KVM: fix spin_lock_init order on x86
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211         struct page *page;
212         int r;
213
214         mutex_init(&vcpu->mutex);
215         vcpu->cpu = -1;
216         vcpu->kvm = kvm;
217         vcpu->vcpu_id = id;
218         vcpu->pid = NULL;
219         init_swait_queue_head(&vcpu->wq);
220         kvm_async_pf_vcpu_init(vcpu);
221
222         vcpu->pre_pcpu = -1;
223         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
224
225         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226         if (!page) {
227                 r = -ENOMEM;
228                 goto fail;
229         }
230         vcpu->run = page_address(page);
231
232         kvm_vcpu_set_in_spin_loop(vcpu, false);
233         kvm_vcpu_set_dy_eligible(vcpu, false);
234         vcpu->preempted = false;
235
236         r = kvm_arch_vcpu_init(vcpu);
237         if (r < 0)
238                 goto fail_free_run;
239         return 0;
240
241 fail_free_run:
242         free_page((unsigned long)vcpu->run);
243 fail:
244         return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250         put_pid(vcpu->pid);
251         kvm_arch_vcpu_uninit(vcpu);
252         free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259         return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263                                              struct mm_struct *mm,
264                                              unsigned long address)
265 {
266         struct kvm *kvm = mmu_notifier_to_kvm(mn);
267         int need_tlb_flush, idx;
268
269         /*
270          * When ->invalidate_page runs, the linux pte has been zapped
271          * already but the page is still allocated until
272          * ->invalidate_page returns. So if we increase the sequence
273          * here the kvm page fault will notice if the spte can't be
274          * established because the page is going to be freed. If
275          * instead the kvm page fault establishes the spte before
276          * ->invalidate_page runs, kvm_unmap_hva will release it
277          * before returning.
278          *
279          * The sequence increase only need to be seen at spin_unlock
280          * time, and not at spin_lock time.
281          *
282          * Increasing the sequence after the spin_unlock would be
283          * unsafe because the kvm page fault could then establish the
284          * pte after kvm_unmap_hva returned, without noticing the page
285          * is going to be freed.
286          */
287         idx = srcu_read_lock(&kvm->srcu);
288         spin_lock(&kvm->mmu_lock);
289
290         kvm->mmu_notifier_seq++;
291         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292         /* we've to flush the tlb before the pages can be freed */
293         if (need_tlb_flush)
294                 kvm_flush_remote_tlbs(kvm);
295
296         spin_unlock(&kvm->mmu_lock);
297
298         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299
300         srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304                                         struct mm_struct *mm,
305                                         unsigned long address,
306                                         pte_t pte)
307 {
308         struct kvm *kvm = mmu_notifier_to_kvm(mn);
309         int idx;
310
311         idx = srcu_read_lock(&kvm->srcu);
312         spin_lock(&kvm->mmu_lock);
313         kvm->mmu_notifier_seq++;
314         kvm_set_spte_hva(kvm, address, pte);
315         spin_unlock(&kvm->mmu_lock);
316         srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320                                                     struct mm_struct *mm,
321                                                     unsigned long start,
322                                                     unsigned long end)
323 {
324         struct kvm *kvm = mmu_notifier_to_kvm(mn);
325         int need_tlb_flush = 0, idx;
326
327         idx = srcu_read_lock(&kvm->srcu);
328         spin_lock(&kvm->mmu_lock);
329         /*
330          * The count increase must become visible at unlock time as no
331          * spte can be established without taking the mmu_lock and
332          * count is also read inside the mmu_lock critical section.
333          */
334         kvm->mmu_notifier_count++;
335         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336         need_tlb_flush |= kvm->tlbs_dirty;
337         /* we've to flush the tlb before the pages can be freed */
338         if (need_tlb_flush)
339                 kvm_flush_remote_tlbs(kvm);
340
341         spin_unlock(&kvm->mmu_lock);
342         srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346                                                   struct mm_struct *mm,
347                                                   unsigned long start,
348                                                   unsigned long end)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351
352         spin_lock(&kvm->mmu_lock);
353         /*
354          * This sequence increase will notify the kvm page fault that
355          * the page that is going to be mapped in the spte could have
356          * been freed.
357          */
358         kvm->mmu_notifier_seq++;
359         smp_wmb();
360         /*
361          * The above sequence increase must be visible before the
362          * below count decrease, which is ensured by the smp_wmb above
363          * in conjunction with the smp_rmb in mmu_notifier_retry().
364          */
365         kvm->mmu_notifier_count--;
366         spin_unlock(&kvm->mmu_lock);
367
368         BUG_ON(kvm->mmu_notifier_count < 0);
369 }
370
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372                                               struct mm_struct *mm,
373                                               unsigned long start,
374                                               unsigned long end)
375 {
376         struct kvm *kvm = mmu_notifier_to_kvm(mn);
377         int young, idx;
378
379         idx = srcu_read_lock(&kvm->srcu);
380         spin_lock(&kvm->mmu_lock);
381
382         young = kvm_age_hva(kvm, start, end);
383         if (young)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387         srcu_read_unlock(&kvm->srcu, idx);
388
389         return young;
390 }
391
392 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
393                                         struct mm_struct *mm,
394                                         unsigned long start,
395                                         unsigned long end)
396 {
397         struct kvm *kvm = mmu_notifier_to_kvm(mn);
398         int young, idx;
399
400         idx = srcu_read_lock(&kvm->srcu);
401         spin_lock(&kvm->mmu_lock);
402         /*
403          * Even though we do not flush TLB, this will still adversely
404          * affect performance on pre-Haswell Intel EPT, where there is
405          * no EPT Access Bit to clear so that we have to tear down EPT
406          * tables instead. If we find this unacceptable, we can always
407          * add a parameter to kvm_age_hva so that it effectively doesn't
408          * do anything on clear_young.
409          *
410          * Also note that currently we never issue secondary TLB flushes
411          * from clear_young, leaving this job up to the regular system
412          * cadence. If we find this inaccurate, we might come up with a
413          * more sophisticated heuristic later.
414          */
415         young = kvm_age_hva(kvm, start, end);
416         spin_unlock(&kvm->mmu_lock);
417         srcu_read_unlock(&kvm->srcu, idx);
418
419         return young;
420 }
421
422 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
423                                        struct mm_struct *mm,
424                                        unsigned long address)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431         young = kvm_test_age_hva(kvm, address);
432         spin_unlock(&kvm->mmu_lock);
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return young;
436 }
437
438 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
439                                      struct mm_struct *mm)
440 {
441         struct kvm *kvm = mmu_notifier_to_kvm(mn);
442         int idx;
443
444         idx = srcu_read_lock(&kvm->srcu);
445         kvm_arch_flush_shadow_all(kvm);
446         srcu_read_unlock(&kvm->srcu, idx);
447 }
448
449 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
450         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
451         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
452         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
453         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
454         .clear_young            = kvm_mmu_notifier_clear_young,
455         .test_young             = kvm_mmu_notifier_test_young,
456         .change_pte             = kvm_mmu_notifier_change_pte,
457         .release                = kvm_mmu_notifier_release,
458 };
459
460 static int kvm_init_mmu_notifier(struct kvm *kvm)
461 {
462         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
463         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
464 }
465
466 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
467
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470         return 0;
471 }
472
473 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
474
475 static struct kvm_memslots *kvm_alloc_memslots(void)
476 {
477         int i;
478         struct kvm_memslots *slots;
479
480         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
481         if (!slots)
482                 return NULL;
483
484         /*
485          * Init kvm generation close to the maximum to easily test the
486          * code of handling generation number wrap-around.
487          */
488         slots->generation = -150;
489         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
490                 slots->id_to_index[i] = slots->memslots[i].id = i;
491
492         return slots;
493 }
494
495 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
496 {
497         if (!memslot->dirty_bitmap)
498                 return;
499
500         kvfree(memslot->dirty_bitmap);
501         memslot->dirty_bitmap = NULL;
502 }
503
504 /*
505  * Free any memory in @free but not in @dont.
506  */
507 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
508                               struct kvm_memory_slot *dont)
509 {
510         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
511                 kvm_destroy_dirty_bitmap(free);
512
513         kvm_arch_free_memslot(kvm, free, dont);
514
515         free->npages = 0;
516 }
517
518 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
519 {
520         struct kvm_memory_slot *memslot;
521
522         if (!slots)
523                 return;
524
525         kvm_for_each_memslot(memslot, slots)
526                 kvm_free_memslot(kvm, memslot, NULL);
527
528         kvfree(slots);
529 }
530
531 static struct kvm *kvm_create_vm(unsigned long type)
532 {
533         int r, i;
534         struct kvm *kvm = kvm_arch_alloc_vm();
535
536         if (!kvm)
537                 return ERR_PTR(-ENOMEM);
538
539         spin_lock_init(&kvm->mmu_lock);
540         atomic_inc(&current->mm->mm_count);
541         kvm->mm = current->mm;
542         kvm_eventfd_init(kvm);
543         mutex_init(&kvm->lock);
544         mutex_init(&kvm->irq_lock);
545         mutex_init(&kvm->slots_lock);
546         atomic_set(&kvm->users_count, 1);
547         INIT_LIST_HEAD(&kvm->devices);
548
549         r = kvm_arch_init_vm(kvm, type);
550         if (r)
551                 goto out_err_no_disable;
552
553         r = hardware_enable_all();
554         if (r)
555                 goto out_err_no_disable;
556
557 #ifdef CONFIG_HAVE_KVM_IRQFD
558         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
559 #endif
560
561         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
562
563         r = -ENOMEM;
564         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
565                 kvm->memslots[i] = kvm_alloc_memslots();
566                 if (!kvm->memslots[i])
567                         goto out_err_no_srcu;
568         }
569
570         if (init_srcu_struct(&kvm->srcu))
571                 goto out_err_no_srcu;
572         if (init_srcu_struct(&kvm->irq_srcu))
573                 goto out_err_no_irq_srcu;
574         for (i = 0; i < KVM_NR_BUSES; i++) {
575                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
576                                         GFP_KERNEL);
577                 if (!kvm->buses[i])
578                         goto out_err;
579         }
580
581         r = kvm_init_mmu_notifier(kvm);
582         if (r)
583                 goto out_err;
584
585         spin_lock(&kvm_lock);
586         list_add(&kvm->vm_list, &vm_list);
587         spin_unlock(&kvm_lock);
588
589         preempt_notifier_inc();
590
591         return kvm;
592
593 out_err:
594         cleanup_srcu_struct(&kvm->irq_srcu);
595 out_err_no_irq_srcu:
596         cleanup_srcu_struct(&kvm->srcu);
597 out_err_no_srcu:
598         hardware_disable_all();
599 out_err_no_disable:
600         for (i = 0; i < KVM_NR_BUSES; i++)
601                 kfree(kvm->buses[i]);
602         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
603                 kvm_free_memslots(kvm, kvm->memslots[i]);
604         kvm_arch_free_vm(kvm);
605         mmdrop(current->mm);
606         return ERR_PTR(r);
607 }
608
609 /*
610  * Avoid using vmalloc for a small buffer.
611  * Should not be used when the size is statically known.
612  */
613 void *kvm_kvzalloc(unsigned long size)
614 {
615         if (size > PAGE_SIZE)
616                 return vzalloc(size);
617         else
618                 return kzalloc(size, GFP_KERNEL);
619 }
620
621 static void kvm_destroy_devices(struct kvm *kvm)
622 {
623         struct kvm_device *dev, *tmp;
624
625         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
626                 list_del(&dev->vm_node);
627                 dev->ops->destroy(dev);
628         }
629 }
630
631 static void kvm_destroy_vm(struct kvm *kvm)
632 {
633         int i;
634         struct mm_struct *mm = kvm->mm;
635
636         kvm_arch_sync_events(kvm);
637         spin_lock(&kvm_lock);
638         list_del(&kvm->vm_list);
639         spin_unlock(&kvm_lock);
640         kvm_free_irq_routing(kvm);
641         for (i = 0; i < KVM_NR_BUSES; i++)
642                 kvm_io_bus_destroy(kvm->buses[i]);
643         kvm_coalesced_mmio_free(kvm);
644 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
645         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
646 #else
647         kvm_arch_flush_shadow_all(kvm);
648 #endif
649         kvm_arch_destroy_vm(kvm);
650         kvm_destroy_devices(kvm);
651         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
652                 kvm_free_memslots(kvm, kvm->memslots[i]);
653         cleanup_srcu_struct(&kvm->irq_srcu);
654         cleanup_srcu_struct(&kvm->srcu);
655         kvm_arch_free_vm(kvm);
656         preempt_notifier_dec();
657         hardware_disable_all();
658         mmdrop(mm);
659 }
660
661 void kvm_get_kvm(struct kvm *kvm)
662 {
663         atomic_inc(&kvm->users_count);
664 }
665 EXPORT_SYMBOL_GPL(kvm_get_kvm);
666
667 void kvm_put_kvm(struct kvm *kvm)
668 {
669         if (atomic_dec_and_test(&kvm->users_count))
670                 kvm_destroy_vm(kvm);
671 }
672 EXPORT_SYMBOL_GPL(kvm_put_kvm);
673
674
675 static int kvm_vm_release(struct inode *inode, struct file *filp)
676 {
677         struct kvm *kvm = filp->private_data;
678
679         kvm_irqfd_release(kvm);
680
681         kvm_put_kvm(kvm);
682         return 0;
683 }
684
685 /*
686  * Allocation size is twice as large as the actual dirty bitmap size.
687  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
688  */
689 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
690 {
691         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
692
693         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
694         if (!memslot->dirty_bitmap)
695                 return -ENOMEM;
696
697         return 0;
698 }
699
700 /*
701  * Insert memslot and re-sort memslots based on their GFN,
702  * so binary search could be used to lookup GFN.
703  * Sorting algorithm takes advantage of having initially
704  * sorted array and known changed memslot position.
705  */
706 static void update_memslots(struct kvm_memslots *slots,
707                             struct kvm_memory_slot *new)
708 {
709         int id = new->id;
710         int i = slots->id_to_index[id];
711         struct kvm_memory_slot *mslots = slots->memslots;
712
713         WARN_ON(mslots[i].id != id);
714         if (!new->npages) {
715                 WARN_ON(!mslots[i].npages);
716                 if (mslots[i].npages)
717                         slots->used_slots--;
718         } else {
719                 if (!mslots[i].npages)
720                         slots->used_slots++;
721         }
722
723         while (i < KVM_MEM_SLOTS_NUM - 1 &&
724                new->base_gfn <= mslots[i + 1].base_gfn) {
725                 if (!mslots[i + 1].npages)
726                         break;
727                 mslots[i] = mslots[i + 1];
728                 slots->id_to_index[mslots[i].id] = i;
729                 i++;
730         }
731
732         /*
733          * The ">=" is needed when creating a slot with base_gfn == 0,
734          * so that it moves before all those with base_gfn == npages == 0.
735          *
736          * On the other hand, if new->npages is zero, the above loop has
737          * already left i pointing to the beginning of the empty part of
738          * mslots, and the ">=" would move the hole backwards in this
739          * case---which is wrong.  So skip the loop when deleting a slot.
740          */
741         if (new->npages) {
742                 while (i > 0 &&
743                        new->base_gfn >= mslots[i - 1].base_gfn) {
744                         mslots[i] = mslots[i - 1];
745                         slots->id_to_index[mslots[i].id] = i;
746                         i--;
747                 }
748         } else
749                 WARN_ON_ONCE(i != slots->used_slots);
750
751         mslots[i] = *new;
752         slots->id_to_index[mslots[i].id] = i;
753 }
754
755 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
756 {
757         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
758
759 #ifdef __KVM_HAVE_READONLY_MEM
760         valid_flags |= KVM_MEM_READONLY;
761 #endif
762
763         if (mem->flags & ~valid_flags)
764                 return -EINVAL;
765
766         return 0;
767 }
768
769 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
770                 int as_id, struct kvm_memslots *slots)
771 {
772         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
773
774         /*
775          * Set the low bit in the generation, which disables SPTE caching
776          * until the end of synchronize_srcu_expedited.
777          */
778         WARN_ON(old_memslots->generation & 1);
779         slots->generation = old_memslots->generation + 1;
780
781         rcu_assign_pointer(kvm->memslots[as_id], slots);
782         synchronize_srcu_expedited(&kvm->srcu);
783
784         /*
785          * Increment the new memslot generation a second time. This prevents
786          * vm exits that race with memslot updates from caching a memslot
787          * generation that will (potentially) be valid forever.
788          */
789         slots->generation++;
790
791         kvm_arch_memslots_updated(kvm, slots);
792
793         return old_memslots;
794 }
795
796 /*
797  * Allocate some memory and give it an address in the guest physical address
798  * space.
799  *
800  * Discontiguous memory is allowed, mostly for framebuffers.
801  *
802  * Must be called holding kvm->slots_lock for write.
803  */
804 int __kvm_set_memory_region(struct kvm *kvm,
805                             const struct kvm_userspace_memory_region *mem)
806 {
807         int r;
808         gfn_t base_gfn;
809         unsigned long npages;
810         struct kvm_memory_slot *slot;
811         struct kvm_memory_slot old, new;
812         struct kvm_memslots *slots = NULL, *old_memslots;
813         int as_id, id;
814         enum kvm_mr_change change;
815
816         r = check_memory_region_flags(mem);
817         if (r)
818                 goto out;
819
820         r = -EINVAL;
821         as_id = mem->slot >> 16;
822         id = (u16)mem->slot;
823
824         /* General sanity checks */
825         if (mem->memory_size & (PAGE_SIZE - 1))
826                 goto out;
827         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
828                 goto out;
829         /* We can read the guest memory with __xxx_user() later on. */
830         if ((id < KVM_USER_MEM_SLOTS) &&
831             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
832              !access_ok(VERIFY_WRITE,
833                         (void __user *)(unsigned long)mem->userspace_addr,
834                         mem->memory_size)))
835                 goto out;
836         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
837                 goto out;
838         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
839                 goto out;
840
841         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
842         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
843         npages = mem->memory_size >> PAGE_SHIFT;
844
845         if (npages > KVM_MEM_MAX_NR_PAGES)
846                 goto out;
847
848         new = old = *slot;
849
850         new.id = id;
851         new.base_gfn = base_gfn;
852         new.npages = npages;
853         new.flags = mem->flags;
854
855         if (npages) {
856                 if (!old.npages)
857                         change = KVM_MR_CREATE;
858                 else { /* Modify an existing slot. */
859                         if ((mem->userspace_addr != old.userspace_addr) ||
860                             (npages != old.npages) ||
861                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
862                                 goto out;
863
864                         if (base_gfn != old.base_gfn)
865                                 change = KVM_MR_MOVE;
866                         else if (new.flags != old.flags)
867                                 change = KVM_MR_FLAGS_ONLY;
868                         else { /* Nothing to change. */
869                                 r = 0;
870                                 goto out;
871                         }
872                 }
873         } else {
874                 if (!old.npages)
875                         goto out;
876
877                 change = KVM_MR_DELETE;
878                 new.base_gfn = 0;
879                 new.flags = 0;
880         }
881
882         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
883                 /* Check for overlaps */
884                 r = -EEXIST;
885                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
886                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
887                             (slot->id == id))
888                                 continue;
889                         if (!((base_gfn + npages <= slot->base_gfn) ||
890                               (base_gfn >= slot->base_gfn + slot->npages)))
891                                 goto out;
892                 }
893         }
894
895         /* Free page dirty bitmap if unneeded */
896         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
897                 new.dirty_bitmap = NULL;
898
899         r = -ENOMEM;
900         if (change == KVM_MR_CREATE) {
901                 new.userspace_addr = mem->userspace_addr;
902
903                 if (kvm_arch_create_memslot(kvm, &new, npages))
904                         goto out_free;
905         }
906
907         /* Allocate page dirty bitmap if needed */
908         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
909                 if (kvm_create_dirty_bitmap(&new) < 0)
910                         goto out_free;
911         }
912
913         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
914         if (!slots)
915                 goto out_free;
916         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
917
918         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
919                 slot = id_to_memslot(slots, id);
920                 slot->flags |= KVM_MEMSLOT_INVALID;
921
922                 old_memslots = install_new_memslots(kvm, as_id, slots);
923
924                 /* slot was deleted or moved, clear iommu mapping */
925                 kvm_iommu_unmap_pages(kvm, &old);
926                 /* From this point no new shadow pages pointing to a deleted,
927                  * or moved, memslot will be created.
928                  *
929                  * validation of sp->gfn happens in:
930                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
931                  *      - kvm_is_visible_gfn (mmu_check_roots)
932                  */
933                 kvm_arch_flush_shadow_memslot(kvm, slot);
934
935                 /*
936                  * We can re-use the old_memslots from above, the only difference
937                  * from the currently installed memslots is the invalid flag.  This
938                  * will get overwritten by update_memslots anyway.
939                  */
940                 slots = old_memslots;
941         }
942
943         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
944         if (r)
945                 goto out_slots;
946
947         /* actual memory is freed via old in kvm_free_memslot below */
948         if (change == KVM_MR_DELETE) {
949                 new.dirty_bitmap = NULL;
950                 memset(&new.arch, 0, sizeof(new.arch));
951         }
952
953         update_memslots(slots, &new);
954         old_memslots = install_new_memslots(kvm, as_id, slots);
955
956         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
957
958         kvm_free_memslot(kvm, &old, &new);
959         kvfree(old_memslots);
960
961         /*
962          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
963          * un-mapped and re-mapped if their base changes.  Since base change
964          * unmapping is handled above with slot deletion, mapping alone is
965          * needed here.  Anything else the iommu might care about for existing
966          * slots (size changes, userspace addr changes and read-only flag
967          * changes) is disallowed above, so any other attribute changes getting
968          * here can be skipped.
969          */
970         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
971                 r = kvm_iommu_map_pages(kvm, &new);
972                 return r;
973         }
974
975         return 0;
976
977 out_slots:
978         kvfree(slots);
979 out_free:
980         kvm_free_memslot(kvm, &new, &old);
981 out:
982         return r;
983 }
984 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
985
986 int kvm_set_memory_region(struct kvm *kvm,
987                           const struct kvm_userspace_memory_region *mem)
988 {
989         int r;
990
991         mutex_lock(&kvm->slots_lock);
992         r = __kvm_set_memory_region(kvm, mem);
993         mutex_unlock(&kvm->slots_lock);
994         return r;
995 }
996 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
997
998 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
999                                           struct kvm_userspace_memory_region *mem)
1000 {
1001         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1002                 return -EINVAL;
1003
1004         return kvm_set_memory_region(kvm, mem);
1005 }
1006
1007 int kvm_get_dirty_log(struct kvm *kvm,
1008                         struct kvm_dirty_log *log, int *is_dirty)
1009 {
1010         struct kvm_memslots *slots;
1011         struct kvm_memory_slot *memslot;
1012         int r, i, as_id, id;
1013         unsigned long n;
1014         unsigned long any = 0;
1015
1016         r = -EINVAL;
1017         as_id = log->slot >> 16;
1018         id = (u16)log->slot;
1019         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1020                 goto out;
1021
1022         slots = __kvm_memslots(kvm, as_id);
1023         memslot = id_to_memslot(slots, id);
1024         r = -ENOENT;
1025         if (!memslot->dirty_bitmap)
1026                 goto out;
1027
1028         n = kvm_dirty_bitmap_bytes(memslot);
1029
1030         for (i = 0; !any && i < n/sizeof(long); ++i)
1031                 any = memslot->dirty_bitmap[i];
1032
1033         r = -EFAULT;
1034         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1035                 goto out;
1036
1037         if (any)
1038                 *is_dirty = 1;
1039
1040         r = 0;
1041 out:
1042         return r;
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1045
1046 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1047 /**
1048  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1049  *      are dirty write protect them for next write.
1050  * @kvm:        pointer to kvm instance
1051  * @log:        slot id and address to which we copy the log
1052  * @is_dirty:   flag set if any page is dirty
1053  *
1054  * We need to keep it in mind that VCPU threads can write to the bitmap
1055  * concurrently. So, to avoid losing track of dirty pages we keep the
1056  * following order:
1057  *
1058  *    1. Take a snapshot of the bit and clear it if needed.
1059  *    2. Write protect the corresponding page.
1060  *    3. Copy the snapshot to the userspace.
1061  *    4. Upon return caller flushes TLB's if needed.
1062  *
1063  * Between 2 and 4, the guest may write to the page using the remaining TLB
1064  * entry.  This is not a problem because the page is reported dirty using
1065  * the snapshot taken before and step 4 ensures that writes done after
1066  * exiting to userspace will be logged for the next call.
1067  *
1068  */
1069 int kvm_get_dirty_log_protect(struct kvm *kvm,
1070                         struct kvm_dirty_log *log, bool *is_dirty)
1071 {
1072         struct kvm_memslots *slots;
1073         struct kvm_memory_slot *memslot;
1074         int r, i, as_id, id;
1075         unsigned long n;
1076         unsigned long *dirty_bitmap;
1077         unsigned long *dirty_bitmap_buffer;
1078
1079         r = -EINVAL;
1080         as_id = log->slot >> 16;
1081         id = (u16)log->slot;
1082         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1083                 goto out;
1084
1085         slots = __kvm_memslots(kvm, as_id);
1086         memslot = id_to_memslot(slots, id);
1087
1088         dirty_bitmap = memslot->dirty_bitmap;
1089         r = -ENOENT;
1090         if (!dirty_bitmap)
1091                 goto out;
1092
1093         n = kvm_dirty_bitmap_bytes(memslot);
1094
1095         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1096         memset(dirty_bitmap_buffer, 0, n);
1097
1098         spin_lock(&kvm->mmu_lock);
1099         *is_dirty = false;
1100         for (i = 0; i < n / sizeof(long); i++) {
1101                 unsigned long mask;
1102                 gfn_t offset;
1103
1104                 if (!dirty_bitmap[i])
1105                         continue;
1106
1107                 *is_dirty = true;
1108
1109                 mask = xchg(&dirty_bitmap[i], 0);
1110                 dirty_bitmap_buffer[i] = mask;
1111
1112                 if (mask) {
1113                         offset = i * BITS_PER_LONG;
1114                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1115                                                                 offset, mask);
1116                 }
1117         }
1118
1119         spin_unlock(&kvm->mmu_lock);
1120
1121         r = -EFAULT;
1122         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1123                 goto out;
1124
1125         r = 0;
1126 out:
1127         return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1130 #endif
1131
1132 bool kvm_largepages_enabled(void)
1133 {
1134         return largepages_enabled;
1135 }
1136
1137 void kvm_disable_largepages(void)
1138 {
1139         largepages_enabled = false;
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1142
1143 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1144 {
1145         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1146 }
1147 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1148
1149 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1150 {
1151         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1152 }
1153
1154 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1155 {
1156         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1157
1158         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1159               memslot->flags & KVM_MEMSLOT_INVALID)
1160                 return false;
1161
1162         return true;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1165
1166 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1167 {
1168         struct vm_area_struct *vma;
1169         unsigned long addr, size;
1170
1171         size = PAGE_SIZE;
1172
1173         addr = gfn_to_hva(kvm, gfn);
1174         if (kvm_is_error_hva(addr))
1175                 return PAGE_SIZE;
1176
1177         down_read(&current->mm->mmap_sem);
1178         vma = find_vma(current->mm, addr);
1179         if (!vma)
1180                 goto out;
1181
1182         size = vma_kernel_pagesize(vma);
1183
1184 out:
1185         up_read(&current->mm->mmap_sem);
1186
1187         return size;
1188 }
1189
1190 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1191 {
1192         return slot->flags & KVM_MEM_READONLY;
1193 }
1194
1195 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1196                                        gfn_t *nr_pages, bool write)
1197 {
1198         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1199                 return KVM_HVA_ERR_BAD;
1200
1201         if (memslot_is_readonly(slot) && write)
1202                 return KVM_HVA_ERR_RO_BAD;
1203
1204         if (nr_pages)
1205                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1206
1207         return __gfn_to_hva_memslot(slot, gfn);
1208 }
1209
1210 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1211                                      gfn_t *nr_pages)
1212 {
1213         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1214 }
1215
1216 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1217                                         gfn_t gfn)
1218 {
1219         return gfn_to_hva_many(slot, gfn, NULL);
1220 }
1221 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1222
1223 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1224 {
1225         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_hva);
1228
1229 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1234
1235 /*
1236  * If writable is set to false, the hva returned by this function is only
1237  * allowed to be read.
1238  */
1239 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1240                                       gfn_t gfn, bool *writable)
1241 {
1242         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1243
1244         if (!kvm_is_error_hva(hva) && writable)
1245                 *writable = !memslot_is_readonly(slot);
1246
1247         return hva;
1248 }
1249
1250 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1251 {
1252         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1253
1254         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1255 }
1256
1257 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1258 {
1259         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1260
1261         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1262 }
1263
1264 static int get_user_page_nowait(unsigned long start, int write,
1265                 struct page **page)
1266 {
1267         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1268
1269         if (write)
1270                 flags |= FOLL_WRITE;
1271
1272         return __get_user_pages(current, current->mm, start, 1, flags, page,
1273                         NULL, NULL);
1274 }
1275
1276 static inline int check_user_page_hwpoison(unsigned long addr)
1277 {
1278         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1279
1280         rc = __get_user_pages(current, current->mm, addr, 1,
1281                               flags, NULL, NULL, NULL);
1282         return rc == -EHWPOISON;
1283 }
1284
1285 /*
1286  * The atomic path to get the writable pfn which will be stored in @pfn,
1287  * true indicates success, otherwise false is returned.
1288  */
1289 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1290                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1291 {
1292         struct page *page[1];
1293         int npages;
1294
1295         if (!(async || atomic))
1296                 return false;
1297
1298         /*
1299          * Fast pin a writable pfn only if it is a write fault request
1300          * or the caller allows to map a writable pfn for a read fault
1301          * request.
1302          */
1303         if (!(write_fault || writable))
1304                 return false;
1305
1306         npages = __get_user_pages_fast(addr, 1, 1, page);
1307         if (npages == 1) {
1308                 *pfn = page_to_pfn(page[0]);
1309
1310                 if (writable)
1311                         *writable = true;
1312                 return true;
1313         }
1314
1315         return false;
1316 }
1317
1318 /*
1319  * The slow path to get the pfn of the specified host virtual address,
1320  * 1 indicates success, -errno is returned if error is detected.
1321  */
1322 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1323                            bool *writable, kvm_pfn_t *pfn)
1324 {
1325         struct page *page[1];
1326         int npages = 0;
1327
1328         might_sleep();
1329
1330         if (writable)
1331                 *writable = write_fault;
1332
1333         if (async) {
1334                 down_read(&current->mm->mmap_sem);
1335                 npages = get_user_page_nowait(addr, write_fault, page);
1336                 up_read(&current->mm->mmap_sem);
1337         } else
1338                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1339                                                    write_fault, 0, page,
1340                                                    FOLL_TOUCH|FOLL_HWPOISON);
1341         if (npages != 1)
1342                 return npages;
1343
1344         /* map read fault as writable if possible */
1345         if (unlikely(!write_fault) && writable) {
1346                 struct page *wpage[1];
1347
1348                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1349                 if (npages == 1) {
1350                         *writable = true;
1351                         put_page(page[0]);
1352                         page[0] = wpage[0];
1353                 }
1354
1355                 npages = 1;
1356         }
1357         *pfn = page_to_pfn(page[0]);
1358         return npages;
1359 }
1360
1361 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1362 {
1363         if (unlikely(!(vma->vm_flags & VM_READ)))
1364                 return false;
1365
1366         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1367                 return false;
1368
1369         return true;
1370 }
1371
1372 /*
1373  * Pin guest page in memory and return its pfn.
1374  * @addr: host virtual address which maps memory to the guest
1375  * @atomic: whether this function can sleep
1376  * @async: whether this function need to wait IO complete if the
1377  *         host page is not in the memory
1378  * @write_fault: whether we should get a writable host page
1379  * @writable: whether it allows to map a writable host page for !@write_fault
1380  *
1381  * The function will map a writable host page for these two cases:
1382  * 1): @write_fault = true
1383  * 2): @write_fault = false && @writable, @writable will tell the caller
1384  *     whether the mapping is writable.
1385  */
1386 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1387                         bool write_fault, bool *writable)
1388 {
1389         struct vm_area_struct *vma;
1390         kvm_pfn_t pfn = 0;
1391         int npages;
1392
1393         /* we can do it either atomically or asynchronously, not both */
1394         BUG_ON(atomic && async);
1395
1396         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1397                 return pfn;
1398
1399         if (atomic)
1400                 return KVM_PFN_ERR_FAULT;
1401
1402         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1403         if (npages == 1)
1404                 return pfn;
1405
1406         down_read(&current->mm->mmap_sem);
1407         if (npages == -EHWPOISON ||
1408               (!async && check_user_page_hwpoison(addr))) {
1409                 pfn = KVM_PFN_ERR_HWPOISON;
1410                 goto exit;
1411         }
1412
1413         vma = find_vma_intersection(current->mm, addr, addr + 1);
1414
1415         if (vma == NULL)
1416                 pfn = KVM_PFN_ERR_FAULT;
1417         else if ((vma->vm_flags & VM_PFNMAP)) {
1418                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1419                         vma->vm_pgoff;
1420                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1421         } else {
1422                 if (async && vma_is_valid(vma, write_fault))
1423                         *async = true;
1424                 pfn = KVM_PFN_ERR_FAULT;
1425         }
1426 exit:
1427         up_read(&current->mm->mmap_sem);
1428         return pfn;
1429 }
1430
1431 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1432                                bool atomic, bool *async, bool write_fault,
1433                                bool *writable)
1434 {
1435         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1436
1437         if (addr == KVM_HVA_ERR_RO_BAD) {
1438                 if (writable)
1439                         *writable = false;
1440                 return KVM_PFN_ERR_RO_FAULT;
1441         }
1442
1443         if (kvm_is_error_hva(addr)) {
1444                 if (writable)
1445                         *writable = false;
1446                 return KVM_PFN_NOSLOT;
1447         }
1448
1449         /* Do not map writable pfn in the readonly memslot. */
1450         if (writable && memslot_is_readonly(slot)) {
1451                 *writable = false;
1452                 writable = NULL;
1453         }
1454
1455         return hva_to_pfn(addr, atomic, async, write_fault,
1456                           writable);
1457 }
1458 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1459
1460 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1461                       bool *writable)
1462 {
1463         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1464                                     write_fault, writable);
1465 }
1466 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1467
1468 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1469 {
1470         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1471 }
1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1473
1474 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1475 {
1476         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1479
1480 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1481 {
1482         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1483 }
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1485
1486 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1487 {
1488         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1489 }
1490 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1491
1492 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1493 {
1494         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1495 }
1496 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1497
1498 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1499 {
1500         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1503
1504 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1505                             struct page **pages, int nr_pages)
1506 {
1507         unsigned long addr;
1508         gfn_t entry;
1509
1510         addr = gfn_to_hva_many(slot, gfn, &entry);
1511         if (kvm_is_error_hva(addr))
1512                 return -1;
1513
1514         if (entry < nr_pages)
1515                 return 0;
1516
1517         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1518 }
1519 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1520
1521 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1522 {
1523         if (is_error_noslot_pfn(pfn))
1524                 return KVM_ERR_PTR_BAD_PAGE;
1525
1526         if (kvm_is_reserved_pfn(pfn)) {
1527                 WARN_ON(1);
1528                 return KVM_ERR_PTR_BAD_PAGE;
1529         }
1530
1531         return pfn_to_page(pfn);
1532 }
1533
1534 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1535 {
1536         kvm_pfn_t pfn;
1537
1538         pfn = gfn_to_pfn(kvm, gfn);
1539
1540         return kvm_pfn_to_page(pfn);
1541 }
1542 EXPORT_SYMBOL_GPL(gfn_to_page);
1543
1544 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1545 {
1546         kvm_pfn_t pfn;
1547
1548         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1549
1550         return kvm_pfn_to_page(pfn);
1551 }
1552 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1553
1554 void kvm_release_page_clean(struct page *page)
1555 {
1556         WARN_ON(is_error_page(page));
1557
1558         kvm_release_pfn_clean(page_to_pfn(page));
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1561
1562 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1563 {
1564         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1565                 put_page(pfn_to_page(pfn));
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1568
1569 void kvm_release_page_dirty(struct page *page)
1570 {
1571         WARN_ON(is_error_page(page));
1572
1573         kvm_release_pfn_dirty(page_to_pfn(page));
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1576
1577 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1578 {
1579         kvm_set_pfn_dirty(pfn);
1580         kvm_release_pfn_clean(pfn);
1581 }
1582
1583 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1584 {
1585         if (!kvm_is_reserved_pfn(pfn)) {
1586                 struct page *page = pfn_to_page(pfn);
1587
1588                 if (!PageReserved(page))
1589                         SetPageDirty(page);
1590         }
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1593
1594 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1595 {
1596         if (!kvm_is_reserved_pfn(pfn))
1597                 mark_page_accessed(pfn_to_page(pfn));
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1600
1601 void kvm_get_pfn(kvm_pfn_t pfn)
1602 {
1603         if (!kvm_is_reserved_pfn(pfn))
1604                 get_page(pfn_to_page(pfn));
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1607
1608 static int next_segment(unsigned long len, int offset)
1609 {
1610         if (len > PAGE_SIZE - offset)
1611                 return PAGE_SIZE - offset;
1612         else
1613                 return len;
1614 }
1615
1616 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1617                                  void *data, int offset, int len)
1618 {
1619         int r;
1620         unsigned long addr;
1621
1622         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1623         if (kvm_is_error_hva(addr))
1624                 return -EFAULT;
1625         r = __copy_from_user(data, (void __user *)addr + offset, len);
1626         if (r)
1627                 return -EFAULT;
1628         return 0;
1629 }
1630
1631 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1632                         int len)
1633 {
1634         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1635
1636         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1639
1640 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1641                              int offset, int len)
1642 {
1643         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1644
1645         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1646 }
1647 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1648
1649 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1650 {
1651         gfn_t gfn = gpa >> PAGE_SHIFT;
1652         int seg;
1653         int offset = offset_in_page(gpa);
1654         int ret;
1655
1656         while ((seg = next_segment(len, offset)) != 0) {
1657                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1658                 if (ret < 0)
1659                         return ret;
1660                 offset = 0;
1661                 len -= seg;
1662                 data += seg;
1663                 ++gfn;
1664         }
1665         return 0;
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_read_guest);
1668
1669 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1670 {
1671         gfn_t gfn = gpa >> PAGE_SHIFT;
1672         int seg;
1673         int offset = offset_in_page(gpa);
1674         int ret;
1675
1676         while ((seg = next_segment(len, offset)) != 0) {
1677                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1678                 if (ret < 0)
1679                         return ret;
1680                 offset = 0;
1681                 len -= seg;
1682                 data += seg;
1683                 ++gfn;
1684         }
1685         return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1688
1689 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1690                                    void *data, int offset, unsigned long len)
1691 {
1692         int r;
1693         unsigned long addr;
1694
1695         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1696         if (kvm_is_error_hva(addr))
1697                 return -EFAULT;
1698         pagefault_disable();
1699         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1700         pagefault_enable();
1701         if (r)
1702                 return -EFAULT;
1703         return 0;
1704 }
1705
1706 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1707                           unsigned long len)
1708 {
1709         gfn_t gfn = gpa >> PAGE_SHIFT;
1710         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1711         int offset = offset_in_page(gpa);
1712
1713         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1716
1717 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1718                                void *data, unsigned long len)
1719 {
1720         gfn_t gfn = gpa >> PAGE_SHIFT;
1721         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1722         int offset = offset_in_page(gpa);
1723
1724         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1727
1728 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1729                                   const void *data, int offset, int len)
1730 {
1731         int r;
1732         unsigned long addr;
1733
1734         addr = gfn_to_hva_memslot(memslot, gfn);
1735         if (kvm_is_error_hva(addr))
1736                 return -EFAULT;
1737         r = __copy_to_user((void __user *)addr + offset, data, len);
1738         if (r)
1739                 return -EFAULT;
1740         mark_page_dirty_in_slot(memslot, gfn);
1741         return 0;
1742 }
1743
1744 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1745                          const void *data, int offset, int len)
1746 {
1747         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1748
1749         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1752
1753 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1754                               const void *data, int offset, int len)
1755 {
1756         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1757
1758         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1761
1762 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1763                     unsigned long len)
1764 {
1765         gfn_t gfn = gpa >> PAGE_SHIFT;
1766         int seg;
1767         int offset = offset_in_page(gpa);
1768         int ret;
1769
1770         while ((seg = next_segment(len, offset)) != 0) {
1771                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1772                 if (ret < 0)
1773                         return ret;
1774                 offset = 0;
1775                 len -= seg;
1776                 data += seg;
1777                 ++gfn;
1778         }
1779         return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_write_guest);
1782
1783 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1784                          unsigned long len)
1785 {
1786         gfn_t gfn = gpa >> PAGE_SHIFT;
1787         int seg;
1788         int offset = offset_in_page(gpa);
1789         int ret;
1790
1791         while ((seg = next_segment(len, offset)) != 0) {
1792                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1793                 if (ret < 0)
1794                         return ret;
1795                 offset = 0;
1796                 len -= seg;
1797                 data += seg;
1798                 ++gfn;
1799         }
1800         return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1803
1804 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1805                               gpa_t gpa, unsigned long len)
1806 {
1807         struct kvm_memslots *slots = kvm_memslots(kvm);
1808         int offset = offset_in_page(gpa);
1809         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1810         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1811         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1812         gfn_t nr_pages_avail;
1813
1814         ghc->gpa = gpa;
1815         ghc->generation = slots->generation;
1816         ghc->len = len;
1817         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1818         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1819         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1820                 ghc->hva += offset;
1821         } else {
1822                 /*
1823                  * If the requested region crosses two memslots, we still
1824                  * verify that the entire region is valid here.
1825                  */
1826                 while (start_gfn <= end_gfn) {
1827                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1828                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1829                                                    &nr_pages_avail);
1830                         if (kvm_is_error_hva(ghc->hva))
1831                                 return -EFAULT;
1832                         start_gfn += nr_pages_avail;
1833                 }
1834                 /* Use the slow path for cross page reads and writes. */
1835                 ghc->memslot = NULL;
1836         }
1837         return 0;
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1840
1841 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1842                            void *data, unsigned long len)
1843 {
1844         struct kvm_memslots *slots = kvm_memslots(kvm);
1845         int r;
1846
1847         BUG_ON(len > ghc->len);
1848
1849         if (slots->generation != ghc->generation)
1850                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1851
1852         if (unlikely(!ghc->memslot))
1853                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1854
1855         if (kvm_is_error_hva(ghc->hva))
1856                 return -EFAULT;
1857
1858         r = __copy_to_user((void __user *)ghc->hva, data, len);
1859         if (r)
1860                 return -EFAULT;
1861         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1862
1863         return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1866
1867 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1868                            void *data, unsigned long len)
1869 {
1870         struct kvm_memslots *slots = kvm_memslots(kvm);
1871         int r;
1872
1873         BUG_ON(len > ghc->len);
1874
1875         if (slots->generation != ghc->generation)
1876                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1877
1878         if (unlikely(!ghc->memslot))
1879                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1880
1881         if (kvm_is_error_hva(ghc->hva))
1882                 return -EFAULT;
1883
1884         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1885         if (r)
1886                 return -EFAULT;
1887
1888         return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1891
1892 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1893 {
1894         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1895
1896         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1899
1900 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1901 {
1902         gfn_t gfn = gpa >> PAGE_SHIFT;
1903         int seg;
1904         int offset = offset_in_page(gpa);
1905         int ret;
1906
1907         while ((seg = next_segment(len, offset)) != 0) {
1908                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1909                 if (ret < 0)
1910                         return ret;
1911                 offset = 0;
1912                 len -= seg;
1913                 ++gfn;
1914         }
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1918
1919 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1920                                     gfn_t gfn)
1921 {
1922         if (memslot && memslot->dirty_bitmap) {
1923                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1924
1925                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1926         }
1927 }
1928
1929 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1930 {
1931         struct kvm_memory_slot *memslot;
1932
1933         memslot = gfn_to_memslot(kvm, gfn);
1934         mark_page_dirty_in_slot(memslot, gfn);
1935 }
1936 EXPORT_SYMBOL_GPL(mark_page_dirty);
1937
1938 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1939 {
1940         struct kvm_memory_slot *memslot;
1941
1942         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1943         mark_page_dirty_in_slot(memslot, gfn);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1946
1947 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1948 {
1949         unsigned int old, val, grow;
1950
1951         old = val = vcpu->halt_poll_ns;
1952         grow = READ_ONCE(halt_poll_ns_grow);
1953         /* 10us base */
1954         if (val == 0 && grow)
1955                 val = 10000;
1956         else
1957                 val *= grow;
1958
1959         if (val > halt_poll_ns)
1960                 val = halt_poll_ns;
1961
1962         vcpu->halt_poll_ns = val;
1963         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1964 }
1965
1966 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1967 {
1968         unsigned int old, val, shrink;
1969
1970         old = val = vcpu->halt_poll_ns;
1971         shrink = READ_ONCE(halt_poll_ns_shrink);
1972         if (shrink == 0)
1973                 val = 0;
1974         else
1975                 val /= shrink;
1976
1977         vcpu->halt_poll_ns = val;
1978         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1979 }
1980
1981 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1982 {
1983         if (kvm_arch_vcpu_runnable(vcpu)) {
1984                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1985                 return -EINTR;
1986         }
1987         if (kvm_cpu_has_pending_timer(vcpu))
1988                 return -EINTR;
1989         if (signal_pending(current))
1990                 return -EINTR;
1991
1992         return 0;
1993 }
1994
1995 /*
1996  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1997  */
1998 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1999 {
2000         ktime_t start, cur;
2001         DECLARE_SWAITQUEUE(wait);
2002         bool waited = false;
2003         u64 block_ns;
2004
2005         start = cur = ktime_get();
2006         if (vcpu->halt_poll_ns) {
2007                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2008
2009                 ++vcpu->stat.halt_attempted_poll;
2010                 do {
2011                         /*
2012                          * This sets KVM_REQ_UNHALT if an interrupt
2013                          * arrives.
2014                          */
2015                         if (kvm_vcpu_check_block(vcpu) < 0) {
2016                                 ++vcpu->stat.halt_successful_poll;
2017                                 goto out;
2018                         }
2019                         cur = ktime_get();
2020                 } while (single_task_running() && ktime_before(cur, stop));
2021         }
2022
2023         kvm_arch_vcpu_blocking(vcpu);
2024
2025         for (;;) {
2026                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2027
2028                 if (kvm_vcpu_check_block(vcpu) < 0)
2029                         break;
2030
2031                 waited = true;
2032                 schedule();
2033         }
2034
2035         finish_swait(&vcpu->wq, &wait);
2036         cur = ktime_get();
2037
2038         kvm_arch_vcpu_unblocking(vcpu);
2039 out:
2040         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2041
2042         if (halt_poll_ns) {
2043                 if (block_ns <= vcpu->halt_poll_ns)
2044                         ;
2045                 /* we had a long block, shrink polling */
2046                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2047                         shrink_halt_poll_ns(vcpu);
2048                 /* we had a short halt and our poll time is too small */
2049                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2050                         block_ns < halt_poll_ns)
2051                         grow_halt_poll_ns(vcpu);
2052         } else
2053                 vcpu->halt_poll_ns = 0;
2054
2055         trace_kvm_vcpu_wakeup(block_ns, waited);
2056 }
2057 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2058
2059 #ifndef CONFIG_S390
2060 /*
2061  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2062  */
2063 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2064 {
2065         int me;
2066         int cpu = vcpu->cpu;
2067         struct swait_queue_head *wqp;
2068
2069         wqp = kvm_arch_vcpu_wq(vcpu);
2070         if (swait_active(wqp)) {
2071                 swake_up(wqp);
2072                 ++vcpu->stat.halt_wakeup;
2073         }
2074
2075         me = get_cpu();
2076         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2077                 if (kvm_arch_vcpu_should_kick(vcpu))
2078                         smp_send_reschedule(cpu);
2079         put_cpu();
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2082 #endif /* !CONFIG_S390 */
2083
2084 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2085 {
2086         struct pid *pid;
2087         struct task_struct *task = NULL;
2088         int ret = 0;
2089
2090         rcu_read_lock();
2091         pid = rcu_dereference(target->pid);
2092         if (pid)
2093                 task = get_pid_task(pid, PIDTYPE_PID);
2094         rcu_read_unlock();
2095         if (!task)
2096                 return ret;
2097         ret = yield_to(task, 1);
2098         put_task_struct(task);
2099
2100         return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2103
2104 /*
2105  * Helper that checks whether a VCPU is eligible for directed yield.
2106  * Most eligible candidate to yield is decided by following heuristics:
2107  *
2108  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2109  *  (preempted lock holder), indicated by @in_spin_loop.
2110  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2111  *
2112  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2113  *  chance last time (mostly it has become eligible now since we have probably
2114  *  yielded to lockholder in last iteration. This is done by toggling
2115  *  @dy_eligible each time a VCPU checked for eligibility.)
2116  *
2117  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2118  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2119  *  burning. Giving priority for a potential lock-holder increases lock
2120  *  progress.
2121  *
2122  *  Since algorithm is based on heuristics, accessing another VCPU data without
2123  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2124  *  and continue with next VCPU and so on.
2125  */
2126 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2127 {
2128 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2129         bool eligible;
2130
2131         eligible = !vcpu->spin_loop.in_spin_loop ||
2132                     vcpu->spin_loop.dy_eligible;
2133
2134         if (vcpu->spin_loop.in_spin_loop)
2135                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2136
2137         return eligible;
2138 #else
2139         return true;
2140 #endif
2141 }
2142
2143 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2144 {
2145         struct kvm *kvm = me->kvm;
2146         struct kvm_vcpu *vcpu;
2147         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2148         int yielded = 0;
2149         int try = 3;
2150         int pass;
2151         int i;
2152
2153         kvm_vcpu_set_in_spin_loop(me, true);
2154         /*
2155          * We boost the priority of a VCPU that is runnable but not
2156          * currently running, because it got preempted by something
2157          * else and called schedule in __vcpu_run.  Hopefully that
2158          * VCPU is holding the lock that we need and will release it.
2159          * We approximate round-robin by starting at the last boosted VCPU.
2160          */
2161         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2162                 kvm_for_each_vcpu(i, vcpu, kvm) {
2163                         if (!pass && i <= last_boosted_vcpu) {
2164                                 i = last_boosted_vcpu;
2165                                 continue;
2166                         } else if (pass && i > last_boosted_vcpu)
2167                                 break;
2168                         if (!ACCESS_ONCE(vcpu->preempted))
2169                                 continue;
2170                         if (vcpu == me)
2171                                 continue;
2172                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2173                                 continue;
2174                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2175                                 continue;
2176
2177                         yielded = kvm_vcpu_yield_to(vcpu);
2178                         if (yielded > 0) {
2179                                 kvm->last_boosted_vcpu = i;
2180                                 break;
2181                         } else if (yielded < 0) {
2182                                 try--;
2183                                 if (!try)
2184                                         break;
2185                         }
2186                 }
2187         }
2188         kvm_vcpu_set_in_spin_loop(me, false);
2189
2190         /* Ensure vcpu is not eligible during next spinloop */
2191         kvm_vcpu_set_dy_eligible(me, false);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2194
2195 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2196 {
2197         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2198         struct page *page;
2199
2200         if (vmf->pgoff == 0)
2201                 page = virt_to_page(vcpu->run);
2202 #ifdef CONFIG_X86
2203         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2204                 page = virt_to_page(vcpu->arch.pio_data);
2205 #endif
2206 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2207         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2208                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2209 #endif
2210         else
2211                 return kvm_arch_vcpu_fault(vcpu, vmf);
2212         get_page(page);
2213         vmf->page = page;
2214         return 0;
2215 }
2216
2217 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2218         .fault = kvm_vcpu_fault,
2219 };
2220
2221 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2222 {
2223         vma->vm_ops = &kvm_vcpu_vm_ops;
2224         return 0;
2225 }
2226
2227 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2228 {
2229         struct kvm_vcpu *vcpu = filp->private_data;
2230
2231         kvm_put_kvm(vcpu->kvm);
2232         return 0;
2233 }
2234
2235 static struct file_operations kvm_vcpu_fops = {
2236         .release        = kvm_vcpu_release,
2237         .unlocked_ioctl = kvm_vcpu_ioctl,
2238 #ifdef CONFIG_KVM_COMPAT
2239         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2240 #endif
2241         .mmap           = kvm_vcpu_mmap,
2242         .llseek         = noop_llseek,
2243 };
2244
2245 /*
2246  * Allocates an inode for the vcpu.
2247  */
2248 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2249 {
2250         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2251 }
2252
2253 /*
2254  * Creates some virtual cpus.  Good luck creating more than one.
2255  */
2256 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2257 {
2258         int r;
2259         struct kvm_vcpu *vcpu;
2260
2261         if (id >= KVM_MAX_VCPUS)
2262                 return -EINVAL;
2263
2264         vcpu = kvm_arch_vcpu_create(kvm, id);
2265         if (IS_ERR(vcpu))
2266                 return PTR_ERR(vcpu);
2267
2268         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2269
2270         r = kvm_arch_vcpu_setup(vcpu);
2271         if (r)
2272                 goto vcpu_destroy;
2273
2274         mutex_lock(&kvm->lock);
2275         if (!kvm_vcpu_compatible(vcpu)) {
2276                 r = -EINVAL;
2277                 goto unlock_vcpu_destroy;
2278         }
2279         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2280                 r = -EINVAL;
2281                 goto unlock_vcpu_destroy;
2282         }
2283         if (kvm_get_vcpu_by_id(kvm, id)) {
2284                 r = -EEXIST;
2285                 goto unlock_vcpu_destroy;
2286         }
2287
2288         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2289
2290         /* Now it's all set up, let userspace reach it */
2291         kvm_get_kvm(kvm);
2292         r = create_vcpu_fd(vcpu);
2293         if (r < 0) {
2294                 kvm_put_kvm(kvm);
2295                 goto unlock_vcpu_destroy;
2296         }
2297
2298         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2299
2300         /*
2301          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2302          * before kvm->online_vcpu's incremented value.
2303          */
2304         smp_wmb();
2305         atomic_inc(&kvm->online_vcpus);
2306
2307         mutex_unlock(&kvm->lock);
2308         kvm_arch_vcpu_postcreate(vcpu);
2309         return r;
2310
2311 unlock_vcpu_destroy:
2312         mutex_unlock(&kvm->lock);
2313 vcpu_destroy:
2314         kvm_arch_vcpu_destroy(vcpu);
2315         return r;
2316 }
2317
2318 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2319 {
2320         if (sigset) {
2321                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2322                 vcpu->sigset_active = 1;
2323                 vcpu->sigset = *sigset;
2324         } else
2325                 vcpu->sigset_active = 0;
2326         return 0;
2327 }
2328
2329 static long kvm_vcpu_ioctl(struct file *filp,
2330                            unsigned int ioctl, unsigned long arg)
2331 {
2332         struct kvm_vcpu *vcpu = filp->private_data;
2333         void __user *argp = (void __user *)arg;
2334         int r;
2335         struct kvm_fpu *fpu = NULL;
2336         struct kvm_sregs *kvm_sregs = NULL;
2337
2338         if (vcpu->kvm->mm != current->mm)
2339                 return -EIO;
2340
2341         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2342                 return -EINVAL;
2343
2344 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2345         /*
2346          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2347          * so vcpu_load() would break it.
2348          */
2349         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2350                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2351 #endif
2352
2353
2354         r = vcpu_load(vcpu);
2355         if (r)
2356                 return r;
2357         switch (ioctl) {
2358         case KVM_RUN:
2359                 r = -EINVAL;
2360                 if (arg)
2361                         goto out;
2362                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2363                         /* The thread running this VCPU changed. */
2364                         struct pid *oldpid = vcpu->pid;
2365                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2366
2367                         rcu_assign_pointer(vcpu->pid, newpid);
2368                         if (oldpid)
2369                                 synchronize_rcu();
2370                         put_pid(oldpid);
2371                 }
2372                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2373                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2374                 break;
2375         case KVM_GET_REGS: {
2376                 struct kvm_regs *kvm_regs;
2377
2378                 r = -ENOMEM;
2379                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2380                 if (!kvm_regs)
2381                         goto out;
2382                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2383                 if (r)
2384                         goto out_free1;
2385                 r = -EFAULT;
2386                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2387                         goto out_free1;
2388                 r = 0;
2389 out_free1:
2390                 kfree(kvm_regs);
2391                 break;
2392         }
2393         case KVM_SET_REGS: {
2394                 struct kvm_regs *kvm_regs;
2395
2396                 r = -ENOMEM;
2397                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2398                 if (IS_ERR(kvm_regs)) {
2399                         r = PTR_ERR(kvm_regs);
2400                         goto out;
2401                 }
2402                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2403                 kfree(kvm_regs);
2404                 break;
2405         }
2406         case KVM_GET_SREGS: {
2407                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2408                 r = -ENOMEM;
2409                 if (!kvm_sregs)
2410                         goto out;
2411                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2412                 if (r)
2413                         goto out;
2414                 r = -EFAULT;
2415                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2416                         goto out;
2417                 r = 0;
2418                 break;
2419         }
2420         case KVM_SET_SREGS: {
2421                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2422                 if (IS_ERR(kvm_sregs)) {
2423                         r = PTR_ERR(kvm_sregs);
2424                         kvm_sregs = NULL;
2425                         goto out;
2426                 }
2427                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2428                 break;
2429         }
2430         case KVM_GET_MP_STATE: {
2431                 struct kvm_mp_state mp_state;
2432
2433                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2434                 if (r)
2435                         goto out;
2436                 r = -EFAULT;
2437                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2438                         goto out;
2439                 r = 0;
2440                 break;
2441         }
2442         case KVM_SET_MP_STATE: {
2443                 struct kvm_mp_state mp_state;
2444
2445                 r = -EFAULT;
2446                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2447                         goto out;
2448                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2449                 break;
2450         }
2451         case KVM_TRANSLATE: {
2452                 struct kvm_translation tr;
2453
2454                 r = -EFAULT;
2455                 if (copy_from_user(&tr, argp, sizeof(tr)))
2456                         goto out;
2457                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2458                 if (r)
2459                         goto out;
2460                 r = -EFAULT;
2461                 if (copy_to_user(argp, &tr, sizeof(tr)))
2462                         goto out;
2463                 r = 0;
2464                 break;
2465         }
2466         case KVM_SET_GUEST_DEBUG: {
2467                 struct kvm_guest_debug dbg;
2468
2469                 r = -EFAULT;
2470                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2471                         goto out;
2472                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2473                 break;
2474         }
2475         case KVM_SET_SIGNAL_MASK: {
2476                 struct kvm_signal_mask __user *sigmask_arg = argp;
2477                 struct kvm_signal_mask kvm_sigmask;
2478                 sigset_t sigset, *p;
2479
2480                 p = NULL;
2481                 if (argp) {
2482                         r = -EFAULT;
2483                         if (copy_from_user(&kvm_sigmask, argp,
2484                                            sizeof(kvm_sigmask)))
2485                                 goto out;
2486                         r = -EINVAL;
2487                         if (kvm_sigmask.len != sizeof(sigset))
2488                                 goto out;
2489                         r = -EFAULT;
2490                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2491                                            sizeof(sigset)))
2492                                 goto out;
2493                         p = &sigset;
2494                 }
2495                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2496                 break;
2497         }
2498         case KVM_GET_FPU: {
2499                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2500                 r = -ENOMEM;
2501                 if (!fpu)
2502                         goto out;
2503                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2504                 if (r)
2505                         goto out;
2506                 r = -EFAULT;
2507                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2508                         goto out;
2509                 r = 0;
2510                 break;
2511         }
2512         case KVM_SET_FPU: {
2513                 fpu = memdup_user(argp, sizeof(*fpu));
2514                 if (IS_ERR(fpu)) {
2515                         r = PTR_ERR(fpu);
2516                         fpu = NULL;
2517                         goto out;
2518                 }
2519                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2520                 break;
2521         }
2522         default:
2523                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2524         }
2525 out:
2526         vcpu_put(vcpu);
2527         kfree(fpu);
2528         kfree(kvm_sregs);
2529         return r;
2530 }
2531
2532 #ifdef CONFIG_KVM_COMPAT
2533 static long kvm_vcpu_compat_ioctl(struct file *filp,
2534                                   unsigned int ioctl, unsigned long arg)
2535 {
2536         struct kvm_vcpu *vcpu = filp->private_data;
2537         void __user *argp = compat_ptr(arg);
2538         int r;
2539
2540         if (vcpu->kvm->mm != current->mm)
2541                 return -EIO;
2542
2543         switch (ioctl) {
2544         case KVM_SET_SIGNAL_MASK: {
2545                 struct kvm_signal_mask __user *sigmask_arg = argp;
2546                 struct kvm_signal_mask kvm_sigmask;
2547                 compat_sigset_t csigset;
2548                 sigset_t sigset;
2549
2550                 if (argp) {
2551                         r = -EFAULT;
2552                         if (copy_from_user(&kvm_sigmask, argp,
2553                                            sizeof(kvm_sigmask)))
2554                                 goto out;
2555                         r = -EINVAL;
2556                         if (kvm_sigmask.len != sizeof(csigset))
2557                                 goto out;
2558                         r = -EFAULT;
2559                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2560                                            sizeof(csigset)))
2561                                 goto out;
2562                         sigset_from_compat(&sigset, &csigset);
2563                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2564                 } else
2565                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2566                 break;
2567         }
2568         default:
2569                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2570         }
2571
2572 out:
2573         return r;
2574 }
2575 #endif
2576
2577 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2578                                  int (*accessor)(struct kvm_device *dev,
2579                                                  struct kvm_device_attr *attr),
2580                                  unsigned long arg)
2581 {
2582         struct kvm_device_attr attr;
2583
2584         if (!accessor)
2585                 return -EPERM;
2586
2587         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2588                 return -EFAULT;
2589
2590         return accessor(dev, &attr);
2591 }
2592
2593 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2594                              unsigned long arg)
2595 {
2596         struct kvm_device *dev = filp->private_data;
2597
2598         switch (ioctl) {
2599         case KVM_SET_DEVICE_ATTR:
2600                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2601         case KVM_GET_DEVICE_ATTR:
2602                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2603         case KVM_HAS_DEVICE_ATTR:
2604                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2605         default:
2606                 if (dev->ops->ioctl)
2607                         return dev->ops->ioctl(dev, ioctl, arg);
2608
2609                 return -ENOTTY;
2610         }
2611 }
2612
2613 static int kvm_device_release(struct inode *inode, struct file *filp)
2614 {
2615         struct kvm_device *dev = filp->private_data;
2616         struct kvm *kvm = dev->kvm;
2617
2618         kvm_put_kvm(kvm);
2619         return 0;
2620 }
2621
2622 static const struct file_operations kvm_device_fops = {
2623         .unlocked_ioctl = kvm_device_ioctl,
2624 #ifdef CONFIG_KVM_COMPAT
2625         .compat_ioctl = kvm_device_ioctl,
2626 #endif
2627         .release = kvm_device_release,
2628 };
2629
2630 struct kvm_device *kvm_device_from_filp(struct file *filp)
2631 {
2632         if (filp->f_op != &kvm_device_fops)
2633                 return NULL;
2634
2635         return filp->private_data;
2636 }
2637
2638 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2639 #ifdef CONFIG_KVM_MPIC
2640         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2641         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2642 #endif
2643
2644 #ifdef CONFIG_KVM_XICS
2645         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2646 #endif
2647 };
2648
2649 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2650 {
2651         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2652                 return -ENOSPC;
2653
2654         if (kvm_device_ops_table[type] != NULL)
2655                 return -EEXIST;
2656
2657         kvm_device_ops_table[type] = ops;
2658         return 0;
2659 }
2660
2661 void kvm_unregister_device_ops(u32 type)
2662 {
2663         if (kvm_device_ops_table[type] != NULL)
2664                 kvm_device_ops_table[type] = NULL;
2665 }
2666
2667 static int kvm_ioctl_create_device(struct kvm *kvm,
2668                                    struct kvm_create_device *cd)
2669 {
2670         struct kvm_device_ops *ops = NULL;
2671         struct kvm_device *dev;
2672         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2673         int ret;
2674
2675         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2676                 return -ENODEV;
2677
2678         ops = kvm_device_ops_table[cd->type];
2679         if (ops == NULL)
2680                 return -ENODEV;
2681
2682         if (test)
2683                 return 0;
2684
2685         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2686         if (!dev)
2687                 return -ENOMEM;
2688
2689         dev->ops = ops;
2690         dev->kvm = kvm;
2691
2692         ret = ops->create(dev, cd->type);
2693         if (ret < 0) {
2694                 kfree(dev);
2695                 return ret;
2696         }
2697
2698         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2699         if (ret < 0) {
2700                 ops->destroy(dev);
2701                 return ret;
2702         }
2703
2704         list_add(&dev->vm_node, &kvm->devices);
2705         kvm_get_kvm(kvm);
2706         cd->fd = ret;
2707         return 0;
2708 }
2709
2710 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2711 {
2712         switch (arg) {
2713         case KVM_CAP_USER_MEMORY:
2714         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2715         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2716         case KVM_CAP_INTERNAL_ERROR_DATA:
2717 #ifdef CONFIG_HAVE_KVM_MSI
2718         case KVM_CAP_SIGNAL_MSI:
2719 #endif
2720 #ifdef CONFIG_HAVE_KVM_IRQFD
2721         case KVM_CAP_IRQFD:
2722         case KVM_CAP_IRQFD_RESAMPLE:
2723 #endif
2724         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2725         case KVM_CAP_CHECK_EXTENSION_VM:
2726                 return 1;
2727 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2728         case KVM_CAP_IRQ_ROUTING:
2729                 return KVM_MAX_IRQ_ROUTES;
2730 #endif
2731 #if KVM_ADDRESS_SPACE_NUM > 1
2732         case KVM_CAP_MULTI_ADDRESS_SPACE:
2733                 return KVM_ADDRESS_SPACE_NUM;
2734 #endif
2735         default:
2736                 break;
2737         }
2738         return kvm_vm_ioctl_check_extension(kvm, arg);
2739 }
2740
2741 static long kvm_vm_ioctl(struct file *filp,
2742                            unsigned int ioctl, unsigned long arg)
2743 {
2744         struct kvm *kvm = filp->private_data;
2745         void __user *argp = (void __user *)arg;
2746         int r;
2747
2748         if (kvm->mm != current->mm)
2749                 return -EIO;
2750         switch (ioctl) {
2751         case KVM_CREATE_VCPU:
2752                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2753                 break;
2754         case KVM_SET_USER_MEMORY_REGION: {
2755                 struct kvm_userspace_memory_region kvm_userspace_mem;
2756
2757                 r = -EFAULT;
2758                 if (copy_from_user(&kvm_userspace_mem, argp,
2759                                                 sizeof(kvm_userspace_mem)))
2760                         goto out;
2761
2762                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2763                 break;
2764         }
2765         case KVM_GET_DIRTY_LOG: {
2766                 struct kvm_dirty_log log;
2767
2768                 r = -EFAULT;
2769                 if (copy_from_user(&log, argp, sizeof(log)))
2770                         goto out;
2771                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2772                 break;
2773         }
2774 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2775         case KVM_REGISTER_COALESCED_MMIO: {
2776                 struct kvm_coalesced_mmio_zone zone;
2777
2778                 r = -EFAULT;
2779                 if (copy_from_user(&zone, argp, sizeof(zone)))
2780                         goto out;
2781                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2782                 break;
2783         }
2784         case KVM_UNREGISTER_COALESCED_MMIO: {
2785                 struct kvm_coalesced_mmio_zone zone;
2786
2787                 r = -EFAULT;
2788                 if (copy_from_user(&zone, argp, sizeof(zone)))
2789                         goto out;
2790                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2791                 break;
2792         }
2793 #endif
2794         case KVM_IRQFD: {
2795                 struct kvm_irqfd data;
2796
2797                 r = -EFAULT;
2798                 if (copy_from_user(&data, argp, sizeof(data)))
2799                         goto out;
2800                 r = kvm_irqfd(kvm, &data);
2801                 break;
2802         }
2803         case KVM_IOEVENTFD: {
2804                 struct kvm_ioeventfd data;
2805
2806                 r = -EFAULT;
2807                 if (copy_from_user(&data, argp, sizeof(data)))
2808                         goto out;
2809                 r = kvm_ioeventfd(kvm, &data);
2810                 break;
2811         }
2812 #ifdef CONFIG_HAVE_KVM_MSI
2813         case KVM_SIGNAL_MSI: {
2814                 struct kvm_msi msi;
2815
2816                 r = -EFAULT;
2817                 if (copy_from_user(&msi, argp, sizeof(msi)))
2818                         goto out;
2819                 r = kvm_send_userspace_msi(kvm, &msi);
2820                 break;
2821         }
2822 #endif
2823 #ifdef __KVM_HAVE_IRQ_LINE
2824         case KVM_IRQ_LINE_STATUS:
2825         case KVM_IRQ_LINE: {
2826                 struct kvm_irq_level irq_event;
2827
2828                 r = -EFAULT;
2829                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2830                         goto out;
2831
2832                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2833                                         ioctl == KVM_IRQ_LINE_STATUS);
2834                 if (r)
2835                         goto out;
2836
2837                 r = -EFAULT;
2838                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2839                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2840                                 goto out;
2841                 }
2842
2843                 r = 0;
2844                 break;
2845         }
2846 #endif
2847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2848         case KVM_SET_GSI_ROUTING: {
2849                 struct kvm_irq_routing routing;
2850                 struct kvm_irq_routing __user *urouting;
2851                 struct kvm_irq_routing_entry *entries;
2852
2853                 r = -EFAULT;
2854                 if (copy_from_user(&routing, argp, sizeof(routing)))
2855                         goto out;
2856                 r = -EINVAL;
2857                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2858                         goto out;
2859                 if (routing.flags)
2860                         goto out;
2861                 r = -ENOMEM;
2862                 entries = vmalloc(routing.nr * sizeof(*entries));
2863                 if (!entries)
2864                         goto out;
2865                 r = -EFAULT;
2866                 urouting = argp;
2867                 if (copy_from_user(entries, urouting->entries,
2868                                    routing.nr * sizeof(*entries)))
2869                         goto out_free_irq_routing;
2870                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2871                                         routing.flags);
2872 out_free_irq_routing:
2873                 vfree(entries);
2874                 break;
2875         }
2876 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2877         case KVM_CREATE_DEVICE: {
2878                 struct kvm_create_device cd;
2879
2880                 r = -EFAULT;
2881                 if (copy_from_user(&cd, argp, sizeof(cd)))
2882                         goto out;
2883
2884                 r = kvm_ioctl_create_device(kvm, &cd);
2885                 if (r)
2886                         goto out;
2887
2888                 r = -EFAULT;
2889                 if (copy_to_user(argp, &cd, sizeof(cd)))
2890                         goto out;
2891
2892                 r = 0;
2893                 break;
2894         }
2895         case KVM_CHECK_EXTENSION:
2896                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2897                 break;
2898         default:
2899                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2900         }
2901 out:
2902         return r;
2903 }
2904
2905 #ifdef CONFIG_KVM_COMPAT
2906 struct compat_kvm_dirty_log {
2907         __u32 slot;
2908         __u32 padding1;
2909         union {
2910                 compat_uptr_t dirty_bitmap; /* one bit per page */
2911                 __u64 padding2;
2912         };
2913 };
2914
2915 static long kvm_vm_compat_ioctl(struct file *filp,
2916                            unsigned int ioctl, unsigned long arg)
2917 {
2918         struct kvm *kvm = filp->private_data;
2919         int r;
2920
2921         if (kvm->mm != current->mm)
2922                 return -EIO;
2923         switch (ioctl) {
2924         case KVM_GET_DIRTY_LOG: {
2925                 struct compat_kvm_dirty_log compat_log;
2926                 struct kvm_dirty_log log;
2927
2928                 r = -EFAULT;
2929                 if (copy_from_user(&compat_log, (void __user *)arg,
2930                                    sizeof(compat_log)))
2931                         goto out;
2932                 log.slot         = compat_log.slot;
2933                 log.padding1     = compat_log.padding1;
2934                 log.padding2     = compat_log.padding2;
2935                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2936
2937                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2938                 break;
2939         }
2940         default:
2941                 r = kvm_vm_ioctl(filp, ioctl, arg);
2942         }
2943
2944 out:
2945         return r;
2946 }
2947 #endif
2948
2949 static struct file_operations kvm_vm_fops = {
2950         .release        = kvm_vm_release,
2951         .unlocked_ioctl = kvm_vm_ioctl,
2952 #ifdef CONFIG_KVM_COMPAT
2953         .compat_ioctl   = kvm_vm_compat_ioctl,
2954 #endif
2955         .llseek         = noop_llseek,
2956 };
2957
2958 static int kvm_dev_ioctl_create_vm(unsigned long type)
2959 {
2960         int r;
2961         struct kvm *kvm;
2962
2963         kvm = kvm_create_vm(type);
2964         if (IS_ERR(kvm))
2965                 return PTR_ERR(kvm);
2966 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2967         r = kvm_coalesced_mmio_init(kvm);
2968         if (r < 0) {
2969                 kvm_put_kvm(kvm);
2970                 return r;
2971         }
2972 #endif
2973         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2974         if (r < 0)
2975                 kvm_put_kvm(kvm);
2976
2977         return r;
2978 }
2979
2980 static long kvm_dev_ioctl(struct file *filp,
2981                           unsigned int ioctl, unsigned long arg)
2982 {
2983         long r = -EINVAL;
2984
2985         switch (ioctl) {
2986         case KVM_GET_API_VERSION:
2987                 if (arg)
2988                         goto out;
2989                 r = KVM_API_VERSION;
2990                 break;
2991         case KVM_CREATE_VM:
2992                 r = kvm_dev_ioctl_create_vm(arg);
2993                 break;
2994         case KVM_CHECK_EXTENSION:
2995                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2996                 break;
2997         case KVM_GET_VCPU_MMAP_SIZE:
2998                 if (arg)
2999                         goto out;
3000                 r = PAGE_SIZE;     /* struct kvm_run */
3001 #ifdef CONFIG_X86
3002                 r += PAGE_SIZE;    /* pio data page */
3003 #endif
3004 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3005                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3006 #endif
3007                 break;
3008         case KVM_TRACE_ENABLE:
3009         case KVM_TRACE_PAUSE:
3010         case KVM_TRACE_DISABLE:
3011                 r = -EOPNOTSUPP;
3012                 break;
3013         default:
3014                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3015         }
3016 out:
3017         return r;
3018 }
3019
3020 static struct file_operations kvm_chardev_ops = {
3021         .unlocked_ioctl = kvm_dev_ioctl,
3022         .compat_ioctl   = kvm_dev_ioctl,
3023         .llseek         = noop_llseek,
3024 };
3025
3026 static struct miscdevice kvm_dev = {
3027         KVM_MINOR,
3028         "kvm",
3029         &kvm_chardev_ops,
3030 };
3031
3032 static void hardware_enable_nolock(void *junk)
3033 {
3034         int cpu = raw_smp_processor_id();
3035         int r;
3036
3037         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3038                 return;
3039
3040         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3041
3042         r = kvm_arch_hardware_enable();
3043
3044         if (r) {
3045                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3046                 atomic_inc(&hardware_enable_failed);
3047                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3048         }
3049 }
3050
3051 static void hardware_enable(void)
3052 {
3053         raw_spin_lock(&kvm_count_lock);
3054         if (kvm_usage_count)
3055                 hardware_enable_nolock(NULL);
3056         raw_spin_unlock(&kvm_count_lock);
3057 }
3058
3059 static void hardware_disable_nolock(void *junk)
3060 {
3061         int cpu = raw_smp_processor_id();
3062
3063         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3064                 return;
3065         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3066         kvm_arch_hardware_disable();
3067 }
3068
3069 static void hardware_disable(void)
3070 {
3071         raw_spin_lock(&kvm_count_lock);
3072         if (kvm_usage_count)
3073                 hardware_disable_nolock(NULL);
3074         raw_spin_unlock(&kvm_count_lock);
3075 }
3076
3077 static void hardware_disable_all_nolock(void)
3078 {
3079         BUG_ON(!kvm_usage_count);
3080
3081         kvm_usage_count--;
3082         if (!kvm_usage_count)
3083                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3084 }
3085
3086 static void hardware_disable_all(void)
3087 {
3088         raw_spin_lock(&kvm_count_lock);
3089         hardware_disable_all_nolock();
3090         raw_spin_unlock(&kvm_count_lock);
3091 }
3092
3093 static int hardware_enable_all(void)
3094 {
3095         int r = 0;
3096
3097         raw_spin_lock(&kvm_count_lock);
3098
3099         kvm_usage_count++;
3100         if (kvm_usage_count == 1) {
3101                 atomic_set(&hardware_enable_failed, 0);
3102                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3103
3104                 if (atomic_read(&hardware_enable_failed)) {
3105                         hardware_disable_all_nolock();
3106                         r = -EBUSY;
3107                 }
3108         }
3109
3110         raw_spin_unlock(&kvm_count_lock);
3111
3112         return r;
3113 }
3114
3115 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3116                            void *v)
3117 {
3118         val &= ~CPU_TASKS_FROZEN;
3119         switch (val) {
3120         case CPU_DYING:
3121                 hardware_disable();
3122                 break;
3123         case CPU_STARTING:
3124                 hardware_enable();
3125                 break;
3126         }
3127         return NOTIFY_OK;
3128 }
3129
3130 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3131                       void *v)
3132 {
3133         /*
3134          * Some (well, at least mine) BIOSes hang on reboot if
3135          * in vmx root mode.
3136          *
3137          * And Intel TXT required VMX off for all cpu when system shutdown.
3138          */
3139         pr_info("kvm: exiting hardware virtualization\n");
3140         kvm_rebooting = true;
3141         on_each_cpu(hardware_disable_nolock, NULL, 1);
3142         return NOTIFY_OK;
3143 }
3144
3145 static struct notifier_block kvm_reboot_notifier = {
3146         .notifier_call = kvm_reboot,
3147         .priority = 0,
3148 };
3149
3150 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3151 {
3152         int i;
3153
3154         for (i = 0; i < bus->dev_count; i++) {
3155                 struct kvm_io_device *pos = bus->range[i].dev;
3156
3157                 kvm_iodevice_destructor(pos);
3158         }
3159         kfree(bus);
3160 }
3161
3162 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3163                                  const struct kvm_io_range *r2)
3164 {
3165         gpa_t addr1 = r1->addr;
3166         gpa_t addr2 = r2->addr;
3167
3168         if (addr1 < addr2)
3169                 return -1;
3170
3171         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3172          * accept any overlapping write.  Any order is acceptable for
3173          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3174          * we process all of them.
3175          */
3176         if (r2->len) {
3177                 addr1 += r1->len;
3178                 addr2 += r2->len;
3179         }
3180
3181         if (addr1 > addr2)
3182                 return 1;
3183
3184         return 0;
3185 }
3186
3187 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3188 {
3189         return kvm_io_bus_cmp(p1, p2);
3190 }
3191
3192 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3193                           gpa_t addr, int len)
3194 {
3195         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3196                 .addr = addr,
3197                 .len = len,
3198                 .dev = dev,
3199         };
3200
3201         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3202                 kvm_io_bus_sort_cmp, NULL);
3203
3204         return 0;
3205 }
3206
3207 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3208                              gpa_t addr, int len)
3209 {
3210         struct kvm_io_range *range, key;
3211         int off;
3212
3213         key = (struct kvm_io_range) {
3214                 .addr = addr,
3215                 .len = len,
3216         };
3217
3218         range = bsearch(&key, bus->range, bus->dev_count,
3219                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3220         if (range == NULL)
3221                 return -ENOENT;
3222
3223         off = range - bus->range;
3224
3225         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3226                 off--;
3227
3228         return off;
3229 }
3230
3231 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3232                               struct kvm_io_range *range, const void *val)
3233 {
3234         int idx;
3235
3236         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3237         if (idx < 0)
3238                 return -EOPNOTSUPP;
3239
3240         while (idx < bus->dev_count &&
3241                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3242                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3243                                         range->len, val))
3244                         return idx;
3245                 idx++;
3246         }
3247
3248         return -EOPNOTSUPP;
3249 }
3250
3251 /* kvm_io_bus_write - called under kvm->slots_lock */
3252 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3253                      int len, const void *val)
3254 {
3255         struct kvm_io_bus *bus;
3256         struct kvm_io_range range;
3257         int r;
3258
3259         range = (struct kvm_io_range) {
3260                 .addr = addr,
3261                 .len = len,
3262         };
3263
3264         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3265         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3266         return r < 0 ? r : 0;
3267 }
3268
3269 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3270 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3271                             gpa_t addr, int len, const void *val, long cookie)
3272 {
3273         struct kvm_io_bus *bus;
3274         struct kvm_io_range range;
3275
3276         range = (struct kvm_io_range) {
3277                 .addr = addr,
3278                 .len = len,
3279         };
3280
3281         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3282
3283         /* First try the device referenced by cookie. */
3284         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3285             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3286                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3287                                         val))
3288                         return cookie;
3289
3290         /*
3291          * cookie contained garbage; fall back to search and return the
3292          * correct cookie value.
3293          */
3294         return __kvm_io_bus_write(vcpu, bus, &range, val);
3295 }
3296
3297 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3298                              struct kvm_io_range *range, void *val)
3299 {
3300         int idx;
3301
3302         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3303         if (idx < 0)
3304                 return -EOPNOTSUPP;
3305
3306         while (idx < bus->dev_count &&
3307                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3308                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3309                                        range->len, val))
3310                         return idx;
3311                 idx++;
3312         }
3313
3314         return -EOPNOTSUPP;
3315 }
3316 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3317
3318 /* kvm_io_bus_read - called under kvm->slots_lock */
3319 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3320                     int len, void *val)
3321 {
3322         struct kvm_io_bus *bus;
3323         struct kvm_io_range range;
3324         int r;
3325
3326         range = (struct kvm_io_range) {
3327                 .addr = addr,
3328                 .len = len,
3329         };
3330
3331         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3332         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3333         return r < 0 ? r : 0;
3334 }
3335
3336
3337 /* Caller must hold slots_lock. */
3338 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3339                             int len, struct kvm_io_device *dev)
3340 {
3341         struct kvm_io_bus *new_bus, *bus;
3342
3343         bus = kvm->buses[bus_idx];
3344         /* exclude ioeventfd which is limited by maximum fd */
3345         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3346                 return -ENOSPC;
3347
3348         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3349                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3350         if (!new_bus)
3351                 return -ENOMEM;
3352         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3353                sizeof(struct kvm_io_range)));
3354         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3355         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3356         synchronize_srcu_expedited(&kvm->srcu);
3357         kfree(bus);
3358
3359         return 0;
3360 }
3361
3362 /* Caller must hold slots_lock. */
3363 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3364                               struct kvm_io_device *dev)
3365 {
3366         int i, r;
3367         struct kvm_io_bus *new_bus, *bus;
3368
3369         bus = kvm->buses[bus_idx];
3370         r = -ENOENT;
3371         for (i = 0; i < bus->dev_count; i++)
3372                 if (bus->range[i].dev == dev) {
3373                         r = 0;
3374                         break;
3375                 }
3376
3377         if (r)
3378                 return r;
3379
3380         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3381                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3382         if (!new_bus)
3383                 return -ENOMEM;
3384
3385         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3386         new_bus->dev_count--;
3387         memcpy(new_bus->range + i, bus->range + i + 1,
3388                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3389
3390         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3391         synchronize_srcu_expedited(&kvm->srcu);
3392         kfree(bus);
3393         return r;
3394 }
3395
3396 static struct notifier_block kvm_cpu_notifier = {
3397         .notifier_call = kvm_cpu_hotplug,
3398 };
3399
3400 static int vm_stat_get(void *_offset, u64 *val)
3401 {
3402         unsigned offset = (long)_offset;
3403         struct kvm *kvm;
3404
3405         *val = 0;
3406         spin_lock(&kvm_lock);
3407         list_for_each_entry(kvm, &vm_list, vm_list)
3408                 *val += *(u32 *)((void *)kvm + offset);
3409         spin_unlock(&kvm_lock);
3410         return 0;
3411 }
3412
3413 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3414
3415 static int vcpu_stat_get(void *_offset, u64 *val)
3416 {
3417         unsigned offset = (long)_offset;
3418         struct kvm *kvm;
3419         struct kvm_vcpu *vcpu;
3420         int i;
3421
3422         *val = 0;
3423         spin_lock(&kvm_lock);
3424         list_for_each_entry(kvm, &vm_list, vm_list)
3425                 kvm_for_each_vcpu(i, vcpu, kvm)
3426                         *val += *(u32 *)((void *)vcpu + offset);
3427
3428         spin_unlock(&kvm_lock);
3429         return 0;
3430 }
3431
3432 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3433
3434 static const struct file_operations *stat_fops[] = {
3435         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3436         [KVM_STAT_VM]   = &vm_stat_fops,
3437 };
3438
3439 static int kvm_init_debug(void)
3440 {
3441         int r = -EEXIST;
3442         struct kvm_stats_debugfs_item *p;
3443
3444         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3445         if (kvm_debugfs_dir == NULL)
3446                 goto out;
3447
3448         for (p = debugfs_entries; p->name; ++p) {
3449                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3450                                          (void *)(long)p->offset,
3451                                          stat_fops[p->kind]))
3452                         goto out_dir;
3453         }
3454
3455         return 0;
3456
3457 out_dir:
3458         debugfs_remove_recursive(kvm_debugfs_dir);
3459 out:
3460         return r;
3461 }
3462
3463 static int kvm_suspend(void)
3464 {
3465         if (kvm_usage_count)
3466                 hardware_disable_nolock(NULL);
3467         return 0;
3468 }
3469
3470 static void kvm_resume(void)
3471 {
3472         if (kvm_usage_count) {
3473                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3474                 hardware_enable_nolock(NULL);
3475         }
3476 }
3477
3478 static struct syscore_ops kvm_syscore_ops = {
3479         .suspend = kvm_suspend,
3480         .resume = kvm_resume,
3481 };
3482
3483 static inline
3484 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3485 {
3486         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3487 }
3488
3489 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3490 {
3491         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3492
3493         if (vcpu->preempted)
3494                 vcpu->preempted = false;
3495
3496         kvm_arch_sched_in(vcpu, cpu);
3497
3498         kvm_arch_vcpu_load(vcpu, cpu);
3499 }
3500
3501 static void kvm_sched_out(struct preempt_notifier *pn,
3502                           struct task_struct *next)
3503 {
3504         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3505
3506         if (current->state == TASK_RUNNING)
3507                 vcpu->preempted = true;
3508         kvm_arch_vcpu_put(vcpu);
3509 }
3510
3511 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3512                   struct module *module)
3513 {
3514         int r;
3515         int cpu;
3516
3517         r = kvm_arch_init(opaque);
3518         if (r)
3519                 goto out_fail;
3520
3521         /*
3522          * kvm_arch_init makes sure there's at most one caller
3523          * for architectures that support multiple implementations,
3524          * like intel and amd on x86.
3525          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3526          * conflicts in case kvm is already setup for another implementation.
3527          */
3528         r = kvm_irqfd_init();
3529         if (r)
3530                 goto out_irqfd;
3531
3532         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3533                 r = -ENOMEM;
3534                 goto out_free_0;
3535         }
3536
3537         r = kvm_arch_hardware_setup();
3538         if (r < 0)
3539                 goto out_free_0a;
3540
3541         for_each_online_cpu(cpu) {
3542                 smp_call_function_single(cpu,
3543                                 kvm_arch_check_processor_compat,
3544                                 &r, 1);
3545                 if (r < 0)
3546                         goto out_free_1;
3547         }
3548
3549         r = register_cpu_notifier(&kvm_cpu_notifier);
3550         if (r)
3551                 goto out_free_2;
3552         register_reboot_notifier(&kvm_reboot_notifier);
3553
3554         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3555         if (!vcpu_align)
3556                 vcpu_align = __alignof__(struct kvm_vcpu);
3557         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3558                                            0, NULL);
3559         if (!kvm_vcpu_cache) {
3560                 r = -ENOMEM;
3561                 goto out_free_3;
3562         }
3563
3564         r = kvm_async_pf_init();
3565         if (r)
3566                 goto out_free;
3567
3568         kvm_chardev_ops.owner = module;
3569         kvm_vm_fops.owner = module;
3570         kvm_vcpu_fops.owner = module;
3571
3572         r = misc_register(&kvm_dev);
3573         if (r) {
3574                 pr_err("kvm: misc device register failed\n");
3575                 goto out_unreg;
3576         }
3577
3578         register_syscore_ops(&kvm_syscore_ops);
3579
3580         kvm_preempt_ops.sched_in = kvm_sched_in;
3581         kvm_preempt_ops.sched_out = kvm_sched_out;
3582
3583         r = kvm_init_debug();
3584         if (r) {
3585                 pr_err("kvm: create debugfs files failed\n");
3586                 goto out_undebugfs;
3587         }
3588
3589         r = kvm_vfio_ops_init();
3590         WARN_ON(r);
3591
3592         return 0;
3593
3594 out_undebugfs:
3595         unregister_syscore_ops(&kvm_syscore_ops);
3596         misc_deregister(&kvm_dev);
3597 out_unreg:
3598         kvm_async_pf_deinit();
3599 out_free:
3600         kmem_cache_destroy(kvm_vcpu_cache);
3601 out_free_3:
3602         unregister_reboot_notifier(&kvm_reboot_notifier);
3603         unregister_cpu_notifier(&kvm_cpu_notifier);
3604 out_free_2:
3605 out_free_1:
3606         kvm_arch_hardware_unsetup();
3607 out_free_0a:
3608         free_cpumask_var(cpus_hardware_enabled);
3609 out_free_0:
3610         kvm_irqfd_exit();
3611 out_irqfd:
3612         kvm_arch_exit();
3613 out_fail:
3614         return r;
3615 }
3616 EXPORT_SYMBOL_GPL(kvm_init);
3617
3618 void kvm_exit(void)
3619 {
3620         debugfs_remove_recursive(kvm_debugfs_dir);
3621         misc_deregister(&kvm_dev);
3622         kmem_cache_destroy(kvm_vcpu_cache);
3623         kvm_async_pf_deinit();
3624         unregister_syscore_ops(&kvm_syscore_ops);
3625         unregister_reboot_notifier(&kvm_reboot_notifier);
3626         unregister_cpu_notifier(&kvm_cpu_notifier);
3627         on_each_cpu(hardware_disable_nolock, NULL, 1);
3628         kvm_arch_hardware_unsetup();
3629         kvm_arch_exit();
3630         kvm_irqfd_exit();
3631         free_cpumask_var(cpus_hardware_enabled);
3632         kvm_vfio_ops_exit();
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_exit);