KVM: Pass the name of the VM fd to kvm_create_vm_debugfs()
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (WARN_ON_ONCE(!page_count(page)))
180                 return false;
181
182         return is_zone_device_page(page);
183 }
184
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193         struct page *page;
194
195         if (!pfn_valid(pfn))
196                 return NULL;
197
198         page = pfn_to_page(pfn);
199         if (!PageReserved(page))
200                 return page;
201
202         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203         if (is_zero_pfn(pfn))
204                 return page;
205
206         /*
207          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208          * perspective they are "normal" pages, albeit with slightly different
209          * usage rules.
210          */
211         if (kvm_is_zone_device_page(page))
212                 return page;
213
214         return NULL;
215 }
216
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222         int cpu = get_cpu();
223
224         __this_cpu_write(kvm_running_vcpu, vcpu);
225         preempt_notifier_register(&vcpu->preempt_notifier);
226         kvm_arch_vcpu_load(vcpu, cpu);
227         put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233         preempt_disable();
234         kvm_arch_vcpu_put(vcpu);
235         preempt_notifier_unregister(&vcpu->preempt_notifier);
236         __this_cpu_write(kvm_running_vcpu, NULL);
237         preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246         /*
247          * We need to wait for the VCPU to reenable interrupts and get out of
248          * READING_SHADOW_PAGE_TABLES mode.
249          */
250         if (req & KVM_REQUEST_WAIT)
251                 return mode != OUTSIDE_GUEST_MODE;
252
253         /*
254          * Need to kick a running VCPU, but otherwise there is nothing to do.
255          */
256         return mode == IN_GUEST_MODE;
257 }
258
259 static void ack_kick(void *_completed)
260 {
261 }
262
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265         if (cpumask_empty(cpus))
266                 return false;
267
268         smp_call_function_many(cpus, ack_kick, NULL, wait);
269         return true;
270 }
271
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273                                   struct cpumask *tmp, int current_cpu)
274 {
275         int cpu;
276
277         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278                 __kvm_make_request(req, vcpu);
279
280         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281                 return;
282
283         /*
284          * Note, the vCPU could get migrated to a different pCPU at any point
285          * after kvm_request_needs_ipi(), which could result in sending an IPI
286          * to the previous pCPU.  But, that's OK because the purpose of the IPI
287          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289          * after this point is also OK, as the requirement is only that KVM wait
290          * for vCPUs that were reading SPTEs _before_ any changes were
291          * finalized. See kvm_vcpu_kick() for more details on handling requests.
292          */
293         if (kvm_request_needs_ipi(vcpu, req)) {
294                 cpu = READ_ONCE(vcpu->cpu);
295                 if (cpu != -1 && cpu != current_cpu)
296                         __cpumask_set_cpu(cpu, tmp);
297         }
298 }
299
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301                                  unsigned long *vcpu_bitmap)
302 {
303         struct kvm_vcpu *vcpu;
304         struct cpumask *cpus;
305         int i, me;
306         bool called;
307
308         me = get_cpu();
309
310         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311         cpumask_clear(cpus);
312
313         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314                 vcpu = kvm_get_vcpu(kvm, i);
315                 if (!vcpu)
316                         continue;
317                 kvm_make_vcpu_request(vcpu, req, cpus, me);
318         }
319
320         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321         put_cpu();
322
323         return called;
324 }
325
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327                                       struct kvm_vcpu *except)
328 {
329         struct kvm_vcpu *vcpu;
330         struct cpumask *cpus;
331         unsigned long i;
332         bool called;
333         int me;
334
335         me = get_cpu();
336
337         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338         cpumask_clear(cpus);
339
340         kvm_for_each_vcpu(i, vcpu, kvm) {
341                 if (vcpu == except)
342                         continue;
343                 kvm_make_vcpu_request(vcpu, req, cpus, me);
344         }
345
346         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347         put_cpu();
348
349         return called;
350 }
351
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354         return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361         ++kvm->stat.generic.remote_tlb_flush_requests;
362
363         /*
364          * We want to publish modifications to the page tables before reading
365          * mode. Pairs with a memory barrier in arch-specific code.
366          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367          * and smp_mb in walk_shadow_page_lockless_begin/end.
368          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369          *
370          * There is already an smp_mb__after_atomic() before
371          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372          * barrier here.
373          */
374         if (!kvm_arch_flush_remote_tlb(kvm)
375             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376                 ++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383         kvm_arch_flush_shadow_all(kvm);
384         kvm_arch_guest_memory_reclaimed(kvm);
385 }
386
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389                                                gfp_t gfp_flags)
390 {
391         gfp_flags |= mc->gfp_zero;
392
393         if (mc->kmem_cache)
394                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395         else
396                 return (void *)__get_free_page(gfp_flags);
397 }
398
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402         void *obj;
403
404         if (mc->nobjs >= min)
405                 return 0;
406
407         if (unlikely(!mc->objects)) {
408                 if (WARN_ON_ONCE(!capacity))
409                         return -EIO;
410
411                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412                 if (!mc->objects)
413                         return -ENOMEM;
414
415                 mc->capacity = capacity;
416         }
417
418         /* It is illegal to request a different capacity across topups. */
419         if (WARN_ON_ONCE(mc->capacity != capacity))
420                 return -EIO;
421
422         while (mc->nobjs < mc->capacity) {
423                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
424                 if (!obj)
425                         return mc->nobjs >= min ? 0 : -ENOMEM;
426                 mc->objects[mc->nobjs++] = obj;
427         }
428         return 0;
429 }
430
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438         return mc->nobjs;
439 }
440
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443         while (mc->nobjs) {
444                 if (mc->kmem_cache)
445                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446                 else
447                         free_page((unsigned long)mc->objects[--mc->nobjs]);
448         }
449
450         kvfree(mc->objects);
451
452         mc->objects = NULL;
453         mc->capacity = 0;
454 }
455
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458         void *p;
459
460         if (WARN_ON(!mc->nobjs))
461                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462         else
463                 p = mc->objects[--mc->nobjs];
464         BUG_ON(!p);
465         return p;
466 }
467 #endif
468
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471         mutex_init(&vcpu->mutex);
472         vcpu->cpu = -1;
473         vcpu->kvm = kvm;
474         vcpu->vcpu_id = id;
475         vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477         rcuwait_init(&vcpu->wait);
478 #endif
479         kvm_async_pf_vcpu_init(vcpu);
480
481         kvm_vcpu_set_in_spin_loop(vcpu, false);
482         kvm_vcpu_set_dy_eligible(vcpu, false);
483         vcpu->preempted = false;
484         vcpu->ready = false;
485         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486         vcpu->last_used_slot = NULL;
487
488         /* Fill the stats id string for the vcpu */
489         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490                  task_pid_nr(current), id);
491 }
492
493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495         kvm_arch_vcpu_destroy(vcpu);
496         kvm_dirty_ring_free(&vcpu->dirty_ring);
497
498         /*
499          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500          * the vcpu->pid pointer, and at destruction time all file descriptors
501          * are already gone.
502          */
503         put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
505         free_page((unsigned long)vcpu->run);
506         kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508
509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511         unsigned long i;
512         struct kvm_vcpu *vcpu;
513
514         kvm_for_each_vcpu(i, vcpu, kvm) {
515                 kvm_vcpu_destroy(vcpu);
516                 xa_erase(&kvm->vcpu_array, i);
517         }
518
519         atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526         return container_of(mn, struct kvm, mmu_notifier);
527 }
528
529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530                                               struct mm_struct *mm,
531                                               unsigned long start, unsigned long end)
532 {
533         struct kvm *kvm = mmu_notifier_to_kvm(mn);
534         int idx;
535
536         idx = srcu_read_lock(&kvm->srcu);
537         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538         srcu_read_unlock(&kvm->srcu, idx);
539 }
540
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544                              unsigned long end);
545
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
548 struct kvm_hva_range {
549         unsigned long start;
550         unsigned long end;
551         pte_t pte;
552         hva_handler_t handler;
553         on_lock_fn_t on_lock;
554         on_unlock_fn_t on_unlock;
555         bool flush_on_ret;
556         bool may_block;
557 };
558
559 /*
560  * Use a dedicated stub instead of NULL to indicate that there is no callback
561  * function/handler.  The compiler technically can't guarantee that a real
562  * function will have a non-zero address, and so it will generate code to
563  * check for !NULL, whereas comparing against a stub will be elided at compile
564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565  */
566 static void kvm_null_fn(void)
567 {
568
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
574         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575              node;                                                           \
576              node = interval_tree_iter_next(node, start, last))      \
577
578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579                                                   const struct kvm_hva_range *range)
580 {
581         bool ret = false, locked = false;
582         struct kvm_gfn_range gfn_range;
583         struct kvm_memory_slot *slot;
584         struct kvm_memslots *slots;
585         int i, idx;
586
587         if (WARN_ON_ONCE(range->end <= range->start))
588                 return 0;
589
590         /* A null handler is allowed if and only if on_lock() is provided. */
591         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592                          IS_KVM_NULL_FN(range->handler)))
593                 return 0;
594
595         idx = srcu_read_lock(&kvm->srcu);
596
597         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598                 struct interval_tree_node *node;
599
600                 slots = __kvm_memslots(kvm, i);
601                 kvm_for_each_memslot_in_hva_range(node, slots,
602                                                   range->start, range->end - 1) {
603                         unsigned long hva_start, hva_end;
604
605                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606                         hva_start = max(range->start, slot->userspace_addr);
607                         hva_end = min(range->end, slot->userspace_addr +
608                                                   (slot->npages << PAGE_SHIFT));
609
610                         /*
611                          * To optimize for the likely case where the address
612                          * range is covered by zero or one memslots, don't
613                          * bother making these conditional (to avoid writes on
614                          * the second or later invocation of the handler).
615                          */
616                         gfn_range.pte = range->pte;
617                         gfn_range.may_block = range->may_block;
618
619                         /*
620                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
621                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622                          */
623                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625                         gfn_range.slot = slot;
626
627                         if (!locked) {
628                                 locked = true;
629                                 KVM_MMU_LOCK(kvm);
630                                 if (!IS_KVM_NULL_FN(range->on_lock))
631                                         range->on_lock(kvm, range->start, range->end);
632                                 if (IS_KVM_NULL_FN(range->handler))
633                                         break;
634                         }
635                         ret |= range->handler(kvm, &gfn_range);
636                 }
637         }
638
639         if (range->flush_on_ret && ret)
640                 kvm_flush_remote_tlbs(kvm);
641
642         if (locked) {
643                 KVM_MMU_UNLOCK(kvm);
644                 if (!IS_KVM_NULL_FN(range->on_unlock))
645                         range->on_unlock(kvm);
646         }
647
648         srcu_read_unlock(&kvm->srcu, idx);
649
650         /* The notifiers are averse to booleans. :-( */
651         return (int)ret;
652 }
653
654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655                                                 unsigned long start,
656                                                 unsigned long end,
657                                                 pte_t pte,
658                                                 hva_handler_t handler)
659 {
660         struct kvm *kvm = mmu_notifier_to_kvm(mn);
661         const struct kvm_hva_range range = {
662                 .start          = start,
663                 .end            = end,
664                 .pte            = pte,
665                 .handler        = handler,
666                 .on_lock        = (void *)kvm_null_fn,
667                 .on_unlock      = (void *)kvm_null_fn,
668                 .flush_on_ret   = true,
669                 .may_block      = false,
670         };
671
672         return __kvm_handle_hva_range(kvm, &range);
673 }
674
675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676                                                          unsigned long start,
677                                                          unsigned long end,
678                                                          hva_handler_t handler)
679 {
680         struct kvm *kvm = mmu_notifier_to_kvm(mn);
681         const struct kvm_hva_range range = {
682                 .start          = start,
683                 .end            = end,
684                 .pte            = __pte(0),
685                 .handler        = handler,
686                 .on_lock        = (void *)kvm_null_fn,
687                 .on_unlock      = (void *)kvm_null_fn,
688                 .flush_on_ret   = false,
689                 .may_block      = false,
690         };
691
692         return __kvm_handle_hva_range(kvm, &range);
693 }
694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695                                         struct mm_struct *mm,
696                                         unsigned long address,
697                                         pte_t pte)
698 {
699         struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
701         trace_kvm_set_spte_hva(address);
702
703         /*
704          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705          * If mmu_notifier_count is zero, then no in-progress invalidations,
706          * including this one, found a relevant memslot at start(); rechecking
707          * memslots here is unnecessary.  Note, a false positive (count elevated
708          * by a different invalidation) is sub-optimal but functionally ok.
709          */
710         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
711         if (!READ_ONCE(kvm->mmu_notifier_count))
712                 return;
713
714         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
715 }
716
717 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
718                                    unsigned long end)
719 {
720         /*
721          * The count increase must become visible at unlock time as no
722          * spte can be established without taking the mmu_lock and
723          * count is also read inside the mmu_lock critical section.
724          */
725         kvm->mmu_notifier_count++;
726         if (likely(kvm->mmu_notifier_count == 1)) {
727                 kvm->mmu_notifier_range_start = start;
728                 kvm->mmu_notifier_range_end = end;
729         } else {
730                 /*
731                  * Fully tracking multiple concurrent ranges has diminishing
732                  * returns. Keep things simple and just find the minimal range
733                  * which includes the current and new ranges. As there won't be
734                  * enough information to subtract a range after its invalidate
735                  * completes, any ranges invalidated concurrently will
736                  * accumulate and persist until all outstanding invalidates
737                  * complete.
738                  */
739                 kvm->mmu_notifier_range_start =
740                         min(kvm->mmu_notifier_range_start, start);
741                 kvm->mmu_notifier_range_end =
742                         max(kvm->mmu_notifier_range_end, end);
743         }
744 }
745
746 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
747                                         const struct mmu_notifier_range *range)
748 {
749         struct kvm *kvm = mmu_notifier_to_kvm(mn);
750         const struct kvm_hva_range hva_range = {
751                 .start          = range->start,
752                 .end            = range->end,
753                 .pte            = __pte(0),
754                 .handler        = kvm_unmap_gfn_range,
755                 .on_lock        = kvm_inc_notifier_count,
756                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
757                 .flush_on_ret   = true,
758                 .may_block      = mmu_notifier_range_blockable(range),
759         };
760
761         trace_kvm_unmap_hva_range(range->start, range->end);
762
763         /*
764          * Prevent memslot modification between range_start() and range_end()
765          * so that conditionally locking provides the same result in both
766          * functions.  Without that guarantee, the mmu_notifier_count
767          * adjustments will be imbalanced.
768          *
769          * Pairs with the decrement in range_end().
770          */
771         spin_lock(&kvm->mn_invalidate_lock);
772         kvm->mn_active_invalidate_count++;
773         spin_unlock(&kvm->mn_invalidate_lock);
774
775         /*
776          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
777          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
778          * each cache's lock.  There are relatively few caches in existence at
779          * any given time, and the caches themselves can check for hva overlap,
780          * i.e. don't need to rely on memslot overlap checks for performance.
781          * Because this runs without holding mmu_lock, the pfn caches must use
782          * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
783          */
784         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
785                                           hva_range.may_block);
786
787         __kvm_handle_hva_range(kvm, &hva_range);
788
789         return 0;
790 }
791
792 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
793                                    unsigned long end)
794 {
795         /*
796          * This sequence increase will notify the kvm page fault that
797          * the page that is going to be mapped in the spte could have
798          * been freed.
799          */
800         kvm->mmu_notifier_seq++;
801         smp_wmb();
802         /*
803          * The above sequence increase must be visible before the
804          * below count decrease, which is ensured by the smp_wmb above
805          * in conjunction with the smp_rmb in mmu_notifier_retry().
806          */
807         kvm->mmu_notifier_count--;
808 }
809
810 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
811                                         const struct mmu_notifier_range *range)
812 {
813         struct kvm *kvm = mmu_notifier_to_kvm(mn);
814         const struct kvm_hva_range hva_range = {
815                 .start          = range->start,
816                 .end            = range->end,
817                 .pte            = __pte(0),
818                 .handler        = (void *)kvm_null_fn,
819                 .on_lock        = kvm_dec_notifier_count,
820                 .on_unlock      = (void *)kvm_null_fn,
821                 .flush_on_ret   = false,
822                 .may_block      = mmu_notifier_range_blockable(range),
823         };
824         bool wake;
825
826         __kvm_handle_hva_range(kvm, &hva_range);
827
828         /* Pairs with the increment in range_start(). */
829         spin_lock(&kvm->mn_invalidate_lock);
830         wake = (--kvm->mn_active_invalidate_count == 0);
831         spin_unlock(&kvm->mn_invalidate_lock);
832
833         /*
834          * There can only be one waiter, since the wait happens under
835          * slots_lock.
836          */
837         if (wake)
838                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
839
840         BUG_ON(kvm->mmu_notifier_count < 0);
841 }
842
843 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
844                                               struct mm_struct *mm,
845                                               unsigned long start,
846                                               unsigned long end)
847 {
848         trace_kvm_age_hva(start, end);
849
850         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
851 }
852
853 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
854                                         struct mm_struct *mm,
855                                         unsigned long start,
856                                         unsigned long end)
857 {
858         trace_kvm_age_hva(start, end);
859
860         /*
861          * Even though we do not flush TLB, this will still adversely
862          * affect performance on pre-Haswell Intel EPT, where there is
863          * no EPT Access Bit to clear so that we have to tear down EPT
864          * tables instead. If we find this unacceptable, we can always
865          * add a parameter to kvm_age_hva so that it effectively doesn't
866          * do anything on clear_young.
867          *
868          * Also note that currently we never issue secondary TLB flushes
869          * from clear_young, leaving this job up to the regular system
870          * cadence. If we find this inaccurate, we might come up with a
871          * more sophisticated heuristic later.
872          */
873         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
874 }
875
876 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
877                                        struct mm_struct *mm,
878                                        unsigned long address)
879 {
880         trace_kvm_test_age_hva(address);
881
882         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
883                                              kvm_test_age_gfn);
884 }
885
886 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
887                                      struct mm_struct *mm)
888 {
889         struct kvm *kvm = mmu_notifier_to_kvm(mn);
890         int idx;
891
892         idx = srcu_read_lock(&kvm->srcu);
893         kvm_flush_shadow_all(kvm);
894         srcu_read_unlock(&kvm->srcu, idx);
895 }
896
897 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
898         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
899         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
900         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
901         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
902         .clear_young            = kvm_mmu_notifier_clear_young,
903         .test_young             = kvm_mmu_notifier_test_young,
904         .change_pte             = kvm_mmu_notifier_change_pte,
905         .release                = kvm_mmu_notifier_release,
906 };
907
908 static int kvm_init_mmu_notifier(struct kvm *kvm)
909 {
910         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
911         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
912 }
913
914 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
915
916 static int kvm_init_mmu_notifier(struct kvm *kvm)
917 {
918         return 0;
919 }
920
921 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
922
923 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
924 static int kvm_pm_notifier_call(struct notifier_block *bl,
925                                 unsigned long state,
926                                 void *unused)
927 {
928         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
929
930         return kvm_arch_pm_notifier(kvm, state);
931 }
932
933 static void kvm_init_pm_notifier(struct kvm *kvm)
934 {
935         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
936         /* Suspend KVM before we suspend ftrace, RCU, etc. */
937         kvm->pm_notifier.priority = INT_MAX;
938         register_pm_notifier(&kvm->pm_notifier);
939 }
940
941 static void kvm_destroy_pm_notifier(struct kvm *kvm)
942 {
943         unregister_pm_notifier(&kvm->pm_notifier);
944 }
945 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
946 static void kvm_init_pm_notifier(struct kvm *kvm)
947 {
948 }
949
950 static void kvm_destroy_pm_notifier(struct kvm *kvm)
951 {
952 }
953 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
954
955 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
956 {
957         if (!memslot->dirty_bitmap)
958                 return;
959
960         kvfree(memslot->dirty_bitmap);
961         memslot->dirty_bitmap = NULL;
962 }
963
964 /* This does not remove the slot from struct kvm_memslots data structures */
965 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
966 {
967         kvm_destroy_dirty_bitmap(slot);
968
969         kvm_arch_free_memslot(kvm, slot);
970
971         kfree(slot);
972 }
973
974 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
975 {
976         struct hlist_node *idnode;
977         struct kvm_memory_slot *memslot;
978         int bkt;
979
980         /*
981          * The same memslot objects live in both active and inactive sets,
982          * arbitrarily free using index '1' so the second invocation of this
983          * function isn't operating over a structure with dangling pointers
984          * (even though this function isn't actually touching them).
985          */
986         if (!slots->node_idx)
987                 return;
988
989         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
990                 kvm_free_memslot(kvm, memslot);
991 }
992
993 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
994 {
995         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
996         case KVM_STATS_TYPE_INSTANT:
997                 return 0444;
998         case KVM_STATS_TYPE_CUMULATIVE:
999         case KVM_STATS_TYPE_PEAK:
1000         default:
1001                 return 0644;
1002         }
1003 }
1004
1005
1006 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1007 {
1008         int i;
1009         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1010                                       kvm_vcpu_stats_header.num_desc;
1011
1012         if (IS_ERR(kvm->debugfs_dentry))
1013                 return;
1014
1015         debugfs_remove_recursive(kvm->debugfs_dentry);
1016
1017         if (kvm->debugfs_stat_data) {
1018                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1019                         kfree(kvm->debugfs_stat_data[i]);
1020                 kfree(kvm->debugfs_stat_data);
1021         }
1022 }
1023
1024 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1025 {
1026         static DEFINE_MUTEX(kvm_debugfs_lock);
1027         struct dentry *dent;
1028         char dir_name[ITOA_MAX_LEN * 2];
1029         struct kvm_stat_data *stat_data;
1030         const struct _kvm_stats_desc *pdesc;
1031         int i, ret;
1032         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033                                       kvm_vcpu_stats_header.num_desc;
1034
1035         if (!debugfs_initialized())
1036                 return 0;
1037
1038         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1039         mutex_lock(&kvm_debugfs_lock);
1040         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1041         if (dent) {
1042                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1043                 dput(dent);
1044                 mutex_unlock(&kvm_debugfs_lock);
1045                 return 0;
1046         }
1047         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1048         mutex_unlock(&kvm_debugfs_lock);
1049         if (IS_ERR(dent))
1050                 return 0;
1051
1052         kvm->debugfs_dentry = dent;
1053         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1054                                          sizeof(*kvm->debugfs_stat_data),
1055                                          GFP_KERNEL_ACCOUNT);
1056         if (!kvm->debugfs_stat_data)
1057                 return -ENOMEM;
1058
1059         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1060                 pdesc = &kvm_vm_stats_desc[i];
1061                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1062                 if (!stat_data)
1063                         return -ENOMEM;
1064
1065                 stat_data->kvm = kvm;
1066                 stat_data->desc = pdesc;
1067                 stat_data->kind = KVM_STAT_VM;
1068                 kvm->debugfs_stat_data[i] = stat_data;
1069                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1070                                     kvm->debugfs_dentry, stat_data,
1071                                     &stat_fops_per_vm);
1072         }
1073
1074         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1075                 pdesc = &kvm_vcpu_stats_desc[i];
1076                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1077                 if (!stat_data)
1078                         return -ENOMEM;
1079
1080                 stat_data->kvm = kvm;
1081                 stat_data->desc = pdesc;
1082                 stat_data->kind = KVM_STAT_VCPU;
1083                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1084                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1085                                     kvm->debugfs_dentry, stat_data,
1086                                     &stat_fops_per_vm);
1087         }
1088
1089         ret = kvm_arch_create_vm_debugfs(kvm);
1090         if (ret) {
1091                 kvm_destroy_vm_debugfs(kvm);
1092                 return i;
1093         }
1094
1095         return 0;
1096 }
1097
1098 /*
1099  * Called after the VM is otherwise initialized, but just before adding it to
1100  * the vm_list.
1101  */
1102 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1103 {
1104         return 0;
1105 }
1106
1107 /*
1108  * Called just after removing the VM from the vm_list, but before doing any
1109  * other destruction.
1110  */
1111 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1112 {
1113 }
1114
1115 /*
1116  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1117  * be setup already, so we can create arch-specific debugfs entries under it.
1118  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1119  * a per-arch destroy interface is not needed.
1120  */
1121 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1122 {
1123         return 0;
1124 }
1125
1126 static struct kvm *kvm_create_vm(unsigned long type)
1127 {
1128         struct kvm *kvm = kvm_arch_alloc_vm();
1129         struct kvm_memslots *slots;
1130         int r = -ENOMEM;
1131         int i, j;
1132
1133         if (!kvm)
1134                 return ERR_PTR(-ENOMEM);
1135
1136         KVM_MMU_LOCK_INIT(kvm);
1137         mmgrab(current->mm);
1138         kvm->mm = current->mm;
1139         kvm_eventfd_init(kvm);
1140         mutex_init(&kvm->lock);
1141         mutex_init(&kvm->irq_lock);
1142         mutex_init(&kvm->slots_lock);
1143         mutex_init(&kvm->slots_arch_lock);
1144         spin_lock_init(&kvm->mn_invalidate_lock);
1145         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1146         xa_init(&kvm->vcpu_array);
1147
1148         INIT_LIST_HEAD(&kvm->gpc_list);
1149         spin_lock_init(&kvm->gpc_lock);
1150
1151         INIT_LIST_HEAD(&kvm->devices);
1152         kvm->max_vcpus = KVM_MAX_VCPUS;
1153
1154         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1155
1156         /*
1157          * Force subsequent debugfs file creations to fail if the VM directory
1158          * is not created (by kvm_create_vm_debugfs()).
1159          */
1160         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1161
1162         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1163                  task_pid_nr(current));
1164
1165         if (init_srcu_struct(&kvm->srcu))
1166                 goto out_err_no_srcu;
1167         if (init_srcu_struct(&kvm->irq_srcu))
1168                 goto out_err_no_irq_srcu;
1169
1170         refcount_set(&kvm->users_count, 1);
1171         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1172                 for (j = 0; j < 2; j++) {
1173                         slots = &kvm->__memslots[i][j];
1174
1175                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1176                         slots->hva_tree = RB_ROOT_CACHED;
1177                         slots->gfn_tree = RB_ROOT;
1178                         hash_init(slots->id_hash);
1179                         slots->node_idx = j;
1180
1181                         /* Generations must be different for each address space. */
1182                         slots->generation = i;
1183                 }
1184
1185                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1186         }
1187
1188         for (i = 0; i < KVM_NR_BUSES; i++) {
1189                 rcu_assign_pointer(kvm->buses[i],
1190                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1191                 if (!kvm->buses[i])
1192                         goto out_err_no_arch_destroy_vm;
1193         }
1194
1195         kvm->max_halt_poll_ns = halt_poll_ns;
1196
1197         r = kvm_arch_init_vm(kvm, type);
1198         if (r)
1199                 goto out_err_no_arch_destroy_vm;
1200
1201         r = hardware_enable_all();
1202         if (r)
1203                 goto out_err_no_disable;
1204
1205 #ifdef CONFIG_HAVE_KVM_IRQFD
1206         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1207 #endif
1208
1209         r = kvm_init_mmu_notifier(kvm);
1210         if (r)
1211                 goto out_err_no_mmu_notifier;
1212
1213         r = kvm_arch_post_init_vm(kvm);
1214         if (r)
1215                 goto out_err;
1216
1217         mutex_lock(&kvm_lock);
1218         list_add(&kvm->vm_list, &vm_list);
1219         mutex_unlock(&kvm_lock);
1220
1221         preempt_notifier_inc();
1222         kvm_init_pm_notifier(kvm);
1223
1224         /*
1225          * When the fd passed to this ioctl() is opened it pins the module,
1226          * but try_module_get() also prevents getting a reference if the module
1227          * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1228          */
1229         if (!try_module_get(kvm_chardev_ops.owner)) {
1230                 r = -ENODEV;
1231                 goto out_err;
1232         }
1233
1234         return kvm;
1235
1236 out_err:
1237 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1238         if (kvm->mmu_notifier.ops)
1239                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1240 #endif
1241 out_err_no_mmu_notifier:
1242         hardware_disable_all();
1243 out_err_no_disable:
1244         kvm_arch_destroy_vm(kvm);
1245 out_err_no_arch_destroy_vm:
1246         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1247         for (i = 0; i < KVM_NR_BUSES; i++)
1248                 kfree(kvm_get_bus(kvm, i));
1249         cleanup_srcu_struct(&kvm->irq_srcu);
1250 out_err_no_irq_srcu:
1251         cleanup_srcu_struct(&kvm->srcu);
1252 out_err_no_srcu:
1253         kvm_arch_free_vm(kvm);
1254         mmdrop(current->mm);
1255         return ERR_PTR(r);
1256 }
1257
1258 static void kvm_destroy_devices(struct kvm *kvm)
1259 {
1260         struct kvm_device *dev, *tmp;
1261
1262         /*
1263          * We do not need to take the kvm->lock here, because nobody else
1264          * has a reference to the struct kvm at this point and therefore
1265          * cannot access the devices list anyhow.
1266          */
1267         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1268                 list_del(&dev->vm_node);
1269                 dev->ops->destroy(dev);
1270         }
1271 }
1272
1273 static void kvm_destroy_vm(struct kvm *kvm)
1274 {
1275         int i;
1276         struct mm_struct *mm = kvm->mm;
1277
1278         kvm_destroy_pm_notifier(kvm);
1279         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1280         kvm_destroy_vm_debugfs(kvm);
1281         kvm_arch_sync_events(kvm);
1282         mutex_lock(&kvm_lock);
1283         list_del(&kvm->vm_list);
1284         mutex_unlock(&kvm_lock);
1285         kvm_arch_pre_destroy_vm(kvm);
1286
1287         kvm_free_irq_routing(kvm);
1288         for (i = 0; i < KVM_NR_BUSES; i++) {
1289                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1290
1291                 if (bus)
1292                         kvm_io_bus_destroy(bus);
1293                 kvm->buses[i] = NULL;
1294         }
1295         kvm_coalesced_mmio_free(kvm);
1296 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1297         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1298         /*
1299          * At this point, pending calls to invalidate_range_start()
1300          * have completed but no more MMU notifiers will run, so
1301          * mn_active_invalidate_count may remain unbalanced.
1302          * No threads can be waiting in install_new_memslots as the
1303          * last reference on KVM has been dropped, but freeing
1304          * memslots would deadlock without this manual intervention.
1305          */
1306         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1307         kvm->mn_active_invalidate_count = 0;
1308 #else
1309         kvm_flush_shadow_all(kvm);
1310 #endif
1311         kvm_arch_destroy_vm(kvm);
1312         kvm_destroy_devices(kvm);
1313         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1314                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1315                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1316         }
1317         cleanup_srcu_struct(&kvm->irq_srcu);
1318         cleanup_srcu_struct(&kvm->srcu);
1319         kvm_arch_free_vm(kvm);
1320         preempt_notifier_dec();
1321         hardware_disable_all();
1322         mmdrop(mm);
1323         module_put(kvm_chardev_ops.owner);
1324 }
1325
1326 void kvm_get_kvm(struct kvm *kvm)
1327 {
1328         refcount_inc(&kvm->users_count);
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1331
1332 /*
1333  * Make sure the vm is not during destruction, which is a safe version of
1334  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1335  */
1336 bool kvm_get_kvm_safe(struct kvm *kvm)
1337 {
1338         return refcount_inc_not_zero(&kvm->users_count);
1339 }
1340 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1341
1342 void kvm_put_kvm(struct kvm *kvm)
1343 {
1344         if (refcount_dec_and_test(&kvm->users_count))
1345                 kvm_destroy_vm(kvm);
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1348
1349 /*
1350  * Used to put a reference that was taken on behalf of an object associated
1351  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1352  * of the new file descriptor fails and the reference cannot be transferred to
1353  * its final owner.  In such cases, the caller is still actively using @kvm and
1354  * will fail miserably if the refcount unexpectedly hits zero.
1355  */
1356 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1357 {
1358         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1361
1362 static int kvm_vm_release(struct inode *inode, struct file *filp)
1363 {
1364         struct kvm *kvm = filp->private_data;
1365
1366         kvm_irqfd_release(kvm);
1367
1368         kvm_put_kvm(kvm);
1369         return 0;
1370 }
1371
1372 /*
1373  * Allocation size is twice as large as the actual dirty bitmap size.
1374  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1375  */
1376 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1377 {
1378         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1379
1380         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1381         if (!memslot->dirty_bitmap)
1382                 return -ENOMEM;
1383
1384         return 0;
1385 }
1386
1387 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1388 {
1389         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1390         int node_idx_inactive = active->node_idx ^ 1;
1391
1392         return &kvm->__memslots[as_id][node_idx_inactive];
1393 }
1394
1395 /*
1396  * Helper to get the address space ID when one of memslot pointers may be NULL.
1397  * This also serves as a sanity that at least one of the pointers is non-NULL,
1398  * and that their address space IDs don't diverge.
1399  */
1400 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1401                                   struct kvm_memory_slot *b)
1402 {
1403         if (WARN_ON_ONCE(!a && !b))
1404                 return 0;
1405
1406         if (!a)
1407                 return b->as_id;
1408         if (!b)
1409                 return a->as_id;
1410
1411         WARN_ON_ONCE(a->as_id != b->as_id);
1412         return a->as_id;
1413 }
1414
1415 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1416                                 struct kvm_memory_slot *slot)
1417 {
1418         struct rb_root *gfn_tree = &slots->gfn_tree;
1419         struct rb_node **node, *parent;
1420         int idx = slots->node_idx;
1421
1422         parent = NULL;
1423         for (node = &gfn_tree->rb_node; *node; ) {
1424                 struct kvm_memory_slot *tmp;
1425
1426                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1427                 parent = *node;
1428                 if (slot->base_gfn < tmp->base_gfn)
1429                         node = &(*node)->rb_left;
1430                 else if (slot->base_gfn > tmp->base_gfn)
1431                         node = &(*node)->rb_right;
1432                 else
1433                         BUG();
1434         }
1435
1436         rb_link_node(&slot->gfn_node[idx], parent, node);
1437         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1438 }
1439
1440 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1441                                struct kvm_memory_slot *slot)
1442 {
1443         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1444 }
1445
1446 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1447                                  struct kvm_memory_slot *old,
1448                                  struct kvm_memory_slot *new)
1449 {
1450         int idx = slots->node_idx;
1451
1452         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1453
1454         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1455                         &slots->gfn_tree);
1456 }
1457
1458 /*
1459  * Replace @old with @new in the inactive memslots.
1460  *
1461  * With NULL @old this simply adds @new.
1462  * With NULL @new this simply removes @old.
1463  *
1464  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1465  * appropriately.
1466  */
1467 static void kvm_replace_memslot(struct kvm *kvm,
1468                                 struct kvm_memory_slot *old,
1469                                 struct kvm_memory_slot *new)
1470 {
1471         int as_id = kvm_memslots_get_as_id(old, new);
1472         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1473         int idx = slots->node_idx;
1474
1475         if (old) {
1476                 hash_del(&old->id_node[idx]);
1477                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1478
1479                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1480                         atomic_long_set(&slots->last_used_slot, (long)new);
1481
1482                 if (!new) {
1483                         kvm_erase_gfn_node(slots, old);
1484                         return;
1485                 }
1486         }
1487
1488         /*
1489          * Initialize @new's hva range.  Do this even when replacing an @old
1490          * slot, kvm_copy_memslot() deliberately does not touch node data.
1491          */
1492         new->hva_node[idx].start = new->userspace_addr;
1493         new->hva_node[idx].last = new->userspace_addr +
1494                                   (new->npages << PAGE_SHIFT) - 1;
1495
1496         /*
1497          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1498          * hva_node needs to be swapped with remove+insert even though hva can't
1499          * change when replacing an existing slot.
1500          */
1501         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1502         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1503
1504         /*
1505          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1506          * switch the node in the gfn tree instead of removing the old and
1507          * inserting the new as two separate operations. Replacement is a
1508          * single O(1) operation versus two O(log(n)) operations for
1509          * remove+insert.
1510          */
1511         if (old && old->base_gfn == new->base_gfn) {
1512                 kvm_replace_gfn_node(slots, old, new);
1513         } else {
1514                 if (old)
1515                         kvm_erase_gfn_node(slots, old);
1516                 kvm_insert_gfn_node(slots, new);
1517         }
1518 }
1519
1520 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1521 {
1522         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1523
1524 #ifdef __KVM_HAVE_READONLY_MEM
1525         valid_flags |= KVM_MEM_READONLY;
1526 #endif
1527
1528         if (mem->flags & ~valid_flags)
1529                 return -EINVAL;
1530
1531         return 0;
1532 }
1533
1534 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1535 {
1536         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1537
1538         /* Grab the generation from the activate memslots. */
1539         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1540
1541         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1542         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1543
1544         /*
1545          * Do not store the new memslots while there are invalidations in
1546          * progress, otherwise the locking in invalidate_range_start and
1547          * invalidate_range_end will be unbalanced.
1548          */
1549         spin_lock(&kvm->mn_invalidate_lock);
1550         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1551         while (kvm->mn_active_invalidate_count) {
1552                 set_current_state(TASK_UNINTERRUPTIBLE);
1553                 spin_unlock(&kvm->mn_invalidate_lock);
1554                 schedule();
1555                 spin_lock(&kvm->mn_invalidate_lock);
1556         }
1557         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558         rcu_assign_pointer(kvm->memslots[as_id], slots);
1559         spin_unlock(&kvm->mn_invalidate_lock);
1560
1561         /*
1562          * Acquired in kvm_set_memslot. Must be released before synchronize
1563          * SRCU below in order to avoid deadlock with another thread
1564          * acquiring the slots_arch_lock in an srcu critical section.
1565          */
1566         mutex_unlock(&kvm->slots_arch_lock);
1567
1568         synchronize_srcu_expedited(&kvm->srcu);
1569
1570         /*
1571          * Increment the new memslot generation a second time, dropping the
1572          * update in-progress flag and incrementing the generation based on
1573          * the number of address spaces.  This provides a unique and easily
1574          * identifiable generation number while the memslots are in flux.
1575          */
1576         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1577
1578         /*
1579          * Generations must be unique even across address spaces.  We do not need
1580          * a global counter for that, instead the generation space is evenly split
1581          * across address spaces.  For example, with two address spaces, address
1582          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1583          * use generations 1, 3, 5, ...
1584          */
1585         gen += KVM_ADDRESS_SPACE_NUM;
1586
1587         kvm_arch_memslots_updated(kvm, gen);
1588
1589         slots->generation = gen;
1590 }
1591
1592 static int kvm_prepare_memory_region(struct kvm *kvm,
1593                                      const struct kvm_memory_slot *old,
1594                                      struct kvm_memory_slot *new,
1595                                      enum kvm_mr_change change)
1596 {
1597         int r;
1598
1599         /*
1600          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1601          * will be freed on "commit".  If logging is enabled in both old and
1602          * new, reuse the existing bitmap.  If logging is enabled only in the
1603          * new and KVM isn't using a ring buffer, allocate and initialize a
1604          * new bitmap.
1605          */
1606         if (change != KVM_MR_DELETE) {
1607                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1608                         new->dirty_bitmap = NULL;
1609                 else if (old && old->dirty_bitmap)
1610                         new->dirty_bitmap = old->dirty_bitmap;
1611                 else if (!kvm->dirty_ring_size) {
1612                         r = kvm_alloc_dirty_bitmap(new);
1613                         if (r)
1614                                 return r;
1615
1616                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1617                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1618                 }
1619         }
1620
1621         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1622
1623         /* Free the bitmap on failure if it was allocated above. */
1624         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1625                 kvm_destroy_dirty_bitmap(new);
1626
1627         return r;
1628 }
1629
1630 static void kvm_commit_memory_region(struct kvm *kvm,
1631                                      struct kvm_memory_slot *old,
1632                                      const struct kvm_memory_slot *new,
1633                                      enum kvm_mr_change change)
1634 {
1635         /*
1636          * Update the total number of memslot pages before calling the arch
1637          * hook so that architectures can consume the result directly.
1638          */
1639         if (change == KVM_MR_DELETE)
1640                 kvm->nr_memslot_pages -= old->npages;
1641         else if (change == KVM_MR_CREATE)
1642                 kvm->nr_memslot_pages += new->npages;
1643
1644         kvm_arch_commit_memory_region(kvm, old, new, change);
1645
1646         switch (change) {
1647         case KVM_MR_CREATE:
1648                 /* Nothing more to do. */
1649                 break;
1650         case KVM_MR_DELETE:
1651                 /* Free the old memslot and all its metadata. */
1652                 kvm_free_memslot(kvm, old);
1653                 break;
1654         case KVM_MR_MOVE:
1655         case KVM_MR_FLAGS_ONLY:
1656                 /*
1657                  * Free the dirty bitmap as needed; the below check encompasses
1658                  * both the flags and whether a ring buffer is being used)
1659                  */
1660                 if (old->dirty_bitmap && !new->dirty_bitmap)
1661                         kvm_destroy_dirty_bitmap(old);
1662
1663                 /*
1664                  * The final quirk.  Free the detached, old slot, but only its
1665                  * memory, not any metadata.  Metadata, including arch specific
1666                  * data, may be reused by @new.
1667                  */
1668                 kfree(old);
1669                 break;
1670         default:
1671                 BUG();
1672         }
1673 }
1674
1675 /*
1676  * Activate @new, which must be installed in the inactive slots by the caller,
1677  * by swapping the active slots and then propagating @new to @old once @old is
1678  * unreachable and can be safely modified.
1679  *
1680  * With NULL @old this simply adds @new to @active (while swapping the sets).
1681  * With NULL @new this simply removes @old from @active and frees it
1682  * (while also swapping the sets).
1683  */
1684 static void kvm_activate_memslot(struct kvm *kvm,
1685                                  struct kvm_memory_slot *old,
1686                                  struct kvm_memory_slot *new)
1687 {
1688         int as_id = kvm_memslots_get_as_id(old, new);
1689
1690         kvm_swap_active_memslots(kvm, as_id);
1691
1692         /* Propagate the new memslot to the now inactive memslots. */
1693         kvm_replace_memslot(kvm, old, new);
1694 }
1695
1696 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1697                              const struct kvm_memory_slot *src)
1698 {
1699         dest->base_gfn = src->base_gfn;
1700         dest->npages = src->npages;
1701         dest->dirty_bitmap = src->dirty_bitmap;
1702         dest->arch = src->arch;
1703         dest->userspace_addr = src->userspace_addr;
1704         dest->flags = src->flags;
1705         dest->id = src->id;
1706         dest->as_id = src->as_id;
1707 }
1708
1709 static void kvm_invalidate_memslot(struct kvm *kvm,
1710                                    struct kvm_memory_slot *old,
1711                                    struct kvm_memory_slot *invalid_slot)
1712 {
1713         /*
1714          * Mark the current slot INVALID.  As with all memslot modifications,
1715          * this must be done on an unreachable slot to avoid modifying the
1716          * current slot in the active tree.
1717          */
1718         kvm_copy_memslot(invalid_slot, old);
1719         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1720         kvm_replace_memslot(kvm, old, invalid_slot);
1721
1722         /*
1723          * Activate the slot that is now marked INVALID, but don't propagate
1724          * the slot to the now inactive slots. The slot is either going to be
1725          * deleted or recreated as a new slot.
1726          */
1727         kvm_swap_active_memslots(kvm, old->as_id);
1728
1729         /*
1730          * From this point no new shadow pages pointing to a deleted, or moved,
1731          * memslot will be created.  Validation of sp->gfn happens in:
1732          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1733          *      - kvm_is_visible_gfn (mmu_check_root)
1734          */
1735         kvm_arch_flush_shadow_memslot(kvm, old);
1736         kvm_arch_guest_memory_reclaimed(kvm);
1737
1738         /* Was released by kvm_swap_active_memslots, reacquire. */
1739         mutex_lock(&kvm->slots_arch_lock);
1740
1741         /*
1742          * Copy the arch-specific field of the newly-installed slot back to the
1743          * old slot as the arch data could have changed between releasing
1744          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1745          * above.  Writers are required to retrieve memslots *after* acquiring
1746          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1747          */
1748         old->arch = invalid_slot->arch;
1749 }
1750
1751 static void kvm_create_memslot(struct kvm *kvm,
1752                                struct kvm_memory_slot *new)
1753 {
1754         /* Add the new memslot to the inactive set and activate. */
1755         kvm_replace_memslot(kvm, NULL, new);
1756         kvm_activate_memslot(kvm, NULL, new);
1757 }
1758
1759 static void kvm_delete_memslot(struct kvm *kvm,
1760                                struct kvm_memory_slot *old,
1761                                struct kvm_memory_slot *invalid_slot)
1762 {
1763         /*
1764          * Remove the old memslot (in the inactive memslots) by passing NULL as
1765          * the "new" slot, and for the invalid version in the active slots.
1766          */
1767         kvm_replace_memslot(kvm, old, NULL);
1768         kvm_activate_memslot(kvm, invalid_slot, NULL);
1769 }
1770
1771 static void kvm_move_memslot(struct kvm *kvm,
1772                              struct kvm_memory_slot *old,
1773                              struct kvm_memory_slot *new,
1774                              struct kvm_memory_slot *invalid_slot)
1775 {
1776         /*
1777          * Replace the old memslot in the inactive slots, and then swap slots
1778          * and replace the current INVALID with the new as well.
1779          */
1780         kvm_replace_memslot(kvm, old, new);
1781         kvm_activate_memslot(kvm, invalid_slot, new);
1782 }
1783
1784 static void kvm_update_flags_memslot(struct kvm *kvm,
1785                                      struct kvm_memory_slot *old,
1786                                      struct kvm_memory_slot *new)
1787 {
1788         /*
1789          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1790          * an intermediate step. Instead, the old memslot is simply replaced
1791          * with a new, updated copy in both memslot sets.
1792          */
1793         kvm_replace_memslot(kvm, old, new);
1794         kvm_activate_memslot(kvm, old, new);
1795 }
1796
1797 static int kvm_set_memslot(struct kvm *kvm,
1798                            struct kvm_memory_slot *old,
1799                            struct kvm_memory_slot *new,
1800                            enum kvm_mr_change change)
1801 {
1802         struct kvm_memory_slot *invalid_slot;
1803         int r;
1804
1805         /*
1806          * Released in kvm_swap_active_memslots.
1807          *
1808          * Must be held from before the current memslots are copied until
1809          * after the new memslots are installed with rcu_assign_pointer,
1810          * then released before the synchronize srcu in kvm_swap_active_memslots.
1811          *
1812          * When modifying memslots outside of the slots_lock, must be held
1813          * before reading the pointer to the current memslots until after all
1814          * changes to those memslots are complete.
1815          *
1816          * These rules ensure that installing new memslots does not lose
1817          * changes made to the previous memslots.
1818          */
1819         mutex_lock(&kvm->slots_arch_lock);
1820
1821         /*
1822          * Invalidate the old slot if it's being deleted or moved.  This is
1823          * done prior to actually deleting/moving the memslot to allow vCPUs to
1824          * continue running by ensuring there are no mappings or shadow pages
1825          * for the memslot when it is deleted/moved.  Without pre-invalidation
1826          * (and without a lock), a window would exist between effecting the
1827          * delete/move and committing the changes in arch code where KVM or a
1828          * guest could access a non-existent memslot.
1829          *
1830          * Modifications are done on a temporary, unreachable slot.  The old
1831          * slot needs to be preserved in case a later step fails and the
1832          * invalidation needs to be reverted.
1833          */
1834         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1835                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1836                 if (!invalid_slot) {
1837                         mutex_unlock(&kvm->slots_arch_lock);
1838                         return -ENOMEM;
1839                 }
1840                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1841         }
1842
1843         r = kvm_prepare_memory_region(kvm, old, new, change);
1844         if (r) {
1845                 /*
1846                  * For DELETE/MOVE, revert the above INVALID change.  No
1847                  * modifications required since the original slot was preserved
1848                  * in the inactive slots.  Changing the active memslots also
1849                  * release slots_arch_lock.
1850                  */
1851                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1852                         kvm_activate_memslot(kvm, invalid_slot, old);
1853                         kfree(invalid_slot);
1854                 } else {
1855                         mutex_unlock(&kvm->slots_arch_lock);
1856                 }
1857                 return r;
1858         }
1859
1860         /*
1861          * For DELETE and MOVE, the working slot is now active as the INVALID
1862          * version of the old slot.  MOVE is particularly special as it reuses
1863          * the old slot and returns a copy of the old slot (in working_slot).
1864          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1865          * old slot is detached but otherwise preserved.
1866          */
1867         if (change == KVM_MR_CREATE)
1868                 kvm_create_memslot(kvm, new);
1869         else if (change == KVM_MR_DELETE)
1870                 kvm_delete_memslot(kvm, old, invalid_slot);
1871         else if (change == KVM_MR_MOVE)
1872                 kvm_move_memslot(kvm, old, new, invalid_slot);
1873         else if (change == KVM_MR_FLAGS_ONLY)
1874                 kvm_update_flags_memslot(kvm, old, new);
1875         else
1876                 BUG();
1877
1878         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1879         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1880                 kfree(invalid_slot);
1881
1882         /*
1883          * No need to refresh new->arch, changes after dropping slots_arch_lock
1884          * will directly hit the final, active memslot.  Architectures are
1885          * responsible for knowing that new->arch may be stale.
1886          */
1887         kvm_commit_memory_region(kvm, old, new, change);
1888
1889         return 0;
1890 }
1891
1892 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1893                                       gfn_t start, gfn_t end)
1894 {
1895         struct kvm_memslot_iter iter;
1896
1897         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1898                 if (iter.slot->id != id)
1899                         return true;
1900         }
1901
1902         return false;
1903 }
1904
1905 /*
1906  * Allocate some memory and give it an address in the guest physical address
1907  * space.
1908  *
1909  * Discontiguous memory is allowed, mostly for framebuffers.
1910  *
1911  * Must be called holding kvm->slots_lock for write.
1912  */
1913 int __kvm_set_memory_region(struct kvm *kvm,
1914                             const struct kvm_userspace_memory_region *mem)
1915 {
1916         struct kvm_memory_slot *old, *new;
1917         struct kvm_memslots *slots;
1918         enum kvm_mr_change change;
1919         unsigned long npages;
1920         gfn_t base_gfn;
1921         int as_id, id;
1922         int r;
1923
1924         r = check_memory_region_flags(mem);
1925         if (r)
1926                 return r;
1927
1928         as_id = mem->slot >> 16;
1929         id = (u16)mem->slot;
1930
1931         /* General sanity checks */
1932         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1933             (mem->memory_size != (unsigned long)mem->memory_size))
1934                 return -EINVAL;
1935         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1936                 return -EINVAL;
1937         /* We can read the guest memory with __xxx_user() later on. */
1938         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1939             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1940              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1941                         mem->memory_size))
1942                 return -EINVAL;
1943         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1944                 return -EINVAL;
1945         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1946                 return -EINVAL;
1947         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1948                 return -EINVAL;
1949
1950         slots = __kvm_memslots(kvm, as_id);
1951
1952         /*
1953          * Note, the old memslot (and the pointer itself!) may be invalidated
1954          * and/or destroyed by kvm_set_memslot().
1955          */
1956         old = id_to_memslot(slots, id);
1957
1958         if (!mem->memory_size) {
1959                 if (!old || !old->npages)
1960                         return -EINVAL;
1961
1962                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1963                         return -EIO;
1964
1965                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1966         }
1967
1968         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1969         npages = (mem->memory_size >> PAGE_SHIFT);
1970
1971         if (!old || !old->npages) {
1972                 change = KVM_MR_CREATE;
1973
1974                 /*
1975                  * To simplify KVM internals, the total number of pages across
1976                  * all memslots must fit in an unsigned long.
1977                  */
1978                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1979                         return -EINVAL;
1980         } else { /* Modify an existing slot. */
1981                 if ((mem->userspace_addr != old->userspace_addr) ||
1982                     (npages != old->npages) ||
1983                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1984                         return -EINVAL;
1985
1986                 if (base_gfn != old->base_gfn)
1987                         change = KVM_MR_MOVE;
1988                 else if (mem->flags != old->flags)
1989                         change = KVM_MR_FLAGS_ONLY;
1990                 else /* Nothing to change. */
1991                         return 0;
1992         }
1993
1994         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1995             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1996                 return -EEXIST;
1997
1998         /* Allocate a slot that will persist in the memslot. */
1999         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2000         if (!new)
2001                 return -ENOMEM;
2002
2003         new->as_id = as_id;
2004         new->id = id;
2005         new->base_gfn = base_gfn;
2006         new->npages = npages;
2007         new->flags = mem->flags;
2008         new->userspace_addr = mem->userspace_addr;
2009
2010         r = kvm_set_memslot(kvm, old, new, change);
2011         if (r)
2012                 kfree(new);
2013         return r;
2014 }
2015 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2016
2017 int kvm_set_memory_region(struct kvm *kvm,
2018                           const struct kvm_userspace_memory_region *mem)
2019 {
2020         int r;
2021
2022         mutex_lock(&kvm->slots_lock);
2023         r = __kvm_set_memory_region(kvm, mem);
2024         mutex_unlock(&kvm->slots_lock);
2025         return r;
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2028
2029 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2030                                           struct kvm_userspace_memory_region *mem)
2031 {
2032         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2033                 return -EINVAL;
2034
2035         return kvm_set_memory_region(kvm, mem);
2036 }
2037
2038 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2039 /**
2040  * kvm_get_dirty_log - get a snapshot of dirty pages
2041  * @kvm:        pointer to kvm instance
2042  * @log:        slot id and address to which we copy the log
2043  * @is_dirty:   set to '1' if any dirty pages were found
2044  * @memslot:    set to the associated memslot, always valid on success
2045  */
2046 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2047                       int *is_dirty, struct kvm_memory_slot **memslot)
2048 {
2049         struct kvm_memslots *slots;
2050         int i, as_id, id;
2051         unsigned long n;
2052         unsigned long any = 0;
2053
2054         /* Dirty ring tracking is exclusive to dirty log tracking */
2055         if (kvm->dirty_ring_size)
2056                 return -ENXIO;
2057
2058         *memslot = NULL;
2059         *is_dirty = 0;
2060
2061         as_id = log->slot >> 16;
2062         id = (u16)log->slot;
2063         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2064                 return -EINVAL;
2065
2066         slots = __kvm_memslots(kvm, as_id);
2067         *memslot = id_to_memslot(slots, id);
2068         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2069                 return -ENOENT;
2070
2071         kvm_arch_sync_dirty_log(kvm, *memslot);
2072
2073         n = kvm_dirty_bitmap_bytes(*memslot);
2074
2075         for (i = 0; !any && i < n/sizeof(long); ++i)
2076                 any = (*memslot)->dirty_bitmap[i];
2077
2078         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2079                 return -EFAULT;
2080
2081         if (any)
2082                 *is_dirty = 1;
2083         return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2086
2087 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2088 /**
2089  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2090  *      and reenable dirty page tracking for the corresponding pages.
2091  * @kvm:        pointer to kvm instance
2092  * @log:        slot id and address to which we copy the log
2093  *
2094  * We need to keep it in mind that VCPU threads can write to the bitmap
2095  * concurrently. So, to avoid losing track of dirty pages we keep the
2096  * following order:
2097  *
2098  *    1. Take a snapshot of the bit and clear it if needed.
2099  *    2. Write protect the corresponding page.
2100  *    3. Copy the snapshot to the userspace.
2101  *    4. Upon return caller flushes TLB's if needed.
2102  *
2103  * Between 2 and 4, the guest may write to the page using the remaining TLB
2104  * entry.  This is not a problem because the page is reported dirty using
2105  * the snapshot taken before and step 4 ensures that writes done after
2106  * exiting to userspace will be logged for the next call.
2107  *
2108  */
2109 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2110 {
2111         struct kvm_memslots *slots;
2112         struct kvm_memory_slot *memslot;
2113         int i, as_id, id;
2114         unsigned long n;
2115         unsigned long *dirty_bitmap;
2116         unsigned long *dirty_bitmap_buffer;
2117         bool flush;
2118
2119         /* Dirty ring tracking is exclusive to dirty log tracking */
2120         if (kvm->dirty_ring_size)
2121                 return -ENXIO;
2122
2123         as_id = log->slot >> 16;
2124         id = (u16)log->slot;
2125         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2126                 return -EINVAL;
2127
2128         slots = __kvm_memslots(kvm, as_id);
2129         memslot = id_to_memslot(slots, id);
2130         if (!memslot || !memslot->dirty_bitmap)
2131                 return -ENOENT;
2132
2133         dirty_bitmap = memslot->dirty_bitmap;
2134
2135         kvm_arch_sync_dirty_log(kvm, memslot);
2136
2137         n = kvm_dirty_bitmap_bytes(memslot);
2138         flush = false;
2139         if (kvm->manual_dirty_log_protect) {
2140                 /*
2141                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2142                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2143                  * is some code duplication between this function and
2144                  * kvm_get_dirty_log, but hopefully all architecture
2145                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2146                  * can be eliminated.
2147                  */
2148                 dirty_bitmap_buffer = dirty_bitmap;
2149         } else {
2150                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2151                 memset(dirty_bitmap_buffer, 0, n);
2152
2153                 KVM_MMU_LOCK(kvm);
2154                 for (i = 0; i < n / sizeof(long); i++) {
2155                         unsigned long mask;
2156                         gfn_t offset;
2157
2158                         if (!dirty_bitmap[i])
2159                                 continue;
2160
2161                         flush = true;
2162                         mask = xchg(&dirty_bitmap[i], 0);
2163                         dirty_bitmap_buffer[i] = mask;
2164
2165                         offset = i * BITS_PER_LONG;
2166                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2167                                                                 offset, mask);
2168                 }
2169                 KVM_MMU_UNLOCK(kvm);
2170         }
2171
2172         if (flush)
2173                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2174
2175         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2176                 return -EFAULT;
2177         return 0;
2178 }
2179
2180
2181 /**
2182  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2183  * @kvm: kvm instance
2184  * @log: slot id and address to which we copy the log
2185  *
2186  * Steps 1-4 below provide general overview of dirty page logging. See
2187  * kvm_get_dirty_log_protect() function description for additional details.
2188  *
2189  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2190  * always flush the TLB (step 4) even if previous step failed  and the dirty
2191  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2192  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2193  * writes will be marked dirty for next log read.
2194  *
2195  *   1. Take a snapshot of the bit and clear it if needed.
2196  *   2. Write protect the corresponding page.
2197  *   3. Copy the snapshot to the userspace.
2198  *   4. Flush TLB's if needed.
2199  */
2200 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2201                                       struct kvm_dirty_log *log)
2202 {
2203         int r;
2204
2205         mutex_lock(&kvm->slots_lock);
2206
2207         r = kvm_get_dirty_log_protect(kvm, log);
2208
2209         mutex_unlock(&kvm->slots_lock);
2210         return r;
2211 }
2212
2213 /**
2214  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2215  *      and reenable dirty page tracking for the corresponding pages.
2216  * @kvm:        pointer to kvm instance
2217  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2218  */
2219 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2220                                        struct kvm_clear_dirty_log *log)
2221 {
2222         struct kvm_memslots *slots;
2223         struct kvm_memory_slot *memslot;
2224         int as_id, id;
2225         gfn_t offset;
2226         unsigned long i, n;
2227         unsigned long *dirty_bitmap;
2228         unsigned long *dirty_bitmap_buffer;
2229         bool flush;
2230
2231         /* Dirty ring tracking is exclusive to dirty log tracking */
2232         if (kvm->dirty_ring_size)
2233                 return -ENXIO;
2234
2235         as_id = log->slot >> 16;
2236         id = (u16)log->slot;
2237         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2238                 return -EINVAL;
2239
2240         if (log->first_page & 63)
2241                 return -EINVAL;
2242
2243         slots = __kvm_memslots(kvm, as_id);
2244         memslot = id_to_memslot(slots, id);
2245         if (!memslot || !memslot->dirty_bitmap)
2246                 return -ENOENT;
2247
2248         dirty_bitmap = memslot->dirty_bitmap;
2249
2250         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2251
2252         if (log->first_page > memslot->npages ||
2253             log->num_pages > memslot->npages - log->first_page ||
2254             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2255             return -EINVAL;
2256
2257         kvm_arch_sync_dirty_log(kvm, memslot);
2258
2259         flush = false;
2260         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2261         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2262                 return -EFAULT;
2263
2264         KVM_MMU_LOCK(kvm);
2265         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2266                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2267              i++, offset += BITS_PER_LONG) {
2268                 unsigned long mask = *dirty_bitmap_buffer++;
2269                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2270                 if (!mask)
2271                         continue;
2272
2273                 mask &= atomic_long_fetch_andnot(mask, p);
2274
2275                 /*
2276                  * mask contains the bits that really have been cleared.  This
2277                  * never includes any bits beyond the length of the memslot (if
2278                  * the length is not aligned to 64 pages), therefore it is not
2279                  * a problem if userspace sets them in log->dirty_bitmap.
2280                 */
2281                 if (mask) {
2282                         flush = true;
2283                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2284                                                                 offset, mask);
2285                 }
2286         }
2287         KVM_MMU_UNLOCK(kvm);
2288
2289         if (flush)
2290                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2291
2292         return 0;
2293 }
2294
2295 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2296                                         struct kvm_clear_dirty_log *log)
2297 {
2298         int r;
2299
2300         mutex_lock(&kvm->slots_lock);
2301
2302         r = kvm_clear_dirty_log_protect(kvm, log);
2303
2304         mutex_unlock(&kvm->slots_lock);
2305         return r;
2306 }
2307 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2308
2309 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2310 {
2311         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2312 }
2313 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2314
2315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2316 {
2317         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2318         u64 gen = slots->generation;
2319         struct kvm_memory_slot *slot;
2320
2321         /*
2322          * This also protects against using a memslot from a different address space,
2323          * since different address spaces have different generation numbers.
2324          */
2325         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2326                 vcpu->last_used_slot = NULL;
2327                 vcpu->last_used_slot_gen = gen;
2328         }
2329
2330         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2331         if (slot)
2332                 return slot;
2333
2334         /*
2335          * Fall back to searching all memslots. We purposely use
2336          * search_memslots() instead of __gfn_to_memslot() to avoid
2337          * thrashing the VM-wide last_used_slot in kvm_memslots.
2338          */
2339         slot = search_memslots(slots, gfn, false);
2340         if (slot) {
2341                 vcpu->last_used_slot = slot;
2342                 return slot;
2343         }
2344
2345         return NULL;
2346 }
2347
2348 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2349 {
2350         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2351
2352         return kvm_is_visible_memslot(memslot);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2355
2356 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2357 {
2358         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2359
2360         return kvm_is_visible_memslot(memslot);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2363
2364 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2365 {
2366         struct vm_area_struct *vma;
2367         unsigned long addr, size;
2368
2369         size = PAGE_SIZE;
2370
2371         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2372         if (kvm_is_error_hva(addr))
2373                 return PAGE_SIZE;
2374
2375         mmap_read_lock(current->mm);
2376         vma = find_vma(current->mm, addr);
2377         if (!vma)
2378                 goto out;
2379
2380         size = vma_kernel_pagesize(vma);
2381
2382 out:
2383         mmap_read_unlock(current->mm);
2384
2385         return size;
2386 }
2387
2388 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2389 {
2390         return slot->flags & KVM_MEM_READONLY;
2391 }
2392
2393 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2394                                        gfn_t *nr_pages, bool write)
2395 {
2396         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2397                 return KVM_HVA_ERR_BAD;
2398
2399         if (memslot_is_readonly(slot) && write)
2400                 return KVM_HVA_ERR_RO_BAD;
2401
2402         if (nr_pages)
2403                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2404
2405         return __gfn_to_hva_memslot(slot, gfn);
2406 }
2407
2408 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2409                                      gfn_t *nr_pages)
2410 {
2411         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2412 }
2413
2414 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2415                                         gfn_t gfn)
2416 {
2417         return gfn_to_hva_many(slot, gfn, NULL);
2418 }
2419 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2420
2421 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2422 {
2423         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2424 }
2425 EXPORT_SYMBOL_GPL(gfn_to_hva);
2426
2427 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2428 {
2429         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2430 }
2431 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2432
2433 /*
2434  * Return the hva of a @gfn and the R/W attribute if possible.
2435  *
2436  * @slot: the kvm_memory_slot which contains @gfn
2437  * @gfn: the gfn to be translated
2438  * @writable: used to return the read/write attribute of the @slot if the hva
2439  * is valid and @writable is not NULL
2440  */
2441 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2442                                       gfn_t gfn, bool *writable)
2443 {
2444         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2445
2446         if (!kvm_is_error_hva(hva) && writable)
2447                 *writable = !memslot_is_readonly(slot);
2448
2449         return hva;
2450 }
2451
2452 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2453 {
2454         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2455
2456         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2457 }
2458
2459 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2460 {
2461         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2462
2463         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464 }
2465
2466 static inline int check_user_page_hwpoison(unsigned long addr)
2467 {
2468         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2469
2470         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2471         return rc == -EHWPOISON;
2472 }
2473
2474 /*
2475  * The fast path to get the writable pfn which will be stored in @pfn,
2476  * true indicates success, otherwise false is returned.  It's also the
2477  * only part that runs if we can in atomic context.
2478  */
2479 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2480                             bool *writable, kvm_pfn_t *pfn)
2481 {
2482         struct page *page[1];
2483
2484         /*
2485          * Fast pin a writable pfn only if it is a write fault request
2486          * or the caller allows to map a writable pfn for a read fault
2487          * request.
2488          */
2489         if (!(write_fault || writable))
2490                 return false;
2491
2492         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2493                 *pfn = page_to_pfn(page[0]);
2494
2495                 if (writable)
2496                         *writable = true;
2497                 return true;
2498         }
2499
2500         return false;
2501 }
2502
2503 /*
2504  * The slow path to get the pfn of the specified host virtual address,
2505  * 1 indicates success, -errno is returned if error is detected.
2506  */
2507 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2508                            bool *writable, kvm_pfn_t *pfn)
2509 {
2510         unsigned int flags = FOLL_HWPOISON;
2511         struct page *page;
2512         int npages = 0;
2513
2514         might_sleep();
2515
2516         if (writable)
2517                 *writable = write_fault;
2518
2519         if (write_fault)
2520                 flags |= FOLL_WRITE;
2521         if (async)
2522                 flags |= FOLL_NOWAIT;
2523
2524         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2525         if (npages != 1)
2526                 return npages;
2527
2528         /* map read fault as writable if possible */
2529         if (unlikely(!write_fault) && writable) {
2530                 struct page *wpage;
2531
2532                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2533                         *writable = true;
2534                         put_page(page);
2535                         page = wpage;
2536                 }
2537         }
2538         *pfn = page_to_pfn(page);
2539         return npages;
2540 }
2541
2542 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2543 {
2544         if (unlikely(!(vma->vm_flags & VM_READ)))
2545                 return false;
2546
2547         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2548                 return false;
2549
2550         return true;
2551 }
2552
2553 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2554 {
2555         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2556
2557         if (!page)
2558                 return 1;
2559
2560         return get_page_unless_zero(page);
2561 }
2562
2563 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2564                                unsigned long addr, bool write_fault,
2565                                bool *writable, kvm_pfn_t *p_pfn)
2566 {
2567         kvm_pfn_t pfn;
2568         pte_t *ptep;
2569         spinlock_t *ptl;
2570         int r;
2571
2572         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2573         if (r) {
2574                 /*
2575                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2576                  * not call the fault handler, so do it here.
2577                  */
2578                 bool unlocked = false;
2579                 r = fixup_user_fault(current->mm, addr,
2580                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2581                                      &unlocked);
2582                 if (unlocked)
2583                         return -EAGAIN;
2584                 if (r)
2585                         return r;
2586
2587                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2588                 if (r)
2589                         return r;
2590         }
2591
2592         if (write_fault && !pte_write(*ptep)) {
2593                 pfn = KVM_PFN_ERR_RO_FAULT;
2594                 goto out;
2595         }
2596
2597         if (writable)
2598                 *writable = pte_write(*ptep);
2599         pfn = pte_pfn(*ptep);
2600
2601         /*
2602          * Get a reference here because callers of *hva_to_pfn* and
2603          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2604          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2605          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2606          * simply do nothing for reserved pfns.
2607          *
2608          * Whoever called remap_pfn_range is also going to call e.g.
2609          * unmap_mapping_range before the underlying pages are freed,
2610          * causing a call to our MMU notifier.
2611          *
2612          * Certain IO or PFNMAP mappings can be backed with valid
2613          * struct pages, but be allocated without refcounting e.g.,
2614          * tail pages of non-compound higher order allocations, which
2615          * would then underflow the refcount when the caller does the
2616          * required put_page. Don't allow those pages here.
2617          */ 
2618         if (!kvm_try_get_pfn(pfn))
2619                 r = -EFAULT;
2620
2621 out:
2622         pte_unmap_unlock(ptep, ptl);
2623         *p_pfn = pfn;
2624
2625         return r;
2626 }
2627
2628 /*
2629  * Pin guest page in memory and return its pfn.
2630  * @addr: host virtual address which maps memory to the guest
2631  * @atomic: whether this function can sleep
2632  * @async: whether this function need to wait IO complete if the
2633  *         host page is not in the memory
2634  * @write_fault: whether we should get a writable host page
2635  * @writable: whether it allows to map a writable host page for !@write_fault
2636  *
2637  * The function will map a writable host page for these two cases:
2638  * 1): @write_fault = true
2639  * 2): @write_fault = false && @writable, @writable will tell the caller
2640  *     whether the mapping is writable.
2641  */
2642 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2643                      bool write_fault, bool *writable)
2644 {
2645         struct vm_area_struct *vma;
2646         kvm_pfn_t pfn;
2647         int npages, r;
2648
2649         /* we can do it either atomically or asynchronously, not both */
2650         BUG_ON(atomic && async);
2651
2652         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2653                 return pfn;
2654
2655         if (atomic)
2656                 return KVM_PFN_ERR_FAULT;
2657
2658         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2659         if (npages == 1)
2660                 return pfn;
2661
2662         mmap_read_lock(current->mm);
2663         if (npages == -EHWPOISON ||
2664               (!async && check_user_page_hwpoison(addr))) {
2665                 pfn = KVM_PFN_ERR_HWPOISON;
2666                 goto exit;
2667         }
2668
2669 retry:
2670         vma = vma_lookup(current->mm, addr);
2671
2672         if (vma == NULL)
2673                 pfn = KVM_PFN_ERR_FAULT;
2674         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2675                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2676                 if (r == -EAGAIN)
2677                         goto retry;
2678                 if (r < 0)
2679                         pfn = KVM_PFN_ERR_FAULT;
2680         } else {
2681                 if (async && vma_is_valid(vma, write_fault))
2682                         *async = true;
2683                 pfn = KVM_PFN_ERR_FAULT;
2684         }
2685 exit:
2686         mmap_read_unlock(current->mm);
2687         return pfn;
2688 }
2689
2690 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2691                                bool atomic, bool *async, bool write_fault,
2692                                bool *writable, hva_t *hva)
2693 {
2694         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2695
2696         if (hva)
2697                 *hva = addr;
2698
2699         if (addr == KVM_HVA_ERR_RO_BAD) {
2700                 if (writable)
2701                         *writable = false;
2702                 return KVM_PFN_ERR_RO_FAULT;
2703         }
2704
2705         if (kvm_is_error_hva(addr)) {
2706                 if (writable)
2707                         *writable = false;
2708                 return KVM_PFN_NOSLOT;
2709         }
2710
2711         /* Do not map writable pfn in the readonly memslot. */
2712         if (writable && memslot_is_readonly(slot)) {
2713                 *writable = false;
2714                 writable = NULL;
2715         }
2716
2717         return hva_to_pfn(addr, atomic, async, write_fault,
2718                           writable);
2719 }
2720 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2721
2722 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2723                       bool *writable)
2724 {
2725         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2726                                     write_fault, writable, NULL);
2727 }
2728 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2729
2730 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2731 {
2732         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2733 }
2734 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2735
2736 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2737 {
2738         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2739 }
2740 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2741
2742 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2743 {
2744         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2747
2748 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2749 {
2750         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2751 }
2752 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2753
2754 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2755 {
2756         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2757 }
2758 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2759
2760 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2761                             struct page **pages, int nr_pages)
2762 {
2763         unsigned long addr;
2764         gfn_t entry = 0;
2765
2766         addr = gfn_to_hva_many(slot, gfn, &entry);
2767         if (kvm_is_error_hva(addr))
2768                 return -1;
2769
2770         if (entry < nr_pages)
2771                 return 0;
2772
2773         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2774 }
2775 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2776
2777 /*
2778  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2779  * backed by 'struct page'.  A valid example is if the backing memslot is
2780  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2781  * been elevated by gfn_to_pfn().
2782  */
2783 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2784 {
2785         struct page *page;
2786         kvm_pfn_t pfn;
2787
2788         pfn = gfn_to_pfn(kvm, gfn);
2789
2790         if (is_error_noslot_pfn(pfn))
2791                 return KVM_ERR_PTR_BAD_PAGE;
2792
2793         page = kvm_pfn_to_refcounted_page(pfn);
2794         if (!page)
2795                 return KVM_ERR_PTR_BAD_PAGE;
2796
2797         return page;
2798 }
2799 EXPORT_SYMBOL_GPL(gfn_to_page);
2800
2801 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2802 {
2803         if (dirty)
2804                 kvm_release_pfn_dirty(pfn);
2805         else
2806                 kvm_release_pfn_clean(pfn);
2807 }
2808
2809 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2810 {
2811         kvm_pfn_t pfn;
2812         void *hva = NULL;
2813         struct page *page = KVM_UNMAPPED_PAGE;
2814
2815         if (!map)
2816                 return -EINVAL;
2817
2818         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2819         if (is_error_noslot_pfn(pfn))
2820                 return -EINVAL;
2821
2822         if (pfn_valid(pfn)) {
2823                 page = pfn_to_page(pfn);
2824                 hva = kmap(page);
2825 #ifdef CONFIG_HAS_IOMEM
2826         } else {
2827                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2828 #endif
2829         }
2830
2831         if (!hva)
2832                 return -EFAULT;
2833
2834         map->page = page;
2835         map->hva = hva;
2836         map->pfn = pfn;
2837         map->gfn = gfn;
2838
2839         return 0;
2840 }
2841 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2842
2843 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2844 {
2845         if (!map)
2846                 return;
2847
2848         if (!map->hva)
2849                 return;
2850
2851         if (map->page != KVM_UNMAPPED_PAGE)
2852                 kunmap(map->page);
2853 #ifdef CONFIG_HAS_IOMEM
2854         else
2855                 memunmap(map->hva);
2856 #endif
2857
2858         if (dirty)
2859                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2860
2861         kvm_release_pfn(map->pfn, dirty);
2862
2863         map->hva = NULL;
2864         map->page = NULL;
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2867
2868 static bool kvm_is_ad_tracked_page(struct page *page)
2869 {
2870         /*
2871          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2872          * touched (e.g. set dirty) except by its owner".
2873          */
2874         return !PageReserved(page);
2875 }
2876
2877 static void kvm_set_page_dirty(struct page *page)
2878 {
2879         if (kvm_is_ad_tracked_page(page))
2880                 SetPageDirty(page);
2881 }
2882
2883 static void kvm_set_page_accessed(struct page *page)
2884 {
2885         if (kvm_is_ad_tracked_page(page))
2886                 mark_page_accessed(page);
2887 }
2888
2889 void kvm_release_page_clean(struct page *page)
2890 {
2891         WARN_ON(is_error_page(page));
2892
2893         kvm_set_page_accessed(page);
2894         put_page(page);
2895 }
2896 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2897
2898 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2899 {
2900         struct page *page;
2901
2902         if (is_error_noslot_pfn(pfn))
2903                 return;
2904
2905         page = kvm_pfn_to_refcounted_page(pfn);
2906         if (!page)
2907                 return;
2908
2909         kvm_release_page_clean(page);
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2912
2913 void kvm_release_page_dirty(struct page *page)
2914 {
2915         WARN_ON(is_error_page(page));
2916
2917         kvm_set_page_dirty(page);
2918         kvm_release_page_clean(page);
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2921
2922 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2923 {
2924         struct page *page;
2925
2926         if (is_error_noslot_pfn(pfn))
2927                 return;
2928
2929         page = kvm_pfn_to_refcounted_page(pfn);
2930         if (!page)
2931                 return;
2932
2933         kvm_release_page_dirty(page);
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2936
2937 /*
2938  * Note, checking for an error/noslot pfn is the caller's responsibility when
2939  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2940  * "set" helpers are not to be used when the pfn might point at garbage.
2941  */
2942 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2943 {
2944         if (WARN_ON(is_error_noslot_pfn(pfn)))
2945                 return;
2946
2947         if (pfn_valid(pfn))
2948                 kvm_set_page_dirty(pfn_to_page(pfn));
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2951
2952 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2953 {
2954         if (WARN_ON(is_error_noslot_pfn(pfn)))
2955                 return;
2956
2957         if (pfn_valid(pfn))
2958                 kvm_set_page_accessed(pfn_to_page(pfn));
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2961
2962 static int next_segment(unsigned long len, int offset)
2963 {
2964         if (len > PAGE_SIZE - offset)
2965                 return PAGE_SIZE - offset;
2966         else
2967                 return len;
2968 }
2969
2970 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2971                                  void *data, int offset, int len)
2972 {
2973         int r;
2974         unsigned long addr;
2975
2976         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2977         if (kvm_is_error_hva(addr))
2978                 return -EFAULT;
2979         r = __copy_from_user(data, (void __user *)addr + offset, len);
2980         if (r)
2981                 return -EFAULT;
2982         return 0;
2983 }
2984
2985 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2986                         int len)
2987 {
2988         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2989
2990         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2991 }
2992 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2993
2994 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2995                              int offset, int len)
2996 {
2997         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2998
2999         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3002
3003 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3004 {
3005         gfn_t gfn = gpa >> PAGE_SHIFT;
3006         int seg;
3007         int offset = offset_in_page(gpa);
3008         int ret;
3009
3010         while ((seg = next_segment(len, offset)) != 0) {
3011                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3012                 if (ret < 0)
3013                         return ret;
3014                 offset = 0;
3015                 len -= seg;
3016                 data += seg;
3017                 ++gfn;
3018         }
3019         return 0;
3020 }
3021 EXPORT_SYMBOL_GPL(kvm_read_guest);
3022
3023 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3024 {
3025         gfn_t gfn = gpa >> PAGE_SHIFT;
3026         int seg;
3027         int offset = offset_in_page(gpa);
3028         int ret;
3029
3030         while ((seg = next_segment(len, offset)) != 0) {
3031                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3032                 if (ret < 0)
3033                         return ret;
3034                 offset = 0;
3035                 len -= seg;
3036                 data += seg;
3037                 ++gfn;
3038         }
3039         return 0;
3040 }
3041 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3042
3043 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3044                                    void *data, int offset, unsigned long len)
3045 {
3046         int r;
3047         unsigned long addr;
3048
3049         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3050         if (kvm_is_error_hva(addr))
3051                 return -EFAULT;
3052         pagefault_disable();
3053         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3054         pagefault_enable();
3055         if (r)
3056                 return -EFAULT;
3057         return 0;
3058 }
3059
3060 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3061                                void *data, unsigned long len)
3062 {
3063         gfn_t gfn = gpa >> PAGE_SHIFT;
3064         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3065         int offset = offset_in_page(gpa);
3066
3067         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3068 }
3069 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3070
3071 static int __kvm_write_guest_page(struct kvm *kvm,
3072                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3073                                   const void *data, int offset, int len)
3074 {
3075         int r;
3076         unsigned long addr;
3077
3078         addr = gfn_to_hva_memslot(memslot, gfn);
3079         if (kvm_is_error_hva(addr))
3080                 return -EFAULT;
3081         r = __copy_to_user((void __user *)addr + offset, data, len);
3082         if (r)
3083                 return -EFAULT;
3084         mark_page_dirty_in_slot(kvm, memslot, gfn);
3085         return 0;
3086 }
3087
3088 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3089                          const void *data, int offset, int len)
3090 {
3091         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3092
3093         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3094 }
3095 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3096
3097 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3098                               const void *data, int offset, int len)
3099 {
3100         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3101
3102         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3103 }
3104 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3105
3106 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3107                     unsigned long len)
3108 {
3109         gfn_t gfn = gpa >> PAGE_SHIFT;
3110         int seg;
3111         int offset = offset_in_page(gpa);
3112         int ret;
3113
3114         while ((seg = next_segment(len, offset)) != 0) {
3115                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3116                 if (ret < 0)
3117                         return ret;
3118                 offset = 0;
3119                 len -= seg;
3120                 data += seg;
3121                 ++gfn;
3122         }
3123         return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_write_guest);
3126
3127 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3128                          unsigned long len)
3129 {
3130         gfn_t gfn = gpa >> PAGE_SHIFT;
3131         int seg;
3132         int offset = offset_in_page(gpa);
3133         int ret;
3134
3135         while ((seg = next_segment(len, offset)) != 0) {
3136                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3137                 if (ret < 0)
3138                         return ret;
3139                 offset = 0;
3140                 len -= seg;
3141                 data += seg;
3142                 ++gfn;
3143         }
3144         return 0;
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3147
3148 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3149                                        struct gfn_to_hva_cache *ghc,
3150                                        gpa_t gpa, unsigned long len)
3151 {
3152         int offset = offset_in_page(gpa);
3153         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3154         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3155         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3156         gfn_t nr_pages_avail;
3157
3158         /* Update ghc->generation before performing any error checks. */
3159         ghc->generation = slots->generation;
3160
3161         if (start_gfn > end_gfn) {
3162                 ghc->hva = KVM_HVA_ERR_BAD;
3163                 return -EINVAL;
3164         }
3165
3166         /*
3167          * If the requested region crosses two memslots, we still
3168          * verify that the entire region is valid here.
3169          */
3170         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3171                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3172                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3173                                            &nr_pages_avail);
3174                 if (kvm_is_error_hva(ghc->hva))
3175                         return -EFAULT;
3176         }
3177
3178         /* Use the slow path for cross page reads and writes. */
3179         if (nr_pages_needed == 1)
3180                 ghc->hva += offset;
3181         else
3182                 ghc->memslot = NULL;
3183
3184         ghc->gpa = gpa;
3185         ghc->len = len;
3186         return 0;
3187 }
3188
3189 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3190                               gpa_t gpa, unsigned long len)
3191 {
3192         struct kvm_memslots *slots = kvm_memslots(kvm);
3193         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3194 }
3195 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3196
3197 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3198                                   void *data, unsigned int offset,
3199                                   unsigned long len)
3200 {
3201         struct kvm_memslots *slots = kvm_memslots(kvm);
3202         int r;
3203         gpa_t gpa = ghc->gpa + offset;
3204
3205         if (WARN_ON_ONCE(len + offset > ghc->len))
3206                 return -EINVAL;
3207
3208         if (slots->generation != ghc->generation) {
3209                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3210                         return -EFAULT;
3211         }
3212
3213         if (kvm_is_error_hva(ghc->hva))
3214                 return -EFAULT;
3215
3216         if (unlikely(!ghc->memslot))
3217                 return kvm_write_guest(kvm, gpa, data, len);
3218
3219         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3220         if (r)
3221                 return -EFAULT;
3222         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3223
3224         return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3227
3228 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3229                            void *data, unsigned long len)
3230 {
3231         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3234
3235 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3236                                  void *data, unsigned int offset,
3237                                  unsigned long len)
3238 {
3239         struct kvm_memslots *slots = kvm_memslots(kvm);
3240         int r;
3241         gpa_t gpa = ghc->gpa + offset;
3242
3243         if (WARN_ON_ONCE(len + offset > ghc->len))
3244                 return -EINVAL;
3245
3246         if (slots->generation != ghc->generation) {
3247                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3248                         return -EFAULT;
3249         }
3250
3251         if (kvm_is_error_hva(ghc->hva))
3252                 return -EFAULT;
3253
3254         if (unlikely(!ghc->memslot))
3255                 return kvm_read_guest(kvm, gpa, data, len);
3256
3257         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3258         if (r)
3259                 return -EFAULT;
3260
3261         return 0;
3262 }
3263 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3264
3265 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3266                           void *data, unsigned long len)
3267 {
3268         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3271
3272 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3273 {
3274         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3275         gfn_t gfn = gpa >> PAGE_SHIFT;
3276         int seg;
3277         int offset = offset_in_page(gpa);
3278         int ret;
3279
3280         while ((seg = next_segment(len, offset)) != 0) {
3281                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3282                 if (ret < 0)
3283                         return ret;
3284                 offset = 0;
3285                 len -= seg;
3286                 ++gfn;
3287         }
3288         return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3291
3292 void mark_page_dirty_in_slot(struct kvm *kvm,
3293                              const struct kvm_memory_slot *memslot,
3294                              gfn_t gfn)
3295 {
3296         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3297
3298 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3299         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3300                 return;
3301 #endif
3302
3303         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3304                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3305                 u32 slot = (memslot->as_id << 16) | memslot->id;
3306
3307                 if (kvm->dirty_ring_size)
3308                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3309                                             slot, rel_gfn);
3310                 else
3311                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3312         }
3313 }
3314 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3315
3316 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3317 {
3318         struct kvm_memory_slot *memslot;
3319
3320         memslot = gfn_to_memslot(kvm, gfn);
3321         mark_page_dirty_in_slot(kvm, memslot, gfn);
3322 }
3323 EXPORT_SYMBOL_GPL(mark_page_dirty);
3324
3325 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3326 {
3327         struct kvm_memory_slot *memslot;
3328
3329         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3330         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3331 }
3332 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3333
3334 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3335 {
3336         if (!vcpu->sigset_active)
3337                 return;
3338
3339         /*
3340          * This does a lockless modification of ->real_blocked, which is fine
3341          * because, only current can change ->real_blocked and all readers of
3342          * ->real_blocked don't care as long ->real_blocked is always a subset
3343          * of ->blocked.
3344          */
3345         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3346 }
3347
3348 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3349 {
3350         if (!vcpu->sigset_active)
3351                 return;
3352
3353         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3354         sigemptyset(&current->real_blocked);
3355 }
3356
3357 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3358 {
3359         unsigned int old, val, grow, grow_start;
3360
3361         old = val = vcpu->halt_poll_ns;
3362         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3363         grow = READ_ONCE(halt_poll_ns_grow);
3364         if (!grow)
3365                 goto out;
3366
3367         val *= grow;
3368         if (val < grow_start)
3369                 val = grow_start;
3370
3371         if (val > vcpu->kvm->max_halt_poll_ns)
3372                 val = vcpu->kvm->max_halt_poll_ns;
3373
3374         vcpu->halt_poll_ns = val;
3375 out:
3376         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3377 }
3378
3379 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3380 {
3381         unsigned int old, val, shrink, grow_start;
3382
3383         old = val = vcpu->halt_poll_ns;
3384         shrink = READ_ONCE(halt_poll_ns_shrink);
3385         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3386         if (shrink == 0)
3387                 val = 0;
3388         else
3389                 val /= shrink;
3390
3391         if (val < grow_start)
3392                 val = 0;
3393
3394         vcpu->halt_poll_ns = val;
3395         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3396 }
3397
3398 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3399 {
3400         int ret = -EINTR;
3401         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3402
3403         if (kvm_arch_vcpu_runnable(vcpu)) {
3404                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3405                 goto out;
3406         }
3407         if (kvm_cpu_has_pending_timer(vcpu))
3408                 goto out;
3409         if (signal_pending(current))
3410                 goto out;
3411         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3412                 goto out;
3413
3414         ret = 0;
3415 out:
3416         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3417         return ret;
3418 }
3419
3420 /*
3421  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3422  * pending.  This is mostly used when halting a vCPU, but may also be used
3423  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3424  */
3425 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3426 {
3427         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3428         bool waited = false;
3429
3430         vcpu->stat.generic.blocking = 1;
3431
3432         preempt_disable();
3433         kvm_arch_vcpu_blocking(vcpu);
3434         prepare_to_rcuwait(wait);
3435         preempt_enable();
3436
3437         for (;;) {
3438                 set_current_state(TASK_INTERRUPTIBLE);
3439
3440                 if (kvm_vcpu_check_block(vcpu) < 0)
3441                         break;
3442
3443                 waited = true;
3444                 schedule();
3445         }
3446
3447         preempt_disable();
3448         finish_rcuwait(wait);
3449         kvm_arch_vcpu_unblocking(vcpu);
3450         preempt_enable();
3451
3452         vcpu->stat.generic.blocking = 0;
3453
3454         return waited;
3455 }
3456
3457 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3458                                           ktime_t end, bool success)
3459 {
3460         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3461         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3462
3463         ++vcpu->stat.generic.halt_attempted_poll;
3464
3465         if (success) {
3466                 ++vcpu->stat.generic.halt_successful_poll;
3467
3468                 if (!vcpu_valid_wakeup(vcpu))
3469                         ++vcpu->stat.generic.halt_poll_invalid;
3470
3471                 stats->halt_poll_success_ns += poll_ns;
3472                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3473         } else {
3474                 stats->halt_poll_fail_ns += poll_ns;
3475                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3476         }
3477 }
3478
3479 /*
3480  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3481  * polling is enabled, busy wait for a short time before blocking to avoid the
3482  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3483  * is halted.
3484  */
3485 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3486 {
3487         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3488         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3489         ktime_t start, cur, poll_end;
3490         bool waited = false;
3491         u64 halt_ns;
3492
3493         start = cur = poll_end = ktime_get();
3494         if (do_halt_poll) {
3495                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3496
3497                 do {
3498                         /*
3499                          * This sets KVM_REQ_UNHALT if an interrupt
3500                          * arrives.
3501                          */
3502                         if (kvm_vcpu_check_block(vcpu) < 0)
3503                                 goto out;
3504                         cpu_relax();
3505                         poll_end = cur = ktime_get();
3506                 } while (kvm_vcpu_can_poll(cur, stop));
3507         }
3508
3509         waited = kvm_vcpu_block(vcpu);
3510
3511         cur = ktime_get();
3512         if (waited) {
3513                 vcpu->stat.generic.halt_wait_ns +=
3514                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3515                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3516                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3517         }
3518 out:
3519         /* The total time the vCPU was "halted", including polling time. */
3520         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3521
3522         /*
3523          * Note, halt-polling is considered successful so long as the vCPU was
3524          * never actually scheduled out, i.e. even if the wake event arrived
3525          * after of the halt-polling loop itself, but before the full wait.
3526          */
3527         if (do_halt_poll)
3528                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3529
3530         if (halt_poll_allowed) {
3531                 if (!vcpu_valid_wakeup(vcpu)) {
3532                         shrink_halt_poll_ns(vcpu);
3533                 } else if (vcpu->kvm->max_halt_poll_ns) {
3534                         if (halt_ns <= vcpu->halt_poll_ns)
3535                                 ;
3536                         /* we had a long block, shrink polling */
3537                         else if (vcpu->halt_poll_ns &&
3538                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3539                                 shrink_halt_poll_ns(vcpu);
3540                         /* we had a short halt and our poll time is too small */
3541                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3542                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3543                                 grow_halt_poll_ns(vcpu);
3544                 } else {
3545                         vcpu->halt_poll_ns = 0;
3546                 }
3547         }
3548
3549         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3550 }
3551 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3552
3553 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3554 {
3555         if (__kvm_vcpu_wake_up(vcpu)) {
3556                 WRITE_ONCE(vcpu->ready, true);
3557                 ++vcpu->stat.generic.halt_wakeup;
3558                 return true;
3559         }
3560
3561         return false;
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3564
3565 #ifndef CONFIG_S390
3566 /*
3567  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3568  */
3569 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3570 {
3571         int me, cpu;
3572
3573         if (kvm_vcpu_wake_up(vcpu))
3574                 return;
3575
3576         me = get_cpu();
3577         /*
3578          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3579          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3580          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3581          * within the vCPU thread itself.
3582          */
3583         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3584                 if (vcpu->mode == IN_GUEST_MODE)
3585                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3586                 goto out;
3587         }
3588
3589         /*
3590          * Note, the vCPU could get migrated to a different pCPU at any point
3591          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3592          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3593          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3594          * vCPU also requires it to leave IN_GUEST_MODE.
3595          */
3596         if (kvm_arch_vcpu_should_kick(vcpu)) {
3597                 cpu = READ_ONCE(vcpu->cpu);
3598                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3599                         smp_send_reschedule(cpu);
3600         }
3601 out:
3602         put_cpu();
3603 }
3604 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3605 #endif /* !CONFIG_S390 */
3606
3607 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3608 {
3609         struct pid *pid;
3610         struct task_struct *task = NULL;
3611         int ret = 0;
3612
3613         rcu_read_lock();
3614         pid = rcu_dereference(target->pid);
3615         if (pid)
3616                 task = get_pid_task(pid, PIDTYPE_PID);
3617         rcu_read_unlock();
3618         if (!task)
3619                 return ret;
3620         ret = yield_to(task, 1);
3621         put_task_struct(task);
3622
3623         return ret;
3624 }
3625 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3626
3627 /*
3628  * Helper that checks whether a VCPU is eligible for directed yield.
3629  * Most eligible candidate to yield is decided by following heuristics:
3630  *
3631  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3632  *  (preempted lock holder), indicated by @in_spin_loop.
3633  *  Set at the beginning and cleared at the end of interception/PLE handler.
3634  *
3635  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3636  *  chance last time (mostly it has become eligible now since we have probably
3637  *  yielded to lockholder in last iteration. This is done by toggling
3638  *  @dy_eligible each time a VCPU checked for eligibility.)
3639  *
3640  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3641  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3642  *  burning. Giving priority for a potential lock-holder increases lock
3643  *  progress.
3644  *
3645  *  Since algorithm is based on heuristics, accessing another VCPU data without
3646  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3647  *  and continue with next VCPU and so on.
3648  */
3649 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3650 {
3651 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3652         bool eligible;
3653
3654         eligible = !vcpu->spin_loop.in_spin_loop ||
3655                     vcpu->spin_loop.dy_eligible;
3656
3657         if (vcpu->spin_loop.in_spin_loop)
3658                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3659
3660         return eligible;
3661 #else
3662         return true;
3663 #endif
3664 }
3665
3666 /*
3667  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3668  * a vcpu_load/vcpu_put pair.  However, for most architectures
3669  * kvm_arch_vcpu_runnable does not require vcpu_load.
3670  */
3671 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3672 {
3673         return kvm_arch_vcpu_runnable(vcpu);
3674 }
3675
3676 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3677 {
3678         if (kvm_arch_dy_runnable(vcpu))
3679                 return true;
3680
3681 #ifdef CONFIG_KVM_ASYNC_PF
3682         if (!list_empty_careful(&vcpu->async_pf.done))
3683                 return true;
3684 #endif
3685
3686         return false;
3687 }
3688
3689 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3690 {
3691         return false;
3692 }
3693
3694 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3695 {
3696         struct kvm *kvm = me->kvm;
3697         struct kvm_vcpu *vcpu;
3698         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3699         unsigned long i;
3700         int yielded = 0;
3701         int try = 3;
3702         int pass;
3703
3704         kvm_vcpu_set_in_spin_loop(me, true);
3705         /*
3706          * We boost the priority of a VCPU that is runnable but not
3707          * currently running, because it got preempted by something
3708          * else and called schedule in __vcpu_run.  Hopefully that
3709          * VCPU is holding the lock that we need and will release it.
3710          * We approximate round-robin by starting at the last boosted VCPU.
3711          */
3712         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3713                 kvm_for_each_vcpu(i, vcpu, kvm) {
3714                         if (!pass && i <= last_boosted_vcpu) {
3715                                 i = last_boosted_vcpu;
3716                                 continue;
3717                         } else if (pass && i > last_boosted_vcpu)
3718                                 break;
3719                         if (!READ_ONCE(vcpu->ready))
3720                                 continue;
3721                         if (vcpu == me)
3722                                 continue;
3723                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3724                                 continue;
3725                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3726                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3727                             !kvm_arch_vcpu_in_kernel(vcpu))
3728                                 continue;
3729                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3730                                 continue;
3731
3732                         yielded = kvm_vcpu_yield_to(vcpu);
3733                         if (yielded > 0) {
3734                                 kvm->last_boosted_vcpu = i;
3735                                 break;
3736                         } else if (yielded < 0) {
3737                                 try--;
3738                                 if (!try)
3739                                         break;
3740                         }
3741                 }
3742         }
3743         kvm_vcpu_set_in_spin_loop(me, false);
3744
3745         /* Ensure vcpu is not eligible during next spinloop */
3746         kvm_vcpu_set_dy_eligible(me, false);
3747 }
3748 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3749
3750 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3751 {
3752 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3753         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3754             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3755              kvm->dirty_ring_size / PAGE_SIZE);
3756 #else
3757         return false;
3758 #endif
3759 }
3760
3761 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3762 {
3763         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3764         struct page *page;
3765
3766         if (vmf->pgoff == 0)
3767                 page = virt_to_page(vcpu->run);
3768 #ifdef CONFIG_X86
3769         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3770                 page = virt_to_page(vcpu->arch.pio_data);
3771 #endif
3772 #ifdef CONFIG_KVM_MMIO
3773         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3774                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3775 #endif
3776         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3777                 page = kvm_dirty_ring_get_page(
3778                     &vcpu->dirty_ring,
3779                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3780         else
3781                 return kvm_arch_vcpu_fault(vcpu, vmf);
3782         get_page(page);
3783         vmf->page = page;
3784         return 0;
3785 }
3786
3787 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3788         .fault = kvm_vcpu_fault,
3789 };
3790
3791 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3792 {
3793         struct kvm_vcpu *vcpu = file->private_data;
3794         unsigned long pages = vma_pages(vma);
3795
3796         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3797              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3798             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3799                 return -EINVAL;
3800
3801         vma->vm_ops = &kvm_vcpu_vm_ops;
3802         return 0;
3803 }
3804
3805 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3806 {
3807         struct kvm_vcpu *vcpu = filp->private_data;
3808
3809         kvm_put_kvm(vcpu->kvm);
3810         return 0;
3811 }
3812
3813 static const struct file_operations kvm_vcpu_fops = {
3814         .release        = kvm_vcpu_release,
3815         .unlocked_ioctl = kvm_vcpu_ioctl,
3816         .mmap           = kvm_vcpu_mmap,
3817         .llseek         = noop_llseek,
3818         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3819 };
3820
3821 /*
3822  * Allocates an inode for the vcpu.
3823  */
3824 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3825 {
3826         char name[8 + 1 + ITOA_MAX_LEN + 1];
3827
3828         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3829         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3830 }
3831
3832 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3833 static int vcpu_get_pid(void *data, u64 *val)
3834 {
3835         struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3836         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3837         return 0;
3838 }
3839
3840 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3841
3842 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3843 {
3844         struct dentry *debugfs_dentry;
3845         char dir_name[ITOA_MAX_LEN * 2];
3846
3847         if (!debugfs_initialized())
3848                 return;
3849
3850         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3851         debugfs_dentry = debugfs_create_dir(dir_name,
3852                                             vcpu->kvm->debugfs_dentry);
3853         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3854                             &vcpu_get_pid_fops);
3855
3856         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3857 }
3858 #endif
3859
3860 /*
3861  * Creates some virtual cpus.  Good luck creating more than one.
3862  */
3863 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3864 {
3865         int r;
3866         struct kvm_vcpu *vcpu;
3867         struct page *page;
3868
3869         if (id >= KVM_MAX_VCPU_IDS)
3870                 return -EINVAL;
3871
3872         mutex_lock(&kvm->lock);
3873         if (kvm->created_vcpus >= kvm->max_vcpus) {
3874                 mutex_unlock(&kvm->lock);
3875                 return -EINVAL;
3876         }
3877
3878         r = kvm_arch_vcpu_precreate(kvm, id);
3879         if (r) {
3880                 mutex_unlock(&kvm->lock);
3881                 return r;
3882         }
3883
3884         kvm->created_vcpus++;
3885         mutex_unlock(&kvm->lock);
3886
3887         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3888         if (!vcpu) {
3889                 r = -ENOMEM;
3890                 goto vcpu_decrement;
3891         }
3892
3893         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3894         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3895         if (!page) {
3896                 r = -ENOMEM;
3897                 goto vcpu_free;
3898         }
3899         vcpu->run = page_address(page);
3900
3901         kvm_vcpu_init(vcpu, kvm, id);
3902
3903         r = kvm_arch_vcpu_create(vcpu);
3904         if (r)
3905                 goto vcpu_free_run_page;
3906
3907         if (kvm->dirty_ring_size) {
3908                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3909                                          id, kvm->dirty_ring_size);
3910                 if (r)
3911                         goto arch_vcpu_destroy;
3912         }
3913
3914         mutex_lock(&kvm->lock);
3915         if (kvm_get_vcpu_by_id(kvm, id)) {
3916                 r = -EEXIST;
3917                 goto unlock_vcpu_destroy;
3918         }
3919
3920         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3921         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3922         BUG_ON(r == -EBUSY);
3923         if (r)
3924                 goto unlock_vcpu_destroy;
3925
3926         /* Now it's all set up, let userspace reach it */
3927         kvm_get_kvm(kvm);
3928         r = create_vcpu_fd(vcpu);
3929         if (r < 0) {
3930                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3931                 kvm_put_kvm_no_destroy(kvm);
3932                 goto unlock_vcpu_destroy;
3933         }
3934
3935         /*
3936          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3937          * pointer before kvm->online_vcpu's incremented value.
3938          */
3939         smp_wmb();
3940         atomic_inc(&kvm->online_vcpus);
3941
3942         mutex_unlock(&kvm->lock);
3943         kvm_arch_vcpu_postcreate(vcpu);
3944         kvm_create_vcpu_debugfs(vcpu);
3945         return r;
3946
3947 unlock_vcpu_destroy:
3948         mutex_unlock(&kvm->lock);
3949         kvm_dirty_ring_free(&vcpu->dirty_ring);
3950 arch_vcpu_destroy:
3951         kvm_arch_vcpu_destroy(vcpu);
3952 vcpu_free_run_page:
3953         free_page((unsigned long)vcpu->run);
3954 vcpu_free:
3955         kmem_cache_free(kvm_vcpu_cache, vcpu);
3956 vcpu_decrement:
3957         mutex_lock(&kvm->lock);
3958         kvm->created_vcpus--;
3959         mutex_unlock(&kvm->lock);
3960         return r;
3961 }
3962
3963 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3964 {
3965         if (sigset) {
3966                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3967                 vcpu->sigset_active = 1;
3968                 vcpu->sigset = *sigset;
3969         } else
3970                 vcpu->sigset_active = 0;
3971         return 0;
3972 }
3973
3974 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3975                               size_t size, loff_t *offset)
3976 {
3977         struct kvm_vcpu *vcpu = file->private_data;
3978
3979         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3980                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3981                         sizeof(vcpu->stat), user_buffer, size, offset);
3982 }
3983
3984 static const struct file_operations kvm_vcpu_stats_fops = {
3985         .read = kvm_vcpu_stats_read,
3986         .llseek = noop_llseek,
3987 };
3988
3989 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3990 {
3991         int fd;
3992         struct file *file;
3993         char name[15 + ITOA_MAX_LEN + 1];
3994
3995         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3996
3997         fd = get_unused_fd_flags(O_CLOEXEC);
3998         if (fd < 0)
3999                 return fd;
4000
4001         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4002         if (IS_ERR(file)) {
4003                 put_unused_fd(fd);
4004                 return PTR_ERR(file);
4005         }
4006         file->f_mode |= FMODE_PREAD;
4007         fd_install(fd, file);
4008
4009         return fd;
4010 }
4011
4012 static long kvm_vcpu_ioctl(struct file *filp,
4013                            unsigned int ioctl, unsigned long arg)
4014 {
4015         struct kvm_vcpu *vcpu = filp->private_data;
4016         void __user *argp = (void __user *)arg;
4017         int r;
4018         struct kvm_fpu *fpu = NULL;
4019         struct kvm_sregs *kvm_sregs = NULL;
4020
4021         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4022                 return -EIO;
4023
4024         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4025                 return -EINVAL;
4026
4027         /*
4028          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4029          * execution; mutex_lock() would break them.
4030          */
4031         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4032         if (r != -ENOIOCTLCMD)
4033                 return r;
4034
4035         if (mutex_lock_killable(&vcpu->mutex))
4036                 return -EINTR;
4037         switch (ioctl) {
4038         case KVM_RUN: {
4039                 struct pid *oldpid;
4040                 r = -EINVAL;
4041                 if (arg)
4042                         goto out;
4043                 oldpid = rcu_access_pointer(vcpu->pid);
4044                 if (unlikely(oldpid != task_pid(current))) {
4045                         /* The thread running this VCPU changed. */
4046                         struct pid *newpid;
4047
4048                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4049                         if (r)
4050                                 break;
4051
4052                         newpid = get_task_pid(current, PIDTYPE_PID);
4053                         rcu_assign_pointer(vcpu->pid, newpid);
4054                         if (oldpid)
4055                                 synchronize_rcu();
4056                         put_pid(oldpid);
4057                 }
4058                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4059                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4060                 break;
4061         }
4062         case KVM_GET_REGS: {
4063                 struct kvm_regs *kvm_regs;
4064
4065                 r = -ENOMEM;
4066                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4067                 if (!kvm_regs)
4068                         goto out;
4069                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4070                 if (r)
4071                         goto out_free1;
4072                 r = -EFAULT;
4073                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4074                         goto out_free1;
4075                 r = 0;
4076 out_free1:
4077                 kfree(kvm_regs);
4078                 break;
4079         }
4080         case KVM_SET_REGS: {
4081                 struct kvm_regs *kvm_regs;
4082
4083                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4084                 if (IS_ERR(kvm_regs)) {
4085                         r = PTR_ERR(kvm_regs);
4086                         goto out;
4087                 }
4088                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4089                 kfree(kvm_regs);
4090                 break;
4091         }
4092         case KVM_GET_SREGS: {
4093                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4094                                     GFP_KERNEL_ACCOUNT);
4095                 r = -ENOMEM;
4096                 if (!kvm_sregs)
4097                         goto out;
4098                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4099                 if (r)
4100                         goto out;
4101                 r = -EFAULT;
4102                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4103                         goto out;
4104                 r = 0;
4105                 break;
4106         }
4107         case KVM_SET_SREGS: {
4108                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4109                 if (IS_ERR(kvm_sregs)) {
4110                         r = PTR_ERR(kvm_sregs);
4111                         kvm_sregs = NULL;
4112                         goto out;
4113                 }
4114                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4115                 break;
4116         }
4117         case KVM_GET_MP_STATE: {
4118                 struct kvm_mp_state mp_state;
4119
4120                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4121                 if (r)
4122                         goto out;
4123                 r = -EFAULT;
4124                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4125                         goto out;
4126                 r = 0;
4127                 break;
4128         }
4129         case KVM_SET_MP_STATE: {
4130                 struct kvm_mp_state mp_state;
4131
4132                 r = -EFAULT;
4133                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4134                         goto out;
4135                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4136                 break;
4137         }
4138         case KVM_TRANSLATE: {
4139                 struct kvm_translation tr;
4140
4141                 r = -EFAULT;
4142                 if (copy_from_user(&tr, argp, sizeof(tr)))
4143                         goto out;
4144                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4145                 if (r)
4146                         goto out;
4147                 r = -EFAULT;
4148                 if (copy_to_user(argp, &tr, sizeof(tr)))
4149                         goto out;
4150                 r = 0;
4151                 break;
4152         }
4153         case KVM_SET_GUEST_DEBUG: {
4154                 struct kvm_guest_debug dbg;
4155
4156                 r = -EFAULT;
4157                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4158                         goto out;
4159                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4160                 break;
4161         }
4162         case KVM_SET_SIGNAL_MASK: {
4163                 struct kvm_signal_mask __user *sigmask_arg = argp;
4164                 struct kvm_signal_mask kvm_sigmask;
4165                 sigset_t sigset, *p;
4166
4167                 p = NULL;
4168                 if (argp) {
4169                         r = -EFAULT;
4170                         if (copy_from_user(&kvm_sigmask, argp,
4171                                            sizeof(kvm_sigmask)))
4172                                 goto out;
4173                         r = -EINVAL;
4174                         if (kvm_sigmask.len != sizeof(sigset))
4175                                 goto out;
4176                         r = -EFAULT;
4177                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4178                                            sizeof(sigset)))
4179                                 goto out;
4180                         p = &sigset;
4181                 }
4182                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4183                 break;
4184         }
4185         case KVM_GET_FPU: {
4186                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4187                 r = -ENOMEM;
4188                 if (!fpu)
4189                         goto out;
4190                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4191                 if (r)
4192                         goto out;
4193                 r = -EFAULT;
4194                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4195                         goto out;
4196                 r = 0;
4197                 break;
4198         }
4199         case KVM_SET_FPU: {
4200                 fpu = memdup_user(argp, sizeof(*fpu));
4201                 if (IS_ERR(fpu)) {
4202                         r = PTR_ERR(fpu);
4203                         fpu = NULL;
4204                         goto out;
4205                 }
4206                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4207                 break;
4208         }
4209         case KVM_GET_STATS_FD: {
4210                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4211                 break;
4212         }
4213         default:
4214                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4215         }
4216 out:
4217         mutex_unlock(&vcpu->mutex);
4218         kfree(fpu);
4219         kfree(kvm_sregs);
4220         return r;
4221 }
4222
4223 #ifdef CONFIG_KVM_COMPAT
4224 static long kvm_vcpu_compat_ioctl(struct file *filp,
4225                                   unsigned int ioctl, unsigned long arg)
4226 {
4227         struct kvm_vcpu *vcpu = filp->private_data;
4228         void __user *argp = compat_ptr(arg);
4229         int r;
4230
4231         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4232                 return -EIO;
4233
4234         switch (ioctl) {
4235         case KVM_SET_SIGNAL_MASK: {
4236                 struct kvm_signal_mask __user *sigmask_arg = argp;
4237                 struct kvm_signal_mask kvm_sigmask;
4238                 sigset_t sigset;
4239
4240                 if (argp) {
4241                         r = -EFAULT;
4242                         if (copy_from_user(&kvm_sigmask, argp,
4243                                            sizeof(kvm_sigmask)))
4244                                 goto out;
4245                         r = -EINVAL;
4246                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4247                                 goto out;
4248                         r = -EFAULT;
4249                         if (get_compat_sigset(&sigset,
4250                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4251                                 goto out;
4252                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4253                 } else
4254                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4255                 break;
4256         }
4257         default:
4258                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4259         }
4260
4261 out:
4262         return r;
4263 }
4264 #endif
4265
4266 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4267 {
4268         struct kvm_device *dev = filp->private_data;
4269
4270         if (dev->ops->mmap)
4271                 return dev->ops->mmap(dev, vma);
4272
4273         return -ENODEV;
4274 }
4275
4276 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4277                                  int (*accessor)(struct kvm_device *dev,
4278                                                  struct kvm_device_attr *attr),
4279                                  unsigned long arg)
4280 {
4281         struct kvm_device_attr attr;
4282
4283         if (!accessor)
4284                 return -EPERM;
4285
4286         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4287                 return -EFAULT;
4288
4289         return accessor(dev, &attr);
4290 }
4291
4292 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4293                              unsigned long arg)
4294 {
4295         struct kvm_device *dev = filp->private_data;
4296
4297         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4298                 return -EIO;
4299
4300         switch (ioctl) {
4301         case KVM_SET_DEVICE_ATTR:
4302                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4303         case KVM_GET_DEVICE_ATTR:
4304                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4305         case KVM_HAS_DEVICE_ATTR:
4306                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4307         default:
4308                 if (dev->ops->ioctl)
4309                         return dev->ops->ioctl(dev, ioctl, arg);
4310
4311                 return -ENOTTY;
4312         }
4313 }
4314
4315 static int kvm_device_release(struct inode *inode, struct file *filp)
4316 {
4317         struct kvm_device *dev = filp->private_data;
4318         struct kvm *kvm = dev->kvm;
4319
4320         if (dev->ops->release) {
4321                 mutex_lock(&kvm->lock);
4322                 list_del(&dev->vm_node);
4323                 dev->ops->release(dev);
4324                 mutex_unlock(&kvm->lock);
4325         }
4326
4327         kvm_put_kvm(kvm);
4328         return 0;
4329 }
4330
4331 static const struct file_operations kvm_device_fops = {
4332         .unlocked_ioctl = kvm_device_ioctl,
4333         .release = kvm_device_release,
4334         KVM_COMPAT(kvm_device_ioctl),
4335         .mmap = kvm_device_mmap,
4336 };
4337
4338 struct kvm_device *kvm_device_from_filp(struct file *filp)
4339 {
4340         if (filp->f_op != &kvm_device_fops)
4341                 return NULL;
4342
4343         return filp->private_data;
4344 }
4345
4346 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4347 #ifdef CONFIG_KVM_MPIC
4348         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4349         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4350 #endif
4351 };
4352
4353 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4354 {
4355         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4356                 return -ENOSPC;
4357
4358         if (kvm_device_ops_table[type] != NULL)
4359                 return -EEXIST;
4360
4361         kvm_device_ops_table[type] = ops;
4362         return 0;
4363 }
4364
4365 void kvm_unregister_device_ops(u32 type)
4366 {
4367         if (kvm_device_ops_table[type] != NULL)
4368                 kvm_device_ops_table[type] = NULL;
4369 }
4370
4371 static int kvm_ioctl_create_device(struct kvm *kvm,
4372                                    struct kvm_create_device *cd)
4373 {
4374         const struct kvm_device_ops *ops = NULL;
4375         struct kvm_device *dev;
4376         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4377         int type;
4378         int ret;
4379
4380         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4381                 return -ENODEV;
4382
4383         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4384         ops = kvm_device_ops_table[type];
4385         if (ops == NULL)
4386                 return -ENODEV;
4387
4388         if (test)
4389                 return 0;
4390
4391         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4392         if (!dev)
4393                 return -ENOMEM;
4394
4395         dev->ops = ops;
4396         dev->kvm = kvm;
4397
4398         mutex_lock(&kvm->lock);
4399         ret = ops->create(dev, type);
4400         if (ret < 0) {
4401                 mutex_unlock(&kvm->lock);
4402                 kfree(dev);
4403                 return ret;
4404         }
4405         list_add(&dev->vm_node, &kvm->devices);
4406         mutex_unlock(&kvm->lock);
4407
4408         if (ops->init)
4409                 ops->init(dev);
4410
4411         kvm_get_kvm(kvm);
4412         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4413         if (ret < 0) {
4414                 kvm_put_kvm_no_destroy(kvm);
4415                 mutex_lock(&kvm->lock);
4416                 list_del(&dev->vm_node);
4417                 if (ops->release)
4418                         ops->release(dev);
4419                 mutex_unlock(&kvm->lock);
4420                 if (ops->destroy)
4421                         ops->destroy(dev);
4422                 return ret;
4423         }
4424
4425         cd->fd = ret;
4426         return 0;
4427 }
4428
4429 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4430 {
4431         switch (arg) {
4432         case KVM_CAP_USER_MEMORY:
4433         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4434         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4435         case KVM_CAP_INTERNAL_ERROR_DATA:
4436 #ifdef CONFIG_HAVE_KVM_MSI
4437         case KVM_CAP_SIGNAL_MSI:
4438 #endif
4439 #ifdef CONFIG_HAVE_KVM_IRQFD
4440         case KVM_CAP_IRQFD:
4441         case KVM_CAP_IRQFD_RESAMPLE:
4442 #endif
4443         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4444         case KVM_CAP_CHECK_EXTENSION_VM:
4445         case KVM_CAP_ENABLE_CAP_VM:
4446         case KVM_CAP_HALT_POLL:
4447                 return 1;
4448 #ifdef CONFIG_KVM_MMIO
4449         case KVM_CAP_COALESCED_MMIO:
4450                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4451         case KVM_CAP_COALESCED_PIO:
4452                 return 1;
4453 #endif
4454 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4455         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4456                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4457 #endif
4458 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4459         case KVM_CAP_IRQ_ROUTING:
4460                 return KVM_MAX_IRQ_ROUTES;
4461 #endif
4462 #if KVM_ADDRESS_SPACE_NUM > 1
4463         case KVM_CAP_MULTI_ADDRESS_SPACE:
4464                 return KVM_ADDRESS_SPACE_NUM;
4465 #endif
4466         case KVM_CAP_NR_MEMSLOTS:
4467                 return KVM_USER_MEM_SLOTS;
4468         case KVM_CAP_DIRTY_LOG_RING:
4469 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4470                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4471 #else
4472                 return 0;
4473 #endif
4474         case KVM_CAP_BINARY_STATS_FD:
4475         case KVM_CAP_SYSTEM_EVENT_DATA:
4476                 return 1;
4477         default:
4478                 break;
4479         }
4480         return kvm_vm_ioctl_check_extension(kvm, arg);
4481 }
4482
4483 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4484 {
4485         int r;
4486
4487         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4488                 return -EINVAL;
4489
4490         /* the size should be power of 2 */
4491         if (!size || (size & (size - 1)))
4492                 return -EINVAL;
4493
4494         /* Should be bigger to keep the reserved entries, or a page */
4495         if (size < kvm_dirty_ring_get_rsvd_entries() *
4496             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4497                 return -EINVAL;
4498
4499         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4500             sizeof(struct kvm_dirty_gfn))
4501                 return -E2BIG;
4502
4503         /* We only allow it to set once */
4504         if (kvm->dirty_ring_size)
4505                 return -EINVAL;
4506
4507         mutex_lock(&kvm->lock);
4508
4509         if (kvm->created_vcpus) {
4510                 /* We don't allow to change this value after vcpu created */
4511                 r = -EINVAL;
4512         } else {
4513                 kvm->dirty_ring_size = size;
4514                 r = 0;
4515         }
4516
4517         mutex_unlock(&kvm->lock);
4518         return r;
4519 }
4520
4521 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4522 {
4523         unsigned long i;
4524         struct kvm_vcpu *vcpu;
4525         int cleared = 0;
4526
4527         if (!kvm->dirty_ring_size)
4528                 return -EINVAL;
4529
4530         mutex_lock(&kvm->slots_lock);
4531
4532         kvm_for_each_vcpu(i, vcpu, kvm)
4533                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4534
4535         mutex_unlock(&kvm->slots_lock);
4536
4537         if (cleared)
4538                 kvm_flush_remote_tlbs(kvm);
4539
4540         return cleared;
4541 }
4542
4543 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4544                                                   struct kvm_enable_cap *cap)
4545 {
4546         return -EINVAL;
4547 }
4548
4549 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4550                                            struct kvm_enable_cap *cap)
4551 {
4552         switch (cap->cap) {
4553 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4554         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4555                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4556
4557                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4558                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4559
4560                 if (cap->flags || (cap->args[0] & ~allowed_options))
4561                         return -EINVAL;
4562                 kvm->manual_dirty_log_protect = cap->args[0];
4563                 return 0;
4564         }
4565 #endif
4566         case KVM_CAP_HALT_POLL: {
4567                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4568                         return -EINVAL;
4569
4570                 kvm->max_halt_poll_ns = cap->args[0];
4571                 return 0;
4572         }
4573         case KVM_CAP_DIRTY_LOG_RING:
4574                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4575         default:
4576                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4577         }
4578 }
4579
4580 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4581                               size_t size, loff_t *offset)
4582 {
4583         struct kvm *kvm = file->private_data;
4584
4585         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4586                                 &kvm_vm_stats_desc[0], &kvm->stat,
4587                                 sizeof(kvm->stat), user_buffer, size, offset);
4588 }
4589
4590 static const struct file_operations kvm_vm_stats_fops = {
4591         .read = kvm_vm_stats_read,
4592         .llseek = noop_llseek,
4593 };
4594
4595 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4596 {
4597         int fd;
4598         struct file *file;
4599
4600         fd = get_unused_fd_flags(O_CLOEXEC);
4601         if (fd < 0)
4602                 return fd;
4603
4604         file = anon_inode_getfile("kvm-vm-stats",
4605                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4606         if (IS_ERR(file)) {
4607                 put_unused_fd(fd);
4608                 return PTR_ERR(file);
4609         }
4610         file->f_mode |= FMODE_PREAD;
4611         fd_install(fd, file);
4612
4613         return fd;
4614 }
4615
4616 static long kvm_vm_ioctl(struct file *filp,
4617                            unsigned int ioctl, unsigned long arg)
4618 {
4619         struct kvm *kvm = filp->private_data;
4620         void __user *argp = (void __user *)arg;
4621         int r;
4622
4623         if (kvm->mm != current->mm || kvm->vm_dead)
4624                 return -EIO;
4625         switch (ioctl) {
4626         case KVM_CREATE_VCPU:
4627                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4628                 break;
4629         case KVM_ENABLE_CAP: {
4630                 struct kvm_enable_cap cap;
4631
4632                 r = -EFAULT;
4633                 if (copy_from_user(&cap, argp, sizeof(cap)))
4634                         goto out;
4635                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4636                 break;
4637         }
4638         case KVM_SET_USER_MEMORY_REGION: {
4639                 struct kvm_userspace_memory_region kvm_userspace_mem;
4640
4641                 r = -EFAULT;
4642                 if (copy_from_user(&kvm_userspace_mem, argp,
4643                                                 sizeof(kvm_userspace_mem)))
4644                         goto out;
4645
4646                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4647                 break;
4648         }
4649         case KVM_GET_DIRTY_LOG: {
4650                 struct kvm_dirty_log log;
4651
4652                 r = -EFAULT;
4653                 if (copy_from_user(&log, argp, sizeof(log)))
4654                         goto out;
4655                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4656                 break;
4657         }
4658 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4659         case KVM_CLEAR_DIRTY_LOG: {
4660                 struct kvm_clear_dirty_log log;
4661
4662                 r = -EFAULT;
4663                 if (copy_from_user(&log, argp, sizeof(log)))
4664                         goto out;
4665                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4666                 break;
4667         }
4668 #endif
4669 #ifdef CONFIG_KVM_MMIO
4670         case KVM_REGISTER_COALESCED_MMIO: {
4671                 struct kvm_coalesced_mmio_zone zone;
4672
4673                 r = -EFAULT;
4674                 if (copy_from_user(&zone, argp, sizeof(zone)))
4675                         goto out;
4676                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4677                 break;
4678         }
4679         case KVM_UNREGISTER_COALESCED_MMIO: {
4680                 struct kvm_coalesced_mmio_zone zone;
4681
4682                 r = -EFAULT;
4683                 if (copy_from_user(&zone, argp, sizeof(zone)))
4684                         goto out;
4685                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4686                 break;
4687         }
4688 #endif
4689         case KVM_IRQFD: {
4690                 struct kvm_irqfd data;
4691
4692                 r = -EFAULT;
4693                 if (copy_from_user(&data, argp, sizeof(data)))
4694                         goto out;
4695                 r = kvm_irqfd(kvm, &data);
4696                 break;
4697         }
4698         case KVM_IOEVENTFD: {
4699                 struct kvm_ioeventfd data;
4700
4701                 r = -EFAULT;
4702                 if (copy_from_user(&data, argp, sizeof(data)))
4703                         goto out;
4704                 r = kvm_ioeventfd(kvm, &data);
4705                 break;
4706         }
4707 #ifdef CONFIG_HAVE_KVM_MSI
4708         case KVM_SIGNAL_MSI: {
4709                 struct kvm_msi msi;
4710
4711                 r = -EFAULT;
4712                 if (copy_from_user(&msi, argp, sizeof(msi)))
4713                         goto out;
4714                 r = kvm_send_userspace_msi(kvm, &msi);
4715                 break;
4716         }
4717 #endif
4718 #ifdef __KVM_HAVE_IRQ_LINE
4719         case KVM_IRQ_LINE_STATUS:
4720         case KVM_IRQ_LINE: {
4721                 struct kvm_irq_level irq_event;
4722
4723                 r = -EFAULT;
4724                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4725                         goto out;
4726
4727                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4728                                         ioctl == KVM_IRQ_LINE_STATUS);
4729                 if (r)
4730                         goto out;
4731
4732                 r = -EFAULT;
4733                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4734                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4735                                 goto out;
4736                 }
4737
4738                 r = 0;
4739                 break;
4740         }
4741 #endif
4742 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4743         case KVM_SET_GSI_ROUTING: {
4744                 struct kvm_irq_routing routing;
4745                 struct kvm_irq_routing __user *urouting;
4746                 struct kvm_irq_routing_entry *entries = NULL;
4747
4748                 r = -EFAULT;
4749                 if (copy_from_user(&routing, argp, sizeof(routing)))
4750                         goto out;
4751                 r = -EINVAL;
4752                 if (!kvm_arch_can_set_irq_routing(kvm))
4753                         goto out;
4754                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4755                         goto out;
4756                 if (routing.flags)
4757                         goto out;
4758                 if (routing.nr) {
4759                         urouting = argp;
4760                         entries = vmemdup_user(urouting->entries,
4761                                                array_size(sizeof(*entries),
4762                                                           routing.nr));
4763                         if (IS_ERR(entries)) {
4764                                 r = PTR_ERR(entries);
4765                                 goto out;
4766                         }
4767                 }
4768                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4769                                         routing.flags);
4770                 kvfree(entries);
4771                 break;
4772         }
4773 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4774         case KVM_CREATE_DEVICE: {
4775                 struct kvm_create_device cd;
4776
4777                 r = -EFAULT;
4778                 if (copy_from_user(&cd, argp, sizeof(cd)))
4779                         goto out;
4780
4781                 r = kvm_ioctl_create_device(kvm, &cd);
4782                 if (r)
4783                         goto out;
4784
4785                 r = -EFAULT;
4786                 if (copy_to_user(argp, &cd, sizeof(cd)))
4787                         goto out;
4788
4789                 r = 0;
4790                 break;
4791         }
4792         case KVM_CHECK_EXTENSION:
4793                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4794                 break;
4795         case KVM_RESET_DIRTY_RINGS:
4796                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4797                 break;
4798         case KVM_GET_STATS_FD:
4799                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4800                 break;
4801         default:
4802                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4803         }
4804 out:
4805         return r;
4806 }
4807
4808 #ifdef CONFIG_KVM_COMPAT
4809 struct compat_kvm_dirty_log {
4810         __u32 slot;
4811         __u32 padding1;
4812         union {
4813                 compat_uptr_t dirty_bitmap; /* one bit per page */
4814                 __u64 padding2;
4815         };
4816 };
4817
4818 struct compat_kvm_clear_dirty_log {
4819         __u32 slot;
4820         __u32 num_pages;
4821         __u64 first_page;
4822         union {
4823                 compat_uptr_t dirty_bitmap; /* one bit per page */
4824                 __u64 padding2;
4825         };
4826 };
4827
4828 static long kvm_vm_compat_ioctl(struct file *filp,
4829                            unsigned int ioctl, unsigned long arg)
4830 {
4831         struct kvm *kvm = filp->private_data;
4832         int r;
4833
4834         if (kvm->mm != current->mm || kvm->vm_dead)
4835                 return -EIO;
4836         switch (ioctl) {
4837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4838         case KVM_CLEAR_DIRTY_LOG: {
4839                 struct compat_kvm_clear_dirty_log compat_log;
4840                 struct kvm_clear_dirty_log log;
4841
4842                 if (copy_from_user(&compat_log, (void __user *)arg,
4843                                    sizeof(compat_log)))
4844                         return -EFAULT;
4845                 log.slot         = compat_log.slot;
4846                 log.num_pages    = compat_log.num_pages;
4847                 log.first_page   = compat_log.first_page;
4848                 log.padding2     = compat_log.padding2;
4849                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4850
4851                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4852                 break;
4853         }
4854 #endif
4855         case KVM_GET_DIRTY_LOG: {
4856                 struct compat_kvm_dirty_log compat_log;
4857                 struct kvm_dirty_log log;
4858
4859                 if (copy_from_user(&compat_log, (void __user *)arg,
4860                                    sizeof(compat_log)))
4861                         return -EFAULT;
4862                 log.slot         = compat_log.slot;
4863                 log.padding1     = compat_log.padding1;
4864                 log.padding2     = compat_log.padding2;
4865                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4866
4867                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4868                 break;
4869         }
4870         default:
4871                 r = kvm_vm_ioctl(filp, ioctl, arg);
4872         }
4873         return r;
4874 }
4875 #endif
4876
4877 static const struct file_operations kvm_vm_fops = {
4878         .release        = kvm_vm_release,
4879         .unlocked_ioctl = kvm_vm_ioctl,
4880         .llseek         = noop_llseek,
4881         KVM_COMPAT(kvm_vm_compat_ioctl),
4882 };
4883
4884 bool file_is_kvm(struct file *file)
4885 {
4886         return file && file->f_op == &kvm_vm_fops;
4887 }
4888 EXPORT_SYMBOL_GPL(file_is_kvm);
4889
4890 static int kvm_dev_ioctl_create_vm(unsigned long type)
4891 {
4892         char fdname[ITOA_MAX_LEN + 1];
4893         int r, fd;
4894         struct kvm *kvm;
4895         struct file *file;
4896
4897         fd = get_unused_fd_flags(O_CLOEXEC);
4898         if (fd < 0)
4899                 return fd;
4900
4901         snprintf(fdname, sizeof(fdname), "%d", fd);
4902
4903         kvm = kvm_create_vm(type);
4904         if (IS_ERR(kvm)) {
4905                 r = PTR_ERR(kvm);
4906                 goto put_fd;
4907         }
4908
4909 #ifdef CONFIG_KVM_MMIO
4910         r = kvm_coalesced_mmio_init(kvm);
4911         if (r < 0)
4912                 goto put_kvm;
4913 #endif
4914         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4915         if (IS_ERR(file)) {
4916                 r = PTR_ERR(file);
4917                 goto put_kvm;
4918         }
4919
4920         /*
4921          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4922          * already set, with ->release() being kvm_vm_release().  In error
4923          * cases it will be called by the final fput(file) and will take
4924          * care of doing kvm_put_kvm(kvm).
4925          */
4926         if (kvm_create_vm_debugfs(kvm, fdname) < 0) {
4927                 fput(file);
4928                 r = -ENOMEM;
4929                 goto put_fd;
4930         }
4931         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4932
4933         fd_install(fd, file);
4934         return fd;
4935
4936 put_kvm:
4937         kvm_put_kvm(kvm);
4938 put_fd:
4939         put_unused_fd(fd);
4940         return r;
4941 }
4942
4943 static long kvm_dev_ioctl(struct file *filp,
4944                           unsigned int ioctl, unsigned long arg)
4945 {
4946         long r = -EINVAL;
4947
4948         switch (ioctl) {
4949         case KVM_GET_API_VERSION:
4950                 if (arg)
4951                         goto out;
4952                 r = KVM_API_VERSION;
4953                 break;
4954         case KVM_CREATE_VM:
4955                 r = kvm_dev_ioctl_create_vm(arg);
4956                 break;
4957         case KVM_CHECK_EXTENSION:
4958                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4959                 break;
4960         case KVM_GET_VCPU_MMAP_SIZE:
4961                 if (arg)
4962                         goto out;
4963                 r = PAGE_SIZE;     /* struct kvm_run */
4964 #ifdef CONFIG_X86
4965                 r += PAGE_SIZE;    /* pio data page */
4966 #endif
4967 #ifdef CONFIG_KVM_MMIO
4968                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4969 #endif
4970                 break;
4971         case KVM_TRACE_ENABLE:
4972         case KVM_TRACE_PAUSE:
4973         case KVM_TRACE_DISABLE:
4974                 r = -EOPNOTSUPP;
4975                 break;
4976         default:
4977                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4978         }
4979 out:
4980         return r;
4981 }
4982
4983 static struct file_operations kvm_chardev_ops = {
4984         .unlocked_ioctl = kvm_dev_ioctl,
4985         .llseek         = noop_llseek,
4986         KVM_COMPAT(kvm_dev_ioctl),
4987 };
4988
4989 static struct miscdevice kvm_dev = {
4990         KVM_MINOR,
4991         "kvm",
4992         &kvm_chardev_ops,
4993 };
4994
4995 static void hardware_enable_nolock(void *junk)
4996 {
4997         int cpu = raw_smp_processor_id();
4998         int r;
4999
5000         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5001                 return;
5002
5003         cpumask_set_cpu(cpu, cpus_hardware_enabled);
5004
5005         r = kvm_arch_hardware_enable();
5006
5007         if (r) {
5008                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5009                 atomic_inc(&hardware_enable_failed);
5010                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5011         }
5012 }
5013
5014 static int kvm_starting_cpu(unsigned int cpu)
5015 {
5016         raw_spin_lock(&kvm_count_lock);
5017         if (kvm_usage_count)
5018                 hardware_enable_nolock(NULL);
5019         raw_spin_unlock(&kvm_count_lock);
5020         return 0;
5021 }
5022
5023 static void hardware_disable_nolock(void *junk)
5024 {
5025         int cpu = raw_smp_processor_id();
5026
5027         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5028                 return;
5029         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5030         kvm_arch_hardware_disable();
5031 }
5032
5033 static int kvm_dying_cpu(unsigned int cpu)
5034 {
5035         raw_spin_lock(&kvm_count_lock);
5036         if (kvm_usage_count)
5037                 hardware_disable_nolock(NULL);
5038         raw_spin_unlock(&kvm_count_lock);
5039         return 0;
5040 }
5041
5042 static void hardware_disable_all_nolock(void)
5043 {
5044         BUG_ON(!kvm_usage_count);
5045
5046         kvm_usage_count--;
5047         if (!kvm_usage_count)
5048                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5049 }
5050
5051 static void hardware_disable_all(void)
5052 {
5053         raw_spin_lock(&kvm_count_lock);
5054         hardware_disable_all_nolock();
5055         raw_spin_unlock(&kvm_count_lock);
5056 }
5057
5058 static int hardware_enable_all(void)
5059 {
5060         int r = 0;
5061
5062         raw_spin_lock(&kvm_count_lock);
5063
5064         kvm_usage_count++;
5065         if (kvm_usage_count == 1) {
5066                 atomic_set(&hardware_enable_failed, 0);
5067                 on_each_cpu(hardware_enable_nolock, NULL, 1);
5068
5069                 if (atomic_read(&hardware_enable_failed)) {
5070                         hardware_disable_all_nolock();
5071                         r = -EBUSY;
5072                 }
5073         }
5074
5075         raw_spin_unlock(&kvm_count_lock);
5076
5077         return r;
5078 }
5079
5080 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5081                       void *v)
5082 {
5083         /*
5084          * Some (well, at least mine) BIOSes hang on reboot if
5085          * in vmx root mode.
5086          *
5087          * And Intel TXT required VMX off for all cpu when system shutdown.
5088          */
5089         pr_info("kvm: exiting hardware virtualization\n");
5090         kvm_rebooting = true;
5091         on_each_cpu(hardware_disable_nolock, NULL, 1);
5092         return NOTIFY_OK;
5093 }
5094
5095 static struct notifier_block kvm_reboot_notifier = {
5096         .notifier_call = kvm_reboot,
5097         .priority = 0,
5098 };
5099
5100 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5101 {
5102         int i;
5103
5104         for (i = 0; i < bus->dev_count; i++) {
5105                 struct kvm_io_device *pos = bus->range[i].dev;
5106
5107                 kvm_iodevice_destructor(pos);
5108         }
5109         kfree(bus);
5110 }
5111
5112 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5113                                  const struct kvm_io_range *r2)
5114 {
5115         gpa_t addr1 = r1->addr;
5116         gpa_t addr2 = r2->addr;
5117
5118         if (addr1 < addr2)
5119                 return -1;
5120
5121         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5122          * accept any overlapping write.  Any order is acceptable for
5123          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5124          * we process all of them.
5125          */
5126         if (r2->len) {
5127                 addr1 += r1->len;
5128                 addr2 += r2->len;
5129         }
5130
5131         if (addr1 > addr2)
5132                 return 1;
5133
5134         return 0;
5135 }
5136
5137 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5138 {
5139         return kvm_io_bus_cmp(p1, p2);
5140 }
5141
5142 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5143                              gpa_t addr, int len)
5144 {
5145         struct kvm_io_range *range, key;
5146         int off;
5147
5148         key = (struct kvm_io_range) {
5149                 .addr = addr,
5150                 .len = len,
5151         };
5152
5153         range = bsearch(&key, bus->range, bus->dev_count,
5154                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5155         if (range == NULL)
5156                 return -ENOENT;
5157
5158         off = range - bus->range;
5159
5160         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5161                 off--;
5162
5163         return off;
5164 }
5165
5166 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5167                               struct kvm_io_range *range, const void *val)
5168 {
5169         int idx;
5170
5171         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5172         if (idx < 0)
5173                 return -EOPNOTSUPP;
5174
5175         while (idx < bus->dev_count &&
5176                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5177                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5178                                         range->len, val))
5179                         return idx;
5180                 idx++;
5181         }
5182
5183         return -EOPNOTSUPP;
5184 }
5185
5186 /* kvm_io_bus_write - called under kvm->slots_lock */
5187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5188                      int len, const void *val)
5189 {
5190         struct kvm_io_bus *bus;
5191         struct kvm_io_range range;
5192         int r;
5193
5194         range = (struct kvm_io_range) {
5195                 .addr = addr,
5196                 .len = len,
5197         };
5198
5199         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5200         if (!bus)
5201                 return -ENOMEM;
5202         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5203         return r < 0 ? r : 0;
5204 }
5205 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5206
5207 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5208 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5209                             gpa_t addr, int len, const void *val, long cookie)
5210 {
5211         struct kvm_io_bus *bus;
5212         struct kvm_io_range range;
5213
5214         range = (struct kvm_io_range) {
5215                 .addr = addr,
5216                 .len = len,
5217         };
5218
5219         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5220         if (!bus)
5221                 return -ENOMEM;
5222
5223         /* First try the device referenced by cookie. */
5224         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5225             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5226                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5227                                         val))
5228                         return cookie;
5229
5230         /*
5231          * cookie contained garbage; fall back to search and return the
5232          * correct cookie value.
5233          */
5234         return __kvm_io_bus_write(vcpu, bus, &range, val);
5235 }
5236
5237 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5238                              struct kvm_io_range *range, void *val)
5239 {
5240         int idx;
5241
5242         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5243         if (idx < 0)
5244                 return -EOPNOTSUPP;
5245
5246         while (idx < bus->dev_count &&
5247                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5248                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5249                                        range->len, val))
5250                         return idx;
5251                 idx++;
5252         }
5253
5254         return -EOPNOTSUPP;
5255 }
5256
5257 /* kvm_io_bus_read - called under kvm->slots_lock */
5258 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5259                     int len, void *val)
5260 {
5261         struct kvm_io_bus *bus;
5262         struct kvm_io_range range;
5263         int r;
5264
5265         range = (struct kvm_io_range) {
5266                 .addr = addr,
5267                 .len = len,
5268         };
5269
5270         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5271         if (!bus)
5272                 return -ENOMEM;
5273         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5274         return r < 0 ? r : 0;
5275 }
5276
5277 /* Caller must hold slots_lock. */
5278 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5279                             int len, struct kvm_io_device *dev)
5280 {
5281         int i;
5282         struct kvm_io_bus *new_bus, *bus;
5283         struct kvm_io_range range;
5284
5285         bus = kvm_get_bus(kvm, bus_idx);
5286         if (!bus)
5287                 return -ENOMEM;
5288
5289         /* exclude ioeventfd which is limited by maximum fd */
5290         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5291                 return -ENOSPC;
5292
5293         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5294                           GFP_KERNEL_ACCOUNT);
5295         if (!new_bus)
5296                 return -ENOMEM;
5297
5298         range = (struct kvm_io_range) {
5299                 .addr = addr,
5300                 .len = len,
5301                 .dev = dev,
5302         };
5303
5304         for (i = 0; i < bus->dev_count; i++)
5305                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5306                         break;
5307
5308         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5309         new_bus->dev_count++;
5310         new_bus->range[i] = range;
5311         memcpy(new_bus->range + i + 1, bus->range + i,
5312                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5313         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5314         synchronize_srcu_expedited(&kvm->srcu);
5315         kfree(bus);
5316
5317         return 0;
5318 }
5319
5320 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5321                               struct kvm_io_device *dev)
5322 {
5323         int i, j;
5324         struct kvm_io_bus *new_bus, *bus;
5325
5326         lockdep_assert_held(&kvm->slots_lock);
5327
5328         bus = kvm_get_bus(kvm, bus_idx);
5329         if (!bus)
5330                 return 0;
5331
5332         for (i = 0; i < bus->dev_count; i++) {
5333                 if (bus->range[i].dev == dev) {
5334                         break;
5335                 }
5336         }
5337
5338         if (i == bus->dev_count)
5339                 return 0;
5340
5341         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5342                           GFP_KERNEL_ACCOUNT);
5343         if (new_bus) {
5344                 memcpy(new_bus, bus, struct_size(bus, range, i));
5345                 new_bus->dev_count--;
5346                 memcpy(new_bus->range + i, bus->range + i + 1,
5347                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5348         }
5349
5350         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5351         synchronize_srcu_expedited(&kvm->srcu);
5352
5353         /* Destroy the old bus _after_ installing the (null) bus. */
5354         if (!new_bus) {
5355                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5356                 for (j = 0; j < bus->dev_count; j++) {
5357                         if (j == i)
5358                                 continue;
5359                         kvm_iodevice_destructor(bus->range[j].dev);
5360                 }
5361         }
5362
5363         kfree(bus);
5364         return new_bus ? 0 : -ENOMEM;
5365 }
5366
5367 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5368                                          gpa_t addr)
5369 {
5370         struct kvm_io_bus *bus;
5371         int dev_idx, srcu_idx;
5372         struct kvm_io_device *iodev = NULL;
5373
5374         srcu_idx = srcu_read_lock(&kvm->srcu);
5375
5376         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5377         if (!bus)
5378                 goto out_unlock;
5379
5380         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5381         if (dev_idx < 0)
5382                 goto out_unlock;
5383
5384         iodev = bus->range[dev_idx].dev;
5385
5386 out_unlock:
5387         srcu_read_unlock(&kvm->srcu, srcu_idx);
5388
5389         return iodev;
5390 }
5391 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5392
5393 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5394                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5395                            const char *fmt)
5396 {
5397         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5398                                           inode->i_private;
5399
5400         /*
5401          * The debugfs files are a reference to the kvm struct which
5402         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5403         * avoids the race between open and the removal of the debugfs directory.
5404          */
5405         if (!kvm_get_kvm_safe(stat_data->kvm))
5406                 return -ENOENT;
5407
5408         if (simple_attr_open(inode, file, get,
5409                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5410                     ? set : NULL,
5411                     fmt)) {
5412                 kvm_put_kvm(stat_data->kvm);
5413                 return -ENOMEM;
5414         }
5415
5416         return 0;
5417 }
5418
5419 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5420 {
5421         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5422                                           inode->i_private;
5423
5424         simple_attr_release(inode, file);
5425         kvm_put_kvm(stat_data->kvm);
5426
5427         return 0;
5428 }
5429
5430 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5431 {
5432         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5433
5434         return 0;
5435 }
5436
5437 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5438 {
5439         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5440
5441         return 0;
5442 }
5443
5444 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5445 {
5446         unsigned long i;
5447         struct kvm_vcpu *vcpu;
5448
5449         *val = 0;
5450
5451         kvm_for_each_vcpu(i, vcpu, kvm)
5452                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5453
5454         return 0;
5455 }
5456
5457 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5458 {
5459         unsigned long i;
5460         struct kvm_vcpu *vcpu;
5461
5462         kvm_for_each_vcpu(i, vcpu, kvm)
5463                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5464
5465         return 0;
5466 }
5467
5468 static int kvm_stat_data_get(void *data, u64 *val)
5469 {
5470         int r = -EFAULT;
5471         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5472
5473         switch (stat_data->kind) {
5474         case KVM_STAT_VM:
5475                 r = kvm_get_stat_per_vm(stat_data->kvm,
5476                                         stat_data->desc->desc.offset, val);
5477                 break;
5478         case KVM_STAT_VCPU:
5479                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5480                                           stat_data->desc->desc.offset, val);
5481                 break;
5482         }
5483
5484         return r;
5485 }
5486
5487 static int kvm_stat_data_clear(void *data, u64 val)
5488 {
5489         int r = -EFAULT;
5490         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5491
5492         if (val)
5493                 return -EINVAL;
5494
5495         switch (stat_data->kind) {
5496         case KVM_STAT_VM:
5497                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5498                                           stat_data->desc->desc.offset);
5499                 break;
5500         case KVM_STAT_VCPU:
5501                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5502                                             stat_data->desc->desc.offset);
5503                 break;
5504         }
5505
5506         return r;
5507 }
5508
5509 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5510 {
5511         __simple_attr_check_format("%llu\n", 0ull);
5512         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5513                                 kvm_stat_data_clear, "%llu\n");
5514 }
5515
5516 static const struct file_operations stat_fops_per_vm = {
5517         .owner = THIS_MODULE,
5518         .open = kvm_stat_data_open,
5519         .release = kvm_debugfs_release,
5520         .read = simple_attr_read,
5521         .write = simple_attr_write,
5522         .llseek = no_llseek,
5523 };
5524
5525 static int vm_stat_get(void *_offset, u64 *val)
5526 {
5527         unsigned offset = (long)_offset;
5528         struct kvm *kvm;
5529         u64 tmp_val;
5530
5531         *val = 0;
5532         mutex_lock(&kvm_lock);
5533         list_for_each_entry(kvm, &vm_list, vm_list) {
5534                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5535                 *val += tmp_val;
5536         }
5537         mutex_unlock(&kvm_lock);
5538         return 0;
5539 }
5540
5541 static int vm_stat_clear(void *_offset, u64 val)
5542 {
5543         unsigned offset = (long)_offset;
5544         struct kvm *kvm;
5545
5546         if (val)
5547                 return -EINVAL;
5548
5549         mutex_lock(&kvm_lock);
5550         list_for_each_entry(kvm, &vm_list, vm_list) {
5551                 kvm_clear_stat_per_vm(kvm, offset);
5552         }
5553         mutex_unlock(&kvm_lock);
5554
5555         return 0;
5556 }
5557
5558 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5559 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5560
5561 static int vcpu_stat_get(void *_offset, u64 *val)
5562 {
5563         unsigned offset = (long)_offset;
5564         struct kvm *kvm;
5565         u64 tmp_val;
5566
5567         *val = 0;
5568         mutex_lock(&kvm_lock);
5569         list_for_each_entry(kvm, &vm_list, vm_list) {
5570                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5571                 *val += tmp_val;
5572         }
5573         mutex_unlock(&kvm_lock);
5574         return 0;
5575 }
5576
5577 static int vcpu_stat_clear(void *_offset, u64 val)
5578 {
5579         unsigned offset = (long)_offset;
5580         struct kvm *kvm;
5581
5582         if (val)
5583                 return -EINVAL;
5584
5585         mutex_lock(&kvm_lock);
5586         list_for_each_entry(kvm, &vm_list, vm_list) {
5587                 kvm_clear_stat_per_vcpu(kvm, offset);
5588         }
5589         mutex_unlock(&kvm_lock);
5590
5591         return 0;
5592 }
5593
5594 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5595                         "%llu\n");
5596 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5597
5598 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5599 {
5600         struct kobj_uevent_env *env;
5601         unsigned long long created, active;
5602
5603         if (!kvm_dev.this_device || !kvm)
5604                 return;
5605
5606         mutex_lock(&kvm_lock);
5607         if (type == KVM_EVENT_CREATE_VM) {
5608                 kvm_createvm_count++;
5609                 kvm_active_vms++;
5610         } else if (type == KVM_EVENT_DESTROY_VM) {
5611                 kvm_active_vms--;
5612         }
5613         created = kvm_createvm_count;
5614         active = kvm_active_vms;
5615         mutex_unlock(&kvm_lock);
5616
5617         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5618         if (!env)
5619                 return;
5620
5621         add_uevent_var(env, "CREATED=%llu", created);
5622         add_uevent_var(env, "COUNT=%llu", active);
5623
5624         if (type == KVM_EVENT_CREATE_VM) {
5625                 add_uevent_var(env, "EVENT=create");
5626                 kvm->userspace_pid = task_pid_nr(current);
5627         } else if (type == KVM_EVENT_DESTROY_VM) {
5628                 add_uevent_var(env, "EVENT=destroy");
5629         }
5630         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5631
5632         if (!IS_ERR(kvm->debugfs_dentry)) {
5633                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5634
5635                 if (p) {
5636                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5637                         if (!IS_ERR(tmp))
5638                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5639                         kfree(p);
5640                 }
5641         }
5642         /* no need for checks, since we are adding at most only 5 keys */
5643         env->envp[env->envp_idx++] = NULL;
5644         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5645         kfree(env);
5646 }
5647
5648 static void kvm_init_debug(void)
5649 {
5650         const struct file_operations *fops;
5651         const struct _kvm_stats_desc *pdesc;
5652         int i;
5653
5654         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5655
5656         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5657                 pdesc = &kvm_vm_stats_desc[i];
5658                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5659                         fops = &vm_stat_fops;
5660                 else
5661                         fops = &vm_stat_readonly_fops;
5662                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5663                                 kvm_debugfs_dir,
5664                                 (void *)(long)pdesc->desc.offset, fops);
5665         }
5666
5667         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5668                 pdesc = &kvm_vcpu_stats_desc[i];
5669                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5670                         fops = &vcpu_stat_fops;
5671                 else
5672                         fops = &vcpu_stat_readonly_fops;
5673                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5674                                 kvm_debugfs_dir,
5675                                 (void *)(long)pdesc->desc.offset, fops);
5676         }
5677 }
5678
5679 static int kvm_suspend(void)
5680 {
5681         if (kvm_usage_count)
5682                 hardware_disable_nolock(NULL);
5683         return 0;
5684 }
5685
5686 static void kvm_resume(void)
5687 {
5688         if (kvm_usage_count) {
5689                 lockdep_assert_not_held(&kvm_count_lock);
5690                 hardware_enable_nolock(NULL);
5691         }
5692 }
5693
5694 static struct syscore_ops kvm_syscore_ops = {
5695         .suspend = kvm_suspend,
5696         .resume = kvm_resume,
5697 };
5698
5699 static inline
5700 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5701 {
5702         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5703 }
5704
5705 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5706 {
5707         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5708
5709         WRITE_ONCE(vcpu->preempted, false);
5710         WRITE_ONCE(vcpu->ready, false);
5711
5712         __this_cpu_write(kvm_running_vcpu, vcpu);
5713         kvm_arch_sched_in(vcpu, cpu);
5714         kvm_arch_vcpu_load(vcpu, cpu);
5715 }
5716
5717 static void kvm_sched_out(struct preempt_notifier *pn,
5718                           struct task_struct *next)
5719 {
5720         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5721
5722         if (current->on_rq) {
5723                 WRITE_ONCE(vcpu->preempted, true);
5724                 WRITE_ONCE(vcpu->ready, true);
5725         }
5726         kvm_arch_vcpu_put(vcpu);
5727         __this_cpu_write(kvm_running_vcpu, NULL);
5728 }
5729
5730 /**
5731  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5732  *
5733  * We can disable preemption locally around accessing the per-CPU variable,
5734  * and use the resolved vcpu pointer after enabling preemption again,
5735  * because even if the current thread is migrated to another CPU, reading
5736  * the per-CPU value later will give us the same value as we update the
5737  * per-CPU variable in the preempt notifier handlers.
5738  */
5739 struct kvm_vcpu *kvm_get_running_vcpu(void)
5740 {
5741         struct kvm_vcpu *vcpu;
5742
5743         preempt_disable();
5744         vcpu = __this_cpu_read(kvm_running_vcpu);
5745         preempt_enable();
5746
5747         return vcpu;
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5750
5751 /**
5752  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5753  */
5754 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5755 {
5756         return &kvm_running_vcpu;
5757 }
5758
5759 #ifdef CONFIG_GUEST_PERF_EVENTS
5760 static unsigned int kvm_guest_state(void)
5761 {
5762         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5763         unsigned int state;
5764
5765         if (!kvm_arch_pmi_in_guest(vcpu))
5766                 return 0;
5767
5768         state = PERF_GUEST_ACTIVE;
5769         if (!kvm_arch_vcpu_in_kernel(vcpu))
5770                 state |= PERF_GUEST_USER;
5771
5772         return state;
5773 }
5774
5775 static unsigned long kvm_guest_get_ip(void)
5776 {
5777         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5778
5779         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5780         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5781                 return 0;
5782
5783         return kvm_arch_vcpu_get_ip(vcpu);
5784 }
5785
5786 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5787         .state                  = kvm_guest_state,
5788         .get_ip                 = kvm_guest_get_ip,
5789         .handle_intel_pt_intr   = NULL,
5790 };
5791
5792 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5793 {
5794         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5795         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5796 }
5797 void kvm_unregister_perf_callbacks(void)
5798 {
5799         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5800 }
5801 #endif
5802
5803 struct kvm_cpu_compat_check {
5804         void *opaque;
5805         int *ret;
5806 };
5807
5808 static void check_processor_compat(void *data)
5809 {
5810         struct kvm_cpu_compat_check *c = data;
5811
5812         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5813 }
5814
5815 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5816                   struct module *module)
5817 {
5818         struct kvm_cpu_compat_check c;
5819         int r;
5820         int cpu;
5821
5822         r = kvm_arch_init(opaque);
5823         if (r)
5824                 goto out_fail;
5825
5826         /*
5827          * kvm_arch_init makes sure there's at most one caller
5828          * for architectures that support multiple implementations,
5829          * like intel and amd on x86.
5830          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5831          * conflicts in case kvm is already setup for another implementation.
5832          */
5833         r = kvm_irqfd_init();
5834         if (r)
5835                 goto out_irqfd;
5836
5837         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5838                 r = -ENOMEM;
5839                 goto out_free_0;
5840         }
5841
5842         r = kvm_arch_hardware_setup(opaque);
5843         if (r < 0)
5844                 goto out_free_1;
5845
5846         c.ret = &r;
5847         c.opaque = opaque;
5848         for_each_online_cpu(cpu) {
5849                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5850                 if (r < 0)
5851                         goto out_free_2;
5852         }
5853
5854         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5855                                       kvm_starting_cpu, kvm_dying_cpu);
5856         if (r)
5857                 goto out_free_2;
5858         register_reboot_notifier(&kvm_reboot_notifier);
5859
5860         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5861         if (!vcpu_align)
5862                 vcpu_align = __alignof__(struct kvm_vcpu);
5863         kvm_vcpu_cache =
5864                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5865                                            SLAB_ACCOUNT,
5866                                            offsetof(struct kvm_vcpu, arch),
5867                                            offsetofend(struct kvm_vcpu, stats_id)
5868                                            - offsetof(struct kvm_vcpu, arch),
5869                                            NULL);
5870         if (!kvm_vcpu_cache) {
5871                 r = -ENOMEM;
5872                 goto out_free_3;
5873         }
5874
5875         for_each_possible_cpu(cpu) {
5876                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5877                                             GFP_KERNEL, cpu_to_node(cpu))) {
5878                         r = -ENOMEM;
5879                         goto out_free_4;
5880                 }
5881         }
5882
5883         r = kvm_async_pf_init();
5884         if (r)
5885                 goto out_free_5;
5886
5887         kvm_chardev_ops.owner = module;
5888
5889         r = misc_register(&kvm_dev);
5890         if (r) {
5891                 pr_err("kvm: misc device register failed\n");
5892                 goto out_unreg;
5893         }
5894
5895         register_syscore_ops(&kvm_syscore_ops);
5896
5897         kvm_preempt_ops.sched_in = kvm_sched_in;
5898         kvm_preempt_ops.sched_out = kvm_sched_out;
5899
5900         kvm_init_debug();
5901
5902         r = kvm_vfio_ops_init();
5903         WARN_ON(r);
5904
5905         return 0;
5906
5907 out_unreg:
5908         kvm_async_pf_deinit();
5909 out_free_5:
5910         for_each_possible_cpu(cpu)
5911                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5912 out_free_4:
5913         kmem_cache_destroy(kvm_vcpu_cache);
5914 out_free_3:
5915         unregister_reboot_notifier(&kvm_reboot_notifier);
5916         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5917 out_free_2:
5918         kvm_arch_hardware_unsetup();
5919 out_free_1:
5920         free_cpumask_var(cpus_hardware_enabled);
5921 out_free_0:
5922         kvm_irqfd_exit();
5923 out_irqfd:
5924         kvm_arch_exit();
5925 out_fail:
5926         return r;
5927 }
5928 EXPORT_SYMBOL_GPL(kvm_init);
5929
5930 void kvm_exit(void)
5931 {
5932         int cpu;
5933
5934         debugfs_remove_recursive(kvm_debugfs_dir);
5935         misc_deregister(&kvm_dev);
5936         for_each_possible_cpu(cpu)
5937                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5938         kmem_cache_destroy(kvm_vcpu_cache);
5939         kvm_async_pf_deinit();
5940         unregister_syscore_ops(&kvm_syscore_ops);
5941         unregister_reboot_notifier(&kvm_reboot_notifier);
5942         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5943         on_each_cpu(hardware_disable_nolock, NULL, 1);
5944         kvm_arch_hardware_unsetup();
5945         kvm_arch_exit();
5946         kvm_irqfd_exit();
5947         free_cpumask_var(cpus_hardware_enabled);
5948         kvm_vfio_ops_exit();
5949 }
5950 EXPORT_SYMBOL_GPL(kvm_exit);
5951
5952 struct kvm_vm_worker_thread_context {
5953         struct kvm *kvm;
5954         struct task_struct *parent;
5955         struct completion init_done;
5956         kvm_vm_thread_fn_t thread_fn;
5957         uintptr_t data;
5958         int err;
5959 };
5960
5961 static int kvm_vm_worker_thread(void *context)
5962 {
5963         /*
5964          * The init_context is allocated on the stack of the parent thread, so
5965          * we have to locally copy anything that is needed beyond initialization
5966          */
5967         struct kvm_vm_worker_thread_context *init_context = context;
5968         struct task_struct *parent;
5969         struct kvm *kvm = init_context->kvm;
5970         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5971         uintptr_t data = init_context->data;
5972         int err;
5973
5974         err = kthread_park(current);
5975         /* kthread_park(current) is never supposed to return an error */
5976         WARN_ON(err != 0);
5977         if (err)
5978                 goto init_complete;
5979
5980         err = cgroup_attach_task_all(init_context->parent, current);
5981         if (err) {
5982                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5983                         __func__, err);
5984                 goto init_complete;
5985         }
5986
5987         set_user_nice(current, task_nice(init_context->parent));
5988
5989 init_complete:
5990         init_context->err = err;
5991         complete(&init_context->init_done);
5992         init_context = NULL;
5993
5994         if (err)
5995                 goto out;
5996
5997         /* Wait to be woken up by the spawner before proceeding. */
5998         kthread_parkme();
5999
6000         if (!kthread_should_stop())
6001                 err = thread_fn(kvm, data);
6002
6003 out:
6004         /*
6005          * Move kthread back to its original cgroup to prevent it lingering in
6006          * the cgroup of the VM process, after the latter finishes its
6007          * execution.
6008          *
6009          * kthread_stop() waits on the 'exited' completion condition which is
6010          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6011          * kthread is removed from the cgroup in the cgroup_exit() which is
6012          * called after the exit_mm(). This causes the kthread_stop() to return
6013          * before the kthread actually quits the cgroup.
6014          */
6015         rcu_read_lock();
6016         parent = rcu_dereference(current->real_parent);
6017         get_task_struct(parent);
6018         rcu_read_unlock();
6019         cgroup_attach_task_all(parent, current);
6020         put_task_struct(parent);
6021
6022         return err;
6023 }
6024
6025 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6026                                 uintptr_t data, const char *name,
6027                                 struct task_struct **thread_ptr)
6028 {
6029         struct kvm_vm_worker_thread_context init_context = {};
6030         struct task_struct *thread;
6031
6032         *thread_ptr = NULL;
6033         init_context.kvm = kvm;
6034         init_context.parent = current;
6035         init_context.thread_fn = thread_fn;
6036         init_context.data = data;
6037         init_completion(&init_context.init_done);
6038
6039         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6040                              "%s-%d", name, task_pid_nr(current));
6041         if (IS_ERR(thread))
6042                 return PTR_ERR(thread);
6043
6044         /* kthread_run is never supposed to return NULL */
6045         WARN_ON(thread == NULL);
6046
6047         wait_for_completion(&init_context.init_done);
6048
6049         if (!init_context.err)
6050                 *thread_ptr = thread;
6051
6052         return init_context.err;
6053 }