1415782
[linux-block.git] /
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73 #include <crypto/hash.h>
74
75 MODULE_LICENSE("GPL");
76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
77 MODULE_DESCRIPTION("bcachefs filesystem");
78 MODULE_SOFTDEP("pre: crc32c");
79 MODULE_SOFTDEP("pre: crc64");
80 MODULE_SOFTDEP("pre: sha256");
81 MODULE_SOFTDEP("pre: chacha20");
82 MODULE_SOFTDEP("pre: poly1305");
83 MODULE_SOFTDEP("pre: xxhash");
84
85 const char * const bch2_fs_flag_strs[] = {
86 #define x(n)            #n,
87         BCH_FS_FLAGS()
88 #undef x
89         NULL
90 };
91
92 void bch2_print_str(struct bch_fs *c, const char *str)
93 {
94 #ifdef __KERNEL__
95         struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
96
97         if (unlikely(stdio)) {
98                 bch2_stdio_redirect_printf(stdio, true, "%s", str);
99                 return;
100         }
101 #endif
102         bch2_print_string_as_lines(KERN_ERR, str);
103 }
104
105 __printf(2, 0)
106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
107 {
108 #ifdef __KERNEL__
109         if (unlikely(stdio)) {
110                 if (fmt[0] == KERN_SOH[0])
111                         fmt += 2;
112
113                 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
114                 return;
115         }
116 #endif
117         vprintk(fmt, args);
118 }
119
120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
121 {
122         struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
123
124         va_list args;
125         va_start(args, fmt);
126         bch2_print_maybe_redirect(stdio, fmt, args);
127         va_end(args);
128 }
129
130 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
131 {
132         struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
133
134         va_list args;
135         va_start(args, fmt);
136         bch2_print_maybe_redirect(stdio, fmt, args);
137         va_end(args);
138 }
139
140 #define KTYPE(type)                                                     \
141 static const struct attribute_group type ## _group = {                  \
142         .attrs = type ## _files                                         \
143 };                                                                      \
144                                                                         \
145 static const struct attribute_group *type ## _groups[] = {              \
146         &type ## _group,                                                \
147         NULL                                                            \
148 };                                                                      \
149                                                                         \
150 static const struct kobj_type type ## _ktype = {                        \
151         .release        = type ## _release,                             \
152         .sysfs_ops      = &type ## _sysfs_ops,                          \
153         .default_groups = type ## _groups                               \
154 }
155
156 static void bch2_fs_release(struct kobject *);
157 static void bch2_dev_release(struct kobject *);
158 static void bch2_fs_counters_release(struct kobject *k)
159 {
160 }
161
162 static void bch2_fs_internal_release(struct kobject *k)
163 {
164 }
165
166 static void bch2_fs_opts_dir_release(struct kobject *k)
167 {
168 }
169
170 static void bch2_fs_time_stats_release(struct kobject *k)
171 {
172 }
173
174 KTYPE(bch2_fs);
175 KTYPE(bch2_fs_counters);
176 KTYPE(bch2_fs_internal);
177 KTYPE(bch2_fs_opts_dir);
178 KTYPE(bch2_fs_time_stats);
179 KTYPE(bch2_dev);
180
181 static struct kset *bcachefs_kset;
182 static LIST_HEAD(bch_fs_list);
183 static DEFINE_MUTEX(bch_fs_list_lock);
184
185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
186
187 static void bch2_dev_unlink(struct bch_dev *);
188 static void bch2_dev_free(struct bch_dev *);
189 static int bch2_dev_alloc(struct bch_fs *, unsigned);
190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
192
193 struct bch_fs *bch2_dev_to_fs(dev_t dev)
194 {
195         struct bch_fs *c;
196
197         mutex_lock(&bch_fs_list_lock);
198         rcu_read_lock();
199
200         list_for_each_entry(c, &bch_fs_list, list)
201                 for_each_member_device_rcu(c, ca, NULL)
202                         if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
203                                 closure_get(&c->cl);
204                                 goto found;
205                         }
206         c = NULL;
207 found:
208         rcu_read_unlock();
209         mutex_unlock(&bch_fs_list_lock);
210
211         return c;
212 }
213
214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
215 {
216         struct bch_fs *c;
217
218         lockdep_assert_held(&bch_fs_list_lock);
219
220         list_for_each_entry(c, &bch_fs_list, list)
221                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
222                         return c;
223
224         return NULL;
225 }
226
227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
228 {
229         struct bch_fs *c;
230
231         mutex_lock(&bch_fs_list_lock);
232         c = __bch2_uuid_to_fs(uuid);
233         if (c)
234                 closure_get(&c->cl);
235         mutex_unlock(&bch_fs_list_lock);
236
237         return c;
238 }
239
240 /* Filesystem RO/RW: */
241
242 /*
243  * For startup/shutdown of RW stuff, the dependencies are:
244  *
245  * - foreground writes depend on copygc and rebalance (to free up space)
246  *
247  * - copygc and rebalance depend on mark and sweep gc (they actually probably
248  *   don't because they either reserve ahead of time or don't block if
249  *   allocations fail, but allocations can require mark and sweep gc to run
250  *   because of generation number wraparound)
251  *
252  * - all of the above depends on the allocator threads
253  *
254  * - allocator depends on the journal (when it rewrites prios and gens)
255  */
256
257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259         unsigned clean_passes = 0;
260         u64 seq = 0;
261
262         bch2_fs_ec_stop(c);
263         bch2_open_buckets_stop(c, NULL, true);
264         bch2_rebalance_stop(c);
265         bch2_copygc_stop(c);
266         bch2_fs_ec_flush(c);
267
268         bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269                     journal_cur_seq(&c->journal));
270
271         do {
272                 clean_passes++;
273
274                 if (bch2_btree_interior_updates_flush(c) ||
275                     bch2_btree_write_buffer_flush_going_ro(c) ||
276                     bch2_journal_flush_all_pins(&c->journal) ||
277                     bch2_btree_flush_all_writes(c) ||
278                     seq != atomic64_read(&c->journal.seq)) {
279                         seq = atomic64_read(&c->journal.seq);
280                         clean_passes = 0;
281                 }
282         } while (clean_passes < 2);
283
284         bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285                     journal_cur_seq(&c->journal));
286
287         if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
288             !test_bit(BCH_FS_emergency_ro, &c->flags))
289                 set_bit(BCH_FS_clean_shutdown, &c->flags);
290
291         bch2_fs_journal_stop(&c->journal);
292
293         bch_info(c, "%sclean shutdown complete, journal seq %llu",
294                  test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
295                  c->journal.seq_ondisk);
296
297         /*
298          * After stopping journal:
299          */
300         for_each_member_device(c, ca)
301                 bch2_dev_allocator_remove(c, ca);
302 }
303
304 #ifndef BCH_WRITE_REF_DEBUG
305 static void bch2_writes_disabled(struct percpu_ref *writes)
306 {
307         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
308
309         set_bit(BCH_FS_write_disable_complete, &c->flags);
310         wake_up(&bch2_read_only_wait);
311 }
312 #endif
313
314 void bch2_fs_read_only(struct bch_fs *c)
315 {
316         if (!test_bit(BCH_FS_rw, &c->flags)) {
317                 bch2_journal_reclaim_stop(&c->journal);
318                 return;
319         }
320
321         BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
322
323         bch_verbose(c, "going read-only");
324
325         /*
326          * Block new foreground-end write operations from starting - any new
327          * writes will return -EROFS:
328          */
329         set_bit(BCH_FS_going_ro, &c->flags);
330 #ifndef BCH_WRITE_REF_DEBUG
331         percpu_ref_kill(&c->writes);
332 #else
333         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
334                 bch2_write_ref_put(c, i);
335 #endif
336
337         /*
338          * If we're not doing an emergency shutdown, we want to wait on
339          * outstanding writes to complete so they don't see spurious errors due
340          * to shutting down the allocator:
341          *
342          * If we are doing an emergency shutdown outstanding writes may
343          * hang until we shutdown the allocator so we don't want to wait
344          * on outstanding writes before shutting everything down - but
345          * we do need to wait on them before returning and signalling
346          * that going RO is complete:
347          */
348         wait_event(bch2_read_only_wait,
349                    test_bit(BCH_FS_write_disable_complete, &c->flags) ||
350                    test_bit(BCH_FS_emergency_ro, &c->flags));
351
352         bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
353         if (writes_disabled)
354                 bch_verbose(c, "finished waiting for writes to stop");
355
356         __bch2_fs_read_only(c);
357
358         wait_event(bch2_read_only_wait,
359                    test_bit(BCH_FS_write_disable_complete, &c->flags));
360
361         if (!writes_disabled)
362                 bch_verbose(c, "finished waiting for writes to stop");
363
364         clear_bit(BCH_FS_write_disable_complete, &c->flags);
365         clear_bit(BCH_FS_going_ro, &c->flags);
366         clear_bit(BCH_FS_rw, &c->flags);
367
368         if (!bch2_journal_error(&c->journal) &&
369             !test_bit(BCH_FS_error, &c->flags) &&
370             !test_bit(BCH_FS_emergency_ro, &c->flags) &&
371             test_bit(BCH_FS_started, &c->flags) &&
372             test_bit(BCH_FS_clean_shutdown, &c->flags) &&
373             c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
374                 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
375                 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
376                 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
377                 BUG_ON(c->btree_write_buffer.inc.keys.nr);
378                 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
379                 bch2_verify_accounting_clean(c);
380
381                 bch_verbose(c, "marking filesystem clean");
382                 bch2_fs_mark_clean(c);
383         } else {
384                 bch_verbose(c, "done going read-only, filesystem not clean");
385         }
386 }
387
388 static void bch2_fs_read_only_work(struct work_struct *work)
389 {
390         struct bch_fs *c =
391                 container_of(work, struct bch_fs, read_only_work);
392
393         down_write(&c->state_lock);
394         bch2_fs_read_only(c);
395         up_write(&c->state_lock);
396 }
397
398 static void bch2_fs_read_only_async(struct bch_fs *c)
399 {
400         queue_work(system_long_wq, &c->read_only_work);
401 }
402
403 bool bch2_fs_emergency_read_only(struct bch_fs *c)
404 {
405         bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
406
407         bch2_journal_halt(&c->journal);
408         bch2_fs_read_only_async(c);
409
410         wake_up(&bch2_read_only_wait);
411         return ret;
412 }
413
414 static int bch2_fs_read_write_late(struct bch_fs *c)
415 {
416         int ret;
417
418         /*
419          * Data move operations can't run until after check_snapshots has
420          * completed, and bch2_snapshot_is_ancestor() is available.
421          *
422          * Ideally we'd start copygc/rebalance earlier instead of waiting for
423          * all of recovery/fsck to complete:
424          */
425         ret = bch2_copygc_start(c);
426         if (ret) {
427                 bch_err(c, "error starting copygc thread");
428                 return ret;
429         }
430
431         ret = bch2_rebalance_start(c);
432         if (ret) {
433                 bch_err(c, "error starting rebalance thread");
434                 return ret;
435         }
436
437         return 0;
438 }
439
440 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
441 {
442         int ret;
443
444         BUG_ON(!test_bit(BCH_FS_may_go_rw, &c->flags));
445
446         if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
447                 bch_err(c, "cannot go rw, unfixed btree errors");
448                 return -BCH_ERR_erofs_unfixed_errors;
449         }
450
451         if (test_bit(BCH_FS_rw, &c->flags))
452                 return 0;
453
454         bch_info(c, "going read-write");
455
456         ret = bch2_sb_members_v2_init(c);
457         if (ret)
458                 goto err;
459
460         ret = bch2_fs_mark_dirty(c);
461         if (ret)
462                 goto err;
463
464         clear_bit(BCH_FS_clean_shutdown, &c->flags);
465
466         /*
467          * First journal write must be a flush write: after a clean shutdown we
468          * don't read the journal, so the first journal write may end up
469          * overwriting whatever was there previously, and there must always be
470          * at least one non-flush write in the journal or recovery will fail:
471          */
472         set_bit(JOURNAL_need_flush_write, &c->journal.flags);
473         set_bit(JOURNAL_running, &c->journal.flags);
474
475         for_each_rw_member(c, ca)
476                 bch2_dev_allocator_add(c, ca);
477         bch2_recalc_capacity(c);
478
479         set_bit(BCH_FS_rw, &c->flags);
480         set_bit(BCH_FS_was_rw, &c->flags);
481
482 #ifndef BCH_WRITE_REF_DEBUG
483         percpu_ref_reinit(&c->writes);
484 #else
485         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
486                 BUG_ON(atomic_long_read(&c->writes[i]));
487                 atomic_long_inc(&c->writes[i]);
488         }
489 #endif
490
491         ret = bch2_journal_reclaim_start(&c->journal);
492         if (ret)
493                 goto err;
494
495         if (!early) {
496                 ret = bch2_fs_read_write_late(c);
497                 if (ret)
498                         goto err;
499         }
500
501         bch2_do_discards(c);
502         bch2_do_invalidates(c);
503         bch2_do_stripe_deletes(c);
504         bch2_do_pending_node_rewrites(c);
505         return 0;
506 err:
507         if (test_bit(BCH_FS_rw, &c->flags))
508                 bch2_fs_read_only(c);
509         else
510                 __bch2_fs_read_only(c);
511         return ret;
512 }
513
514 int bch2_fs_read_write(struct bch_fs *c)
515 {
516         if (c->opts.recovery_pass_last &&
517             c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
518                 return -BCH_ERR_erofs_norecovery;
519
520         if (c->opts.nochanges)
521                 return -BCH_ERR_erofs_nochanges;
522
523         return __bch2_fs_read_write(c, false);
524 }
525
526 int bch2_fs_read_write_early(struct bch_fs *c)
527 {
528         lockdep_assert_held(&c->state_lock);
529
530         return __bch2_fs_read_write(c, true);
531 }
532
533 /* Filesystem startup/shutdown: */
534
535 static void __bch2_fs_free(struct bch_fs *c)
536 {
537         for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
538                 bch2_time_stats_exit(&c->times[i]);
539
540         bch2_find_btree_nodes_exit(&c->found_btree_nodes);
541         bch2_free_pending_node_rewrites(c);
542         bch2_fs_accounting_exit(c);
543         bch2_fs_sb_errors_exit(c);
544         bch2_fs_counters_exit(c);
545         bch2_fs_snapshots_exit(c);
546         bch2_fs_quota_exit(c);
547         bch2_fs_fs_io_direct_exit(c);
548         bch2_fs_fs_io_buffered_exit(c);
549         bch2_fs_fsio_exit(c);
550         bch2_fs_vfs_exit(c);
551         bch2_fs_ec_exit(c);
552         bch2_fs_encryption_exit(c);
553         bch2_fs_nocow_locking_exit(c);
554         bch2_fs_io_write_exit(c);
555         bch2_fs_io_read_exit(c);
556         bch2_fs_buckets_waiting_for_journal_exit(c);
557         bch2_fs_btree_interior_update_exit(c);
558         bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
559         bch2_fs_btree_cache_exit(c);
560         bch2_fs_btree_iter_exit(c);
561         bch2_fs_replicas_exit(c);
562         bch2_fs_journal_exit(&c->journal);
563         bch2_io_clock_exit(&c->io_clock[WRITE]);
564         bch2_io_clock_exit(&c->io_clock[READ]);
565         bch2_fs_compress_exit(c);
566         bch2_journal_keys_put_initial(c);
567         bch2_find_btree_nodes_exit(&c->found_btree_nodes);
568         BUG_ON(atomic_read(&c->journal_keys.ref));
569         bch2_fs_btree_write_buffer_exit(c);
570         percpu_free_rwsem(&c->mark_lock);
571         if (c->online_reserved) {
572                 u64 v = percpu_u64_get(c->online_reserved);
573                 WARN(v, "online_reserved not 0 at shutdown: %lli", v);
574                 free_percpu(c->online_reserved);
575         }
576
577         darray_exit(&c->btree_roots_extra);
578         free_percpu(c->pcpu);
579         free_percpu(c->usage);
580         mempool_exit(&c->large_bkey_pool);
581         mempool_exit(&c->btree_bounce_pool);
582         bioset_exit(&c->btree_bio);
583         mempool_exit(&c->fill_iter);
584 #ifndef BCH_WRITE_REF_DEBUG
585         percpu_ref_exit(&c->writes);
586 #endif
587         kfree(rcu_dereference_protected(c->disk_groups, 1));
588         kfree(c->journal_seq_blacklist_table);
589         kfree(c->unused_inode_hints);
590
591         if (c->write_ref_wq)
592                 destroy_workqueue(c->write_ref_wq);
593         if (c->btree_write_submit_wq)
594                 destroy_workqueue(c->btree_write_submit_wq);
595         if (c->btree_read_complete_wq)
596                 destroy_workqueue(c->btree_read_complete_wq);
597         if (c->copygc_wq)
598                 destroy_workqueue(c->copygc_wq);
599         if (c->btree_io_complete_wq)
600                 destroy_workqueue(c->btree_io_complete_wq);
601         if (c->btree_update_wq)
602                 destroy_workqueue(c->btree_update_wq);
603
604         bch2_free_super(&c->disk_sb);
605         kvfree(c);
606         module_put(THIS_MODULE);
607 }
608
609 static void bch2_fs_release(struct kobject *kobj)
610 {
611         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
612
613         __bch2_fs_free(c);
614 }
615
616 void __bch2_fs_stop(struct bch_fs *c)
617 {
618         bch_verbose(c, "shutting down");
619
620         set_bit(BCH_FS_stopping, &c->flags);
621
622         down_write(&c->state_lock);
623         bch2_fs_read_only(c);
624         up_write(&c->state_lock);
625
626         for_each_member_device(c, ca)
627                 bch2_dev_unlink(ca);
628
629         if (c->kobj.state_in_sysfs)
630                 kobject_del(&c->kobj);
631
632         bch2_fs_debug_exit(c);
633         bch2_fs_chardev_exit(c);
634
635         bch2_ro_ref_put(c);
636         wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
637
638         kobject_put(&c->counters_kobj);
639         kobject_put(&c->time_stats);
640         kobject_put(&c->opts_dir);
641         kobject_put(&c->internal);
642
643         /* btree prefetch might have kicked off reads in the background: */
644         bch2_btree_flush_all_reads(c);
645
646         for_each_member_device(c, ca)
647                 cancel_work_sync(&ca->io_error_work);
648
649         cancel_work_sync(&c->read_only_work);
650 }
651
652 void bch2_fs_free(struct bch_fs *c)
653 {
654         unsigned i;
655
656         mutex_lock(&bch_fs_list_lock);
657         list_del(&c->list);
658         mutex_unlock(&bch_fs_list_lock);
659
660         closure_sync(&c->cl);
661         closure_debug_destroy(&c->cl);
662
663         for (i = 0; i < c->sb.nr_devices; i++) {
664                 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
665
666                 if (ca) {
667                         EBUG_ON(atomic_long_read(&ca->ref) != 1);
668                         bch2_free_super(&ca->disk_sb);
669                         bch2_dev_free(ca);
670                 }
671         }
672
673         bch_verbose(c, "shutdown complete");
674
675         kobject_put(&c->kobj);
676 }
677
678 void bch2_fs_stop(struct bch_fs *c)
679 {
680         __bch2_fs_stop(c);
681         bch2_fs_free(c);
682 }
683
684 static int bch2_fs_online(struct bch_fs *c)
685 {
686         int ret = 0;
687
688         lockdep_assert_held(&bch_fs_list_lock);
689
690         if (__bch2_uuid_to_fs(c->sb.uuid)) {
691                 bch_err(c, "filesystem UUID already open");
692                 return -EINVAL;
693         }
694
695         ret = bch2_fs_chardev_init(c);
696         if (ret) {
697                 bch_err(c, "error creating character device");
698                 return ret;
699         }
700
701         bch2_fs_debug_init(c);
702
703         ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
704             kobject_add(&c->internal, &c->kobj, "internal") ?:
705             kobject_add(&c->opts_dir, &c->kobj, "options") ?:
706 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
707             kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
708 #endif
709             kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
710             bch2_opts_create_sysfs_files(&c->opts_dir);
711         if (ret) {
712                 bch_err(c, "error creating sysfs objects");
713                 return ret;
714         }
715
716         down_write(&c->state_lock);
717
718         for_each_member_device(c, ca) {
719                 ret = bch2_dev_sysfs_online(c, ca);
720                 if (ret) {
721                         bch_err(c, "error creating sysfs objects");
722                         bch2_dev_put(ca);
723                         goto err;
724                 }
725         }
726
727         BUG_ON(!list_empty(&c->list));
728         list_add(&c->list, &bch_fs_list);
729 err:
730         up_write(&c->state_lock);
731         return ret;
732 }
733
734 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
735 {
736         struct bch_fs *c;
737         struct printbuf name = PRINTBUF;
738         unsigned i, iter_size;
739         int ret = 0;
740
741         c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
742         if (!c) {
743                 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
744                 goto out;
745         }
746
747         c->stdio = (void *)(unsigned long) opts.stdio;
748
749         __module_get(THIS_MODULE);
750
751         closure_init(&c->cl, NULL);
752
753         c->kobj.kset = bcachefs_kset;
754         kobject_init(&c->kobj, &bch2_fs_ktype);
755         kobject_init(&c->internal, &bch2_fs_internal_ktype);
756         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
757         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
758         kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
759
760         c->minor                = -1;
761         c->disk_sb.fs_sb        = true;
762
763         init_rwsem(&c->state_lock);
764         mutex_init(&c->sb_lock);
765         mutex_init(&c->replicas_gc_lock);
766         mutex_init(&c->btree_root_lock);
767         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
768
769         refcount_set(&c->ro_ref, 1);
770         init_waitqueue_head(&c->ro_ref_wait);
771         spin_lock_init(&c->recovery_pass_lock);
772         sema_init(&c->online_fsck_mutex, 1);
773
774         init_rwsem(&c->gc_lock);
775         mutex_init(&c->gc_gens_lock);
776
777         for (i = 0; i < BCH_TIME_STAT_NR; i++)
778                 bch2_time_stats_init(&c->times[i]);
779
780         bch2_fs_gc_init(c);
781         bch2_fs_copygc_init(c);
782         bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
783         bch2_fs_btree_iter_init_early(c);
784         bch2_fs_btree_interior_update_init_early(c);
785         bch2_fs_journal_keys_init(c);
786         bch2_fs_allocator_background_init(c);
787         bch2_fs_allocator_foreground_init(c);
788         bch2_fs_rebalance_init(c);
789         bch2_fs_quota_init(c);
790         bch2_fs_ec_init_early(c);
791         bch2_fs_move_init(c);
792         bch2_fs_sb_errors_init_early(c);
793
794         INIT_LIST_HEAD(&c->list);
795
796         mutex_init(&c->bio_bounce_pages_lock);
797         mutex_init(&c->snapshot_table_lock);
798         init_rwsem(&c->snapshot_create_lock);
799
800         spin_lock_init(&c->btree_write_error_lock);
801
802         INIT_LIST_HEAD(&c->journal_iters);
803
804         INIT_LIST_HEAD(&c->fsck_error_msgs);
805         mutex_init(&c->fsck_error_msgs_lock);
806
807         seqcount_init(&c->usage_lock);
808
809         sema_init(&c->io_in_flight, 128);
810
811         INIT_LIST_HEAD(&c->vfs_inodes_list);
812         mutex_init(&c->vfs_inodes_lock);
813
814         c->journal.flush_write_time     = &c->times[BCH_TIME_journal_flush_write];
815         c->journal.noflush_write_time   = &c->times[BCH_TIME_journal_noflush_write];
816         c->journal.flush_seq_time       = &c->times[BCH_TIME_journal_flush_seq];
817
818         bch2_fs_btree_cache_init_early(&c->btree_cache);
819
820         mutex_init(&c->sectors_available_lock);
821
822         ret = percpu_init_rwsem(&c->mark_lock);
823         if (ret)
824                 goto err;
825
826         mutex_lock(&c->sb_lock);
827         ret = bch2_sb_to_fs(c, sb);
828         mutex_unlock(&c->sb_lock);
829
830         if (ret)
831                 goto err;
832
833         pr_uuid(&name, c->sb.user_uuid.b);
834         ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
835         if (ret)
836                 goto err;
837
838         strscpy(c->name, name.buf, sizeof(c->name));
839         printbuf_exit(&name);
840
841         /* Compat: */
842         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
843             !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
844                 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
845
846         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
847             !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
848                 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
849
850         c->opts = bch2_opts_default;
851         ret = bch2_opts_from_sb(&c->opts, sb);
852         if (ret)
853                 goto err;
854
855         bch2_opts_apply(&c->opts, opts);
856
857         c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
858         if (c->opts.inodes_use_key_cache)
859                 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
860         c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
861
862         c->block_bits           = ilog2(block_sectors(c));
863         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
864
865         if (bch2_fs_init_fault("fs_alloc")) {
866                 bch_err(c, "fs_alloc fault injected");
867                 ret = -EFAULT;
868                 goto err;
869         }
870
871         iter_size = sizeof(struct sort_iter) +
872                 (btree_blocks(c) + 1) * 2 *
873                 sizeof(struct sort_iter_set);
874
875         c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
876
877         if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
878                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
879             !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
880                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
881             !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
882                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
883             !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
884                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
885             !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
886                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
887             !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
888                                 WQ_FREEZABLE, 0)) ||
889 #ifndef BCH_WRITE_REF_DEBUG
890             percpu_ref_init(&c->writes, bch2_writes_disabled,
891                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
892 #endif
893             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
894             bioset_init(&c->btree_bio, 1,
895                         max(offsetof(struct btree_read_bio, bio),
896                             offsetof(struct btree_write_bio, wbio.bio)),
897                         BIOSET_NEED_BVECS) ||
898             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
899             !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
900             !(c->online_reserved = alloc_percpu(u64)) ||
901             mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
902                                        c->opts.btree_node_size) ||
903             mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
904             !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
905                                               sizeof(u64), GFP_KERNEL))) {
906                 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
907                 goto err;
908         }
909
910         ret = bch2_fs_counters_init(c) ?:
911             bch2_fs_sb_errors_init(c) ?:
912             bch2_io_clock_init(&c->io_clock[READ]) ?:
913             bch2_io_clock_init(&c->io_clock[WRITE]) ?:
914             bch2_fs_journal_init(&c->journal) ?:
915             bch2_fs_btree_iter_init(c) ?:
916             bch2_fs_btree_cache_init(c) ?:
917             bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
918             bch2_fs_btree_interior_update_init(c) ?:
919             bch2_fs_buckets_waiting_for_journal_init(c) ?:
920             bch2_fs_btree_write_buffer_init(c) ?:
921             bch2_fs_subvolumes_init(c) ?:
922             bch2_fs_io_read_init(c) ?:
923             bch2_fs_io_write_init(c) ?:
924             bch2_fs_nocow_locking_init(c) ?:
925             bch2_fs_encryption_init(c) ?:
926             bch2_fs_compress_init(c) ?:
927             bch2_fs_ec_init(c) ?:
928             bch2_fs_vfs_init(c) ?:
929             bch2_fs_fsio_init(c) ?:
930             bch2_fs_fs_io_buffered_init(c) ?:
931             bch2_fs_fs_io_direct_init(c);
932         if (ret)
933                 goto err;
934
935         for (i = 0; i < c->sb.nr_devices; i++) {
936                 if (!bch2_member_exists(c->disk_sb.sb, i))
937                         continue;
938                 ret = bch2_dev_alloc(c, i);
939                 if (ret)
940                         goto err;
941         }
942
943         bch2_journal_entry_res_resize(&c->journal,
944                         &c->btree_root_journal_res,
945                         BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
946         bch2_journal_entry_res_resize(&c->journal,
947                         &c->clock_journal_res,
948                         (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
949
950         mutex_lock(&bch_fs_list_lock);
951         ret = bch2_fs_online(c);
952         mutex_unlock(&bch_fs_list_lock);
953
954         if (ret)
955                 goto err;
956 out:
957         return c;
958 err:
959         bch2_fs_free(c);
960         c = ERR_PTR(ret);
961         goto out;
962 }
963
964 noinline_for_stack
965 static void print_mount_opts(struct bch_fs *c)
966 {
967         enum bch_opt_id i;
968         struct printbuf p = PRINTBUF;
969         bool first = true;
970
971         prt_str(&p, "starting version ");
972         bch2_version_to_text(&p, c->sb.version);
973
974         if (c->opts.read_only) {
975                 prt_str(&p, " opts=");
976                 first = false;
977                 prt_printf(&p, "ro");
978         }
979
980         for (i = 0; i < bch2_opts_nr; i++) {
981                 const struct bch_option *opt = &bch2_opt_table[i];
982                 u64 v = bch2_opt_get_by_id(&c->opts, i);
983
984                 if (!(opt->flags & OPT_MOUNT))
985                         continue;
986
987                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
988                         continue;
989
990                 prt_str(&p, first ? " opts=" : ",");
991                 first = false;
992                 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
993         }
994
995         bch_info(c, "%s", p.buf);
996         printbuf_exit(&p);
997 }
998
999 int bch2_fs_start(struct bch_fs *c)
1000 {
1001         time64_t now = ktime_get_real_seconds();
1002         int ret;
1003
1004         print_mount_opts(c);
1005
1006         down_write(&c->state_lock);
1007
1008         BUG_ON(test_bit(BCH_FS_started, &c->flags));
1009
1010         mutex_lock(&c->sb_lock);
1011
1012         ret = bch2_sb_members_v2_init(c);
1013         if (ret) {
1014                 mutex_unlock(&c->sb_lock);
1015                 goto err;
1016         }
1017
1018         for_each_online_member(c, ca)
1019                 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1020
1021         struct bch_sb_field_ext *ext =
1022                 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1023         mutex_unlock(&c->sb_lock);
1024
1025         if (!ext) {
1026                 bch_err(c, "insufficient space in superblock for sb_field_ext");
1027                 ret = -BCH_ERR_ENOSPC_sb;
1028                 goto err;
1029         }
1030
1031         for_each_rw_member(c, ca)
1032                 bch2_dev_allocator_add(c, ca);
1033         bch2_recalc_capacity(c);
1034
1035         c->recovery_task = current;
1036         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1037                 ? bch2_fs_recovery(c)
1038                 : bch2_fs_initialize(c);
1039         c->recovery_task = NULL;
1040
1041         if (ret)
1042                 goto err;
1043
1044         ret = bch2_opts_check_may_set(c);
1045         if (ret)
1046                 goto err;
1047
1048         if (bch2_fs_init_fault("fs_start")) {
1049                 bch_err(c, "fs_start fault injected");
1050                 ret = -EINVAL;
1051                 goto err;
1052         }
1053
1054         set_bit(BCH_FS_started, &c->flags);
1055
1056         if (c->opts.read_only) {
1057                 bch2_fs_read_only(c);
1058         } else {
1059                 ret = !test_bit(BCH_FS_rw, &c->flags)
1060                         ? bch2_fs_read_write(c)
1061                         : bch2_fs_read_write_late(c);
1062                 if (ret)
1063                         goto err;
1064         }
1065
1066         ret = 0;
1067 err:
1068         if (ret)
1069                 bch_err_msg(c, ret, "starting filesystem");
1070         else
1071                 bch_verbose(c, "done starting filesystem");
1072         up_write(&c->state_lock);
1073         return ret;
1074 }
1075
1076 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1077 {
1078         struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1079
1080         if (le16_to_cpu(sb->block_size) != block_sectors(c))
1081                 return -BCH_ERR_mismatched_block_size;
1082
1083         if (le16_to_cpu(m.bucket_size) <
1084             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1085                 return -BCH_ERR_bucket_size_too_small;
1086
1087         return 0;
1088 }
1089
1090 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1091                           struct bch_sb_handle *sb,
1092                           struct bch_opts *opts)
1093 {
1094         if (fs == sb)
1095                 return 0;
1096
1097         if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1098                 return -BCH_ERR_device_not_a_member_of_filesystem;
1099
1100         if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1101                 return -BCH_ERR_device_has_been_removed;
1102
1103         if (fs->sb->block_size != sb->sb->block_size)
1104                 return -BCH_ERR_mismatched_block_size;
1105
1106         if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1107             le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1108                 return 0;
1109
1110         if (fs->sb->seq == sb->sb->seq &&
1111             fs->sb->write_time != sb->sb->write_time) {
1112                 struct printbuf buf = PRINTBUF;
1113
1114                 prt_str(&buf, "Split brain detected between ");
1115                 prt_bdevname(&buf, sb->bdev);
1116                 prt_str(&buf, " and ");
1117                 prt_bdevname(&buf, fs->bdev);
1118                 prt_char(&buf, ':');
1119                 prt_newline(&buf);
1120                 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1121                 prt_newline(&buf);
1122
1123                 prt_bdevname(&buf, fs->bdev);
1124                 prt_char(&buf, ' ');
1125                 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));
1126                 prt_newline(&buf);
1127
1128                 prt_bdevname(&buf, sb->bdev);
1129                 prt_char(&buf, ' ');
1130                 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));
1131                 prt_newline(&buf);
1132
1133                 if (!opts->no_splitbrain_check)
1134                         prt_printf(&buf, "Not using older sb");
1135
1136                 pr_err("%s", buf.buf);
1137                 printbuf_exit(&buf);
1138
1139                 if (!opts->no_splitbrain_check)
1140                         return -BCH_ERR_device_splitbrain;
1141         }
1142
1143         struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1144         u64 seq_from_fs         = le64_to_cpu(m.seq);
1145         u64 seq_from_member     = le64_to_cpu(sb->sb->seq);
1146
1147         if (seq_from_fs && seq_from_fs < seq_from_member) {
1148                 struct printbuf buf = PRINTBUF;
1149
1150                 prt_str(&buf, "Split brain detected between ");
1151                 prt_bdevname(&buf, sb->bdev);
1152                 prt_str(&buf, " and ");
1153                 prt_bdevname(&buf, fs->bdev);
1154                 prt_char(&buf, ':');
1155                 prt_newline(&buf);
1156
1157                 prt_bdevname(&buf, fs->bdev);
1158                 prt_str(&buf, " believes seq of ");
1159                 prt_bdevname(&buf, sb->bdev);
1160                 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1161                 prt_bdevname(&buf, sb->bdev);
1162                 prt_printf(&buf, " has %llu\n", seq_from_member);
1163
1164                 if (!opts->no_splitbrain_check) {
1165                         prt_str(&buf, "Not using ");
1166                         prt_bdevname(&buf, sb->bdev);
1167                 }
1168
1169                 pr_err("%s", buf.buf);
1170                 printbuf_exit(&buf);
1171
1172                 if (!opts->no_splitbrain_check)
1173                         return -BCH_ERR_device_splitbrain;
1174         }
1175
1176         return 0;
1177 }
1178
1179 /* Device startup/shutdown: */
1180
1181 static void bch2_dev_release(struct kobject *kobj)
1182 {
1183         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1184
1185         kfree(ca);
1186 }
1187
1188 static void bch2_dev_free(struct bch_dev *ca)
1189 {
1190         cancel_work_sync(&ca->io_error_work);
1191
1192         bch2_dev_unlink(ca);
1193
1194         if (ca->kobj.state_in_sysfs)
1195                 kobject_del(&ca->kobj);
1196
1197         bch2_free_super(&ca->disk_sb);
1198         bch2_dev_allocator_background_exit(ca);
1199         bch2_dev_journal_exit(ca);
1200
1201         free_percpu(ca->io_done);
1202         bch2_dev_buckets_free(ca);
1203         kfree(ca->sb_read_scratch);
1204
1205         bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1206         bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1207
1208         percpu_ref_exit(&ca->io_ref);
1209 #ifndef CONFIG_BCACHEFS_DEBUG
1210         percpu_ref_exit(&ca->ref);
1211 #endif
1212         kobject_put(&ca->kobj);
1213 }
1214
1215 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1216 {
1217
1218         lockdep_assert_held(&c->state_lock);
1219
1220         if (percpu_ref_is_zero(&ca->io_ref))
1221                 return;
1222
1223         __bch2_dev_read_only(c, ca);
1224
1225         reinit_completion(&ca->io_ref_completion);
1226         percpu_ref_kill(&ca->io_ref);
1227         wait_for_completion(&ca->io_ref_completion);
1228
1229         bch2_dev_unlink(ca);
1230
1231         bch2_free_super(&ca->disk_sb);
1232         bch2_dev_journal_exit(ca);
1233 }
1234
1235 #ifndef CONFIG_BCACHEFS_DEBUG
1236 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1237 {
1238         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1239
1240         complete(&ca->ref_completion);
1241 }
1242 #endif
1243
1244 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1245 {
1246         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1247
1248         complete(&ca->io_ref_completion);
1249 }
1250
1251 static void bch2_dev_unlink(struct bch_dev *ca)
1252 {
1253         struct kobject *b;
1254
1255         /*
1256          * This is racy w.r.t. the underlying block device being hot-removed,
1257          * which removes it from sysfs.
1258          *
1259          * It'd be lovely if we had a way to handle this race, but the sysfs
1260          * code doesn't appear to provide a good method and block/holder.c is
1261          * susceptible as well:
1262          */
1263         if (ca->kobj.state_in_sysfs &&
1264             ca->disk_sb.bdev &&
1265             (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1266                 sysfs_remove_link(b, "bcachefs");
1267                 sysfs_remove_link(&ca->kobj, "block");
1268         }
1269 }
1270
1271 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1272 {
1273         int ret;
1274
1275         if (!c->kobj.state_in_sysfs)
1276                 return 0;
1277
1278         if (!ca->kobj.state_in_sysfs) {
1279                 ret = kobject_add(&ca->kobj, &c->kobj,
1280                                   "dev-%u", ca->dev_idx);
1281                 if (ret)
1282                         return ret;
1283         }
1284
1285         if (ca->disk_sb.bdev) {
1286                 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1287
1288                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1289                 if (ret)
1290                         return ret;
1291
1292                 ret = sysfs_create_link(&ca->kobj, block, "block");
1293                 if (ret)
1294                         return ret;
1295         }
1296
1297         return 0;
1298 }
1299
1300 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1301                                         struct bch_member *member)
1302 {
1303         struct bch_dev *ca;
1304         unsigned i;
1305
1306         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1307         if (!ca)
1308                 return NULL;
1309
1310         kobject_init(&ca->kobj, &bch2_dev_ktype);
1311         init_completion(&ca->ref_completion);
1312         init_completion(&ca->io_ref_completion);
1313
1314         init_rwsem(&ca->bucket_lock);
1315
1316         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1317
1318         bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1319         bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1320
1321         ca->mi = bch2_mi_to_cpu(member);
1322
1323         for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1324                 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1325
1326         ca->uuid = member->uuid;
1327
1328         ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1329                              ca->mi.bucket_size / btree_sectors(c));
1330
1331 #ifndef CONFIG_BCACHEFS_DEBUG
1332         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1333                 goto err;
1334 #else
1335         atomic_long_set(&ca->ref, 1);
1336 #endif
1337
1338         bch2_dev_allocator_background_init(ca);
1339
1340         if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1341                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1342             !(ca->sb_read_scratch = kmalloc(BCH_SB_READ_SCRATCH_BUF_SIZE, GFP_KERNEL)) ||
1343             bch2_dev_buckets_alloc(c, ca) ||
1344             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1345                 goto err;
1346
1347         return ca;
1348 err:
1349         bch2_dev_free(ca);
1350         return NULL;
1351 }
1352
1353 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1354                             unsigned dev_idx)
1355 {
1356         ca->dev_idx = dev_idx;
1357         __set_bit(ca->dev_idx, ca->self.d);
1358         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1359
1360         ca->fs = c;
1361         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1362
1363         if (bch2_dev_sysfs_online(c, ca))
1364                 pr_warn("error creating sysfs objects");
1365 }
1366
1367 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1368 {
1369         struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1370         struct bch_dev *ca = NULL;
1371
1372         if (bch2_fs_init_fault("dev_alloc"))
1373                 goto err;
1374
1375         ca = __bch2_dev_alloc(c, &member);
1376         if (!ca)
1377                 goto err;
1378
1379         ca->fs = c;
1380
1381         bch2_dev_attach(c, ca, dev_idx);
1382         return 0;
1383 err:
1384         return -BCH_ERR_ENOMEM_dev_alloc;
1385 }
1386
1387 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1388 {
1389         unsigned ret;
1390
1391         if (bch2_dev_is_online(ca)) {
1392                 bch_err(ca, "already have device online in slot %u",
1393                         sb->sb->dev_idx);
1394                 return -BCH_ERR_device_already_online;
1395         }
1396
1397         if (get_capacity(sb->bdev->bd_disk) <
1398             ca->mi.bucket_size * ca->mi.nbuckets) {
1399                 bch_err(ca, "cannot online: device too small");
1400                 return -BCH_ERR_device_size_too_small;
1401         }
1402
1403         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1404
1405         ret = bch2_dev_journal_init(ca, sb->sb);
1406         if (ret)
1407                 return ret;
1408
1409         /* Commit: */
1410         ca->disk_sb = *sb;
1411         memset(sb, 0, sizeof(*sb));
1412
1413         ca->dev = ca->disk_sb.bdev->bd_dev;
1414
1415         percpu_ref_reinit(&ca->io_ref);
1416
1417         return 0;
1418 }
1419
1420 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1421 {
1422         struct bch_dev *ca;
1423         int ret;
1424
1425         lockdep_assert_held(&c->state_lock);
1426
1427         if (le64_to_cpu(sb->sb->seq) >
1428             le64_to_cpu(c->disk_sb.sb->seq))
1429                 bch2_sb_to_fs(c, sb->sb);
1430
1431         BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1432
1433         ca = bch2_dev_locked(c, sb->sb->dev_idx);
1434
1435         ret = __bch2_dev_attach_bdev(ca, sb);
1436         if (ret)
1437                 return ret;
1438
1439         bch2_dev_sysfs_online(c, ca);
1440
1441         struct printbuf name = PRINTBUF;
1442         prt_bdevname(&name, ca->disk_sb.bdev);
1443
1444         if (c->sb.nr_devices == 1)
1445                 strscpy(c->name, name.buf, sizeof(c->name));
1446         strscpy(ca->name, name.buf, sizeof(ca->name));
1447
1448         printbuf_exit(&name);
1449
1450         rebalance_wakeup(c);
1451         return 0;
1452 }
1453
1454 /* Device management: */
1455
1456 /*
1457  * Note: this function is also used by the error paths - when a particular
1458  * device sees an error, we call it to determine whether we can just set the
1459  * device RO, or - if this function returns false - we'll set the whole
1460  * filesystem RO:
1461  *
1462  * XXX: maybe we should be more explicit about whether we're changing state
1463  * because we got an error or what have you?
1464  */
1465 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1466                             enum bch_member_state new_state, int flags)
1467 {
1468         struct bch_devs_mask new_online_devs;
1469         int nr_rw = 0, required;
1470
1471         lockdep_assert_held(&c->state_lock);
1472
1473         switch (new_state) {
1474         case BCH_MEMBER_STATE_rw:
1475                 return true;
1476         case BCH_MEMBER_STATE_ro:
1477                 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1478                         return true;
1479
1480                 /* do we have enough devices to write to?  */
1481                 for_each_member_device(c, ca2)
1482                         if (ca2 != ca)
1483                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1484
1485                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1486                                ? c->opts.metadata_replicas
1487                                : metadata_replicas_required(c),
1488                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1489                                ? c->opts.data_replicas
1490                                : data_replicas_required(c));
1491
1492                 return nr_rw >= required;
1493         case BCH_MEMBER_STATE_failed:
1494         case BCH_MEMBER_STATE_spare:
1495                 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1496                     ca->mi.state != BCH_MEMBER_STATE_ro)
1497                         return true;
1498
1499                 /* do we have enough devices to read from?  */
1500                 new_online_devs = bch2_online_devs(c);
1501                 __clear_bit(ca->dev_idx, new_online_devs.d);
1502
1503                 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1504         default:
1505                 BUG();
1506         }
1507 }
1508
1509 static bool bch2_fs_may_start(struct bch_fs *c)
1510 {
1511         struct bch_dev *ca;
1512         unsigned i, flags = 0;
1513
1514         if (c->opts.very_degraded)
1515                 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1516
1517         if (c->opts.degraded)
1518                 flags |= BCH_FORCE_IF_DEGRADED;
1519
1520         if (!c->opts.degraded &&
1521             !c->opts.very_degraded) {
1522                 mutex_lock(&c->sb_lock);
1523
1524                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1525                         if (!bch2_member_exists(c->disk_sb.sb, i))
1526                                 continue;
1527
1528                         ca = bch2_dev_locked(c, i);
1529
1530                         if (!bch2_dev_is_online(ca) &&
1531                             (ca->mi.state == BCH_MEMBER_STATE_rw ||
1532                              ca->mi.state == BCH_MEMBER_STATE_ro)) {
1533                                 mutex_unlock(&c->sb_lock);
1534                                 return false;
1535                         }
1536                 }
1537                 mutex_unlock(&c->sb_lock);
1538         }
1539
1540         return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1541 }
1542
1543 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1544 {
1545         /*
1546          * The allocator thread itself allocates btree nodes, so stop it first:
1547          */
1548         bch2_dev_allocator_remove(c, ca);
1549         bch2_recalc_capacity(c);
1550         bch2_dev_journal_stop(&c->journal, ca);
1551 }
1552
1553 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1554 {
1555         lockdep_assert_held(&c->state_lock);
1556
1557         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1558
1559         bch2_dev_allocator_add(c, ca);
1560         bch2_recalc_capacity(c);
1561         bch2_dev_do_discards(ca);
1562 }
1563
1564 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1565                          enum bch_member_state new_state, int flags)
1566 {
1567         struct bch_member *m;
1568         int ret = 0;
1569
1570         if (ca->mi.state == new_state)
1571                 return 0;
1572
1573         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1574                 return -BCH_ERR_device_state_not_allowed;
1575
1576         if (new_state != BCH_MEMBER_STATE_rw)
1577                 __bch2_dev_read_only(c, ca);
1578
1579         bch_notice(ca, "%s", bch2_member_states[new_state]);
1580
1581         mutex_lock(&c->sb_lock);
1582         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1583         SET_BCH_MEMBER_STATE(m, new_state);
1584         bch2_write_super(c);
1585         mutex_unlock(&c->sb_lock);
1586
1587         if (new_state == BCH_MEMBER_STATE_rw)
1588                 __bch2_dev_read_write(c, ca);
1589
1590         rebalance_wakeup(c);
1591
1592         return ret;
1593 }
1594
1595 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1596                        enum bch_member_state new_state, int flags)
1597 {
1598         int ret;
1599
1600         down_write(&c->state_lock);
1601         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1602         up_write(&c->state_lock);
1603
1604         return ret;
1605 }
1606
1607 /* Device add/removal: */
1608
1609 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1610 {
1611         struct bch_member *m;
1612         unsigned dev_idx = ca->dev_idx, data;
1613         int ret;
1614
1615         down_write(&c->state_lock);
1616
1617         /*
1618          * We consume a reference to ca->ref, regardless of whether we succeed
1619          * or fail:
1620          */
1621         bch2_dev_put(ca);
1622
1623         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1624                 bch_err(ca, "Cannot remove without losing data");
1625                 ret = -BCH_ERR_device_state_not_allowed;
1626                 goto err;
1627         }
1628
1629         __bch2_dev_read_only(c, ca);
1630
1631         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1632         bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1633         if (ret)
1634                 goto err;
1635
1636         ret = bch2_dev_remove_alloc(c, ca);
1637         bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1638         if (ret)
1639                 goto err;
1640
1641         /*
1642          * We need to flush the entire journal to get rid of keys that reference
1643          * the device being removed before removing the superblock entry
1644          */
1645         bch2_journal_flush_all_pins(&c->journal);
1646
1647         /*
1648          * this is really just needed for the bch2_replicas_gc_(start|end)
1649          * calls, and could be cleaned up:
1650          */
1651         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1652         bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1653         if (ret)
1654                 goto err;
1655
1656         ret = bch2_journal_flush(&c->journal);
1657         bch_err_msg(ca, ret, "bch2_journal_flush()");
1658         if (ret)
1659                 goto err;
1660
1661         ret = bch2_replicas_gc2(c);
1662         bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1663         if (ret)
1664                 goto err;
1665
1666         data = bch2_dev_has_data(c, ca);
1667         if (data) {
1668                 struct printbuf data_has = PRINTBUF;
1669
1670                 prt_bitflags(&data_has, __bch2_data_types, data);
1671                 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1672                 printbuf_exit(&data_has);
1673                 ret = -EBUSY;
1674                 goto err;
1675         }
1676
1677         __bch2_dev_offline(c, ca);
1678
1679         mutex_lock(&c->sb_lock);
1680         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1681         mutex_unlock(&c->sb_lock);
1682
1683 #ifndef CONFIG_BCACHEFS_DEBUG
1684         percpu_ref_kill(&ca->ref);
1685 #else
1686         ca->dying = true;
1687         bch2_dev_put(ca);
1688 #endif
1689         wait_for_completion(&ca->ref_completion);
1690
1691         bch2_dev_free(ca);
1692
1693         /*
1694          * Free this device's slot in the bch_member array - all pointers to
1695          * this device must be gone:
1696          */
1697         mutex_lock(&c->sb_lock);
1698         m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1699         memset(&m->uuid, 0, sizeof(m->uuid));
1700
1701         bch2_write_super(c);
1702
1703         mutex_unlock(&c->sb_lock);
1704         up_write(&c->state_lock);
1705         return 0;
1706 err:
1707         if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1708             !percpu_ref_is_zero(&ca->io_ref))
1709                 __bch2_dev_read_write(c, ca);
1710         up_write(&c->state_lock);
1711         return ret;
1712 }
1713
1714 /* Add new device to running filesystem: */
1715 int bch2_dev_add(struct bch_fs *c, const char *path)
1716 {
1717         struct bch_opts opts = bch2_opts_empty();
1718         struct bch_sb_handle sb;
1719         struct bch_dev *ca = NULL;
1720         struct printbuf errbuf = PRINTBUF;
1721         struct printbuf label = PRINTBUF;
1722         int ret;
1723
1724         ret = bch2_read_super(path, &opts, &sb);
1725         bch_err_msg(c, ret, "reading super");
1726         if (ret)
1727                 goto err;
1728
1729         struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1730
1731         if (BCH_MEMBER_GROUP(&dev_mi)) {
1732                 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1733                 if (label.allocation_failure) {
1734                         ret = -ENOMEM;
1735                         goto err;
1736                 }
1737         }
1738
1739         ret = bch2_dev_may_add(sb.sb, c);
1740         if (ret)
1741                 goto err;
1742
1743         ca = __bch2_dev_alloc(c, &dev_mi);
1744         if (!ca) {
1745                 ret = -ENOMEM;
1746                 goto err;
1747         }
1748
1749         ret = __bch2_dev_attach_bdev(ca, &sb);
1750         if (ret)
1751                 goto err;
1752
1753         down_write(&c->state_lock);
1754         mutex_lock(&c->sb_lock);
1755
1756         ret = bch2_sb_from_fs(c, ca);
1757         bch_err_msg(c, ret, "setting up new superblock");
1758         if (ret)
1759                 goto err_unlock;
1760
1761         if (dynamic_fault("bcachefs:add:no_slot"))
1762                 goto err_unlock;
1763
1764         ret = bch2_sb_member_alloc(c);
1765         if (ret < 0) {
1766                 bch_err_msg(c, ret, "setting up new superblock");
1767                 goto err_unlock;
1768         }
1769         unsigned dev_idx = ret;
1770
1771         /* success: */
1772
1773         dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1774         *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1775
1776         ca->disk_sb.sb->dev_idx = dev_idx;
1777         bch2_dev_attach(c, ca, dev_idx);
1778
1779         if (BCH_MEMBER_GROUP(&dev_mi)) {
1780                 ret = __bch2_dev_group_set(c, ca, label.buf);
1781                 bch_err_msg(c, ret, "creating new label");
1782                 if (ret)
1783                         goto err_unlock;
1784         }
1785
1786         bch2_write_super(c);
1787         mutex_unlock(&c->sb_lock);
1788
1789         ret = bch2_dev_usage_init(ca, false);
1790         if (ret)
1791                 goto err_late;
1792
1793         ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1794         bch_err_msg(ca, ret, "marking new superblock");
1795         if (ret)
1796                 goto err_late;
1797
1798         ret = bch2_fs_freespace_init(c);
1799         bch_err_msg(ca, ret, "initializing free space");
1800         if (ret)
1801                 goto err_late;
1802
1803         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1804                 __bch2_dev_read_write(c, ca);
1805
1806         ret = bch2_dev_journal_alloc(ca, false);
1807         bch_err_msg(c, ret, "allocating journal");
1808         if (ret)
1809                 goto err_late;
1810
1811         up_write(&c->state_lock);
1812         return 0;
1813
1814 err_unlock:
1815         mutex_unlock(&c->sb_lock);
1816         up_write(&c->state_lock);
1817 err:
1818         if (ca)
1819                 bch2_dev_free(ca);
1820         bch2_free_super(&sb);
1821         printbuf_exit(&label);
1822         printbuf_exit(&errbuf);
1823         bch_err_fn(c, ret);
1824         return ret;
1825 err_late:
1826         up_write(&c->state_lock);
1827         ca = NULL;
1828         goto err;
1829 }
1830
1831 /* Hot add existing device to running filesystem: */
1832 int bch2_dev_online(struct bch_fs *c, const char *path)
1833 {
1834         struct bch_opts opts = bch2_opts_empty();
1835         struct bch_sb_handle sb = { NULL };
1836         struct bch_dev *ca;
1837         unsigned dev_idx;
1838         int ret;
1839
1840         down_write(&c->state_lock);
1841
1842         ret = bch2_read_super(path, &opts, &sb);
1843         if (ret) {
1844                 up_write(&c->state_lock);
1845                 return ret;
1846         }
1847
1848         dev_idx = sb.sb->dev_idx;
1849
1850         ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1851         bch_err_msg(c, ret, "bringing %s online", path);
1852         if (ret)
1853                 goto err;
1854
1855         ret = bch2_dev_attach_bdev(c, &sb);
1856         if (ret)
1857                 goto err;
1858
1859         ca = bch2_dev_locked(c, dev_idx);
1860
1861         ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1862         bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1863         if (ret)
1864                 goto err;
1865
1866         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1867                 __bch2_dev_read_write(c, ca);
1868
1869         if (!ca->mi.freespace_initialized) {
1870                 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1871                 bch_err_msg(ca, ret, "initializing free space");
1872                 if (ret)
1873                         goto err;
1874         }
1875
1876         if (!ca->journal.nr) {
1877                 ret = bch2_dev_journal_alloc(ca, false);
1878                 bch_err_msg(ca, ret, "allocating journal");
1879                 if (ret)
1880                         goto err;
1881         }
1882
1883         mutex_lock(&c->sb_lock);
1884         bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1885                 cpu_to_le64(ktime_get_real_seconds());
1886         bch2_write_super(c);
1887         mutex_unlock(&c->sb_lock);
1888
1889         up_write(&c->state_lock);
1890         return 0;
1891 err:
1892         up_write(&c->state_lock);
1893         bch2_free_super(&sb);
1894         return ret;
1895 }
1896
1897 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1898 {
1899         down_write(&c->state_lock);
1900
1901         if (!bch2_dev_is_online(ca)) {
1902                 bch_err(ca, "Already offline");
1903                 up_write(&c->state_lock);
1904                 return 0;
1905         }
1906
1907         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1908                 bch_err(ca, "Cannot offline required disk");
1909                 up_write(&c->state_lock);
1910                 return -BCH_ERR_device_state_not_allowed;
1911         }
1912
1913         __bch2_dev_offline(c, ca);
1914
1915         up_write(&c->state_lock);
1916         return 0;
1917 }
1918
1919 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1920 {
1921         struct bch_member *m;
1922         u64 old_nbuckets;
1923         int ret = 0;
1924
1925         down_write(&c->state_lock);
1926         old_nbuckets = ca->mi.nbuckets;
1927
1928         if (nbuckets < ca->mi.nbuckets) {
1929                 bch_err(ca, "Cannot shrink yet");
1930                 ret = -EINVAL;
1931                 goto err;
1932         }
1933
1934         if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1935                 bch_err(ca, "New device size too big (%llu greater than max %u)",
1936                         nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1937                 ret = -BCH_ERR_device_size_too_big;
1938                 goto err;
1939         }
1940
1941         if (bch2_dev_is_online(ca) &&
1942             get_capacity(ca->disk_sb.bdev->bd_disk) <
1943             ca->mi.bucket_size * nbuckets) {
1944                 bch_err(ca, "New size larger than device");
1945                 ret = -BCH_ERR_device_size_too_small;
1946                 goto err;
1947         }
1948
1949         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1950         bch_err_msg(ca, ret, "resizing buckets");
1951         if (ret)
1952                 goto err;
1953
1954         ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1955         if (ret)
1956                 goto err;
1957
1958         mutex_lock(&c->sb_lock);
1959         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1960         m->nbuckets = cpu_to_le64(nbuckets);
1961
1962         bch2_write_super(c);
1963         mutex_unlock(&c->sb_lock);
1964
1965         if (ca->mi.freespace_initialized) {
1966                 struct disk_accounting_pos acc = {
1967                         .type = BCH_DISK_ACCOUNTING_dev_data_type,
1968                         .dev_data_type.dev = ca->dev_idx,
1969                         .dev_data_type.data_type = BCH_DATA_free,
1970                 };
1971                 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
1972
1973                 ret   = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
1974                                 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?:
1975                         bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1976                 if (ret)
1977                         goto err;
1978         }
1979
1980         bch2_recalc_capacity(c);
1981 err:
1982         up_write(&c->state_lock);
1983         return ret;
1984 }
1985
1986 /* return with ref on ca->ref: */
1987 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1988 {
1989         if (!strncmp(name, "/dev/", strlen("/dev/")))
1990                 name += strlen("/dev/");
1991
1992         for_each_member_device(c, ca)
1993                 if (!strcmp(name, ca->name))
1994                         return ca;
1995         return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1996 }
1997
1998 /* Filesystem open: */
1999
2000 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2001 {
2002         return  cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2003                 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2004 }
2005
2006 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2007                             struct bch_opts opts)
2008 {
2009         DARRAY(struct bch_sb_handle) sbs = { 0 };
2010         struct bch_fs *c = NULL;
2011         struct bch_sb_handle *best = NULL;
2012         struct printbuf errbuf = PRINTBUF;
2013         int ret = 0;
2014
2015         if (!try_module_get(THIS_MODULE))
2016                 return ERR_PTR(-ENODEV);
2017
2018         if (!nr_devices) {
2019                 ret = -EINVAL;
2020                 goto err;
2021         }
2022
2023         ret = darray_make_room(&sbs, nr_devices);
2024         if (ret)
2025                 goto err;
2026
2027         for (unsigned i = 0; i < nr_devices; i++) {
2028                 struct bch_sb_handle sb = { NULL };
2029
2030                 ret = bch2_read_super(devices[i], &opts, &sb);
2031                 if (ret)
2032                         goto err;
2033
2034                 BUG_ON(darray_push(&sbs, sb));
2035         }
2036
2037         if (opts.nochanges && !opts.read_only) {
2038                 ret = -BCH_ERR_erofs_nochanges;
2039                 goto err_print;
2040         }
2041
2042         darray_for_each(sbs, sb)
2043                 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2044                         best = sb;
2045
2046         darray_for_each_reverse(sbs, sb) {
2047                 ret = bch2_dev_in_fs(best, sb, &opts);
2048
2049                 if (ret == -BCH_ERR_device_has_been_removed ||
2050                     ret == -BCH_ERR_device_splitbrain) {
2051                         bch2_free_super(sb);
2052                         darray_remove_item(&sbs, sb);
2053                         best -= best > sb;
2054                         ret = 0;
2055                         continue;
2056                 }
2057
2058                 if (ret)
2059                         goto err_print;
2060         }
2061
2062         c = bch2_fs_alloc(best->sb, opts);
2063         ret = PTR_ERR_OR_ZERO(c);
2064         if (ret)
2065                 goto err;
2066
2067         down_write(&c->state_lock);
2068         darray_for_each(sbs, sb) {
2069                 ret = bch2_dev_attach_bdev(c, sb);
2070                 if (ret) {
2071                         up_write(&c->state_lock);
2072                         goto err;
2073                 }
2074         }
2075         up_write(&c->state_lock);
2076
2077         if (!bch2_fs_may_start(c)) {
2078                 ret = -BCH_ERR_insufficient_devices_to_start;
2079                 goto err_print;
2080         }
2081
2082         if (!c->opts.nostart) {
2083                 ret = bch2_fs_start(c);
2084                 if (ret)
2085                         goto err;
2086         }
2087 out:
2088         darray_for_each(sbs, sb)
2089                 bch2_free_super(sb);
2090         darray_exit(&sbs);
2091         printbuf_exit(&errbuf);
2092         module_put(THIS_MODULE);
2093         return c;
2094 err_print:
2095         pr_err("bch_fs_open err opening %s: %s",
2096                devices[0], bch2_err_str(ret));
2097 err:
2098         if (!IS_ERR_OR_NULL(c))
2099                 bch2_fs_stop(c);
2100         c = ERR_PTR(ret);
2101         goto out;
2102 }
2103
2104 /* Global interfaces/init */
2105
2106 static void bcachefs_exit(void)
2107 {
2108         bch2_debug_exit();
2109         bch2_vfs_exit();
2110         bch2_chardev_exit();
2111         bch2_btree_key_cache_exit();
2112         if (bcachefs_kset)
2113                 kset_unregister(bcachefs_kset);
2114 }
2115
2116 static int __init bcachefs_init(void)
2117 {
2118         bch2_bkey_pack_test();
2119
2120         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2121             bch2_btree_key_cache_init() ||
2122             bch2_chardev_init() ||
2123             bch2_vfs_init() ||
2124             bch2_debug_init())
2125                 goto err;
2126
2127         return 0;
2128 err:
2129         bcachefs_exit();
2130         return -ENOMEM;
2131 }
2132
2133 #define BCH_DEBUG_PARAM(name, description)                      \
2134         bool bch2_##name;                                       \
2135         module_param_named(name, bch2_##name, bool, 0644);      \
2136         MODULE_PARM_DESC(name, description);
2137 BCH_DEBUG_PARAMS()
2138 #undef BCH_DEBUG_PARAM
2139
2140 __maybe_unused
2141 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2142 module_param_named(version, bch2_metadata_version, uint, 0400);
2143
2144 module_exit(bcachefs_exit);
2145 module_init(bcachefs_init);