Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211         struct page *page;
212         int r;
213
214         mutex_init(&vcpu->mutex);
215         vcpu->cpu = -1;
216         vcpu->kvm = kvm;
217         vcpu->vcpu_id = id;
218         vcpu->pid = NULL;
219         vcpu->halt_poll_ns = 0;
220         init_waitqueue_head(&vcpu->wq);
221         kvm_async_pf_vcpu_init(vcpu);
222
223         vcpu->pre_pcpu = -1;
224         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
225
226         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227         if (!page) {
228                 r = -ENOMEM;
229                 goto fail;
230         }
231         vcpu->run = page_address(page);
232
233         kvm_vcpu_set_in_spin_loop(vcpu, false);
234         kvm_vcpu_set_dy_eligible(vcpu, false);
235         vcpu->preempted = false;
236
237         r = kvm_arch_vcpu_init(vcpu);
238         if (r < 0)
239                 goto fail_free_run;
240         return 0;
241
242 fail_free_run:
243         free_page((unsigned long)vcpu->run);
244 fail:
245         return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251         put_pid(vcpu->pid);
252         kvm_arch_vcpu_uninit(vcpu);
253         free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260         return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264                                              struct mm_struct *mm,
265                                              unsigned long address)
266 {
267         struct kvm *kvm = mmu_notifier_to_kvm(mn);
268         int need_tlb_flush, idx;
269
270         /*
271          * When ->invalidate_page runs, the linux pte has been zapped
272          * already but the page is still allocated until
273          * ->invalidate_page returns. So if we increase the sequence
274          * here the kvm page fault will notice if the spte can't be
275          * established because the page is going to be freed. If
276          * instead the kvm page fault establishes the spte before
277          * ->invalidate_page runs, kvm_unmap_hva will release it
278          * before returning.
279          *
280          * The sequence increase only need to be seen at spin_unlock
281          * time, and not at spin_lock time.
282          *
283          * Increasing the sequence after the spin_unlock would be
284          * unsafe because the kvm page fault could then establish the
285          * pte after kvm_unmap_hva returned, without noticing the page
286          * is going to be freed.
287          */
288         idx = srcu_read_lock(&kvm->srcu);
289         spin_lock(&kvm->mmu_lock);
290
291         kvm->mmu_notifier_seq++;
292         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293         /* we've to flush the tlb before the pages can be freed */
294         if (need_tlb_flush)
295                 kvm_flush_remote_tlbs(kvm);
296
297         spin_unlock(&kvm->mmu_lock);
298
299         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
300
301         srcu_read_unlock(&kvm->srcu, idx);
302 }
303
304 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
305                                         struct mm_struct *mm,
306                                         unsigned long address,
307                                         pte_t pte)
308 {
309         struct kvm *kvm = mmu_notifier_to_kvm(mn);
310         int idx;
311
312         idx = srcu_read_lock(&kvm->srcu);
313         spin_lock(&kvm->mmu_lock);
314         kvm->mmu_notifier_seq++;
315         kvm_set_spte_hva(kvm, address, pte);
316         spin_unlock(&kvm->mmu_lock);
317         srcu_read_unlock(&kvm->srcu, idx);
318 }
319
320 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
321                                                     struct mm_struct *mm,
322                                                     unsigned long start,
323                                                     unsigned long end)
324 {
325         struct kvm *kvm = mmu_notifier_to_kvm(mn);
326         int need_tlb_flush = 0, idx;
327
328         idx = srcu_read_lock(&kvm->srcu);
329         spin_lock(&kvm->mmu_lock);
330         /*
331          * The count increase must become visible at unlock time as no
332          * spte can be established without taking the mmu_lock and
333          * count is also read inside the mmu_lock critical section.
334          */
335         kvm->mmu_notifier_count++;
336         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
337         need_tlb_flush |= kvm->tlbs_dirty;
338         /* we've to flush the tlb before the pages can be freed */
339         if (need_tlb_flush)
340                 kvm_flush_remote_tlbs(kvm);
341
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347                                                   struct mm_struct *mm,
348                                                   unsigned long start,
349                                                   unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353         spin_lock(&kvm->mmu_lock);
354         /*
355          * This sequence increase will notify the kvm page fault that
356          * the page that is going to be mapped in the spte could have
357          * been freed.
358          */
359         kvm->mmu_notifier_seq++;
360         smp_wmb();
361         /*
362          * The above sequence increase must be visible before the
363          * below count decrease, which is ensured by the smp_wmb above
364          * in conjunction with the smp_rmb in mmu_notifier_retry().
365          */
366         kvm->mmu_notifier_count--;
367         spin_unlock(&kvm->mmu_lock);
368
369         BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373                                               struct mm_struct *mm,
374                                               unsigned long start,
375                                               unsigned long end)
376 {
377         struct kvm *kvm = mmu_notifier_to_kvm(mn);
378         int young, idx;
379
380         idx = srcu_read_lock(&kvm->srcu);
381         spin_lock(&kvm->mmu_lock);
382
383         young = kvm_age_hva(kvm, start, end);
384         if (young)
385                 kvm_flush_remote_tlbs(kvm);
386
387         spin_unlock(&kvm->mmu_lock);
388         srcu_read_unlock(&kvm->srcu, idx);
389
390         return young;
391 }
392
393 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
394                                         struct mm_struct *mm,
395                                         unsigned long start,
396                                         unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403         /*
404          * Even though we do not flush TLB, this will still adversely
405          * affect performance on pre-Haswell Intel EPT, where there is
406          * no EPT Access Bit to clear so that we have to tear down EPT
407          * tables instead. If we find this unacceptable, we can always
408          * add a parameter to kvm_age_hva so that it effectively doesn't
409          * do anything on clear_young.
410          *
411          * Also note that currently we never issue secondary TLB flushes
412          * from clear_young, leaving this job up to the regular system
413          * cadence. If we find this inaccurate, we might come up with a
414          * more sophisticated heuristic later.
415          */
416         young = kvm_age_hva(kvm, start, end);
417         spin_unlock(&kvm->mmu_lock);
418         srcu_read_unlock(&kvm->srcu, idx);
419
420         return young;
421 }
422
423 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
424                                        struct mm_struct *mm,
425                                        unsigned long address)
426 {
427         struct kvm *kvm = mmu_notifier_to_kvm(mn);
428         int young, idx;
429
430         idx = srcu_read_lock(&kvm->srcu);
431         spin_lock(&kvm->mmu_lock);
432         young = kvm_test_age_hva(kvm, address);
433         spin_unlock(&kvm->mmu_lock);
434         srcu_read_unlock(&kvm->srcu, idx);
435
436         return young;
437 }
438
439 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
440                                      struct mm_struct *mm)
441 {
442         struct kvm *kvm = mmu_notifier_to_kvm(mn);
443         int idx;
444
445         idx = srcu_read_lock(&kvm->srcu);
446         kvm_arch_flush_shadow_all(kvm);
447         srcu_read_unlock(&kvm->srcu, idx);
448 }
449
450 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
451         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
452         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
453         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
454         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
455         .clear_young            = kvm_mmu_notifier_clear_young,
456         .test_young             = kvm_mmu_notifier_test_young,
457         .change_pte             = kvm_mmu_notifier_change_pte,
458         .release                = kvm_mmu_notifier_release,
459 };
460
461 static int kvm_init_mmu_notifier(struct kvm *kvm)
462 {
463         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
464         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
465 }
466
467 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
468
469 static int kvm_init_mmu_notifier(struct kvm *kvm)
470 {
471         return 0;
472 }
473
474 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
475
476 static struct kvm_memslots *kvm_alloc_memslots(void)
477 {
478         int i;
479         struct kvm_memslots *slots;
480
481         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
482         if (!slots)
483                 return NULL;
484
485         /*
486          * Init kvm generation close to the maximum to easily test the
487          * code of handling generation number wrap-around.
488          */
489         slots->generation = -150;
490         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
491                 slots->id_to_index[i] = slots->memslots[i].id = i;
492
493         return slots;
494 }
495
496 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
497 {
498         if (!memslot->dirty_bitmap)
499                 return;
500
501         kvfree(memslot->dirty_bitmap);
502         memslot->dirty_bitmap = NULL;
503 }
504
505 /*
506  * Free any memory in @free but not in @dont.
507  */
508 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
509                               struct kvm_memory_slot *dont)
510 {
511         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
512                 kvm_destroy_dirty_bitmap(free);
513
514         kvm_arch_free_memslot(kvm, free, dont);
515
516         free->npages = 0;
517 }
518
519 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
520 {
521         struct kvm_memory_slot *memslot;
522
523         if (!slots)
524                 return;
525
526         kvm_for_each_memslot(memslot, slots)
527                 kvm_free_memslot(kvm, memslot, NULL);
528
529         kvfree(slots);
530 }
531
532 static struct kvm *kvm_create_vm(unsigned long type)
533 {
534         int r, i;
535         struct kvm *kvm = kvm_arch_alloc_vm();
536
537         if (!kvm)
538                 return ERR_PTR(-ENOMEM);
539
540         r = kvm_arch_init_vm(kvm, type);
541         if (r)
542                 goto out_err_no_disable;
543
544         r = hardware_enable_all();
545         if (r)
546                 goto out_err_no_disable;
547
548 #ifdef CONFIG_HAVE_KVM_IRQFD
549         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
550 #endif
551
552         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
553
554         r = -ENOMEM;
555         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
556                 kvm->memslots[i] = kvm_alloc_memslots();
557                 if (!kvm->memslots[i])
558                         goto out_err_no_srcu;
559         }
560
561         if (init_srcu_struct(&kvm->srcu))
562                 goto out_err_no_srcu;
563         if (init_srcu_struct(&kvm->irq_srcu))
564                 goto out_err_no_irq_srcu;
565         for (i = 0; i < KVM_NR_BUSES; i++) {
566                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
567                                         GFP_KERNEL);
568                 if (!kvm->buses[i])
569                         goto out_err;
570         }
571
572         spin_lock_init(&kvm->mmu_lock);
573         kvm->mm = current->mm;
574         atomic_inc(&kvm->mm->mm_count);
575         kvm_eventfd_init(kvm);
576         mutex_init(&kvm->lock);
577         mutex_init(&kvm->irq_lock);
578         mutex_init(&kvm->slots_lock);
579         atomic_set(&kvm->users_count, 1);
580         INIT_LIST_HEAD(&kvm->devices);
581
582         r = kvm_init_mmu_notifier(kvm);
583         if (r)
584                 goto out_err;
585
586         spin_lock(&kvm_lock);
587         list_add(&kvm->vm_list, &vm_list);
588         spin_unlock(&kvm_lock);
589
590         preempt_notifier_inc();
591
592         return kvm;
593
594 out_err:
595         cleanup_srcu_struct(&kvm->irq_srcu);
596 out_err_no_irq_srcu:
597         cleanup_srcu_struct(&kvm->srcu);
598 out_err_no_srcu:
599         hardware_disable_all();
600 out_err_no_disable:
601         for (i = 0; i < KVM_NR_BUSES; i++)
602                 kfree(kvm->buses[i]);
603         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
604                 kvm_free_memslots(kvm, kvm->memslots[i]);
605         kvm_arch_free_vm(kvm);
606         return ERR_PTR(r);
607 }
608
609 /*
610  * Avoid using vmalloc for a small buffer.
611  * Should not be used when the size is statically known.
612  */
613 void *kvm_kvzalloc(unsigned long size)
614 {
615         if (size > PAGE_SIZE)
616                 return vzalloc(size);
617         else
618                 return kzalloc(size, GFP_KERNEL);
619 }
620
621 static void kvm_destroy_devices(struct kvm *kvm)
622 {
623         struct list_head *node, *tmp;
624
625         list_for_each_safe(node, tmp, &kvm->devices) {
626                 struct kvm_device *dev =
627                         list_entry(node, struct kvm_device, vm_node);
628
629                 list_del(node);
630                 dev->ops->destroy(dev);
631         }
632 }
633
634 static void kvm_destroy_vm(struct kvm *kvm)
635 {
636         int i;
637         struct mm_struct *mm = kvm->mm;
638
639         kvm_arch_sync_events(kvm);
640         spin_lock(&kvm_lock);
641         list_del(&kvm->vm_list);
642         spin_unlock(&kvm_lock);
643         kvm_free_irq_routing(kvm);
644         for (i = 0; i < KVM_NR_BUSES; i++)
645                 kvm_io_bus_destroy(kvm->buses[i]);
646         kvm_coalesced_mmio_free(kvm);
647 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
648         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
649 #else
650         kvm_arch_flush_shadow_all(kvm);
651 #endif
652         kvm_arch_destroy_vm(kvm);
653         kvm_destroy_devices(kvm);
654         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
655                 kvm_free_memslots(kvm, kvm->memslots[i]);
656         cleanup_srcu_struct(&kvm->irq_srcu);
657         cleanup_srcu_struct(&kvm->srcu);
658         kvm_arch_free_vm(kvm);
659         preempt_notifier_dec();
660         hardware_disable_all();
661         mmdrop(mm);
662 }
663
664 void kvm_get_kvm(struct kvm *kvm)
665 {
666         atomic_inc(&kvm->users_count);
667 }
668 EXPORT_SYMBOL_GPL(kvm_get_kvm);
669
670 void kvm_put_kvm(struct kvm *kvm)
671 {
672         if (atomic_dec_and_test(&kvm->users_count))
673                 kvm_destroy_vm(kvm);
674 }
675 EXPORT_SYMBOL_GPL(kvm_put_kvm);
676
677
678 static int kvm_vm_release(struct inode *inode, struct file *filp)
679 {
680         struct kvm *kvm = filp->private_data;
681
682         kvm_irqfd_release(kvm);
683
684         kvm_put_kvm(kvm);
685         return 0;
686 }
687
688 /*
689  * Allocation size is twice as large as the actual dirty bitmap size.
690  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
691  */
692 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
693 {
694         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
695
696         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
697         if (!memslot->dirty_bitmap)
698                 return -ENOMEM;
699
700         return 0;
701 }
702
703 /*
704  * Insert memslot and re-sort memslots based on their GFN,
705  * so binary search could be used to lookup GFN.
706  * Sorting algorithm takes advantage of having initially
707  * sorted array and known changed memslot position.
708  */
709 static void update_memslots(struct kvm_memslots *slots,
710                             struct kvm_memory_slot *new)
711 {
712         int id = new->id;
713         int i = slots->id_to_index[id];
714         struct kvm_memory_slot *mslots = slots->memslots;
715
716         WARN_ON(mslots[i].id != id);
717         if (!new->npages) {
718                 WARN_ON(!mslots[i].npages);
719                 if (mslots[i].npages)
720                         slots->used_slots--;
721         } else {
722                 if (!mslots[i].npages)
723                         slots->used_slots++;
724         }
725
726         while (i < KVM_MEM_SLOTS_NUM - 1 &&
727                new->base_gfn <= mslots[i + 1].base_gfn) {
728                 if (!mslots[i + 1].npages)
729                         break;
730                 mslots[i] = mslots[i + 1];
731                 slots->id_to_index[mslots[i].id] = i;
732                 i++;
733         }
734
735         /*
736          * The ">=" is needed when creating a slot with base_gfn == 0,
737          * so that it moves before all those with base_gfn == npages == 0.
738          *
739          * On the other hand, if new->npages is zero, the above loop has
740          * already left i pointing to the beginning of the empty part of
741          * mslots, and the ">=" would move the hole backwards in this
742          * case---which is wrong.  So skip the loop when deleting a slot.
743          */
744         if (new->npages) {
745                 while (i > 0 &&
746                        new->base_gfn >= mslots[i - 1].base_gfn) {
747                         mslots[i] = mslots[i - 1];
748                         slots->id_to_index[mslots[i].id] = i;
749                         i--;
750                 }
751         } else
752                 WARN_ON_ONCE(i != slots->used_slots);
753
754         mslots[i] = *new;
755         slots->id_to_index[mslots[i].id] = i;
756 }
757
758 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
759 {
760         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
761
762 #ifdef __KVM_HAVE_READONLY_MEM
763         valid_flags |= KVM_MEM_READONLY;
764 #endif
765
766         if (mem->flags & ~valid_flags)
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
773                 int as_id, struct kvm_memslots *slots)
774 {
775         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
776
777         /*
778          * Set the low bit in the generation, which disables SPTE caching
779          * until the end of synchronize_srcu_expedited.
780          */
781         WARN_ON(old_memslots->generation & 1);
782         slots->generation = old_memslots->generation + 1;
783
784         rcu_assign_pointer(kvm->memslots[as_id], slots);
785         synchronize_srcu_expedited(&kvm->srcu);
786
787         /*
788          * Increment the new memslot generation a second time. This prevents
789          * vm exits that race with memslot updates from caching a memslot
790          * generation that will (potentially) be valid forever.
791          */
792         slots->generation++;
793
794         kvm_arch_memslots_updated(kvm, slots);
795
796         return old_memslots;
797 }
798
799 /*
800  * Allocate some memory and give it an address in the guest physical address
801  * space.
802  *
803  * Discontiguous memory is allowed, mostly for framebuffers.
804  *
805  * Must be called holding kvm->slots_lock for write.
806  */
807 int __kvm_set_memory_region(struct kvm *kvm,
808                             const struct kvm_userspace_memory_region *mem)
809 {
810         int r;
811         gfn_t base_gfn;
812         unsigned long npages;
813         struct kvm_memory_slot *slot;
814         struct kvm_memory_slot old, new;
815         struct kvm_memslots *slots = NULL, *old_memslots;
816         int as_id, id;
817         enum kvm_mr_change change;
818
819         r = check_memory_region_flags(mem);
820         if (r)
821                 goto out;
822
823         r = -EINVAL;
824         as_id = mem->slot >> 16;
825         id = (u16)mem->slot;
826
827         /* General sanity checks */
828         if (mem->memory_size & (PAGE_SIZE - 1))
829                 goto out;
830         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
831                 goto out;
832         /* We can read the guest memory with __xxx_user() later on. */
833         if ((id < KVM_USER_MEM_SLOTS) &&
834             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
835              !access_ok(VERIFY_WRITE,
836                         (void __user *)(unsigned long)mem->userspace_addr,
837                         mem->memory_size)))
838                 goto out;
839         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
840                 goto out;
841         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
842                 goto out;
843
844         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
845         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
846         npages = mem->memory_size >> PAGE_SHIFT;
847
848         if (npages > KVM_MEM_MAX_NR_PAGES)
849                 goto out;
850
851         new = old = *slot;
852
853         new.id = id;
854         new.base_gfn = base_gfn;
855         new.npages = npages;
856         new.flags = mem->flags;
857
858         if (npages) {
859                 if (!old.npages)
860                         change = KVM_MR_CREATE;
861                 else { /* Modify an existing slot. */
862                         if ((mem->userspace_addr != old.userspace_addr) ||
863                             (npages != old.npages) ||
864                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
865                                 goto out;
866
867                         if (base_gfn != old.base_gfn)
868                                 change = KVM_MR_MOVE;
869                         else if (new.flags != old.flags)
870                                 change = KVM_MR_FLAGS_ONLY;
871                         else { /* Nothing to change. */
872                                 r = 0;
873                                 goto out;
874                         }
875                 }
876         } else {
877                 if (!old.npages)
878                         goto out;
879
880                 change = KVM_MR_DELETE;
881                 new.base_gfn = 0;
882                 new.flags = 0;
883         }
884
885         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
886                 /* Check for overlaps */
887                 r = -EEXIST;
888                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
889                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
890                             (slot->id == id))
891                                 continue;
892                         if (!((base_gfn + npages <= slot->base_gfn) ||
893                               (base_gfn >= slot->base_gfn + slot->npages)))
894                                 goto out;
895                 }
896         }
897
898         /* Free page dirty bitmap if unneeded */
899         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
900                 new.dirty_bitmap = NULL;
901
902         r = -ENOMEM;
903         if (change == KVM_MR_CREATE) {
904                 new.userspace_addr = mem->userspace_addr;
905
906                 if (kvm_arch_create_memslot(kvm, &new, npages))
907                         goto out_free;
908         }
909
910         /* Allocate page dirty bitmap if needed */
911         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
912                 if (kvm_create_dirty_bitmap(&new) < 0)
913                         goto out_free;
914         }
915
916         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
917         if (!slots)
918                 goto out_free;
919         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
920
921         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
922                 slot = id_to_memslot(slots, id);
923                 slot->flags |= KVM_MEMSLOT_INVALID;
924
925                 old_memslots = install_new_memslots(kvm, as_id, slots);
926
927                 /* slot was deleted or moved, clear iommu mapping */
928                 kvm_iommu_unmap_pages(kvm, &old);
929                 /* From this point no new shadow pages pointing to a deleted,
930                  * or moved, memslot will be created.
931                  *
932                  * validation of sp->gfn happens in:
933                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
934                  *      - kvm_is_visible_gfn (mmu_check_roots)
935                  */
936                 kvm_arch_flush_shadow_memslot(kvm, slot);
937
938                 /*
939                  * We can re-use the old_memslots from above, the only difference
940                  * from the currently installed memslots is the invalid flag.  This
941                  * will get overwritten by update_memslots anyway.
942                  */
943                 slots = old_memslots;
944         }
945
946         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
947         if (r)
948                 goto out_slots;
949
950         /* actual memory is freed via old in kvm_free_memslot below */
951         if (change == KVM_MR_DELETE) {
952                 new.dirty_bitmap = NULL;
953                 memset(&new.arch, 0, sizeof(new.arch));
954         }
955
956         update_memslots(slots, &new);
957         old_memslots = install_new_memslots(kvm, as_id, slots);
958
959         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
960
961         kvm_free_memslot(kvm, &old, &new);
962         kvfree(old_memslots);
963
964         /*
965          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
966          * un-mapped and re-mapped if their base changes.  Since base change
967          * unmapping is handled above with slot deletion, mapping alone is
968          * needed here.  Anything else the iommu might care about for existing
969          * slots (size changes, userspace addr changes and read-only flag
970          * changes) is disallowed above, so any other attribute changes getting
971          * here can be skipped.
972          */
973         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974                 r = kvm_iommu_map_pages(kvm, &new);
975                 return r;
976         }
977
978         return 0;
979
980 out_slots:
981         kvfree(slots);
982 out_free:
983         kvm_free_memslot(kvm, &new, &old);
984 out:
985         return r;
986 }
987 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
988
989 int kvm_set_memory_region(struct kvm *kvm,
990                           const struct kvm_userspace_memory_region *mem)
991 {
992         int r;
993
994         mutex_lock(&kvm->slots_lock);
995         r = __kvm_set_memory_region(kvm, mem);
996         mutex_unlock(&kvm->slots_lock);
997         return r;
998 }
999 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1000
1001 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1002                                           struct kvm_userspace_memory_region *mem)
1003 {
1004         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1005                 return -EINVAL;
1006
1007         return kvm_set_memory_region(kvm, mem);
1008 }
1009
1010 int kvm_get_dirty_log(struct kvm *kvm,
1011                         struct kvm_dirty_log *log, int *is_dirty)
1012 {
1013         struct kvm_memslots *slots;
1014         struct kvm_memory_slot *memslot;
1015         int r, i, as_id, id;
1016         unsigned long n;
1017         unsigned long any = 0;
1018
1019         r = -EINVAL;
1020         as_id = log->slot >> 16;
1021         id = (u16)log->slot;
1022         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1023                 goto out;
1024
1025         slots = __kvm_memslots(kvm, as_id);
1026         memslot = id_to_memslot(slots, id);
1027         r = -ENOENT;
1028         if (!memslot->dirty_bitmap)
1029                 goto out;
1030
1031         n = kvm_dirty_bitmap_bytes(memslot);
1032
1033         for (i = 0; !any && i < n/sizeof(long); ++i)
1034                 any = memslot->dirty_bitmap[i];
1035
1036         r = -EFAULT;
1037         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1038                 goto out;
1039
1040         if (any)
1041                 *is_dirty = 1;
1042
1043         r = 0;
1044 out:
1045         return r;
1046 }
1047 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1048
1049 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1050 /**
1051  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1052  *      are dirty write protect them for next write.
1053  * @kvm:        pointer to kvm instance
1054  * @log:        slot id and address to which we copy the log
1055  * @is_dirty:   flag set if any page is dirty
1056  *
1057  * We need to keep it in mind that VCPU threads can write to the bitmap
1058  * concurrently. So, to avoid losing track of dirty pages we keep the
1059  * following order:
1060  *
1061  *    1. Take a snapshot of the bit and clear it if needed.
1062  *    2. Write protect the corresponding page.
1063  *    3. Copy the snapshot to the userspace.
1064  *    4. Upon return caller flushes TLB's if needed.
1065  *
1066  * Between 2 and 4, the guest may write to the page using the remaining TLB
1067  * entry.  This is not a problem because the page is reported dirty using
1068  * the snapshot taken before and step 4 ensures that writes done after
1069  * exiting to userspace will be logged for the next call.
1070  *
1071  */
1072 int kvm_get_dirty_log_protect(struct kvm *kvm,
1073                         struct kvm_dirty_log *log, bool *is_dirty)
1074 {
1075         struct kvm_memslots *slots;
1076         struct kvm_memory_slot *memslot;
1077         int r, i, as_id, id;
1078         unsigned long n;
1079         unsigned long *dirty_bitmap;
1080         unsigned long *dirty_bitmap_buffer;
1081
1082         r = -EINVAL;
1083         as_id = log->slot >> 16;
1084         id = (u16)log->slot;
1085         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086                 goto out;
1087
1088         slots = __kvm_memslots(kvm, as_id);
1089         memslot = id_to_memslot(slots, id);
1090
1091         dirty_bitmap = memslot->dirty_bitmap;
1092         r = -ENOENT;
1093         if (!dirty_bitmap)
1094                 goto out;
1095
1096         n = kvm_dirty_bitmap_bytes(memslot);
1097
1098         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1099         memset(dirty_bitmap_buffer, 0, n);
1100
1101         spin_lock(&kvm->mmu_lock);
1102         *is_dirty = false;
1103         for (i = 0; i < n / sizeof(long); i++) {
1104                 unsigned long mask;
1105                 gfn_t offset;
1106
1107                 if (!dirty_bitmap[i])
1108                         continue;
1109
1110                 *is_dirty = true;
1111
1112                 mask = xchg(&dirty_bitmap[i], 0);
1113                 dirty_bitmap_buffer[i] = mask;
1114
1115                 if (mask) {
1116                         offset = i * BITS_PER_LONG;
1117                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1118                                                                 offset, mask);
1119                 }
1120         }
1121
1122         spin_unlock(&kvm->mmu_lock);
1123
1124         r = -EFAULT;
1125         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1126                 goto out;
1127
1128         r = 0;
1129 out:
1130         return r;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1133 #endif
1134
1135 bool kvm_largepages_enabled(void)
1136 {
1137         return largepages_enabled;
1138 }
1139
1140 void kvm_disable_largepages(void)
1141 {
1142         largepages_enabled = false;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1145
1146 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1147 {
1148         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1149 }
1150 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1151
1152 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1153 {
1154         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1155 }
1156
1157 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1158 {
1159         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1160
1161         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1162               memslot->flags & KVM_MEMSLOT_INVALID)
1163                 return false;
1164
1165         return true;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1168
1169 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1170 {
1171         struct vm_area_struct *vma;
1172         unsigned long addr, size;
1173
1174         size = PAGE_SIZE;
1175
1176         addr = gfn_to_hva(kvm, gfn);
1177         if (kvm_is_error_hva(addr))
1178                 return PAGE_SIZE;
1179
1180         down_read(&current->mm->mmap_sem);
1181         vma = find_vma(current->mm, addr);
1182         if (!vma)
1183                 goto out;
1184
1185         size = vma_kernel_pagesize(vma);
1186
1187 out:
1188         up_read(&current->mm->mmap_sem);
1189
1190         return size;
1191 }
1192
1193 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1194 {
1195         return slot->flags & KVM_MEM_READONLY;
1196 }
1197
1198 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1199                                        gfn_t *nr_pages, bool write)
1200 {
1201         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1202                 return KVM_HVA_ERR_BAD;
1203
1204         if (memslot_is_readonly(slot) && write)
1205                 return KVM_HVA_ERR_RO_BAD;
1206
1207         if (nr_pages)
1208                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1209
1210         return __gfn_to_hva_memslot(slot, gfn);
1211 }
1212
1213 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1214                                      gfn_t *nr_pages)
1215 {
1216         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1217 }
1218
1219 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1220                                         gfn_t gfn)
1221 {
1222         return gfn_to_hva_many(slot, gfn, NULL);
1223 }
1224 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1225
1226 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1227 {
1228         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1229 }
1230 EXPORT_SYMBOL_GPL(gfn_to_hva);
1231
1232 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1233 {
1234         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1237
1238 /*
1239  * If writable is set to false, the hva returned by this function is only
1240  * allowed to be read.
1241  */
1242 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1243                                       gfn_t gfn, bool *writable)
1244 {
1245         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1246
1247         if (!kvm_is_error_hva(hva) && writable)
1248                 *writable = !memslot_is_readonly(slot);
1249
1250         return hva;
1251 }
1252
1253 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1254 {
1255         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1256
1257         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1258 }
1259
1260 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1261 {
1262         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1263
1264         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1265 }
1266
1267 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1268         unsigned long start, int write, struct page **page)
1269 {
1270         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1271
1272         if (write)
1273                 flags |= FOLL_WRITE;
1274
1275         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1276 }
1277
1278 static inline int check_user_page_hwpoison(unsigned long addr)
1279 {
1280         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1281
1282         rc = __get_user_pages(current, current->mm, addr, 1,
1283                               flags, NULL, NULL, NULL);
1284         return rc == -EHWPOISON;
1285 }
1286
1287 /*
1288  * The atomic path to get the writable pfn which will be stored in @pfn,
1289  * true indicates success, otherwise false is returned.
1290  */
1291 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1292                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1293 {
1294         struct page *page[1];
1295         int npages;
1296
1297         if (!(async || atomic))
1298                 return false;
1299
1300         /*
1301          * Fast pin a writable pfn only if it is a write fault request
1302          * or the caller allows to map a writable pfn for a read fault
1303          * request.
1304          */
1305         if (!(write_fault || writable))
1306                 return false;
1307
1308         npages = __get_user_pages_fast(addr, 1, 1, page);
1309         if (npages == 1) {
1310                 *pfn = page_to_pfn(page[0]);
1311
1312                 if (writable)
1313                         *writable = true;
1314                 return true;
1315         }
1316
1317         return false;
1318 }
1319
1320 /*
1321  * The slow path to get the pfn of the specified host virtual address,
1322  * 1 indicates success, -errno is returned if error is detected.
1323  */
1324 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1325                            bool *writable, kvm_pfn_t *pfn)
1326 {
1327         struct page *page[1];
1328         int npages = 0;
1329
1330         might_sleep();
1331
1332         if (writable)
1333                 *writable = write_fault;
1334
1335         if (async) {
1336                 down_read(&current->mm->mmap_sem);
1337                 npages = get_user_page_nowait(current, current->mm,
1338                                               addr, write_fault, page);
1339                 up_read(&current->mm->mmap_sem);
1340         } else
1341                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1342                                                    write_fault, 0, page,
1343                                                    FOLL_TOUCH|FOLL_HWPOISON);
1344         if (npages != 1)
1345                 return npages;
1346
1347         /* map read fault as writable if possible */
1348         if (unlikely(!write_fault) && writable) {
1349                 struct page *wpage[1];
1350
1351                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1352                 if (npages == 1) {
1353                         *writable = true;
1354                         put_page(page[0]);
1355                         page[0] = wpage[0];
1356                 }
1357
1358                 npages = 1;
1359         }
1360         *pfn = page_to_pfn(page[0]);
1361         return npages;
1362 }
1363
1364 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1365 {
1366         if (unlikely(!(vma->vm_flags & VM_READ)))
1367                 return false;
1368
1369         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1370                 return false;
1371
1372         return true;
1373 }
1374
1375 /*
1376  * Pin guest page in memory and return its pfn.
1377  * @addr: host virtual address which maps memory to the guest
1378  * @atomic: whether this function can sleep
1379  * @async: whether this function need to wait IO complete if the
1380  *         host page is not in the memory
1381  * @write_fault: whether we should get a writable host page
1382  * @writable: whether it allows to map a writable host page for !@write_fault
1383  *
1384  * The function will map a writable host page for these two cases:
1385  * 1): @write_fault = true
1386  * 2): @write_fault = false && @writable, @writable will tell the caller
1387  *     whether the mapping is writable.
1388  */
1389 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1390                         bool write_fault, bool *writable)
1391 {
1392         struct vm_area_struct *vma;
1393         kvm_pfn_t pfn = 0;
1394         int npages;
1395
1396         /* we can do it either atomically or asynchronously, not both */
1397         BUG_ON(atomic && async);
1398
1399         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1400                 return pfn;
1401
1402         if (atomic)
1403                 return KVM_PFN_ERR_FAULT;
1404
1405         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1406         if (npages == 1)
1407                 return pfn;
1408
1409         down_read(&current->mm->mmap_sem);
1410         if (npages == -EHWPOISON ||
1411               (!async && check_user_page_hwpoison(addr))) {
1412                 pfn = KVM_PFN_ERR_HWPOISON;
1413                 goto exit;
1414         }
1415
1416         vma = find_vma_intersection(current->mm, addr, addr + 1);
1417
1418         if (vma == NULL)
1419                 pfn = KVM_PFN_ERR_FAULT;
1420         else if ((vma->vm_flags & VM_PFNMAP)) {
1421                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1422                         vma->vm_pgoff;
1423                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1424         } else {
1425                 if (async && vma_is_valid(vma, write_fault))
1426                         *async = true;
1427                 pfn = KVM_PFN_ERR_FAULT;
1428         }
1429 exit:
1430         up_read(&current->mm->mmap_sem);
1431         return pfn;
1432 }
1433
1434 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1435                                bool atomic, bool *async, bool write_fault,
1436                                bool *writable)
1437 {
1438         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1439
1440         if (addr == KVM_HVA_ERR_RO_BAD)
1441                 return KVM_PFN_ERR_RO_FAULT;
1442
1443         if (kvm_is_error_hva(addr))
1444                 return KVM_PFN_NOSLOT;
1445
1446         /* Do not map writable pfn in the readonly memslot. */
1447         if (writable && memslot_is_readonly(slot)) {
1448                 *writable = false;
1449                 writable = NULL;
1450         }
1451
1452         return hva_to_pfn(addr, atomic, async, write_fault,
1453                           writable);
1454 }
1455 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1456
1457 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1458                       bool *writable)
1459 {
1460         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1461                                     write_fault, writable);
1462 }
1463 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1464
1465 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1466 {
1467         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1468 }
1469 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1470
1471 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1472 {
1473         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1474 }
1475 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1476
1477 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1478 {
1479         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1482
1483 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1484 {
1485         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1488
1489 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1490 {
1491         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1492 }
1493 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1494
1495 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1496 {
1497         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1500
1501 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1502                             struct page **pages, int nr_pages)
1503 {
1504         unsigned long addr;
1505         gfn_t entry;
1506
1507         addr = gfn_to_hva_many(slot, gfn, &entry);
1508         if (kvm_is_error_hva(addr))
1509                 return -1;
1510
1511         if (entry < nr_pages)
1512                 return 0;
1513
1514         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1515 }
1516 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1517
1518 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1519 {
1520         if (is_error_noslot_pfn(pfn))
1521                 return KVM_ERR_PTR_BAD_PAGE;
1522
1523         if (kvm_is_reserved_pfn(pfn)) {
1524                 WARN_ON(1);
1525                 return KVM_ERR_PTR_BAD_PAGE;
1526         }
1527
1528         return pfn_to_page(pfn);
1529 }
1530
1531 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1532 {
1533         kvm_pfn_t pfn;
1534
1535         pfn = gfn_to_pfn(kvm, gfn);
1536
1537         return kvm_pfn_to_page(pfn);
1538 }
1539 EXPORT_SYMBOL_GPL(gfn_to_page);
1540
1541 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1542 {
1543         kvm_pfn_t pfn;
1544
1545         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1546
1547         return kvm_pfn_to_page(pfn);
1548 }
1549 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1550
1551 void kvm_release_page_clean(struct page *page)
1552 {
1553         WARN_ON(is_error_page(page));
1554
1555         kvm_release_pfn_clean(page_to_pfn(page));
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1558
1559 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1560 {
1561         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1562                 put_page(pfn_to_page(pfn));
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1565
1566 void kvm_release_page_dirty(struct page *page)
1567 {
1568         WARN_ON(is_error_page(page));
1569
1570         kvm_release_pfn_dirty(page_to_pfn(page));
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1573
1574 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1575 {
1576         kvm_set_pfn_dirty(pfn);
1577         kvm_release_pfn_clean(pfn);
1578 }
1579
1580 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1581 {
1582         if (!kvm_is_reserved_pfn(pfn)) {
1583                 struct page *page = pfn_to_page(pfn);
1584
1585                 if (!PageReserved(page))
1586                         SetPageDirty(page);
1587         }
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1590
1591 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1592 {
1593         if (!kvm_is_reserved_pfn(pfn))
1594                 mark_page_accessed(pfn_to_page(pfn));
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1597
1598 void kvm_get_pfn(kvm_pfn_t pfn)
1599 {
1600         if (!kvm_is_reserved_pfn(pfn))
1601                 get_page(pfn_to_page(pfn));
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1604
1605 static int next_segment(unsigned long len, int offset)
1606 {
1607         if (len > PAGE_SIZE - offset)
1608                 return PAGE_SIZE - offset;
1609         else
1610                 return len;
1611 }
1612
1613 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1614                                  void *data, int offset, int len)
1615 {
1616         int r;
1617         unsigned long addr;
1618
1619         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1620         if (kvm_is_error_hva(addr))
1621                 return -EFAULT;
1622         r = __copy_from_user(data, (void __user *)addr + offset, len);
1623         if (r)
1624                 return -EFAULT;
1625         return 0;
1626 }
1627
1628 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1629                         int len)
1630 {
1631         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1632
1633         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1636
1637 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1638                              int offset, int len)
1639 {
1640         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1641
1642         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1645
1646 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1647 {
1648         gfn_t gfn = gpa >> PAGE_SHIFT;
1649         int seg;
1650         int offset = offset_in_page(gpa);
1651         int ret;
1652
1653         while ((seg = next_segment(len, offset)) != 0) {
1654                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1655                 if (ret < 0)
1656                         return ret;
1657                 offset = 0;
1658                 len -= seg;
1659                 data += seg;
1660                 ++gfn;
1661         }
1662         return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_read_guest);
1665
1666 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1667 {
1668         gfn_t gfn = gpa >> PAGE_SHIFT;
1669         int seg;
1670         int offset = offset_in_page(gpa);
1671         int ret;
1672
1673         while ((seg = next_segment(len, offset)) != 0) {
1674                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1675                 if (ret < 0)
1676                         return ret;
1677                 offset = 0;
1678                 len -= seg;
1679                 data += seg;
1680                 ++gfn;
1681         }
1682         return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1685
1686 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1687                                    void *data, int offset, unsigned long len)
1688 {
1689         int r;
1690         unsigned long addr;
1691
1692         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1693         if (kvm_is_error_hva(addr))
1694                 return -EFAULT;
1695         pagefault_disable();
1696         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1697         pagefault_enable();
1698         if (r)
1699                 return -EFAULT;
1700         return 0;
1701 }
1702
1703 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1704                           unsigned long len)
1705 {
1706         gfn_t gfn = gpa >> PAGE_SHIFT;
1707         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1708         int offset = offset_in_page(gpa);
1709
1710         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1713
1714 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1715                                void *data, unsigned long len)
1716 {
1717         gfn_t gfn = gpa >> PAGE_SHIFT;
1718         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719         int offset = offset_in_page(gpa);
1720
1721         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1724
1725 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1726                                   const void *data, int offset, int len)
1727 {
1728         int r;
1729         unsigned long addr;
1730
1731         addr = gfn_to_hva_memslot(memslot, gfn);
1732         if (kvm_is_error_hva(addr))
1733                 return -EFAULT;
1734         r = __copy_to_user((void __user *)addr + offset, data, len);
1735         if (r)
1736                 return -EFAULT;
1737         mark_page_dirty_in_slot(memslot, gfn);
1738         return 0;
1739 }
1740
1741 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1742                          const void *data, int offset, int len)
1743 {
1744         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1745
1746         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1749
1750 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1751                               const void *data, int offset, int len)
1752 {
1753         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1754
1755         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1758
1759 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1760                     unsigned long len)
1761 {
1762         gfn_t gfn = gpa >> PAGE_SHIFT;
1763         int seg;
1764         int offset = offset_in_page(gpa);
1765         int ret;
1766
1767         while ((seg = next_segment(len, offset)) != 0) {
1768                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1769                 if (ret < 0)
1770                         return ret;
1771                 offset = 0;
1772                 len -= seg;
1773                 data += seg;
1774                 ++gfn;
1775         }
1776         return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_write_guest);
1779
1780 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1781                          unsigned long len)
1782 {
1783         gfn_t gfn = gpa >> PAGE_SHIFT;
1784         int seg;
1785         int offset = offset_in_page(gpa);
1786         int ret;
1787
1788         while ((seg = next_segment(len, offset)) != 0) {
1789                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1790                 if (ret < 0)
1791                         return ret;
1792                 offset = 0;
1793                 len -= seg;
1794                 data += seg;
1795                 ++gfn;
1796         }
1797         return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1800
1801 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1802                               gpa_t gpa, unsigned long len)
1803 {
1804         struct kvm_memslots *slots = kvm_memslots(kvm);
1805         int offset = offset_in_page(gpa);
1806         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1807         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1808         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1809         gfn_t nr_pages_avail;
1810
1811         ghc->gpa = gpa;
1812         ghc->generation = slots->generation;
1813         ghc->len = len;
1814         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1815         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1816         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1817                 ghc->hva += offset;
1818         } else {
1819                 /*
1820                  * If the requested region crosses two memslots, we still
1821                  * verify that the entire region is valid here.
1822                  */
1823                 while (start_gfn <= end_gfn) {
1824                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1825                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1826                                                    &nr_pages_avail);
1827                         if (kvm_is_error_hva(ghc->hva))
1828                                 return -EFAULT;
1829                         start_gfn += nr_pages_avail;
1830                 }
1831                 /* Use the slow path for cross page reads and writes. */
1832                 ghc->memslot = NULL;
1833         }
1834         return 0;
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1837
1838 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1839                            void *data, unsigned long len)
1840 {
1841         struct kvm_memslots *slots = kvm_memslots(kvm);
1842         int r;
1843
1844         BUG_ON(len > ghc->len);
1845
1846         if (slots->generation != ghc->generation)
1847                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1848
1849         if (unlikely(!ghc->memslot))
1850                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1851
1852         if (kvm_is_error_hva(ghc->hva))
1853                 return -EFAULT;
1854
1855         r = __copy_to_user((void __user *)ghc->hva, data, len);
1856         if (r)
1857                 return -EFAULT;
1858         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1859
1860         return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1863
1864 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1865                            void *data, unsigned long len)
1866 {
1867         struct kvm_memslots *slots = kvm_memslots(kvm);
1868         int r;
1869
1870         BUG_ON(len > ghc->len);
1871
1872         if (slots->generation != ghc->generation)
1873                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1874
1875         if (unlikely(!ghc->memslot))
1876                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1877
1878         if (kvm_is_error_hva(ghc->hva))
1879                 return -EFAULT;
1880
1881         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1882         if (r)
1883                 return -EFAULT;
1884
1885         return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1888
1889 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1890 {
1891         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1892
1893         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1896
1897 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1898 {
1899         gfn_t gfn = gpa >> PAGE_SHIFT;
1900         int seg;
1901         int offset = offset_in_page(gpa);
1902         int ret;
1903
1904         while ((seg = next_segment(len, offset)) != 0) {
1905                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1906                 if (ret < 0)
1907                         return ret;
1908                 offset = 0;
1909                 len -= seg;
1910                 ++gfn;
1911         }
1912         return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1915
1916 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1917                                     gfn_t gfn)
1918 {
1919         if (memslot && memslot->dirty_bitmap) {
1920                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1921
1922                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1923         }
1924 }
1925
1926 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1927 {
1928         struct kvm_memory_slot *memslot;
1929
1930         memslot = gfn_to_memslot(kvm, gfn);
1931         mark_page_dirty_in_slot(memslot, gfn);
1932 }
1933 EXPORT_SYMBOL_GPL(mark_page_dirty);
1934
1935 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1936 {
1937         struct kvm_memory_slot *memslot;
1938
1939         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1940         mark_page_dirty_in_slot(memslot, gfn);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1943
1944 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1945 {
1946         int old, val;
1947
1948         old = val = vcpu->halt_poll_ns;
1949         /* 10us base */
1950         if (val == 0 && halt_poll_ns_grow)
1951                 val = 10000;
1952         else
1953                 val *= halt_poll_ns_grow;
1954
1955         vcpu->halt_poll_ns = val;
1956         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1957 }
1958
1959 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1960 {
1961         int old, val;
1962
1963         old = val = vcpu->halt_poll_ns;
1964         if (halt_poll_ns_shrink == 0)
1965                 val = 0;
1966         else
1967                 val /= halt_poll_ns_shrink;
1968
1969         vcpu->halt_poll_ns = val;
1970         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1971 }
1972
1973 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1974 {
1975         if (kvm_arch_vcpu_runnable(vcpu)) {
1976                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1977                 return -EINTR;
1978         }
1979         if (kvm_cpu_has_pending_timer(vcpu))
1980                 return -EINTR;
1981         if (signal_pending(current))
1982                 return -EINTR;
1983
1984         return 0;
1985 }
1986
1987 /*
1988  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1989  */
1990 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1991 {
1992         ktime_t start, cur;
1993         DEFINE_WAIT(wait);
1994         bool waited = false;
1995         u64 block_ns;
1996
1997         start = cur = ktime_get();
1998         if (vcpu->halt_poll_ns) {
1999                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2000
2001                 ++vcpu->stat.halt_attempted_poll;
2002                 do {
2003                         /*
2004                          * This sets KVM_REQ_UNHALT if an interrupt
2005                          * arrives.
2006                          */
2007                         if (kvm_vcpu_check_block(vcpu) < 0) {
2008                                 ++vcpu->stat.halt_successful_poll;
2009                                 goto out;
2010                         }
2011                         cur = ktime_get();
2012                 } while (single_task_running() && ktime_before(cur, stop));
2013         }
2014
2015         kvm_arch_vcpu_blocking(vcpu);
2016
2017         for (;;) {
2018                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2019
2020                 if (kvm_vcpu_check_block(vcpu) < 0)
2021                         break;
2022
2023                 waited = true;
2024                 schedule();
2025         }
2026
2027         finish_wait(&vcpu->wq, &wait);
2028         cur = ktime_get();
2029
2030         kvm_arch_vcpu_unblocking(vcpu);
2031 out:
2032         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2033
2034         if (halt_poll_ns) {
2035                 if (block_ns <= vcpu->halt_poll_ns)
2036                         ;
2037                 /* we had a long block, shrink polling */
2038                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2039                         shrink_halt_poll_ns(vcpu);
2040                 /* we had a short halt and our poll time is too small */
2041                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2042                         block_ns < halt_poll_ns)
2043                         grow_halt_poll_ns(vcpu);
2044         } else
2045                 vcpu->halt_poll_ns = 0;
2046
2047         trace_kvm_vcpu_wakeup(block_ns, waited);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2050
2051 #ifndef CONFIG_S390
2052 /*
2053  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2054  */
2055 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2056 {
2057         int me;
2058         int cpu = vcpu->cpu;
2059         wait_queue_head_t *wqp;
2060
2061         wqp = kvm_arch_vcpu_wq(vcpu);
2062         if (waitqueue_active(wqp)) {
2063                 wake_up_interruptible(wqp);
2064                 ++vcpu->stat.halt_wakeup;
2065         }
2066
2067         me = get_cpu();
2068         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2069                 if (kvm_arch_vcpu_should_kick(vcpu))
2070                         smp_send_reschedule(cpu);
2071         put_cpu();
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2074 #endif /* !CONFIG_S390 */
2075
2076 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2077 {
2078         struct pid *pid;
2079         struct task_struct *task = NULL;
2080         int ret = 0;
2081
2082         rcu_read_lock();
2083         pid = rcu_dereference(target->pid);
2084         if (pid)
2085                 task = get_pid_task(pid, PIDTYPE_PID);
2086         rcu_read_unlock();
2087         if (!task)
2088                 return ret;
2089         ret = yield_to(task, 1);
2090         put_task_struct(task);
2091
2092         return ret;
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2095
2096 /*
2097  * Helper that checks whether a VCPU is eligible for directed yield.
2098  * Most eligible candidate to yield is decided by following heuristics:
2099  *
2100  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2101  *  (preempted lock holder), indicated by @in_spin_loop.
2102  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2103  *
2104  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2105  *  chance last time (mostly it has become eligible now since we have probably
2106  *  yielded to lockholder in last iteration. This is done by toggling
2107  *  @dy_eligible each time a VCPU checked for eligibility.)
2108  *
2109  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2110  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2111  *  burning. Giving priority for a potential lock-holder increases lock
2112  *  progress.
2113  *
2114  *  Since algorithm is based on heuristics, accessing another VCPU data without
2115  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2116  *  and continue with next VCPU and so on.
2117  */
2118 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2119 {
2120 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2121         bool eligible;
2122
2123         eligible = !vcpu->spin_loop.in_spin_loop ||
2124                     vcpu->spin_loop.dy_eligible;
2125
2126         if (vcpu->spin_loop.in_spin_loop)
2127                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2128
2129         return eligible;
2130 #else
2131         return true;
2132 #endif
2133 }
2134
2135 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2136 {
2137         struct kvm *kvm = me->kvm;
2138         struct kvm_vcpu *vcpu;
2139         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2140         int yielded = 0;
2141         int try = 3;
2142         int pass;
2143         int i;
2144
2145         kvm_vcpu_set_in_spin_loop(me, true);
2146         /*
2147          * We boost the priority of a VCPU that is runnable but not
2148          * currently running, because it got preempted by something
2149          * else and called schedule in __vcpu_run.  Hopefully that
2150          * VCPU is holding the lock that we need and will release it.
2151          * We approximate round-robin by starting at the last boosted VCPU.
2152          */
2153         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2154                 kvm_for_each_vcpu(i, vcpu, kvm) {
2155                         if (!pass && i <= last_boosted_vcpu) {
2156                                 i = last_boosted_vcpu;
2157                                 continue;
2158                         } else if (pass && i > last_boosted_vcpu)
2159                                 break;
2160                         if (!ACCESS_ONCE(vcpu->preempted))
2161                                 continue;
2162                         if (vcpu == me)
2163                                 continue;
2164                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2165                                 continue;
2166                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2167                                 continue;
2168
2169                         yielded = kvm_vcpu_yield_to(vcpu);
2170                         if (yielded > 0) {
2171                                 kvm->last_boosted_vcpu = i;
2172                                 break;
2173                         } else if (yielded < 0) {
2174                                 try--;
2175                                 if (!try)
2176                                         break;
2177                         }
2178                 }
2179         }
2180         kvm_vcpu_set_in_spin_loop(me, false);
2181
2182         /* Ensure vcpu is not eligible during next spinloop */
2183         kvm_vcpu_set_dy_eligible(me, false);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2186
2187 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2188 {
2189         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2190         struct page *page;
2191
2192         if (vmf->pgoff == 0)
2193                 page = virt_to_page(vcpu->run);
2194 #ifdef CONFIG_X86
2195         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2196                 page = virt_to_page(vcpu->arch.pio_data);
2197 #endif
2198 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2199         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2200                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2201 #endif
2202         else
2203                 return kvm_arch_vcpu_fault(vcpu, vmf);
2204         get_page(page);
2205         vmf->page = page;
2206         return 0;
2207 }
2208
2209 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2210         .fault = kvm_vcpu_fault,
2211 };
2212
2213 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2214 {
2215         vma->vm_ops = &kvm_vcpu_vm_ops;
2216         return 0;
2217 }
2218
2219 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2220 {
2221         struct kvm_vcpu *vcpu = filp->private_data;
2222
2223         kvm_put_kvm(vcpu->kvm);
2224         return 0;
2225 }
2226
2227 static struct file_operations kvm_vcpu_fops = {
2228         .release        = kvm_vcpu_release,
2229         .unlocked_ioctl = kvm_vcpu_ioctl,
2230 #ifdef CONFIG_KVM_COMPAT
2231         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2232 #endif
2233         .mmap           = kvm_vcpu_mmap,
2234         .llseek         = noop_llseek,
2235 };
2236
2237 /*
2238  * Allocates an inode for the vcpu.
2239  */
2240 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2241 {
2242         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2243 }
2244
2245 /*
2246  * Creates some virtual cpus.  Good luck creating more than one.
2247  */
2248 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2249 {
2250         int r;
2251         struct kvm_vcpu *vcpu;
2252
2253         if (id >= KVM_MAX_VCPUS)
2254                 return -EINVAL;
2255
2256         vcpu = kvm_arch_vcpu_create(kvm, id);
2257         if (IS_ERR(vcpu))
2258                 return PTR_ERR(vcpu);
2259
2260         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2261
2262         r = kvm_arch_vcpu_setup(vcpu);
2263         if (r)
2264                 goto vcpu_destroy;
2265
2266         mutex_lock(&kvm->lock);
2267         if (!kvm_vcpu_compatible(vcpu)) {
2268                 r = -EINVAL;
2269                 goto unlock_vcpu_destroy;
2270         }
2271         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2272                 r = -EINVAL;
2273                 goto unlock_vcpu_destroy;
2274         }
2275         if (kvm_get_vcpu_by_id(kvm, id)) {
2276                 r = -EEXIST;
2277                 goto unlock_vcpu_destroy;
2278         }
2279
2280         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2281
2282         /* Now it's all set up, let userspace reach it */
2283         kvm_get_kvm(kvm);
2284         r = create_vcpu_fd(vcpu);
2285         if (r < 0) {
2286                 kvm_put_kvm(kvm);
2287                 goto unlock_vcpu_destroy;
2288         }
2289
2290         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2291
2292         /*
2293          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2294          * before kvm->online_vcpu's incremented value.
2295          */
2296         smp_wmb();
2297         atomic_inc(&kvm->online_vcpus);
2298
2299         mutex_unlock(&kvm->lock);
2300         kvm_arch_vcpu_postcreate(vcpu);
2301         return r;
2302
2303 unlock_vcpu_destroy:
2304         mutex_unlock(&kvm->lock);
2305 vcpu_destroy:
2306         kvm_arch_vcpu_destroy(vcpu);
2307         return r;
2308 }
2309
2310 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2311 {
2312         if (sigset) {
2313                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2314                 vcpu->sigset_active = 1;
2315                 vcpu->sigset = *sigset;
2316         } else
2317                 vcpu->sigset_active = 0;
2318         return 0;
2319 }
2320
2321 static long kvm_vcpu_ioctl(struct file *filp,
2322                            unsigned int ioctl, unsigned long arg)
2323 {
2324         struct kvm_vcpu *vcpu = filp->private_data;
2325         void __user *argp = (void __user *)arg;
2326         int r;
2327         struct kvm_fpu *fpu = NULL;
2328         struct kvm_sregs *kvm_sregs = NULL;
2329
2330         if (vcpu->kvm->mm != current->mm)
2331                 return -EIO;
2332
2333         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2334                 return -EINVAL;
2335
2336 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2337         /*
2338          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2339          * so vcpu_load() would break it.
2340          */
2341         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2342                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2343 #endif
2344
2345
2346         r = vcpu_load(vcpu);
2347         if (r)
2348                 return r;
2349         switch (ioctl) {
2350         case KVM_RUN:
2351                 r = -EINVAL;
2352                 if (arg)
2353                         goto out;
2354                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2355                         /* The thread running this VCPU changed. */
2356                         struct pid *oldpid = vcpu->pid;
2357                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2358
2359                         rcu_assign_pointer(vcpu->pid, newpid);
2360                         if (oldpid)
2361                                 synchronize_rcu();
2362                         put_pid(oldpid);
2363                 }
2364                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2365                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2366                 break;
2367         case KVM_GET_REGS: {
2368                 struct kvm_regs *kvm_regs;
2369
2370                 r = -ENOMEM;
2371                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2372                 if (!kvm_regs)
2373                         goto out;
2374                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2375                 if (r)
2376                         goto out_free1;
2377                 r = -EFAULT;
2378                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2379                         goto out_free1;
2380                 r = 0;
2381 out_free1:
2382                 kfree(kvm_regs);
2383                 break;
2384         }
2385         case KVM_SET_REGS: {
2386                 struct kvm_regs *kvm_regs;
2387
2388                 r = -ENOMEM;
2389                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2390                 if (IS_ERR(kvm_regs)) {
2391                         r = PTR_ERR(kvm_regs);
2392                         goto out;
2393                 }
2394                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2395                 kfree(kvm_regs);
2396                 break;
2397         }
2398         case KVM_GET_SREGS: {
2399                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2400                 r = -ENOMEM;
2401                 if (!kvm_sregs)
2402                         goto out;
2403                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2404                 if (r)
2405                         goto out;
2406                 r = -EFAULT;
2407                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2408                         goto out;
2409                 r = 0;
2410                 break;
2411         }
2412         case KVM_SET_SREGS: {
2413                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2414                 if (IS_ERR(kvm_sregs)) {
2415                         r = PTR_ERR(kvm_sregs);
2416                         kvm_sregs = NULL;
2417                         goto out;
2418                 }
2419                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2420                 break;
2421         }
2422         case KVM_GET_MP_STATE: {
2423                 struct kvm_mp_state mp_state;
2424
2425                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2426                 if (r)
2427                         goto out;
2428                 r = -EFAULT;
2429                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2430                         goto out;
2431                 r = 0;
2432                 break;
2433         }
2434         case KVM_SET_MP_STATE: {
2435                 struct kvm_mp_state mp_state;
2436
2437                 r = -EFAULT;
2438                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2439                         goto out;
2440                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2441                 break;
2442         }
2443         case KVM_TRANSLATE: {
2444                 struct kvm_translation tr;
2445
2446                 r = -EFAULT;
2447                 if (copy_from_user(&tr, argp, sizeof(tr)))
2448                         goto out;
2449                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2450                 if (r)
2451                         goto out;
2452                 r = -EFAULT;
2453                 if (copy_to_user(argp, &tr, sizeof(tr)))
2454                         goto out;
2455                 r = 0;
2456                 break;
2457         }
2458         case KVM_SET_GUEST_DEBUG: {
2459                 struct kvm_guest_debug dbg;
2460
2461                 r = -EFAULT;
2462                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2463                         goto out;
2464                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2465                 break;
2466         }
2467         case KVM_SET_SIGNAL_MASK: {
2468                 struct kvm_signal_mask __user *sigmask_arg = argp;
2469                 struct kvm_signal_mask kvm_sigmask;
2470                 sigset_t sigset, *p;
2471
2472                 p = NULL;
2473                 if (argp) {
2474                         r = -EFAULT;
2475                         if (copy_from_user(&kvm_sigmask, argp,
2476                                            sizeof(kvm_sigmask)))
2477                                 goto out;
2478                         r = -EINVAL;
2479                         if (kvm_sigmask.len != sizeof(sigset))
2480                                 goto out;
2481                         r = -EFAULT;
2482                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2483                                            sizeof(sigset)))
2484                                 goto out;
2485                         p = &sigset;
2486                 }
2487                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2488                 break;
2489         }
2490         case KVM_GET_FPU: {
2491                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2492                 r = -ENOMEM;
2493                 if (!fpu)
2494                         goto out;
2495                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2496                 if (r)
2497                         goto out;
2498                 r = -EFAULT;
2499                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2500                         goto out;
2501                 r = 0;
2502                 break;
2503         }
2504         case KVM_SET_FPU: {
2505                 fpu = memdup_user(argp, sizeof(*fpu));
2506                 if (IS_ERR(fpu)) {
2507                         r = PTR_ERR(fpu);
2508                         fpu = NULL;
2509                         goto out;
2510                 }
2511                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2512                 break;
2513         }
2514         default:
2515                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2516         }
2517 out:
2518         vcpu_put(vcpu);
2519         kfree(fpu);
2520         kfree(kvm_sregs);
2521         return r;
2522 }
2523
2524 #ifdef CONFIG_KVM_COMPAT
2525 static long kvm_vcpu_compat_ioctl(struct file *filp,
2526                                   unsigned int ioctl, unsigned long arg)
2527 {
2528         struct kvm_vcpu *vcpu = filp->private_data;
2529         void __user *argp = compat_ptr(arg);
2530         int r;
2531
2532         if (vcpu->kvm->mm != current->mm)
2533                 return -EIO;
2534
2535         switch (ioctl) {
2536         case KVM_SET_SIGNAL_MASK: {
2537                 struct kvm_signal_mask __user *sigmask_arg = argp;
2538                 struct kvm_signal_mask kvm_sigmask;
2539                 compat_sigset_t csigset;
2540                 sigset_t sigset;
2541
2542                 if (argp) {
2543                         r = -EFAULT;
2544                         if (copy_from_user(&kvm_sigmask, argp,
2545                                            sizeof(kvm_sigmask)))
2546                                 goto out;
2547                         r = -EINVAL;
2548                         if (kvm_sigmask.len != sizeof(csigset))
2549                                 goto out;
2550                         r = -EFAULT;
2551                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2552                                            sizeof(csigset)))
2553                                 goto out;
2554                         sigset_from_compat(&sigset, &csigset);
2555                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2556                 } else
2557                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2558                 break;
2559         }
2560         default:
2561                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2562         }
2563
2564 out:
2565         return r;
2566 }
2567 #endif
2568
2569 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2570                                  int (*accessor)(struct kvm_device *dev,
2571                                                  struct kvm_device_attr *attr),
2572                                  unsigned long arg)
2573 {
2574         struct kvm_device_attr attr;
2575
2576         if (!accessor)
2577                 return -EPERM;
2578
2579         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2580                 return -EFAULT;
2581
2582         return accessor(dev, &attr);
2583 }
2584
2585 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2586                              unsigned long arg)
2587 {
2588         struct kvm_device *dev = filp->private_data;
2589
2590         switch (ioctl) {
2591         case KVM_SET_DEVICE_ATTR:
2592                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2593         case KVM_GET_DEVICE_ATTR:
2594                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2595         case KVM_HAS_DEVICE_ATTR:
2596                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2597         default:
2598                 if (dev->ops->ioctl)
2599                         return dev->ops->ioctl(dev, ioctl, arg);
2600
2601                 return -ENOTTY;
2602         }
2603 }
2604
2605 static int kvm_device_release(struct inode *inode, struct file *filp)
2606 {
2607         struct kvm_device *dev = filp->private_data;
2608         struct kvm *kvm = dev->kvm;
2609
2610         kvm_put_kvm(kvm);
2611         return 0;
2612 }
2613
2614 static const struct file_operations kvm_device_fops = {
2615         .unlocked_ioctl = kvm_device_ioctl,
2616 #ifdef CONFIG_KVM_COMPAT
2617         .compat_ioctl = kvm_device_ioctl,
2618 #endif
2619         .release = kvm_device_release,
2620 };
2621
2622 struct kvm_device *kvm_device_from_filp(struct file *filp)
2623 {
2624         if (filp->f_op != &kvm_device_fops)
2625                 return NULL;
2626
2627         return filp->private_data;
2628 }
2629
2630 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2631 #ifdef CONFIG_KVM_MPIC
2632         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2633         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2634 #endif
2635
2636 #ifdef CONFIG_KVM_XICS
2637         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2638 #endif
2639 };
2640
2641 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2642 {
2643         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2644                 return -ENOSPC;
2645
2646         if (kvm_device_ops_table[type] != NULL)
2647                 return -EEXIST;
2648
2649         kvm_device_ops_table[type] = ops;
2650         return 0;
2651 }
2652
2653 void kvm_unregister_device_ops(u32 type)
2654 {
2655         if (kvm_device_ops_table[type] != NULL)
2656                 kvm_device_ops_table[type] = NULL;
2657 }
2658
2659 static int kvm_ioctl_create_device(struct kvm *kvm,
2660                                    struct kvm_create_device *cd)
2661 {
2662         struct kvm_device_ops *ops = NULL;
2663         struct kvm_device *dev;
2664         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2665         int ret;
2666
2667         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2668                 return -ENODEV;
2669
2670         ops = kvm_device_ops_table[cd->type];
2671         if (ops == NULL)
2672                 return -ENODEV;
2673
2674         if (test)
2675                 return 0;
2676
2677         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2678         if (!dev)
2679                 return -ENOMEM;
2680
2681         dev->ops = ops;
2682         dev->kvm = kvm;
2683
2684         ret = ops->create(dev, cd->type);
2685         if (ret < 0) {
2686                 kfree(dev);
2687                 return ret;
2688         }
2689
2690         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2691         if (ret < 0) {
2692                 ops->destroy(dev);
2693                 return ret;
2694         }
2695
2696         list_add(&dev->vm_node, &kvm->devices);
2697         kvm_get_kvm(kvm);
2698         cd->fd = ret;
2699         return 0;
2700 }
2701
2702 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2703 {
2704         switch (arg) {
2705         case KVM_CAP_USER_MEMORY:
2706         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2707         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2708         case KVM_CAP_INTERNAL_ERROR_DATA:
2709 #ifdef CONFIG_HAVE_KVM_MSI
2710         case KVM_CAP_SIGNAL_MSI:
2711 #endif
2712 #ifdef CONFIG_HAVE_KVM_IRQFD
2713         case KVM_CAP_IRQFD:
2714         case KVM_CAP_IRQFD_RESAMPLE:
2715 #endif
2716         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2717         case KVM_CAP_CHECK_EXTENSION_VM:
2718                 return 1;
2719 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2720         case KVM_CAP_IRQ_ROUTING:
2721                 return KVM_MAX_IRQ_ROUTES;
2722 #endif
2723 #if KVM_ADDRESS_SPACE_NUM > 1
2724         case KVM_CAP_MULTI_ADDRESS_SPACE:
2725                 return KVM_ADDRESS_SPACE_NUM;
2726 #endif
2727         default:
2728                 break;
2729         }
2730         return kvm_vm_ioctl_check_extension(kvm, arg);
2731 }
2732
2733 static long kvm_vm_ioctl(struct file *filp,
2734                            unsigned int ioctl, unsigned long arg)
2735 {
2736         struct kvm *kvm = filp->private_data;
2737         void __user *argp = (void __user *)arg;
2738         int r;
2739
2740         if (kvm->mm != current->mm)
2741                 return -EIO;
2742         switch (ioctl) {
2743         case KVM_CREATE_VCPU:
2744                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2745                 break;
2746         case KVM_SET_USER_MEMORY_REGION: {
2747                 struct kvm_userspace_memory_region kvm_userspace_mem;
2748
2749                 r = -EFAULT;
2750                 if (copy_from_user(&kvm_userspace_mem, argp,
2751                                                 sizeof(kvm_userspace_mem)))
2752                         goto out;
2753
2754                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2755                 break;
2756         }
2757         case KVM_GET_DIRTY_LOG: {
2758                 struct kvm_dirty_log log;
2759
2760                 r = -EFAULT;
2761                 if (copy_from_user(&log, argp, sizeof(log)))
2762                         goto out;
2763                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2764                 break;
2765         }
2766 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2767         case KVM_REGISTER_COALESCED_MMIO: {
2768                 struct kvm_coalesced_mmio_zone zone;
2769
2770                 r = -EFAULT;
2771                 if (copy_from_user(&zone, argp, sizeof(zone)))
2772                         goto out;
2773                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2774                 break;
2775         }
2776         case KVM_UNREGISTER_COALESCED_MMIO: {
2777                 struct kvm_coalesced_mmio_zone zone;
2778
2779                 r = -EFAULT;
2780                 if (copy_from_user(&zone, argp, sizeof(zone)))
2781                         goto out;
2782                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2783                 break;
2784         }
2785 #endif
2786         case KVM_IRQFD: {
2787                 struct kvm_irqfd data;
2788
2789                 r = -EFAULT;
2790                 if (copy_from_user(&data, argp, sizeof(data)))
2791                         goto out;
2792                 r = kvm_irqfd(kvm, &data);
2793                 break;
2794         }
2795         case KVM_IOEVENTFD: {
2796                 struct kvm_ioeventfd data;
2797
2798                 r = -EFAULT;
2799                 if (copy_from_user(&data, argp, sizeof(data)))
2800                         goto out;
2801                 r = kvm_ioeventfd(kvm, &data);
2802                 break;
2803         }
2804 #ifdef CONFIG_HAVE_KVM_MSI
2805         case KVM_SIGNAL_MSI: {
2806                 struct kvm_msi msi;
2807
2808                 r = -EFAULT;
2809                 if (copy_from_user(&msi, argp, sizeof(msi)))
2810                         goto out;
2811                 r = kvm_send_userspace_msi(kvm, &msi);
2812                 break;
2813         }
2814 #endif
2815 #ifdef __KVM_HAVE_IRQ_LINE
2816         case KVM_IRQ_LINE_STATUS:
2817         case KVM_IRQ_LINE: {
2818                 struct kvm_irq_level irq_event;
2819
2820                 r = -EFAULT;
2821                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2822                         goto out;
2823
2824                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2825                                         ioctl == KVM_IRQ_LINE_STATUS);
2826                 if (r)
2827                         goto out;
2828
2829                 r = -EFAULT;
2830                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2831                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2832                                 goto out;
2833                 }
2834
2835                 r = 0;
2836                 break;
2837         }
2838 #endif
2839 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2840         case KVM_SET_GSI_ROUTING: {
2841                 struct kvm_irq_routing routing;
2842                 struct kvm_irq_routing __user *urouting;
2843                 struct kvm_irq_routing_entry *entries;
2844
2845                 r = -EFAULT;
2846                 if (copy_from_user(&routing, argp, sizeof(routing)))
2847                         goto out;
2848                 r = -EINVAL;
2849                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2850                         goto out;
2851                 if (routing.flags)
2852                         goto out;
2853                 r = -ENOMEM;
2854                 entries = vmalloc(routing.nr * sizeof(*entries));
2855                 if (!entries)
2856                         goto out;
2857                 r = -EFAULT;
2858                 urouting = argp;
2859                 if (copy_from_user(entries, urouting->entries,
2860                                    routing.nr * sizeof(*entries)))
2861                         goto out_free_irq_routing;
2862                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2863                                         routing.flags);
2864 out_free_irq_routing:
2865                 vfree(entries);
2866                 break;
2867         }
2868 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2869         case KVM_CREATE_DEVICE: {
2870                 struct kvm_create_device cd;
2871
2872                 r = -EFAULT;
2873                 if (copy_from_user(&cd, argp, sizeof(cd)))
2874                         goto out;
2875
2876                 r = kvm_ioctl_create_device(kvm, &cd);
2877                 if (r)
2878                         goto out;
2879
2880                 r = -EFAULT;
2881                 if (copy_to_user(argp, &cd, sizeof(cd)))
2882                         goto out;
2883
2884                 r = 0;
2885                 break;
2886         }
2887         case KVM_CHECK_EXTENSION:
2888                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2889                 break;
2890         default:
2891                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2892         }
2893 out:
2894         return r;
2895 }
2896
2897 #ifdef CONFIG_KVM_COMPAT
2898 struct compat_kvm_dirty_log {
2899         __u32 slot;
2900         __u32 padding1;
2901         union {
2902                 compat_uptr_t dirty_bitmap; /* one bit per page */
2903                 __u64 padding2;
2904         };
2905 };
2906
2907 static long kvm_vm_compat_ioctl(struct file *filp,
2908                            unsigned int ioctl, unsigned long arg)
2909 {
2910         struct kvm *kvm = filp->private_data;
2911         int r;
2912
2913         if (kvm->mm != current->mm)
2914                 return -EIO;
2915         switch (ioctl) {
2916         case KVM_GET_DIRTY_LOG: {
2917                 struct compat_kvm_dirty_log compat_log;
2918                 struct kvm_dirty_log log;
2919
2920                 r = -EFAULT;
2921                 if (copy_from_user(&compat_log, (void __user *)arg,
2922                                    sizeof(compat_log)))
2923                         goto out;
2924                 log.slot         = compat_log.slot;
2925                 log.padding1     = compat_log.padding1;
2926                 log.padding2     = compat_log.padding2;
2927                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2928
2929                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2930                 break;
2931         }
2932         default:
2933                 r = kvm_vm_ioctl(filp, ioctl, arg);
2934         }
2935
2936 out:
2937         return r;
2938 }
2939 #endif
2940
2941 static struct file_operations kvm_vm_fops = {
2942         .release        = kvm_vm_release,
2943         .unlocked_ioctl = kvm_vm_ioctl,
2944 #ifdef CONFIG_KVM_COMPAT
2945         .compat_ioctl   = kvm_vm_compat_ioctl,
2946 #endif
2947         .llseek         = noop_llseek,
2948 };
2949
2950 static int kvm_dev_ioctl_create_vm(unsigned long type)
2951 {
2952         int r;
2953         struct kvm *kvm;
2954
2955         kvm = kvm_create_vm(type);
2956         if (IS_ERR(kvm))
2957                 return PTR_ERR(kvm);
2958 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2959         r = kvm_coalesced_mmio_init(kvm);
2960         if (r < 0) {
2961                 kvm_put_kvm(kvm);
2962                 return r;
2963         }
2964 #endif
2965         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2966         if (r < 0)
2967                 kvm_put_kvm(kvm);
2968
2969         return r;
2970 }
2971
2972 static long kvm_dev_ioctl(struct file *filp,
2973                           unsigned int ioctl, unsigned long arg)
2974 {
2975         long r = -EINVAL;
2976
2977         switch (ioctl) {
2978         case KVM_GET_API_VERSION:
2979                 if (arg)
2980                         goto out;
2981                 r = KVM_API_VERSION;
2982                 break;
2983         case KVM_CREATE_VM:
2984                 r = kvm_dev_ioctl_create_vm(arg);
2985                 break;
2986         case KVM_CHECK_EXTENSION:
2987                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2988                 break;
2989         case KVM_GET_VCPU_MMAP_SIZE:
2990                 if (arg)
2991                         goto out;
2992                 r = PAGE_SIZE;     /* struct kvm_run */
2993 #ifdef CONFIG_X86
2994                 r += PAGE_SIZE;    /* pio data page */
2995 #endif
2996 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2997                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2998 #endif
2999                 break;
3000         case KVM_TRACE_ENABLE:
3001         case KVM_TRACE_PAUSE:
3002         case KVM_TRACE_DISABLE:
3003                 r = -EOPNOTSUPP;
3004                 break;
3005         default:
3006                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3007         }
3008 out:
3009         return r;
3010 }
3011
3012 static struct file_operations kvm_chardev_ops = {
3013         .unlocked_ioctl = kvm_dev_ioctl,
3014         .compat_ioctl   = kvm_dev_ioctl,
3015         .llseek         = noop_llseek,
3016 };
3017
3018 static struct miscdevice kvm_dev = {
3019         KVM_MINOR,
3020         "kvm",
3021         &kvm_chardev_ops,
3022 };
3023
3024 static void hardware_enable_nolock(void *junk)
3025 {
3026         int cpu = raw_smp_processor_id();
3027         int r;
3028
3029         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3030                 return;
3031
3032         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3033
3034         r = kvm_arch_hardware_enable();
3035
3036         if (r) {
3037                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3038                 atomic_inc(&hardware_enable_failed);
3039                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3040         }
3041 }
3042
3043 static void hardware_enable(void)
3044 {
3045         raw_spin_lock(&kvm_count_lock);
3046         if (kvm_usage_count)
3047                 hardware_enable_nolock(NULL);
3048         raw_spin_unlock(&kvm_count_lock);
3049 }
3050
3051 static void hardware_disable_nolock(void *junk)
3052 {
3053         int cpu = raw_smp_processor_id();
3054
3055         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3056                 return;
3057         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3058         kvm_arch_hardware_disable();
3059 }
3060
3061 static void hardware_disable(void)
3062 {
3063         raw_spin_lock(&kvm_count_lock);
3064         if (kvm_usage_count)
3065                 hardware_disable_nolock(NULL);
3066         raw_spin_unlock(&kvm_count_lock);
3067 }
3068
3069 static void hardware_disable_all_nolock(void)
3070 {
3071         BUG_ON(!kvm_usage_count);
3072
3073         kvm_usage_count--;
3074         if (!kvm_usage_count)
3075                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3076 }
3077
3078 static void hardware_disable_all(void)
3079 {
3080         raw_spin_lock(&kvm_count_lock);
3081         hardware_disable_all_nolock();
3082         raw_spin_unlock(&kvm_count_lock);
3083 }
3084
3085 static int hardware_enable_all(void)
3086 {
3087         int r = 0;
3088
3089         raw_spin_lock(&kvm_count_lock);
3090
3091         kvm_usage_count++;
3092         if (kvm_usage_count == 1) {
3093                 atomic_set(&hardware_enable_failed, 0);
3094                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3095
3096                 if (atomic_read(&hardware_enable_failed)) {
3097                         hardware_disable_all_nolock();
3098                         r = -EBUSY;
3099                 }
3100         }
3101
3102         raw_spin_unlock(&kvm_count_lock);
3103
3104         return r;
3105 }
3106
3107 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3108                            void *v)
3109 {
3110         val &= ~CPU_TASKS_FROZEN;
3111         switch (val) {
3112         case CPU_DYING:
3113                 hardware_disable();
3114                 break;
3115         case CPU_STARTING:
3116                 hardware_enable();
3117                 break;
3118         }
3119         return NOTIFY_OK;
3120 }
3121
3122 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3123                       void *v)
3124 {
3125         /*
3126          * Some (well, at least mine) BIOSes hang on reboot if
3127          * in vmx root mode.
3128          *
3129          * And Intel TXT required VMX off for all cpu when system shutdown.
3130          */
3131         pr_info("kvm: exiting hardware virtualization\n");
3132         kvm_rebooting = true;
3133         on_each_cpu(hardware_disable_nolock, NULL, 1);
3134         return NOTIFY_OK;
3135 }
3136
3137 static struct notifier_block kvm_reboot_notifier = {
3138         .notifier_call = kvm_reboot,
3139         .priority = 0,
3140 };
3141
3142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3143 {
3144         int i;
3145
3146         for (i = 0; i < bus->dev_count; i++) {
3147                 struct kvm_io_device *pos = bus->range[i].dev;
3148
3149                 kvm_iodevice_destructor(pos);
3150         }
3151         kfree(bus);
3152 }
3153
3154 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3155                                  const struct kvm_io_range *r2)
3156 {
3157         gpa_t addr1 = r1->addr;
3158         gpa_t addr2 = r2->addr;
3159
3160         if (addr1 < addr2)
3161                 return -1;
3162
3163         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3164          * accept any overlapping write.  Any order is acceptable for
3165          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3166          * we process all of them.
3167          */
3168         if (r2->len) {
3169                 addr1 += r1->len;
3170                 addr2 += r2->len;
3171         }
3172
3173         if (addr1 > addr2)
3174                 return 1;
3175
3176         return 0;
3177 }
3178
3179 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3180 {
3181         return kvm_io_bus_cmp(p1, p2);
3182 }
3183
3184 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3185                           gpa_t addr, int len)
3186 {
3187         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3188                 .addr = addr,
3189                 .len = len,
3190                 .dev = dev,
3191         };
3192
3193         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3194                 kvm_io_bus_sort_cmp, NULL);
3195
3196         return 0;
3197 }
3198
3199 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3200                              gpa_t addr, int len)
3201 {
3202         struct kvm_io_range *range, key;
3203         int off;
3204
3205         key = (struct kvm_io_range) {
3206                 .addr = addr,
3207                 .len = len,
3208         };
3209
3210         range = bsearch(&key, bus->range, bus->dev_count,
3211                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3212         if (range == NULL)
3213                 return -ENOENT;
3214
3215         off = range - bus->range;
3216
3217         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3218                 off--;
3219
3220         return off;
3221 }
3222
3223 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3224                               struct kvm_io_range *range, const void *val)
3225 {
3226         int idx;
3227
3228         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3229         if (idx < 0)
3230                 return -EOPNOTSUPP;
3231
3232         while (idx < bus->dev_count &&
3233                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3234                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3235                                         range->len, val))
3236                         return idx;
3237                 idx++;
3238         }
3239
3240         return -EOPNOTSUPP;
3241 }
3242
3243 /* kvm_io_bus_write - called under kvm->slots_lock */
3244 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3245                      int len, const void *val)
3246 {
3247         struct kvm_io_bus *bus;
3248         struct kvm_io_range range;
3249         int r;
3250
3251         range = (struct kvm_io_range) {
3252                 .addr = addr,
3253                 .len = len,
3254         };
3255
3256         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3257         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3258         return r < 0 ? r : 0;
3259 }
3260
3261 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3262 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3263                             gpa_t addr, int len, const void *val, long cookie)
3264 {
3265         struct kvm_io_bus *bus;
3266         struct kvm_io_range range;
3267
3268         range = (struct kvm_io_range) {
3269                 .addr = addr,
3270                 .len = len,
3271         };
3272
3273         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3274
3275         /* First try the device referenced by cookie. */
3276         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3277             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3278                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3279                                         val))
3280                         return cookie;
3281
3282         /*
3283          * cookie contained garbage; fall back to search and return the
3284          * correct cookie value.
3285          */
3286         return __kvm_io_bus_write(vcpu, bus, &range, val);
3287 }
3288
3289 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3290                              struct kvm_io_range *range, void *val)
3291 {
3292         int idx;
3293
3294         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3295         if (idx < 0)
3296                 return -EOPNOTSUPP;
3297
3298         while (idx < bus->dev_count &&
3299                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3300                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3301                                        range->len, val))
3302                         return idx;
3303                 idx++;
3304         }
3305
3306         return -EOPNOTSUPP;
3307 }
3308 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3309
3310 /* kvm_io_bus_read - called under kvm->slots_lock */
3311 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3312                     int len, void *val)
3313 {
3314         struct kvm_io_bus *bus;
3315         struct kvm_io_range range;
3316         int r;
3317
3318         range = (struct kvm_io_range) {
3319                 .addr = addr,
3320                 .len = len,
3321         };
3322
3323         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3324         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3325         return r < 0 ? r : 0;
3326 }
3327
3328
3329 /* Caller must hold slots_lock. */
3330 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3331                             int len, struct kvm_io_device *dev)
3332 {
3333         struct kvm_io_bus *new_bus, *bus;
3334
3335         bus = kvm->buses[bus_idx];
3336         /* exclude ioeventfd which is limited by maximum fd */
3337         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3338                 return -ENOSPC;
3339
3340         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3341                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3342         if (!new_bus)
3343                 return -ENOMEM;
3344         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3345                sizeof(struct kvm_io_range)));
3346         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3347         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3348         synchronize_srcu_expedited(&kvm->srcu);
3349         kfree(bus);
3350
3351         return 0;
3352 }
3353
3354 /* Caller must hold slots_lock. */
3355 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3356                               struct kvm_io_device *dev)
3357 {
3358         int i, r;
3359         struct kvm_io_bus *new_bus, *bus;
3360
3361         bus = kvm->buses[bus_idx];
3362         r = -ENOENT;
3363         for (i = 0; i < bus->dev_count; i++)
3364                 if (bus->range[i].dev == dev) {
3365                         r = 0;
3366                         break;
3367                 }
3368
3369         if (r)
3370                 return r;
3371
3372         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3373                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3374         if (!new_bus)
3375                 return -ENOMEM;
3376
3377         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3378         new_bus->dev_count--;
3379         memcpy(new_bus->range + i, bus->range + i + 1,
3380                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3381
3382         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3383         synchronize_srcu_expedited(&kvm->srcu);
3384         kfree(bus);
3385         return r;
3386 }
3387
3388 static struct notifier_block kvm_cpu_notifier = {
3389         .notifier_call = kvm_cpu_hotplug,
3390 };
3391
3392 static int vm_stat_get(void *_offset, u64 *val)
3393 {
3394         unsigned offset = (long)_offset;
3395         struct kvm *kvm;
3396
3397         *val = 0;
3398         spin_lock(&kvm_lock);
3399         list_for_each_entry(kvm, &vm_list, vm_list)
3400                 *val += *(u32 *)((void *)kvm + offset);
3401         spin_unlock(&kvm_lock);
3402         return 0;
3403 }
3404
3405 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3406
3407 static int vcpu_stat_get(void *_offset, u64 *val)
3408 {
3409         unsigned offset = (long)_offset;
3410         struct kvm *kvm;
3411         struct kvm_vcpu *vcpu;
3412         int i;
3413
3414         *val = 0;
3415         spin_lock(&kvm_lock);
3416         list_for_each_entry(kvm, &vm_list, vm_list)
3417                 kvm_for_each_vcpu(i, vcpu, kvm)
3418                         *val += *(u32 *)((void *)vcpu + offset);
3419
3420         spin_unlock(&kvm_lock);
3421         return 0;
3422 }
3423
3424 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3425
3426 static const struct file_operations *stat_fops[] = {
3427         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3428         [KVM_STAT_VM]   = &vm_stat_fops,
3429 };
3430
3431 static int kvm_init_debug(void)
3432 {
3433         int r = -EEXIST;
3434         struct kvm_stats_debugfs_item *p;
3435
3436         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3437         if (kvm_debugfs_dir == NULL)
3438                 goto out;
3439
3440         for (p = debugfs_entries; p->name; ++p) {
3441                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3442                                          (void *)(long)p->offset,
3443                                          stat_fops[p->kind]))
3444                         goto out_dir;
3445         }
3446
3447         return 0;
3448
3449 out_dir:
3450         debugfs_remove_recursive(kvm_debugfs_dir);
3451 out:
3452         return r;
3453 }
3454
3455 static int kvm_suspend(void)
3456 {
3457         if (kvm_usage_count)
3458                 hardware_disable_nolock(NULL);
3459         return 0;
3460 }
3461
3462 static void kvm_resume(void)
3463 {
3464         if (kvm_usage_count) {
3465                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3466                 hardware_enable_nolock(NULL);
3467         }
3468 }
3469
3470 static struct syscore_ops kvm_syscore_ops = {
3471         .suspend = kvm_suspend,
3472         .resume = kvm_resume,
3473 };
3474
3475 static inline
3476 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3477 {
3478         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3479 }
3480
3481 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3482 {
3483         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3484
3485         if (vcpu->preempted)
3486                 vcpu->preempted = false;
3487
3488         kvm_arch_sched_in(vcpu, cpu);
3489
3490         kvm_arch_vcpu_load(vcpu, cpu);
3491 }
3492
3493 static void kvm_sched_out(struct preempt_notifier *pn,
3494                           struct task_struct *next)
3495 {
3496         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3497
3498         if (current->state == TASK_RUNNING)
3499                 vcpu->preempted = true;
3500         kvm_arch_vcpu_put(vcpu);
3501 }
3502
3503 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3504                   struct module *module)
3505 {
3506         int r;
3507         int cpu;
3508
3509         r = kvm_arch_init(opaque);
3510         if (r)
3511                 goto out_fail;
3512
3513         /*
3514          * kvm_arch_init makes sure there's at most one caller
3515          * for architectures that support multiple implementations,
3516          * like intel and amd on x86.
3517          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3518          * conflicts in case kvm is already setup for another implementation.
3519          */
3520         r = kvm_irqfd_init();
3521         if (r)
3522                 goto out_irqfd;
3523
3524         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3525                 r = -ENOMEM;
3526                 goto out_free_0;
3527         }
3528
3529         r = kvm_arch_hardware_setup();
3530         if (r < 0)
3531                 goto out_free_0a;
3532
3533         for_each_online_cpu(cpu) {
3534                 smp_call_function_single(cpu,
3535                                 kvm_arch_check_processor_compat,
3536                                 &r, 1);
3537                 if (r < 0)
3538                         goto out_free_1;
3539         }
3540
3541         r = register_cpu_notifier(&kvm_cpu_notifier);
3542         if (r)
3543                 goto out_free_2;
3544         register_reboot_notifier(&kvm_reboot_notifier);
3545
3546         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3547         if (!vcpu_align)
3548                 vcpu_align = __alignof__(struct kvm_vcpu);
3549         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3550                                            0, NULL);
3551         if (!kvm_vcpu_cache) {
3552                 r = -ENOMEM;
3553                 goto out_free_3;
3554         }
3555
3556         r = kvm_async_pf_init();
3557         if (r)
3558                 goto out_free;
3559
3560         kvm_chardev_ops.owner = module;
3561         kvm_vm_fops.owner = module;
3562         kvm_vcpu_fops.owner = module;
3563
3564         r = misc_register(&kvm_dev);
3565         if (r) {
3566                 pr_err("kvm: misc device register failed\n");
3567                 goto out_unreg;
3568         }
3569
3570         register_syscore_ops(&kvm_syscore_ops);
3571
3572         kvm_preempt_ops.sched_in = kvm_sched_in;
3573         kvm_preempt_ops.sched_out = kvm_sched_out;
3574
3575         r = kvm_init_debug();
3576         if (r) {
3577                 pr_err("kvm: create debugfs files failed\n");
3578                 goto out_undebugfs;
3579         }
3580
3581         r = kvm_vfio_ops_init();
3582         WARN_ON(r);
3583
3584         return 0;
3585
3586 out_undebugfs:
3587         unregister_syscore_ops(&kvm_syscore_ops);
3588         misc_deregister(&kvm_dev);
3589 out_unreg:
3590         kvm_async_pf_deinit();
3591 out_free:
3592         kmem_cache_destroy(kvm_vcpu_cache);
3593 out_free_3:
3594         unregister_reboot_notifier(&kvm_reboot_notifier);
3595         unregister_cpu_notifier(&kvm_cpu_notifier);
3596 out_free_2:
3597 out_free_1:
3598         kvm_arch_hardware_unsetup();
3599 out_free_0a:
3600         free_cpumask_var(cpus_hardware_enabled);
3601 out_free_0:
3602         kvm_irqfd_exit();
3603 out_irqfd:
3604         kvm_arch_exit();
3605 out_fail:
3606         return r;
3607 }
3608 EXPORT_SYMBOL_GPL(kvm_init);
3609
3610 void kvm_exit(void)
3611 {
3612         debugfs_remove_recursive(kvm_debugfs_dir);
3613         misc_deregister(&kvm_dev);
3614         kmem_cache_destroy(kvm_vcpu_cache);
3615         kvm_async_pf_deinit();
3616         unregister_syscore_ops(&kvm_syscore_ops);
3617         unregister_reboot_notifier(&kvm_reboot_notifier);
3618         unregister_cpu_notifier(&kvm_cpu_notifier);
3619         on_each_cpu(hardware_disable_nolock, NULL, 1);
3620         kvm_arch_hardware_unsetup();
3621         kvm_arch_exit();
3622         kvm_irqfd_exit();
3623         free_cpumask_var(cpus_hardware_enabled);
3624         kvm_vfio_ops_exit();
3625 }
3626 EXPORT_SYMBOL_GPL(kvm_exit);