-------------------------------------
-
-The Test Pattern Controls are all specific to video capture.
-
-Test Pattern: selects which test pattern to use. Use the CSC Colorbar for
-       testing colorspace conversions: the colors used in that test pattern
-       map to valid colors in all colorspaces. The colorspace conversion
-       is disabled for the other test patterns.
-
-OSD Text Mode: selects whether the text superimposed on the
-       test pattern should be shown, and if so, whether only counters should
-       be displayed or the full text.
-
-Horizontal Movement: selects whether the test pattern should
-       move to the left or right and at what speed.
-
-Vertical Movement: does the same for the vertical direction.
-
-Show Border: show a two-pixel wide border at the edge of the actual image,
-       excluding letter or pillarboxing.
-
-Show Square: show a square in the middle of the image. If the image is
-       displayed with the correct pixel and image aspect ratio corrections,
-       then the width and height of the square on the monitor should be
-       the same.
-
-Insert SAV Code in Image: adds a SAV (Start of Active Video) code to the image.
-       This can be used to check if such codes in the image are inadvertently
-       interpreted instead of being ignored.
-
-Insert EAV Code in Image: does the same for the EAV (End of Active Video) code.
-
-
-Section 9.4.2: Capture Feature Selection Controls
--------------------------------------------------
-
-These controls are all specific to video capture.
-
-Sensor Flipped Horizontally: the image is flipped horizontally and the
-       V4L2_IN_ST_HFLIP input status flag is set. This emulates the case where
-       a sensor is for example mounted upside down.
-
-Sensor Flipped Vertically: the image is flipped vertically and the
-       V4L2_IN_ST_VFLIP input status flag is set. This emulates the case where
-        a sensor is for example mounted upside down.
-
-Standard Aspect Ratio: selects if the image aspect ratio as used for the TV or
-       S-Video input should be 4x3, 16x9 or anamorphic widescreen. This may
-       introduce letterboxing.
-
-DV Timings Aspect Ratio: selects if the image aspect ratio as used for the HDMI
-       input should be the same as the source width and height ratio, or if
-       it should be 4x3 or 16x9. This may introduce letter or pillarboxing.
-
-Timestamp Source: selects when the timestamp for each buffer is taken.
-
-Colorspace: selects which colorspace should be used when generating the image.
-       This only applies if the CSC Colorbar test pattern is selected,
-       otherwise the test pattern will go through unconverted.
-       This behavior is also what you want, since a 75% Colorbar
-       should really have 75% signal intensity and should not be affected
-       by colorspace conversions.
-
-       Changing the colorspace will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a detected colorspace change.
-
-Transfer Function: selects which colorspace transfer function should be used when
-       generating an image. This only applies if the CSC Colorbar test pattern is
-       selected, otherwise the test pattern will go through unconverted.
-        This behavior is also what you want, since a 75% Colorbar
-        should really have 75% signal intensity and should not be affected
-        by colorspace conversions.
-
-       Changing the transfer function will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a detected colorspace change.
-
-Y'CbCr Encoding: selects which Y'CbCr encoding should be used when generating
-       a Y'CbCr image. This only applies if the format is set to a Y'CbCr format
-       as opposed to an RGB format.
-
-       Changing the Y'CbCr encoding will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a detected colorspace change.
-
-Quantization: selects which quantization should be used for the RGB or Y'CbCr
-       encoding when generating the test pattern.
-
-       Changing the quantization will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a detected colorspace change.
-
-Limited RGB Range (16-235): selects if the RGB range of the HDMI source should
-       be limited or full range. This combines with the Digital Video 'Rx RGB
-       Quantization Range' control and can be used to test what happens if
-       a source provides you with the wrong quantization range information.
-       See the description of that control for more details.
-
-Apply Alpha To Red Only: apply the alpha channel as set by the 'Alpha Component'
-       user control to the red color of the test pattern only.
-
-Enable Capture Cropping: enables crop support. This control is only present if
-       the ccs_cap_mode module option is set to the default value of -1 and if
-       the no_error_inj module option is set to 0 (the default).
-
-Enable Capture Composing: enables composing support. This control is only
-       present if the ccs_cap_mode module option is set to the default value of
-       -1 and if the no_error_inj module option is set to 0 (the default).
-
-Enable Capture Scaler: enables support for a scaler (maximum 4 times upscaling
-       and downscaling). This control is only present if the ccs_cap_mode
-       module option is set to the default value of -1 and if the no_error_inj
-       module option is set to 0 (the default).
-
-Maximum EDID Blocks: determines how many EDID blocks the driver supports.
-       Note that the vivid driver does not actually interpret new EDID
-       data, it just stores it. It allows for up to 256 EDID blocks
-       which is the maximum supported by the standard.
-
-Fill Percentage of Frame: can be used to draw only the top X percent
-       of the image. Since each frame has to be drawn by the driver, this
-       demands a lot of the CPU. For large resolutions this becomes
-       problematic. By drawing only part of the image this CPU load can
-       be reduced.
-
-
-Section 9.4.3: Output Feature Selection Controls
-------------------------------------------------
-
-These controls are all specific to video output.
-
-Enable Output Cropping: enables crop support. This control is only present if
-       the ccs_out_mode module option is set to the default value of -1 and if
-       the no_error_inj module option is set to 0 (the default).
-
-Enable Output Composing: enables composing support. This control is only
-       present if the ccs_out_mode module option is set to the default value of
-       -1 and if the no_error_inj module option is set to 0 (the default).
-
-Enable Output Scaler: enables support for a scaler (maximum 4 times upscaling
-       and downscaling). This control is only present if the ccs_out_mode
-       module option is set to the default value of -1 and if the no_error_inj
-       module option is set to 0 (the default).
-
-
-Section 9.4.4: Error Injection Controls
----------------------------------------
-
-The following two controls are only valid for video and vbi capture.
-
-Standard Signal Mode: selects the behavior of VIDIOC_QUERYSTD: what should
-       it return?
-
-       Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a changed input condition (e.g. a cable
-       was plugged in or out).
-
-Standard: selects the standard that VIDIOC_QUERYSTD should return if the
-       previous control is set to "Selected Standard".
-
-       Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a changed input standard.
-
-
-The following two controls are only valid for video capture.
-
-DV Timings Signal Mode: selects the behavior of VIDIOC_QUERY_DV_TIMINGS: what
-       should it return?
-
-       Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates a changed input condition (e.g. a cable
-       was plugged in or out).
-
-DV Timings: selects the timings the VIDIOC_QUERY_DV_TIMINGS should return
-       if the previous control is set to "Selected DV Timings".
-
-       Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE
-       to be sent since it emulates changed input timings.
-
-
-The following controls are only present if the no_error_inj module option
-is set to 0 (the default). These controls are valid for video and vbi
-capture and output streams and for the SDR capture device except for the
-Disconnect control which is valid for all devices.
-
-Wrap Sequence Number: test what happens when you wrap the sequence number in
-       struct v4l2_buffer around.
-
-Wrap Timestamp: test what happens when you wrap the timestamp in struct
-       v4l2_buffer around.
-
-Percentage of Dropped Buffers: sets the percentage of buffers that
-       are never returned by the driver (i.e., they are dropped).
-
-Disconnect: emulates a USB disconnect. The device will act as if it has
-       been disconnected. Only after all open filehandles to the device
-       node have been closed will the device become 'connected' again.
-
-Inject V4L2_BUF_FLAG_ERROR: when pressed, the next frame returned by
-       the driver will have the error flag set (i.e. the frame is marked
-       corrupt).
-
-Inject VIDIOC_REQBUFS Error: when pressed, the next REQBUFS or CREATE_BUFS
-       ioctl call will fail with an error. To be precise: the videobuf2
-       queue_setup() op will return -EINVAL.
-
-Inject VIDIOC_QBUF Error: when pressed, the next VIDIOC_QBUF or
-       VIDIOC_PREPARE_BUFFER ioctl call will fail with an error. To be
-       precise: the videobuf2 buf_prepare() op will return -EINVAL.
-
-Inject VIDIOC_STREAMON Error: when pressed, the next VIDIOC_STREAMON ioctl
-       call will fail with an error. To be precise: the videobuf2
-       start_streaming() op will return -EINVAL.
-
-Inject Fatal Streaming Error: when pressed, the streaming core will be
-       marked as having suffered a fatal error, the only way to recover
-       from that is to stop streaming. To be precise: the videobuf2
-       vb2_queue_error() function is called.
-
-
-Section 9.4.5: VBI Raw Capture Controls
----------------------------------------
-
-Interlaced VBI Format: if set, then the raw VBI data will be interlaced instead
-       of providing it grouped by field.
-
-
-Section 9.5: Digital Video Controls
------------------------------------
-
-Rx RGB Quantization Range: sets the RGB quantization detection of the HDMI
-       input. This combines with the Vivid 'Limited RGB Range (16-235)'
-       control and can be used to test what happens if a source provides
-       you with the wrong quantization range information. This can be tested
-       by selecting an HDMI input, setting this control to Full or Limited
-       range and selecting the opposite in the 'Limited RGB Range (16-235)'
-       control. The effect is easy to see if the 'Gray Ramp' test pattern
-       is selected.
-
-Tx RGB Quantization Range: sets the RGB quantization detection of the HDMI
-       output. It is currently not used for anything in vivid, but most HDMI
-       transmitters would typically have this control.
-
-Transmit Mode: sets the transmit mode of the HDMI output to HDMI or DVI-D. This
-       affects the reported colorspace since DVI_D outputs will always use
-       sRGB.
-
-
-Section 9.6: FM Radio Receiver Controls
----------------------------------------
-
-RDS Reception: set if the RDS receiver should be enabled.
-
-RDS Program Type:
-RDS PS Name:
-RDS Radio Text:
-RDS Traffic Announcement:
-RDS Traffic Program:
-RDS Music: these are all read-only controls. If RDS Rx I/O Mode is set to
-       "Block I/O", then they are inactive as well. If RDS Rx I/O Mode is set
-       to "Controls", then these controls report the received RDS data. Note
-       that the vivid implementation of this is pretty basic: they are only
-       updated when you set a new frequency or when you get the tuner status
-       (VIDIOC_G_TUNER).
-
-Radio HW Seek Mode: can be one of "Bounded", "Wrap Around" or "Both". This
-       determines if VIDIOC_S_HW_FREQ_SEEK will be bounded by the frequency
-       range or wrap-around or if it is selectable by the user.
-
-Radio Programmable HW Seek: if set, then the user can provide the lower and
-       upper bound of the HW Seek. Otherwise the frequency range boundaries
-       will be used.
-
-Generate RBDS Instead of RDS: if set, then generate RBDS (the US variant of
-       RDS) data instead of RDS (European-style RDS). This affects only the
-       PICODE and PTY codes.
-
-RDS Rx I/O Mode: this can be "Block I/O" where the RDS blocks have to be read()
-       by the application, or "Controls" where the RDS data is provided by
-       the RDS controls mentioned above.
-
-
-Section 9.7: FM Radio Modulator Controls
-----------------------------------------
-
-RDS Program ID:
-RDS Program Type:
-RDS PS Name:
-RDS Radio Text:
-RDS Stereo:
-RDS Artificial Head:
-RDS Compressed:
-RDS Dynamic PTY:
-RDS Traffic Announcement:
-RDS Traffic Program:
-RDS Music: these are all controls that set the RDS data that is transmitted by
-       the FM modulator.
-
-RDS Tx I/O Mode: this can be "Block I/O" where the application has to use write()
-       to pass the RDS blocks to the driver, or "Controls" where the RDS data is
-       provided by the RDS controls mentioned above.
-
-
-Section 10: Video, VBI and RDS Looping
---------------------------------------
-
-The vivid driver supports looping of video output to video input, VBI output
-to VBI input and RDS output to RDS input. For video/VBI looping this emulates
-as if a cable was hooked up between the output and input connector. So video
-and VBI looping is only supported between S-Video and HDMI inputs and outputs.
-VBI is only valid for S-Video as it makes no sense for HDMI.
-
-Since radio is wireless this looping always happens if the radio receiver
-frequency is close to the radio transmitter frequency. In that case the radio
-transmitter will 'override' the emulated radio stations.
-
-Looping is currently supported only between devices created by the same
-vivid driver instance.
-
-
-Section 10.1: Video and Sliced VBI looping
-------------------------------------------
-
-The way to enable video/VBI looping is currently fairly crude. A 'Loop Video'
-control is available in the "Vivid" control class of the video
-capture and VBI capture devices. When checked the video looping will be enabled.
-Once enabled any video S-Video or HDMI input will show a static test pattern
-until the video output has started. At that time the video output will be
-looped to the video input provided that:
-
-- the input type matches the output type. So the HDMI input cannot receive
-  video from the S-Video output.
-
-- the video resolution of the video input must match that of the video output.
-  So it is not possible to loop a 50 Hz (720x576) S-Video output to a 60 Hz
-  (720x480) S-Video input, or a 720p60 HDMI output to a 1080p30 input.
-
-- the pixel formats must be identical on both sides. Otherwise the driver would
-  have to do pixel format conversion as well, and that's taking things too far.
-
-- the field settings must be identical on both sides. Same reason as above:
-  requiring the driver to convert from one field format to another complicated
-  matters too much. This also prohibits capturing with 'Field Top' or 'Field
-  Bottom' when the output video is set to 'Field Alternate'. This combination,
-  while legal, became too complicated to support. Both sides have to be 'Field
-  Alternate' for this to work. Also note that for this specific case the
-  sequence and field counting in struct v4l2_buffer on the capture side may not
-  be 100% accurate.
-
-- field settings V4L2_FIELD_SEQ_TB/BT are not supported. While it is possible to
-  implement this, it would mean a lot of work to get this right. Since these
-  field values are rarely used the decision was made not to implement this for
-  now.
-
-- on the input side the "Standard Signal Mode" for the S-Video input or the
-  "DV Timings Signal Mode" for the HDMI input should be configured so that a
-  valid signal is passed to the video input.
-
-The framerates do not have to match, although this might change in the future.
-
-By default you will see the OSD text superimposed on top of the looped video.
-This can be turned off by changing the "OSD Text Mode" control of the video
-capture device.
-
-For VBI looping to work all of the above must be valid and in addition the vbi
-output must be configured for sliced VBI. The VBI capture side can be configured
-for either raw or sliced VBI. Note that at the moment only CC/XDS (60 Hz formats)
-and WSS (50 Hz formats) VBI data is looped. Teletext VBI data is not looped.
-
-
-Section 10.2: Radio & RDS Looping
----------------------------------
-
-As mentioned in section 6 the radio receiver emulates stations are regular
-frequency intervals. Depending on the frequency of the radio receiver a
-signal strength value is calculated (this is returned by VIDIOC_G_TUNER).
-However, it will also look at the frequency set by the radio transmitter and
-if that results in a higher signal strength than the settings of the radio
-transmitter will be used as if it was a valid station. This also includes
-the RDS data (if any) that the transmitter 'transmits'. This is received
-faithfully on the receiver side. Note that when the driver is loaded the
-frequencies of the radio receiver and transmitter are not identical, so
-initially no looping takes place.
-
-
-Section 11: Cropping, Composing, Scaling
-----------------------------------------
-
-This driver supports cropping, composing and scaling in any combination. Normally
-which features are supported can be selected through the Vivid controls,
-but it is also possible to hardcode it when the module is loaded through the
-ccs_cap_mode and ccs_out_mode module options. See section 1 on the details of
-these module options.
-
-This allows you to test your application for all these variations.
-
-Note that the webcam input never supports cropping, composing or scaling. That
-only applies to the TV/S-Video/HDMI inputs and outputs. The reason is that
-webcams, including this virtual implementation, normally use
-VIDIOC_ENUM_FRAMESIZES to list a set of discrete framesizes that it supports.
-And that does not combine with cropping, composing or scaling. This is
-primarily a limitation of the V4L2 API which is carefully reproduced here.
-
-The minimum and maximum resolutions that the scaler can achieve are 16x16 and
-(4096 * 4) x (2160 x 4), but it can only scale up or down by a factor of 4 or
-less. So for a source resolution of 1280x720 the minimum the scaler can do is
-320x180 and the maximum is 5120x2880. You can play around with this using the
-qv4l2 test tool and you will see these dependencies.
-
-This driver also supports larger 'bytesperline' settings, something that
-VIDIOC_S_FMT allows but that few drivers implement.
-
-The scaler is a simple scaler that uses the Coarse Bresenham algorithm. It's
-designed for speed and simplicity, not quality.
-
-If the combination of crop, compose and scaling allows it, then it is possible
-to change crop and compose rectangles on the fly.
-
-
-Section 12: Formats
--------------------
-
-The driver supports all the regular packed and planar 4:4:4, 4:2:2 and 4:2:0
-YUYV formats, 8, 16, 24 and 32 RGB packed formats and various multiplanar
-formats.
-
-The alpha component can be set through the 'Alpha Component' User control
-for those formats that support it. If the 'Apply Alpha To Red Only' control
-is set, then the alpha component is only used for the color red and set to
-0 otherwise.
-
-The driver has to be configured to support the multiplanar formats. By default
-the driver instances are single-planar. This can be changed by setting the
-multiplanar module option, see section 1 for more details on that option.
-
-If the driver instance is using the multiplanar formats/API, then the first
-single planar format (YUYV) and the multiplanar NV16M and NV61M formats the
-will have a plane that has a non-zero data_offset of 128 bytes. It is rare for
-data_offset to be non-zero, so this is a useful feature for testing applications.
-
-Video output will also honor any data_offset that the application set.
-
-
-Section 13: Capture Overlay
----------------------------
-
-Note: capture overlay support is implemented primarily to test the existing
-V4L2 capture overlay API. In practice few if any GPUs support such overlays
-anymore, and neither are they generally needed anymore since modern hardware
-is so much more capable. By setting flag 0x10000 in the node_types module
-option the vivid driver will create a simple framebuffer device that can be
-used for testing this API. Whether this API should be used for new drivers is
-questionable.
-
-This driver has support for a destructive capture overlay with bitmap clipping
-and list clipping (up to 16 rectangles) capabilities. Overlays are not
-supported for multiplanar formats. It also honors the struct v4l2_window field
-setting: if it is set to FIELD_TOP or FIELD_BOTTOM and the capture setting is
-FIELD_ALTERNATE, then only the top or bottom fields will be copied to the overlay.
-
-The overlay only works if you are also capturing at that same time. This is a
-vivid limitation since it copies from a buffer to the overlay instead of
-filling the overlay directly. And if you are not capturing, then no buffers
-are available to fill.
-
-In addition, the pixelformat of the capture format and that of the framebuffer
-must be the same for the overlay to work. Otherwise VIDIOC_OVERLAY will return
-an error.
-
-In order to really see what it going on you will need to create two vivid
-instances: the first with a framebuffer enabled. You configure the capture
-overlay of the second instance to use the framebuffer of the first, then
-you start capturing in the second instance. For the first instance you setup
-the output overlay for the video output, turn on video looping and capture
-to see the blended framebuffer overlay that's being written to by the second
-instance. This setup would require the following commands:
-
-       $ sudo modprobe vivid n_devs=2 node_types=0x10101,0x1
-       $ v4l2-ctl -d1 --find-fb
-       /dev/fb1 is the framebuffer associated with base address 0x12800000
-       $ sudo v4l2-ctl -d2 --set-fbuf fb=1
-       $ v4l2-ctl -d1 --set-fbuf fb=1
-       $ v4l2-ctl -d0 --set-fmt-video=pixelformat='AR15'
-       $ v4l2-ctl -d1 --set-fmt-video-out=pixelformat='AR15'
-       $ v4l2-ctl -d2 --set-fmt-video=pixelformat='AR15'
-       $ v4l2-ctl -d0 -i2
-       $ v4l2-ctl -d2 -i2
-       $ v4l2-ctl -d2 -c horizontal_movement=4
-       $ v4l2-ctl -d1 --overlay=1
-       $ v4l2-ctl -d1 -c loop_video=1
-       $ v4l2-ctl -d2 --stream-mmap --overlay=1
-
-And from another console:
-
-       $ v4l2-ctl -d1 --stream-out-mmap
-
-And yet another console:
-
-       $ qv4l2
-
-and start streaming.
-
-As you can see, this is not for the faint of heart...
-
-
-Section 14: Output Overlay
---------------------------
-
-Note: output overlays are primarily implemented in order to test the existing
-V4L2 output overlay API. Whether this API should be used for new drivers is
-questionable.
-
-This driver has support for an output overlay and is capable of:
-
-       - bitmap clipping,
-       - list clipping (up to 16 rectangles)
-       - chromakey
-       - source chromakey
-       - global alpha
-       - local alpha
-       - local inverse alpha
-
-Output overlays are not supported for multiplanar formats. In addition, the
-pixelformat of the capture format and that of the framebuffer must be the
-same for the overlay to work. Otherwise VIDIOC_OVERLAY will return an error.
-
-Output overlays only work if the driver has been configured to create a
-framebuffer by setting flag 0x10000 in the node_types module option. The
-created framebuffer has a size of 720x576 and supports ARGB 1:5:5:5 and
-RGB 5:6:5.
-
-In order to see the effects of the various clipping, chromakeying or alpha
-processing capabilities you need to turn on video looping and see the results
-on the capture side. The use of the clipping, chromakeying or alpha processing
-capabilities will slow down the video loop considerably as a lot of checks have
-to be done per pixel.
-
-
-Section 15: CEC (Consumer Electronics Control)
-----------------------------------------------
-
-If there are HDMI inputs then a CEC adapter will be created that has
-the same number of input ports. This is the equivalent of e.g. a TV that
-has that number of inputs. Each HDMI output will also create a
-CEC adapter that is hooked up to the corresponding input port, or (if there
-are more outputs than inputs) is not hooked up at all. In other words,
-this is the equivalent of hooking up each output device to an input port of
-the TV. Any remaining output devices remain unconnected.
-
-The EDID that each output reads reports a unique CEC physical address that is
-based on the physical address of the EDID of the input. So if the EDID of the
-receiver has physical address A.B.0.0, then each output will see an EDID
-containing physical address A.B.C.0 where C is 1 to the number of inputs. If
-there are more outputs than inputs then the remaining outputs have a CEC adapter
-that is disabled and reports an invalid physical address.
-
-
-Section 16: Some Future Improvements
-------------------------------------
-
-Just as a reminder and in no particular order:
-
-- Add a virtual alsa driver to test audio
-- Add virtual sub-devices and media controller support
-- Some support for testing compressed video
-- Add support to loop raw VBI output to raw VBI input
-- Add support to loop teletext sliced VBI output to VBI input
-- Fix sequence/field numbering when looping of video with alternate fields
-- Add support for V4L2_CID_BG_COLOR for video outputs
-- Add ARGB888 overlay support: better testing of the alpha channel
-- Improve pixel aspect support in the tpg code by passing a real v4l2_fract
-- Use per-queue locks and/or per-device locks to improve throughput
-- Add support to loop from a specific output to a specific input across
-  vivid instances
-- The SDR radio should use the same 'frequencies' for stations as the normal
-  radio receiver, and give back noise if the frequency doesn't match up with
-  a station frequency
-- Make a thread for the RDS generation, that would help in particular for the
-  "Controls" RDS Rx I/O Mode as the read-only RDS controls could be updated
-  in real-time.
-- Changing the EDID should cause hotplug detect emulation to happen.