Merge tag 'thermal-6.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (WARN_ON_ONCE(!page_count(page)))
180                 return false;
181
182         return is_zone_device_page(page);
183 }
184
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193         struct page *page;
194
195         if (!pfn_valid(pfn))
196                 return NULL;
197
198         page = pfn_to_page(pfn);
199         if (!PageReserved(page))
200                 return page;
201
202         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203         if (is_zero_pfn(pfn))
204                 return page;
205
206         /*
207          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208          * perspective they are "normal" pages, albeit with slightly different
209          * usage rules.
210          */
211         if (kvm_is_zone_device_page(page))
212                 return page;
213
214         return NULL;
215 }
216
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222         int cpu = get_cpu();
223
224         __this_cpu_write(kvm_running_vcpu, vcpu);
225         preempt_notifier_register(&vcpu->preempt_notifier);
226         kvm_arch_vcpu_load(vcpu, cpu);
227         put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233         preempt_disable();
234         kvm_arch_vcpu_put(vcpu);
235         preempt_notifier_unregister(&vcpu->preempt_notifier);
236         __this_cpu_write(kvm_running_vcpu, NULL);
237         preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246         /*
247          * We need to wait for the VCPU to reenable interrupts and get out of
248          * READING_SHADOW_PAGE_TABLES mode.
249          */
250         if (req & KVM_REQUEST_WAIT)
251                 return mode != OUTSIDE_GUEST_MODE;
252
253         /*
254          * Need to kick a running VCPU, but otherwise there is nothing to do.
255          */
256         return mode == IN_GUEST_MODE;
257 }
258
259 static void ack_kick(void *_completed)
260 {
261 }
262
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265         if (cpumask_empty(cpus))
266                 return false;
267
268         smp_call_function_many(cpus, ack_kick, NULL, wait);
269         return true;
270 }
271
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273                                   struct cpumask *tmp, int current_cpu)
274 {
275         int cpu;
276
277         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278                 __kvm_make_request(req, vcpu);
279
280         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281                 return;
282
283         /*
284          * Note, the vCPU could get migrated to a different pCPU at any point
285          * after kvm_request_needs_ipi(), which could result in sending an IPI
286          * to the previous pCPU.  But, that's OK because the purpose of the IPI
287          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289          * after this point is also OK, as the requirement is only that KVM wait
290          * for vCPUs that were reading SPTEs _before_ any changes were
291          * finalized. See kvm_vcpu_kick() for more details on handling requests.
292          */
293         if (kvm_request_needs_ipi(vcpu, req)) {
294                 cpu = READ_ONCE(vcpu->cpu);
295                 if (cpu != -1 && cpu != current_cpu)
296                         __cpumask_set_cpu(cpu, tmp);
297         }
298 }
299
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301                                  unsigned long *vcpu_bitmap)
302 {
303         struct kvm_vcpu *vcpu;
304         struct cpumask *cpus;
305         int i, me;
306         bool called;
307
308         me = get_cpu();
309
310         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311         cpumask_clear(cpus);
312
313         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314                 vcpu = kvm_get_vcpu(kvm, i);
315                 if (!vcpu)
316                         continue;
317                 kvm_make_vcpu_request(vcpu, req, cpus, me);
318         }
319
320         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321         put_cpu();
322
323         return called;
324 }
325
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327                                       struct kvm_vcpu *except)
328 {
329         struct kvm_vcpu *vcpu;
330         struct cpumask *cpus;
331         unsigned long i;
332         bool called;
333         int me;
334
335         me = get_cpu();
336
337         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338         cpumask_clear(cpus);
339
340         kvm_for_each_vcpu(i, vcpu, kvm) {
341                 if (vcpu == except)
342                         continue;
343                 kvm_make_vcpu_request(vcpu, req, cpus, me);
344         }
345
346         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347         put_cpu();
348
349         return called;
350 }
351
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354         return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361         ++kvm->stat.generic.remote_tlb_flush_requests;
362
363         /*
364          * We want to publish modifications to the page tables before reading
365          * mode. Pairs with a memory barrier in arch-specific code.
366          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367          * and smp_mb in walk_shadow_page_lockless_begin/end.
368          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369          *
370          * There is already an smp_mb__after_atomic() before
371          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372          * barrier here.
373          */
374         if (!kvm_arch_flush_remote_tlb(kvm)
375             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376                 ++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383         kvm_arch_flush_shadow_all(kvm);
384         kvm_arch_guest_memory_reclaimed(kvm);
385 }
386
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389                                                gfp_t gfp_flags)
390 {
391         gfp_flags |= mc->gfp_zero;
392
393         if (mc->kmem_cache)
394                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395         else
396                 return (void *)__get_free_page(gfp_flags);
397 }
398
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402         void *obj;
403
404         if (mc->nobjs >= min)
405                 return 0;
406
407         if (unlikely(!mc->objects)) {
408                 if (WARN_ON_ONCE(!capacity))
409                         return -EIO;
410
411                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412                 if (!mc->objects)
413                         return -ENOMEM;
414
415                 mc->capacity = capacity;
416         }
417
418         /* It is illegal to request a different capacity across topups. */
419         if (WARN_ON_ONCE(mc->capacity != capacity))
420                 return -EIO;
421
422         while (mc->nobjs < mc->capacity) {
423                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
424                 if (!obj)
425                         return mc->nobjs >= min ? 0 : -ENOMEM;
426                 mc->objects[mc->nobjs++] = obj;
427         }
428         return 0;
429 }
430
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438         return mc->nobjs;
439 }
440
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443         while (mc->nobjs) {
444                 if (mc->kmem_cache)
445                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446                 else
447                         free_page((unsigned long)mc->objects[--mc->nobjs]);
448         }
449
450         kvfree(mc->objects);
451
452         mc->objects = NULL;
453         mc->capacity = 0;
454 }
455
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458         void *p;
459
460         if (WARN_ON(!mc->nobjs))
461                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462         else
463                 p = mc->objects[--mc->nobjs];
464         BUG_ON(!p);
465         return p;
466 }
467 #endif
468
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471         mutex_init(&vcpu->mutex);
472         vcpu->cpu = -1;
473         vcpu->kvm = kvm;
474         vcpu->vcpu_id = id;
475         vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477         rcuwait_init(&vcpu->wait);
478 #endif
479         kvm_async_pf_vcpu_init(vcpu);
480
481         kvm_vcpu_set_in_spin_loop(vcpu, false);
482         kvm_vcpu_set_dy_eligible(vcpu, false);
483         vcpu->preempted = false;
484         vcpu->ready = false;
485         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486         vcpu->last_used_slot = NULL;
487
488         /* Fill the stats id string for the vcpu */
489         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490                  task_pid_nr(current), id);
491 }
492
493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495         kvm_arch_vcpu_destroy(vcpu);
496         kvm_dirty_ring_free(&vcpu->dirty_ring);
497
498         /*
499          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500          * the vcpu->pid pointer, and at destruction time all file descriptors
501          * are already gone.
502          */
503         put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
505         free_page((unsigned long)vcpu->run);
506         kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508
509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511         unsigned long i;
512         struct kvm_vcpu *vcpu;
513
514         kvm_for_each_vcpu(i, vcpu, kvm) {
515                 kvm_vcpu_destroy(vcpu);
516                 xa_erase(&kvm->vcpu_array, i);
517         }
518
519         atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526         return container_of(mn, struct kvm, mmu_notifier);
527 }
528
529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530                                               struct mm_struct *mm,
531                                               unsigned long start, unsigned long end)
532 {
533         struct kvm *kvm = mmu_notifier_to_kvm(mn);
534         int idx;
535
536         idx = srcu_read_lock(&kvm->srcu);
537         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538         srcu_read_unlock(&kvm->srcu, idx);
539 }
540
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544                              unsigned long end);
545
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
548 struct kvm_hva_range {
549         unsigned long start;
550         unsigned long end;
551         pte_t pte;
552         hva_handler_t handler;
553         on_lock_fn_t on_lock;
554         on_unlock_fn_t on_unlock;
555         bool flush_on_ret;
556         bool may_block;
557 };
558
559 /*
560  * Use a dedicated stub instead of NULL to indicate that there is no callback
561  * function/handler.  The compiler technically can't guarantee that a real
562  * function will have a non-zero address, and so it will generate code to
563  * check for !NULL, whereas comparing against a stub will be elided at compile
564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565  */
566 static void kvm_null_fn(void)
567 {
568
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
574         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575              node;                                                           \
576              node = interval_tree_iter_next(node, start, last))      \
577
578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579                                                   const struct kvm_hva_range *range)
580 {
581         bool ret = false, locked = false;
582         struct kvm_gfn_range gfn_range;
583         struct kvm_memory_slot *slot;
584         struct kvm_memslots *slots;
585         int i, idx;
586
587         if (WARN_ON_ONCE(range->end <= range->start))
588                 return 0;
589
590         /* A null handler is allowed if and only if on_lock() is provided. */
591         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592                          IS_KVM_NULL_FN(range->handler)))
593                 return 0;
594
595         idx = srcu_read_lock(&kvm->srcu);
596
597         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598                 struct interval_tree_node *node;
599
600                 slots = __kvm_memslots(kvm, i);
601                 kvm_for_each_memslot_in_hva_range(node, slots,
602                                                   range->start, range->end - 1) {
603                         unsigned long hva_start, hva_end;
604
605                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606                         hva_start = max(range->start, slot->userspace_addr);
607                         hva_end = min(range->end, slot->userspace_addr +
608                                                   (slot->npages << PAGE_SHIFT));
609
610                         /*
611                          * To optimize for the likely case where the address
612                          * range is covered by zero or one memslots, don't
613                          * bother making these conditional (to avoid writes on
614                          * the second or later invocation of the handler).
615                          */
616                         gfn_range.pte = range->pte;
617                         gfn_range.may_block = range->may_block;
618
619                         /*
620                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
621                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622                          */
623                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625                         gfn_range.slot = slot;
626
627                         if (!locked) {
628                                 locked = true;
629                                 KVM_MMU_LOCK(kvm);
630                                 if (!IS_KVM_NULL_FN(range->on_lock))
631                                         range->on_lock(kvm, range->start, range->end);
632                                 if (IS_KVM_NULL_FN(range->handler))
633                                         break;
634                         }
635                         ret |= range->handler(kvm, &gfn_range);
636                 }
637         }
638
639         if (range->flush_on_ret && ret)
640                 kvm_flush_remote_tlbs(kvm);
641
642         if (locked) {
643                 KVM_MMU_UNLOCK(kvm);
644                 if (!IS_KVM_NULL_FN(range->on_unlock))
645                         range->on_unlock(kvm);
646         }
647
648         srcu_read_unlock(&kvm->srcu, idx);
649
650         /* The notifiers are averse to booleans. :-( */
651         return (int)ret;
652 }
653
654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655                                                 unsigned long start,
656                                                 unsigned long end,
657                                                 pte_t pte,
658                                                 hva_handler_t handler)
659 {
660         struct kvm *kvm = mmu_notifier_to_kvm(mn);
661         const struct kvm_hva_range range = {
662                 .start          = start,
663                 .end            = end,
664                 .pte            = pte,
665                 .handler        = handler,
666                 .on_lock        = (void *)kvm_null_fn,
667                 .on_unlock      = (void *)kvm_null_fn,
668                 .flush_on_ret   = true,
669                 .may_block      = false,
670         };
671
672         return __kvm_handle_hva_range(kvm, &range);
673 }
674
675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676                                                          unsigned long start,
677                                                          unsigned long end,
678                                                          hva_handler_t handler)
679 {
680         struct kvm *kvm = mmu_notifier_to_kvm(mn);
681         const struct kvm_hva_range range = {
682                 .start          = start,
683                 .end            = end,
684                 .pte            = __pte(0),
685                 .handler        = handler,
686                 .on_lock        = (void *)kvm_null_fn,
687                 .on_unlock      = (void *)kvm_null_fn,
688                 .flush_on_ret   = false,
689                 .may_block      = false,
690         };
691
692         return __kvm_handle_hva_range(kvm, &range);
693 }
694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695                                         struct mm_struct *mm,
696                                         unsigned long address,
697                                         pte_t pte)
698 {
699         struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
701         trace_kvm_set_spte_hva(address);
702
703         /*
704          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705          * If mmu_invalidate_in_progress is zero, then no in-progress
706          * invalidations, including this one, found a relevant memslot at
707          * start(); rechecking memslots here is unnecessary.  Note, a false
708          * positive (count elevated by a different invalidation) is sub-optimal
709          * but functionally ok.
710          */
711         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
713                 return;
714
715         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
716 }
717
718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
719                               unsigned long end)
720 {
721         /*
722          * The count increase must become visible at unlock time as no
723          * spte can be established without taking the mmu_lock and
724          * count is also read inside the mmu_lock critical section.
725          */
726         kvm->mmu_invalidate_in_progress++;
727         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
728                 kvm->mmu_invalidate_range_start = start;
729                 kvm->mmu_invalidate_range_end = end;
730         } else {
731                 /*
732                  * Fully tracking multiple concurrent ranges has diminishing
733                  * returns. Keep things simple and just find the minimal range
734                  * which includes the current and new ranges. As there won't be
735                  * enough information to subtract a range after its invalidate
736                  * completes, any ranges invalidated concurrently will
737                  * accumulate and persist until all outstanding invalidates
738                  * complete.
739                  */
740                 kvm->mmu_invalidate_range_start =
741                         min(kvm->mmu_invalidate_range_start, start);
742                 kvm->mmu_invalidate_range_end =
743                         max(kvm->mmu_invalidate_range_end, end);
744         }
745 }
746
747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
748                                         const struct mmu_notifier_range *range)
749 {
750         struct kvm *kvm = mmu_notifier_to_kvm(mn);
751         const struct kvm_hva_range hva_range = {
752                 .start          = range->start,
753                 .end            = range->end,
754                 .pte            = __pte(0),
755                 .handler        = kvm_unmap_gfn_range,
756                 .on_lock        = kvm_mmu_invalidate_begin,
757                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
758                 .flush_on_ret   = true,
759                 .may_block      = mmu_notifier_range_blockable(range),
760         };
761
762         trace_kvm_unmap_hva_range(range->start, range->end);
763
764         /*
765          * Prevent memslot modification between range_start() and range_end()
766          * so that conditionally locking provides the same result in both
767          * functions.  Without that guarantee, the mmu_invalidate_in_progress
768          * adjustments will be imbalanced.
769          *
770          * Pairs with the decrement in range_end().
771          */
772         spin_lock(&kvm->mn_invalidate_lock);
773         kvm->mn_active_invalidate_count++;
774         spin_unlock(&kvm->mn_invalidate_lock);
775
776         /*
777          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
778          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
779          * each cache's lock.  There are relatively few caches in existence at
780          * any given time, and the caches themselves can check for hva overlap,
781          * i.e. don't need to rely on memslot overlap checks for performance.
782          * Because this runs without holding mmu_lock, the pfn caches must use
783          * mn_active_invalidate_count (see above) instead of
784          * mmu_invalidate_in_progress.
785          */
786         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
787                                           hva_range.may_block);
788
789         __kvm_handle_hva_range(kvm, &hva_range);
790
791         return 0;
792 }
793
794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
795                             unsigned long end)
796 {
797         /*
798          * This sequence increase will notify the kvm page fault that
799          * the page that is going to be mapped in the spte could have
800          * been freed.
801          */
802         kvm->mmu_invalidate_seq++;
803         smp_wmb();
804         /*
805          * The above sequence increase must be visible before the
806          * below count decrease, which is ensured by the smp_wmb above
807          * in conjunction with the smp_rmb in mmu_invalidate_retry().
808          */
809         kvm->mmu_invalidate_in_progress--;
810 }
811
812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
813                                         const struct mmu_notifier_range *range)
814 {
815         struct kvm *kvm = mmu_notifier_to_kvm(mn);
816         const struct kvm_hva_range hva_range = {
817                 .start          = range->start,
818                 .end            = range->end,
819                 .pte            = __pte(0),
820                 .handler        = (void *)kvm_null_fn,
821                 .on_lock        = kvm_mmu_invalidate_end,
822                 .on_unlock      = (void *)kvm_null_fn,
823                 .flush_on_ret   = false,
824                 .may_block      = mmu_notifier_range_blockable(range),
825         };
826         bool wake;
827
828         __kvm_handle_hva_range(kvm, &hva_range);
829
830         /* Pairs with the increment in range_start(). */
831         spin_lock(&kvm->mn_invalidate_lock);
832         wake = (--kvm->mn_active_invalidate_count == 0);
833         spin_unlock(&kvm->mn_invalidate_lock);
834
835         /*
836          * There can only be one waiter, since the wait happens under
837          * slots_lock.
838          */
839         if (wake)
840                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
841
842         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
843 }
844
845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
846                                               struct mm_struct *mm,
847                                               unsigned long start,
848                                               unsigned long end)
849 {
850         trace_kvm_age_hva(start, end);
851
852         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
853 }
854
855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
856                                         struct mm_struct *mm,
857                                         unsigned long start,
858                                         unsigned long end)
859 {
860         trace_kvm_age_hva(start, end);
861
862         /*
863          * Even though we do not flush TLB, this will still adversely
864          * affect performance on pre-Haswell Intel EPT, where there is
865          * no EPT Access Bit to clear so that we have to tear down EPT
866          * tables instead. If we find this unacceptable, we can always
867          * add a parameter to kvm_age_hva so that it effectively doesn't
868          * do anything on clear_young.
869          *
870          * Also note that currently we never issue secondary TLB flushes
871          * from clear_young, leaving this job up to the regular system
872          * cadence. If we find this inaccurate, we might come up with a
873          * more sophisticated heuristic later.
874          */
875         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
876 }
877
878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
879                                        struct mm_struct *mm,
880                                        unsigned long address)
881 {
882         trace_kvm_test_age_hva(address);
883
884         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
885                                              kvm_test_age_gfn);
886 }
887
888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
889                                      struct mm_struct *mm)
890 {
891         struct kvm *kvm = mmu_notifier_to_kvm(mn);
892         int idx;
893
894         idx = srcu_read_lock(&kvm->srcu);
895         kvm_flush_shadow_all(kvm);
896         srcu_read_unlock(&kvm->srcu, idx);
897 }
898
899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
900         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
901         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
902         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
903         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
904         .clear_young            = kvm_mmu_notifier_clear_young,
905         .test_young             = kvm_mmu_notifier_test_young,
906         .change_pte             = kvm_mmu_notifier_change_pte,
907         .release                = kvm_mmu_notifier_release,
908 };
909
910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
913         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
914 }
915
916 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
917
918 static int kvm_init_mmu_notifier(struct kvm *kvm)
919 {
920         return 0;
921 }
922
923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
924
925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
926 static int kvm_pm_notifier_call(struct notifier_block *bl,
927                                 unsigned long state,
928                                 void *unused)
929 {
930         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
931
932         return kvm_arch_pm_notifier(kvm, state);
933 }
934
935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
938         /* Suspend KVM before we suspend ftrace, RCU, etc. */
939         kvm->pm_notifier.priority = INT_MAX;
940         register_pm_notifier(&kvm->pm_notifier);
941 }
942
943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
944 {
945         unregister_pm_notifier(&kvm->pm_notifier);
946 }
947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 }
951
952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
953 {
954 }
955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
956
957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
958 {
959         if (!memslot->dirty_bitmap)
960                 return;
961
962         kvfree(memslot->dirty_bitmap);
963         memslot->dirty_bitmap = NULL;
964 }
965
966 /* This does not remove the slot from struct kvm_memslots data structures */
967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
968 {
969         kvm_destroy_dirty_bitmap(slot);
970
971         kvm_arch_free_memslot(kvm, slot);
972
973         kfree(slot);
974 }
975
976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
977 {
978         struct hlist_node *idnode;
979         struct kvm_memory_slot *memslot;
980         int bkt;
981
982         /*
983          * The same memslot objects live in both active and inactive sets,
984          * arbitrarily free using index '1' so the second invocation of this
985          * function isn't operating over a structure with dangling pointers
986          * (even though this function isn't actually touching them).
987          */
988         if (!slots->node_idx)
989                 return;
990
991         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
992                 kvm_free_memslot(kvm, memslot);
993 }
994
995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
996 {
997         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
998         case KVM_STATS_TYPE_INSTANT:
999                 return 0444;
1000         case KVM_STATS_TYPE_CUMULATIVE:
1001         case KVM_STATS_TYPE_PEAK:
1002         default:
1003                 return 0644;
1004         }
1005 }
1006
1007
1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010         int i;
1011         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012                                       kvm_vcpu_stats_header.num_desc;
1013
1014         if (IS_ERR(kvm->debugfs_dentry))
1015                 return;
1016
1017         debugfs_remove_recursive(kvm->debugfs_dentry);
1018
1019         if (kvm->debugfs_stat_data) {
1020                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1021                         kfree(kvm->debugfs_stat_data[i]);
1022                 kfree(kvm->debugfs_stat_data);
1023         }
1024 }
1025
1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028         static DEFINE_MUTEX(kvm_debugfs_lock);
1029         struct dentry *dent;
1030         char dir_name[ITOA_MAX_LEN * 2];
1031         struct kvm_stat_data *stat_data;
1032         const struct _kvm_stats_desc *pdesc;
1033         int i, ret = -ENOMEM;
1034         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035                                       kvm_vcpu_stats_header.num_desc;
1036
1037         if (!debugfs_initialized())
1038                 return 0;
1039
1040         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041         mutex_lock(&kvm_debugfs_lock);
1042         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043         if (dent) {
1044                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045                 dput(dent);
1046                 mutex_unlock(&kvm_debugfs_lock);
1047                 return 0;
1048         }
1049         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050         mutex_unlock(&kvm_debugfs_lock);
1051         if (IS_ERR(dent))
1052                 return 0;
1053
1054         kvm->debugfs_dentry = dent;
1055         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056                                          sizeof(*kvm->debugfs_stat_data),
1057                                          GFP_KERNEL_ACCOUNT);
1058         if (!kvm->debugfs_stat_data)
1059                 goto out_err;
1060
1061         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062                 pdesc = &kvm_vm_stats_desc[i];
1063                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064                 if (!stat_data)
1065                         goto out_err;
1066
1067                 stat_data->kvm = kvm;
1068                 stat_data->desc = pdesc;
1069                 stat_data->kind = KVM_STAT_VM;
1070                 kvm->debugfs_stat_data[i] = stat_data;
1071                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072                                     kvm->debugfs_dentry, stat_data,
1073                                     &stat_fops_per_vm);
1074         }
1075
1076         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077                 pdesc = &kvm_vcpu_stats_desc[i];
1078                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079                 if (!stat_data)
1080                         goto out_err;
1081
1082                 stat_data->kvm = kvm;
1083                 stat_data->desc = pdesc;
1084                 stat_data->kind = KVM_STAT_VCPU;
1085                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087                                     kvm->debugfs_dentry, stat_data,
1088                                     &stat_fops_per_vm);
1089         }
1090
1091         ret = kvm_arch_create_vm_debugfs(kvm);
1092         if (ret)
1093                 goto out_err;
1094
1095         return 0;
1096 out_err:
1097         kvm_destroy_vm_debugfs(kvm);
1098         return ret;
1099 }
1100
1101 /*
1102  * Called after the VM is otherwise initialized, but just before adding it to
1103  * the vm_list.
1104  */
1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107         return 0;
1108 }
1109
1110 /*
1111  * Called just after removing the VM from the vm_list, but before doing any
1112  * other destruction.
1113  */
1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117
1118 /*
1119  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1120  * be setup already, so we can create arch-specific debugfs entries under it.
1121  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122  * a per-arch destroy interface is not needed.
1123  */
1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126         return 0;
1127 }
1128
1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131         struct kvm *kvm = kvm_arch_alloc_vm();
1132         struct kvm_memslots *slots;
1133         int r = -ENOMEM;
1134         int i, j;
1135
1136         if (!kvm)
1137                 return ERR_PTR(-ENOMEM);
1138
1139         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140         __module_get(kvm_chardev_ops.owner);
1141
1142         KVM_MMU_LOCK_INIT(kvm);
1143         mmgrab(current->mm);
1144         kvm->mm = current->mm;
1145         kvm_eventfd_init(kvm);
1146         mutex_init(&kvm->lock);
1147         mutex_init(&kvm->irq_lock);
1148         mutex_init(&kvm->slots_lock);
1149         mutex_init(&kvm->slots_arch_lock);
1150         spin_lock_init(&kvm->mn_invalidate_lock);
1151         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152         xa_init(&kvm->vcpu_array);
1153
1154         INIT_LIST_HEAD(&kvm->gpc_list);
1155         spin_lock_init(&kvm->gpc_lock);
1156
1157         INIT_LIST_HEAD(&kvm->devices);
1158         kvm->max_vcpus = KVM_MAX_VCPUS;
1159
1160         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161
1162         /*
1163          * Force subsequent debugfs file creations to fail if the VM directory
1164          * is not created (by kvm_create_vm_debugfs()).
1165          */
1166         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167
1168         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169                  task_pid_nr(current));
1170
1171         if (init_srcu_struct(&kvm->srcu))
1172                 goto out_err_no_srcu;
1173         if (init_srcu_struct(&kvm->irq_srcu))
1174                 goto out_err_no_irq_srcu;
1175
1176         refcount_set(&kvm->users_count, 1);
1177         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178                 for (j = 0; j < 2; j++) {
1179                         slots = &kvm->__memslots[i][j];
1180
1181                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182                         slots->hva_tree = RB_ROOT_CACHED;
1183                         slots->gfn_tree = RB_ROOT;
1184                         hash_init(slots->id_hash);
1185                         slots->node_idx = j;
1186
1187                         /* Generations must be different for each address space. */
1188                         slots->generation = i;
1189                 }
1190
1191                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192         }
1193
1194         for (i = 0; i < KVM_NR_BUSES; i++) {
1195                 rcu_assign_pointer(kvm->buses[i],
1196                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197                 if (!kvm->buses[i])
1198                         goto out_err_no_arch_destroy_vm;
1199         }
1200
1201         r = kvm_arch_init_vm(kvm, type);
1202         if (r)
1203                 goto out_err_no_arch_destroy_vm;
1204
1205         r = hardware_enable_all();
1206         if (r)
1207                 goto out_err_no_disable;
1208
1209 #ifdef CONFIG_HAVE_KVM_IRQFD
1210         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1211 #endif
1212
1213         r = kvm_init_mmu_notifier(kvm);
1214         if (r)
1215                 goto out_err_no_mmu_notifier;
1216
1217         r = kvm_coalesced_mmio_init(kvm);
1218         if (r < 0)
1219                 goto out_no_coalesced_mmio;
1220
1221         r = kvm_create_vm_debugfs(kvm, fdname);
1222         if (r)
1223                 goto out_err_no_debugfs;
1224
1225         r = kvm_arch_post_init_vm(kvm);
1226         if (r)
1227                 goto out_err;
1228
1229         mutex_lock(&kvm_lock);
1230         list_add(&kvm->vm_list, &vm_list);
1231         mutex_unlock(&kvm_lock);
1232
1233         preempt_notifier_inc();
1234         kvm_init_pm_notifier(kvm);
1235
1236         return kvm;
1237
1238 out_err:
1239         kvm_destroy_vm_debugfs(kvm);
1240 out_err_no_debugfs:
1241         kvm_coalesced_mmio_free(kvm);
1242 out_no_coalesced_mmio:
1243 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1244         if (kvm->mmu_notifier.ops)
1245                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1246 #endif
1247 out_err_no_mmu_notifier:
1248         hardware_disable_all();
1249 out_err_no_disable:
1250         kvm_arch_destroy_vm(kvm);
1251 out_err_no_arch_destroy_vm:
1252         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1253         for (i = 0; i < KVM_NR_BUSES; i++)
1254                 kfree(kvm_get_bus(kvm, i));
1255         cleanup_srcu_struct(&kvm->irq_srcu);
1256 out_err_no_irq_srcu:
1257         cleanup_srcu_struct(&kvm->srcu);
1258 out_err_no_srcu:
1259         kvm_arch_free_vm(kvm);
1260         mmdrop(current->mm);
1261         module_put(kvm_chardev_ops.owner);
1262         return ERR_PTR(r);
1263 }
1264
1265 static void kvm_destroy_devices(struct kvm *kvm)
1266 {
1267         struct kvm_device *dev, *tmp;
1268
1269         /*
1270          * We do not need to take the kvm->lock here, because nobody else
1271          * has a reference to the struct kvm at this point and therefore
1272          * cannot access the devices list anyhow.
1273          */
1274         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275                 list_del(&dev->vm_node);
1276                 dev->ops->destroy(dev);
1277         }
1278 }
1279
1280 static void kvm_destroy_vm(struct kvm *kvm)
1281 {
1282         int i;
1283         struct mm_struct *mm = kvm->mm;
1284
1285         kvm_destroy_pm_notifier(kvm);
1286         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287         kvm_destroy_vm_debugfs(kvm);
1288         kvm_arch_sync_events(kvm);
1289         mutex_lock(&kvm_lock);
1290         list_del(&kvm->vm_list);
1291         mutex_unlock(&kvm_lock);
1292         kvm_arch_pre_destroy_vm(kvm);
1293
1294         kvm_free_irq_routing(kvm);
1295         for (i = 0; i < KVM_NR_BUSES; i++) {
1296                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297
1298                 if (bus)
1299                         kvm_io_bus_destroy(bus);
1300                 kvm->buses[i] = NULL;
1301         }
1302         kvm_coalesced_mmio_free(kvm);
1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305         /*
1306          * At this point, pending calls to invalidate_range_start()
1307          * have completed but no more MMU notifiers will run, so
1308          * mn_active_invalidate_count may remain unbalanced.
1309          * No threads can be waiting in install_new_memslots as the
1310          * last reference on KVM has been dropped, but freeing
1311          * memslots would deadlock without this manual intervention.
1312          */
1313         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314         kvm->mn_active_invalidate_count = 0;
1315 #else
1316         kvm_flush_shadow_all(kvm);
1317 #endif
1318         kvm_arch_destroy_vm(kvm);
1319         kvm_destroy_devices(kvm);
1320         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323         }
1324         cleanup_srcu_struct(&kvm->irq_srcu);
1325         cleanup_srcu_struct(&kvm->srcu);
1326         kvm_arch_free_vm(kvm);
1327         preempt_notifier_dec();
1328         hardware_disable_all();
1329         mmdrop(mm);
1330         module_put(kvm_chardev_ops.owner);
1331 }
1332
1333 void kvm_get_kvm(struct kvm *kvm)
1334 {
1335         refcount_inc(&kvm->users_count);
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338
1339 /*
1340  * Make sure the vm is not during destruction, which is a safe version of
1341  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1342  */
1343 bool kvm_get_kvm_safe(struct kvm *kvm)
1344 {
1345         return refcount_inc_not_zero(&kvm->users_count);
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348
1349 void kvm_put_kvm(struct kvm *kvm)
1350 {
1351         if (refcount_dec_and_test(&kvm->users_count))
1352                 kvm_destroy_vm(kvm);
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355
1356 /*
1357  * Used to put a reference that was taken on behalf of an object associated
1358  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359  * of the new file descriptor fails and the reference cannot be transferred to
1360  * its final owner.  In such cases, the caller is still actively using @kvm and
1361  * will fail miserably if the refcount unexpectedly hits zero.
1362  */
1363 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364 {
1365         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368
1369 static int kvm_vm_release(struct inode *inode, struct file *filp)
1370 {
1371         struct kvm *kvm = filp->private_data;
1372
1373         kvm_irqfd_release(kvm);
1374
1375         kvm_put_kvm(kvm);
1376         return 0;
1377 }
1378
1379 /*
1380  * Allocation size is twice as large as the actual dirty bitmap size.
1381  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382  */
1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384 {
1385         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386
1387         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388         if (!memslot->dirty_bitmap)
1389                 return -ENOMEM;
1390
1391         return 0;
1392 }
1393
1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1395 {
1396         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397         int node_idx_inactive = active->node_idx ^ 1;
1398
1399         return &kvm->__memslots[as_id][node_idx_inactive];
1400 }
1401
1402 /*
1403  * Helper to get the address space ID when one of memslot pointers may be NULL.
1404  * This also serves as a sanity that at least one of the pointers is non-NULL,
1405  * and that their address space IDs don't diverge.
1406  */
1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408                                   struct kvm_memory_slot *b)
1409 {
1410         if (WARN_ON_ONCE(!a && !b))
1411                 return 0;
1412
1413         if (!a)
1414                 return b->as_id;
1415         if (!b)
1416                 return a->as_id;
1417
1418         WARN_ON_ONCE(a->as_id != b->as_id);
1419         return a->as_id;
1420 }
1421
1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423                                 struct kvm_memory_slot *slot)
1424 {
1425         struct rb_root *gfn_tree = &slots->gfn_tree;
1426         struct rb_node **node, *parent;
1427         int idx = slots->node_idx;
1428
1429         parent = NULL;
1430         for (node = &gfn_tree->rb_node; *node; ) {
1431                 struct kvm_memory_slot *tmp;
1432
1433                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434                 parent = *node;
1435                 if (slot->base_gfn < tmp->base_gfn)
1436                         node = &(*node)->rb_left;
1437                 else if (slot->base_gfn > tmp->base_gfn)
1438                         node = &(*node)->rb_right;
1439                 else
1440                         BUG();
1441         }
1442
1443         rb_link_node(&slot->gfn_node[idx], parent, node);
1444         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445 }
1446
1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448                                struct kvm_memory_slot *slot)
1449 {
1450         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1451 }
1452
1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454                                  struct kvm_memory_slot *old,
1455                                  struct kvm_memory_slot *new)
1456 {
1457         int idx = slots->node_idx;
1458
1459         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460
1461         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462                         &slots->gfn_tree);
1463 }
1464
1465 /*
1466  * Replace @old with @new in the inactive memslots.
1467  *
1468  * With NULL @old this simply adds @new.
1469  * With NULL @new this simply removes @old.
1470  *
1471  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472  * appropriately.
1473  */
1474 static void kvm_replace_memslot(struct kvm *kvm,
1475                                 struct kvm_memory_slot *old,
1476                                 struct kvm_memory_slot *new)
1477 {
1478         int as_id = kvm_memslots_get_as_id(old, new);
1479         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480         int idx = slots->node_idx;
1481
1482         if (old) {
1483                 hash_del(&old->id_node[idx]);
1484                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485
1486                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1487                         atomic_long_set(&slots->last_used_slot, (long)new);
1488
1489                 if (!new) {
1490                         kvm_erase_gfn_node(slots, old);
1491                         return;
1492                 }
1493         }
1494
1495         /*
1496          * Initialize @new's hva range.  Do this even when replacing an @old
1497          * slot, kvm_copy_memslot() deliberately does not touch node data.
1498          */
1499         new->hva_node[idx].start = new->userspace_addr;
1500         new->hva_node[idx].last = new->userspace_addr +
1501                                   (new->npages << PAGE_SHIFT) - 1;
1502
1503         /*
1504          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1505          * hva_node needs to be swapped with remove+insert even though hva can't
1506          * change when replacing an existing slot.
1507          */
1508         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510
1511         /*
1512          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513          * switch the node in the gfn tree instead of removing the old and
1514          * inserting the new as two separate operations. Replacement is a
1515          * single O(1) operation versus two O(log(n)) operations for
1516          * remove+insert.
1517          */
1518         if (old && old->base_gfn == new->base_gfn) {
1519                 kvm_replace_gfn_node(slots, old, new);
1520         } else {
1521                 if (old)
1522                         kvm_erase_gfn_node(slots, old);
1523                 kvm_insert_gfn_node(slots, new);
1524         }
1525 }
1526
1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528 {
1529         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530
1531 #ifdef __KVM_HAVE_READONLY_MEM
1532         valid_flags |= KVM_MEM_READONLY;
1533 #endif
1534
1535         if (mem->flags & ~valid_flags)
1536                 return -EINVAL;
1537
1538         return 0;
1539 }
1540
1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1542 {
1543         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544
1545         /* Grab the generation from the activate memslots. */
1546         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547
1548         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550
1551         /*
1552          * Do not store the new memslots while there are invalidations in
1553          * progress, otherwise the locking in invalidate_range_start and
1554          * invalidate_range_end will be unbalanced.
1555          */
1556         spin_lock(&kvm->mn_invalidate_lock);
1557         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558         while (kvm->mn_active_invalidate_count) {
1559                 set_current_state(TASK_UNINTERRUPTIBLE);
1560                 spin_unlock(&kvm->mn_invalidate_lock);
1561                 schedule();
1562                 spin_lock(&kvm->mn_invalidate_lock);
1563         }
1564         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565         rcu_assign_pointer(kvm->memslots[as_id], slots);
1566         spin_unlock(&kvm->mn_invalidate_lock);
1567
1568         /*
1569          * Acquired in kvm_set_memslot. Must be released before synchronize
1570          * SRCU below in order to avoid deadlock with another thread
1571          * acquiring the slots_arch_lock in an srcu critical section.
1572          */
1573         mutex_unlock(&kvm->slots_arch_lock);
1574
1575         synchronize_srcu_expedited(&kvm->srcu);
1576
1577         /*
1578          * Increment the new memslot generation a second time, dropping the
1579          * update in-progress flag and incrementing the generation based on
1580          * the number of address spaces.  This provides a unique and easily
1581          * identifiable generation number while the memslots are in flux.
1582          */
1583         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584
1585         /*
1586          * Generations must be unique even across address spaces.  We do not need
1587          * a global counter for that, instead the generation space is evenly split
1588          * across address spaces.  For example, with two address spaces, address
1589          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590          * use generations 1, 3, 5, ...
1591          */
1592         gen += KVM_ADDRESS_SPACE_NUM;
1593
1594         kvm_arch_memslots_updated(kvm, gen);
1595
1596         slots->generation = gen;
1597 }
1598
1599 static int kvm_prepare_memory_region(struct kvm *kvm,
1600                                      const struct kvm_memory_slot *old,
1601                                      struct kvm_memory_slot *new,
1602                                      enum kvm_mr_change change)
1603 {
1604         int r;
1605
1606         /*
1607          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608          * will be freed on "commit".  If logging is enabled in both old and
1609          * new, reuse the existing bitmap.  If logging is enabled only in the
1610          * new and KVM isn't using a ring buffer, allocate and initialize a
1611          * new bitmap.
1612          */
1613         if (change != KVM_MR_DELETE) {
1614                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615                         new->dirty_bitmap = NULL;
1616                 else if (old && old->dirty_bitmap)
1617                         new->dirty_bitmap = old->dirty_bitmap;
1618                 else if (kvm_use_dirty_bitmap(kvm)) {
1619                         r = kvm_alloc_dirty_bitmap(new);
1620                         if (r)
1621                                 return r;
1622
1623                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1625                 }
1626         }
1627
1628         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629
1630         /* Free the bitmap on failure if it was allocated above. */
1631         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632                 kvm_destroy_dirty_bitmap(new);
1633
1634         return r;
1635 }
1636
1637 static void kvm_commit_memory_region(struct kvm *kvm,
1638                                      struct kvm_memory_slot *old,
1639                                      const struct kvm_memory_slot *new,
1640                                      enum kvm_mr_change change)
1641 {
1642         int old_flags = old ? old->flags : 0;
1643         int new_flags = new ? new->flags : 0;
1644         /*
1645          * Update the total number of memslot pages before calling the arch
1646          * hook so that architectures can consume the result directly.
1647          */
1648         if (change == KVM_MR_DELETE)
1649                 kvm->nr_memslot_pages -= old->npages;
1650         else if (change == KVM_MR_CREATE)
1651                 kvm->nr_memslot_pages += new->npages;
1652
1653         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1654                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1655                 atomic_set(&kvm->nr_memslots_dirty_logging,
1656                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1657         }
1658
1659         kvm_arch_commit_memory_region(kvm, old, new, change);
1660
1661         switch (change) {
1662         case KVM_MR_CREATE:
1663                 /* Nothing more to do. */
1664                 break;
1665         case KVM_MR_DELETE:
1666                 /* Free the old memslot and all its metadata. */
1667                 kvm_free_memslot(kvm, old);
1668                 break;
1669         case KVM_MR_MOVE:
1670         case KVM_MR_FLAGS_ONLY:
1671                 /*
1672                  * Free the dirty bitmap as needed; the below check encompasses
1673                  * both the flags and whether a ring buffer is being used)
1674                  */
1675                 if (old->dirty_bitmap && !new->dirty_bitmap)
1676                         kvm_destroy_dirty_bitmap(old);
1677
1678                 /*
1679                  * The final quirk.  Free the detached, old slot, but only its
1680                  * memory, not any metadata.  Metadata, including arch specific
1681                  * data, may be reused by @new.
1682                  */
1683                 kfree(old);
1684                 break;
1685         default:
1686                 BUG();
1687         }
1688 }
1689
1690 /*
1691  * Activate @new, which must be installed in the inactive slots by the caller,
1692  * by swapping the active slots and then propagating @new to @old once @old is
1693  * unreachable and can be safely modified.
1694  *
1695  * With NULL @old this simply adds @new to @active (while swapping the sets).
1696  * With NULL @new this simply removes @old from @active and frees it
1697  * (while also swapping the sets).
1698  */
1699 static void kvm_activate_memslot(struct kvm *kvm,
1700                                  struct kvm_memory_slot *old,
1701                                  struct kvm_memory_slot *new)
1702 {
1703         int as_id = kvm_memslots_get_as_id(old, new);
1704
1705         kvm_swap_active_memslots(kvm, as_id);
1706
1707         /* Propagate the new memslot to the now inactive memslots. */
1708         kvm_replace_memslot(kvm, old, new);
1709 }
1710
1711 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1712                              const struct kvm_memory_slot *src)
1713 {
1714         dest->base_gfn = src->base_gfn;
1715         dest->npages = src->npages;
1716         dest->dirty_bitmap = src->dirty_bitmap;
1717         dest->arch = src->arch;
1718         dest->userspace_addr = src->userspace_addr;
1719         dest->flags = src->flags;
1720         dest->id = src->id;
1721         dest->as_id = src->as_id;
1722 }
1723
1724 static void kvm_invalidate_memslot(struct kvm *kvm,
1725                                    struct kvm_memory_slot *old,
1726                                    struct kvm_memory_slot *invalid_slot)
1727 {
1728         /*
1729          * Mark the current slot INVALID.  As with all memslot modifications,
1730          * this must be done on an unreachable slot to avoid modifying the
1731          * current slot in the active tree.
1732          */
1733         kvm_copy_memslot(invalid_slot, old);
1734         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1735         kvm_replace_memslot(kvm, old, invalid_slot);
1736
1737         /*
1738          * Activate the slot that is now marked INVALID, but don't propagate
1739          * the slot to the now inactive slots. The slot is either going to be
1740          * deleted or recreated as a new slot.
1741          */
1742         kvm_swap_active_memslots(kvm, old->as_id);
1743
1744         /*
1745          * From this point no new shadow pages pointing to a deleted, or moved,
1746          * memslot will be created.  Validation of sp->gfn happens in:
1747          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1748          *      - kvm_is_visible_gfn (mmu_check_root)
1749          */
1750         kvm_arch_flush_shadow_memslot(kvm, old);
1751         kvm_arch_guest_memory_reclaimed(kvm);
1752
1753         /* Was released by kvm_swap_active_memslots, reacquire. */
1754         mutex_lock(&kvm->slots_arch_lock);
1755
1756         /*
1757          * Copy the arch-specific field of the newly-installed slot back to the
1758          * old slot as the arch data could have changed between releasing
1759          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1760          * above.  Writers are required to retrieve memslots *after* acquiring
1761          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1762          */
1763         old->arch = invalid_slot->arch;
1764 }
1765
1766 static void kvm_create_memslot(struct kvm *kvm,
1767                                struct kvm_memory_slot *new)
1768 {
1769         /* Add the new memslot to the inactive set and activate. */
1770         kvm_replace_memslot(kvm, NULL, new);
1771         kvm_activate_memslot(kvm, NULL, new);
1772 }
1773
1774 static void kvm_delete_memslot(struct kvm *kvm,
1775                                struct kvm_memory_slot *old,
1776                                struct kvm_memory_slot *invalid_slot)
1777 {
1778         /*
1779          * Remove the old memslot (in the inactive memslots) by passing NULL as
1780          * the "new" slot, and for the invalid version in the active slots.
1781          */
1782         kvm_replace_memslot(kvm, old, NULL);
1783         kvm_activate_memslot(kvm, invalid_slot, NULL);
1784 }
1785
1786 static void kvm_move_memslot(struct kvm *kvm,
1787                              struct kvm_memory_slot *old,
1788                              struct kvm_memory_slot *new,
1789                              struct kvm_memory_slot *invalid_slot)
1790 {
1791         /*
1792          * Replace the old memslot in the inactive slots, and then swap slots
1793          * and replace the current INVALID with the new as well.
1794          */
1795         kvm_replace_memslot(kvm, old, new);
1796         kvm_activate_memslot(kvm, invalid_slot, new);
1797 }
1798
1799 static void kvm_update_flags_memslot(struct kvm *kvm,
1800                                      struct kvm_memory_slot *old,
1801                                      struct kvm_memory_slot *new)
1802 {
1803         /*
1804          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1805          * an intermediate step. Instead, the old memslot is simply replaced
1806          * with a new, updated copy in both memslot sets.
1807          */
1808         kvm_replace_memslot(kvm, old, new);
1809         kvm_activate_memslot(kvm, old, new);
1810 }
1811
1812 static int kvm_set_memslot(struct kvm *kvm,
1813                            struct kvm_memory_slot *old,
1814                            struct kvm_memory_slot *new,
1815                            enum kvm_mr_change change)
1816 {
1817         struct kvm_memory_slot *invalid_slot;
1818         int r;
1819
1820         /*
1821          * Released in kvm_swap_active_memslots.
1822          *
1823          * Must be held from before the current memslots are copied until
1824          * after the new memslots are installed with rcu_assign_pointer,
1825          * then released before the synchronize srcu in kvm_swap_active_memslots.
1826          *
1827          * When modifying memslots outside of the slots_lock, must be held
1828          * before reading the pointer to the current memslots until after all
1829          * changes to those memslots are complete.
1830          *
1831          * These rules ensure that installing new memslots does not lose
1832          * changes made to the previous memslots.
1833          */
1834         mutex_lock(&kvm->slots_arch_lock);
1835
1836         /*
1837          * Invalidate the old slot if it's being deleted or moved.  This is
1838          * done prior to actually deleting/moving the memslot to allow vCPUs to
1839          * continue running by ensuring there are no mappings or shadow pages
1840          * for the memslot when it is deleted/moved.  Without pre-invalidation
1841          * (and without a lock), a window would exist between effecting the
1842          * delete/move and committing the changes in arch code where KVM or a
1843          * guest could access a non-existent memslot.
1844          *
1845          * Modifications are done on a temporary, unreachable slot.  The old
1846          * slot needs to be preserved in case a later step fails and the
1847          * invalidation needs to be reverted.
1848          */
1849         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1850                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1851                 if (!invalid_slot) {
1852                         mutex_unlock(&kvm->slots_arch_lock);
1853                         return -ENOMEM;
1854                 }
1855                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1856         }
1857
1858         r = kvm_prepare_memory_region(kvm, old, new, change);
1859         if (r) {
1860                 /*
1861                  * For DELETE/MOVE, revert the above INVALID change.  No
1862                  * modifications required since the original slot was preserved
1863                  * in the inactive slots.  Changing the active memslots also
1864                  * release slots_arch_lock.
1865                  */
1866                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1867                         kvm_activate_memslot(kvm, invalid_slot, old);
1868                         kfree(invalid_slot);
1869                 } else {
1870                         mutex_unlock(&kvm->slots_arch_lock);
1871                 }
1872                 return r;
1873         }
1874
1875         /*
1876          * For DELETE and MOVE, the working slot is now active as the INVALID
1877          * version of the old slot.  MOVE is particularly special as it reuses
1878          * the old slot and returns a copy of the old slot (in working_slot).
1879          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1880          * old slot is detached but otherwise preserved.
1881          */
1882         if (change == KVM_MR_CREATE)
1883                 kvm_create_memslot(kvm, new);
1884         else if (change == KVM_MR_DELETE)
1885                 kvm_delete_memslot(kvm, old, invalid_slot);
1886         else if (change == KVM_MR_MOVE)
1887                 kvm_move_memslot(kvm, old, new, invalid_slot);
1888         else if (change == KVM_MR_FLAGS_ONLY)
1889                 kvm_update_flags_memslot(kvm, old, new);
1890         else
1891                 BUG();
1892
1893         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1894         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1895                 kfree(invalid_slot);
1896
1897         /*
1898          * No need to refresh new->arch, changes after dropping slots_arch_lock
1899          * will directly hit the final, active memslot.  Architectures are
1900          * responsible for knowing that new->arch may be stale.
1901          */
1902         kvm_commit_memory_region(kvm, old, new, change);
1903
1904         return 0;
1905 }
1906
1907 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1908                                       gfn_t start, gfn_t end)
1909 {
1910         struct kvm_memslot_iter iter;
1911
1912         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1913                 if (iter.slot->id != id)
1914                         return true;
1915         }
1916
1917         return false;
1918 }
1919
1920 /*
1921  * Allocate some memory and give it an address in the guest physical address
1922  * space.
1923  *
1924  * Discontiguous memory is allowed, mostly for framebuffers.
1925  *
1926  * Must be called holding kvm->slots_lock for write.
1927  */
1928 int __kvm_set_memory_region(struct kvm *kvm,
1929                             const struct kvm_userspace_memory_region *mem)
1930 {
1931         struct kvm_memory_slot *old, *new;
1932         struct kvm_memslots *slots;
1933         enum kvm_mr_change change;
1934         unsigned long npages;
1935         gfn_t base_gfn;
1936         int as_id, id;
1937         int r;
1938
1939         r = check_memory_region_flags(mem);
1940         if (r)
1941                 return r;
1942
1943         as_id = mem->slot >> 16;
1944         id = (u16)mem->slot;
1945
1946         /* General sanity checks */
1947         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1948             (mem->memory_size != (unsigned long)mem->memory_size))
1949                 return -EINVAL;
1950         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1951                 return -EINVAL;
1952         /* We can read the guest memory with __xxx_user() later on. */
1953         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1954             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1955              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1956                         mem->memory_size))
1957                 return -EINVAL;
1958         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1959                 return -EINVAL;
1960         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1961                 return -EINVAL;
1962         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1963                 return -EINVAL;
1964
1965         slots = __kvm_memslots(kvm, as_id);
1966
1967         /*
1968          * Note, the old memslot (and the pointer itself!) may be invalidated
1969          * and/or destroyed by kvm_set_memslot().
1970          */
1971         old = id_to_memslot(slots, id);
1972
1973         if (!mem->memory_size) {
1974                 if (!old || !old->npages)
1975                         return -EINVAL;
1976
1977                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1978                         return -EIO;
1979
1980                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1981         }
1982
1983         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1984         npages = (mem->memory_size >> PAGE_SHIFT);
1985
1986         if (!old || !old->npages) {
1987                 change = KVM_MR_CREATE;
1988
1989                 /*
1990                  * To simplify KVM internals, the total number of pages across
1991                  * all memslots must fit in an unsigned long.
1992                  */
1993                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1994                         return -EINVAL;
1995         } else { /* Modify an existing slot. */
1996                 if ((mem->userspace_addr != old->userspace_addr) ||
1997                     (npages != old->npages) ||
1998                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1999                         return -EINVAL;
2000
2001                 if (base_gfn != old->base_gfn)
2002                         change = KVM_MR_MOVE;
2003                 else if (mem->flags != old->flags)
2004                         change = KVM_MR_FLAGS_ONLY;
2005                 else /* Nothing to change. */
2006                         return 0;
2007         }
2008
2009         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2010             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2011                 return -EEXIST;
2012
2013         /* Allocate a slot that will persist in the memslot. */
2014         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2015         if (!new)
2016                 return -ENOMEM;
2017
2018         new->as_id = as_id;
2019         new->id = id;
2020         new->base_gfn = base_gfn;
2021         new->npages = npages;
2022         new->flags = mem->flags;
2023         new->userspace_addr = mem->userspace_addr;
2024
2025         r = kvm_set_memslot(kvm, old, new, change);
2026         if (r)
2027                 kfree(new);
2028         return r;
2029 }
2030 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2031
2032 int kvm_set_memory_region(struct kvm *kvm,
2033                           const struct kvm_userspace_memory_region *mem)
2034 {
2035         int r;
2036
2037         mutex_lock(&kvm->slots_lock);
2038         r = __kvm_set_memory_region(kvm, mem);
2039         mutex_unlock(&kvm->slots_lock);
2040         return r;
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2043
2044 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2045                                           struct kvm_userspace_memory_region *mem)
2046 {
2047         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2048                 return -EINVAL;
2049
2050         return kvm_set_memory_region(kvm, mem);
2051 }
2052
2053 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2054 /**
2055  * kvm_get_dirty_log - get a snapshot of dirty pages
2056  * @kvm:        pointer to kvm instance
2057  * @log:        slot id and address to which we copy the log
2058  * @is_dirty:   set to '1' if any dirty pages were found
2059  * @memslot:    set to the associated memslot, always valid on success
2060  */
2061 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2062                       int *is_dirty, struct kvm_memory_slot **memslot)
2063 {
2064         struct kvm_memslots *slots;
2065         int i, as_id, id;
2066         unsigned long n;
2067         unsigned long any = 0;
2068
2069         /* Dirty ring tracking may be exclusive to dirty log tracking */
2070         if (!kvm_use_dirty_bitmap(kvm))
2071                 return -ENXIO;
2072
2073         *memslot = NULL;
2074         *is_dirty = 0;
2075
2076         as_id = log->slot >> 16;
2077         id = (u16)log->slot;
2078         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2079                 return -EINVAL;
2080
2081         slots = __kvm_memslots(kvm, as_id);
2082         *memslot = id_to_memslot(slots, id);
2083         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2084                 return -ENOENT;
2085
2086         kvm_arch_sync_dirty_log(kvm, *memslot);
2087
2088         n = kvm_dirty_bitmap_bytes(*memslot);
2089
2090         for (i = 0; !any && i < n/sizeof(long); ++i)
2091                 any = (*memslot)->dirty_bitmap[i];
2092
2093         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2094                 return -EFAULT;
2095
2096         if (any)
2097                 *is_dirty = 1;
2098         return 0;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2101
2102 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2103 /**
2104  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2105  *      and reenable dirty page tracking for the corresponding pages.
2106  * @kvm:        pointer to kvm instance
2107  * @log:        slot id and address to which we copy the log
2108  *
2109  * We need to keep it in mind that VCPU threads can write to the bitmap
2110  * concurrently. So, to avoid losing track of dirty pages we keep the
2111  * following order:
2112  *
2113  *    1. Take a snapshot of the bit and clear it if needed.
2114  *    2. Write protect the corresponding page.
2115  *    3. Copy the snapshot to the userspace.
2116  *    4. Upon return caller flushes TLB's if needed.
2117  *
2118  * Between 2 and 4, the guest may write to the page using the remaining TLB
2119  * entry.  This is not a problem because the page is reported dirty using
2120  * the snapshot taken before and step 4 ensures that writes done after
2121  * exiting to userspace will be logged for the next call.
2122  *
2123  */
2124 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2125 {
2126         struct kvm_memslots *slots;
2127         struct kvm_memory_slot *memslot;
2128         int i, as_id, id;
2129         unsigned long n;
2130         unsigned long *dirty_bitmap;
2131         unsigned long *dirty_bitmap_buffer;
2132         bool flush;
2133
2134         /* Dirty ring tracking may be exclusive to dirty log tracking */
2135         if (!kvm_use_dirty_bitmap(kvm))
2136                 return -ENXIO;
2137
2138         as_id = log->slot >> 16;
2139         id = (u16)log->slot;
2140         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2141                 return -EINVAL;
2142
2143         slots = __kvm_memslots(kvm, as_id);
2144         memslot = id_to_memslot(slots, id);
2145         if (!memslot || !memslot->dirty_bitmap)
2146                 return -ENOENT;
2147
2148         dirty_bitmap = memslot->dirty_bitmap;
2149
2150         kvm_arch_sync_dirty_log(kvm, memslot);
2151
2152         n = kvm_dirty_bitmap_bytes(memslot);
2153         flush = false;
2154         if (kvm->manual_dirty_log_protect) {
2155                 /*
2156                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2157                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2158                  * is some code duplication between this function and
2159                  * kvm_get_dirty_log, but hopefully all architecture
2160                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2161                  * can be eliminated.
2162                  */
2163                 dirty_bitmap_buffer = dirty_bitmap;
2164         } else {
2165                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2166                 memset(dirty_bitmap_buffer, 0, n);
2167
2168                 KVM_MMU_LOCK(kvm);
2169                 for (i = 0; i < n / sizeof(long); i++) {
2170                         unsigned long mask;
2171                         gfn_t offset;
2172
2173                         if (!dirty_bitmap[i])
2174                                 continue;
2175
2176                         flush = true;
2177                         mask = xchg(&dirty_bitmap[i], 0);
2178                         dirty_bitmap_buffer[i] = mask;
2179
2180                         offset = i * BITS_PER_LONG;
2181                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2182                                                                 offset, mask);
2183                 }
2184                 KVM_MMU_UNLOCK(kvm);
2185         }
2186
2187         if (flush)
2188                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2189
2190         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2191                 return -EFAULT;
2192         return 0;
2193 }
2194
2195
2196 /**
2197  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2198  * @kvm: kvm instance
2199  * @log: slot id and address to which we copy the log
2200  *
2201  * Steps 1-4 below provide general overview of dirty page logging. See
2202  * kvm_get_dirty_log_protect() function description for additional details.
2203  *
2204  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2205  * always flush the TLB (step 4) even if previous step failed  and the dirty
2206  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2207  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2208  * writes will be marked dirty for next log read.
2209  *
2210  *   1. Take a snapshot of the bit and clear it if needed.
2211  *   2. Write protect the corresponding page.
2212  *   3. Copy the snapshot to the userspace.
2213  *   4. Flush TLB's if needed.
2214  */
2215 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2216                                       struct kvm_dirty_log *log)
2217 {
2218         int r;
2219
2220         mutex_lock(&kvm->slots_lock);
2221
2222         r = kvm_get_dirty_log_protect(kvm, log);
2223
2224         mutex_unlock(&kvm->slots_lock);
2225         return r;
2226 }
2227
2228 /**
2229  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2230  *      and reenable dirty page tracking for the corresponding pages.
2231  * @kvm:        pointer to kvm instance
2232  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2233  */
2234 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2235                                        struct kvm_clear_dirty_log *log)
2236 {
2237         struct kvm_memslots *slots;
2238         struct kvm_memory_slot *memslot;
2239         int as_id, id;
2240         gfn_t offset;
2241         unsigned long i, n;
2242         unsigned long *dirty_bitmap;
2243         unsigned long *dirty_bitmap_buffer;
2244         bool flush;
2245
2246         /* Dirty ring tracking may be exclusive to dirty log tracking */
2247         if (!kvm_use_dirty_bitmap(kvm))
2248                 return -ENXIO;
2249
2250         as_id = log->slot >> 16;
2251         id = (u16)log->slot;
2252         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2253                 return -EINVAL;
2254
2255         if (log->first_page & 63)
2256                 return -EINVAL;
2257
2258         slots = __kvm_memslots(kvm, as_id);
2259         memslot = id_to_memslot(slots, id);
2260         if (!memslot || !memslot->dirty_bitmap)
2261                 return -ENOENT;
2262
2263         dirty_bitmap = memslot->dirty_bitmap;
2264
2265         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2266
2267         if (log->first_page > memslot->npages ||
2268             log->num_pages > memslot->npages - log->first_page ||
2269             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2270             return -EINVAL;
2271
2272         kvm_arch_sync_dirty_log(kvm, memslot);
2273
2274         flush = false;
2275         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2276         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2277                 return -EFAULT;
2278
2279         KVM_MMU_LOCK(kvm);
2280         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2281                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2282              i++, offset += BITS_PER_LONG) {
2283                 unsigned long mask = *dirty_bitmap_buffer++;
2284                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2285                 if (!mask)
2286                         continue;
2287
2288                 mask &= atomic_long_fetch_andnot(mask, p);
2289
2290                 /*
2291                  * mask contains the bits that really have been cleared.  This
2292                  * never includes any bits beyond the length of the memslot (if
2293                  * the length is not aligned to 64 pages), therefore it is not
2294                  * a problem if userspace sets them in log->dirty_bitmap.
2295                 */
2296                 if (mask) {
2297                         flush = true;
2298                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2299                                                                 offset, mask);
2300                 }
2301         }
2302         KVM_MMU_UNLOCK(kvm);
2303
2304         if (flush)
2305                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2306
2307         return 0;
2308 }
2309
2310 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2311                                         struct kvm_clear_dirty_log *log)
2312 {
2313         int r;
2314
2315         mutex_lock(&kvm->slots_lock);
2316
2317         r = kvm_clear_dirty_log_protect(kvm, log);
2318
2319         mutex_unlock(&kvm->slots_lock);
2320         return r;
2321 }
2322 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2323
2324 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2325 {
2326         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2327 }
2328 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2329
2330 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2331 {
2332         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2333         u64 gen = slots->generation;
2334         struct kvm_memory_slot *slot;
2335
2336         /*
2337          * This also protects against using a memslot from a different address space,
2338          * since different address spaces have different generation numbers.
2339          */
2340         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2341                 vcpu->last_used_slot = NULL;
2342                 vcpu->last_used_slot_gen = gen;
2343         }
2344
2345         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2346         if (slot)
2347                 return slot;
2348
2349         /*
2350          * Fall back to searching all memslots. We purposely use
2351          * search_memslots() instead of __gfn_to_memslot() to avoid
2352          * thrashing the VM-wide last_used_slot in kvm_memslots.
2353          */
2354         slot = search_memslots(slots, gfn, false);
2355         if (slot) {
2356                 vcpu->last_used_slot = slot;
2357                 return slot;
2358         }
2359
2360         return NULL;
2361 }
2362
2363 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2364 {
2365         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2366
2367         return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2370
2371 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2374
2375         return kvm_is_visible_memslot(memslot);
2376 }
2377 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2378
2379 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 {
2381         struct vm_area_struct *vma;
2382         unsigned long addr, size;
2383
2384         size = PAGE_SIZE;
2385
2386         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2387         if (kvm_is_error_hva(addr))
2388                 return PAGE_SIZE;
2389
2390         mmap_read_lock(current->mm);
2391         vma = find_vma(current->mm, addr);
2392         if (!vma)
2393                 goto out;
2394
2395         size = vma_kernel_pagesize(vma);
2396
2397 out:
2398         mmap_read_unlock(current->mm);
2399
2400         return size;
2401 }
2402
2403 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2404 {
2405         return slot->flags & KVM_MEM_READONLY;
2406 }
2407
2408 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2409                                        gfn_t *nr_pages, bool write)
2410 {
2411         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2412                 return KVM_HVA_ERR_BAD;
2413
2414         if (memslot_is_readonly(slot) && write)
2415                 return KVM_HVA_ERR_RO_BAD;
2416
2417         if (nr_pages)
2418                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2419
2420         return __gfn_to_hva_memslot(slot, gfn);
2421 }
2422
2423 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2424                                      gfn_t *nr_pages)
2425 {
2426         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2427 }
2428
2429 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2430                                         gfn_t gfn)
2431 {
2432         return gfn_to_hva_many(slot, gfn, NULL);
2433 }
2434 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2435
2436 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2437 {
2438         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2439 }
2440 EXPORT_SYMBOL_GPL(gfn_to_hva);
2441
2442 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2443 {
2444         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2447
2448 /*
2449  * Return the hva of a @gfn and the R/W attribute if possible.
2450  *
2451  * @slot: the kvm_memory_slot which contains @gfn
2452  * @gfn: the gfn to be translated
2453  * @writable: used to return the read/write attribute of the @slot if the hva
2454  * is valid and @writable is not NULL
2455  */
2456 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2457                                       gfn_t gfn, bool *writable)
2458 {
2459         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2460
2461         if (!kvm_is_error_hva(hva) && writable)
2462                 *writable = !memslot_is_readonly(slot);
2463
2464         return hva;
2465 }
2466
2467 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2468 {
2469         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2470
2471         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2472 }
2473
2474 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2475 {
2476         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2477
2478         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2479 }
2480
2481 static inline int check_user_page_hwpoison(unsigned long addr)
2482 {
2483         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2484
2485         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2486         return rc == -EHWPOISON;
2487 }
2488
2489 /*
2490  * The fast path to get the writable pfn which will be stored in @pfn,
2491  * true indicates success, otherwise false is returned.  It's also the
2492  * only part that runs if we can in atomic context.
2493  */
2494 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2495                             bool *writable, kvm_pfn_t *pfn)
2496 {
2497         struct page *page[1];
2498
2499         /*
2500          * Fast pin a writable pfn only if it is a write fault request
2501          * or the caller allows to map a writable pfn for a read fault
2502          * request.
2503          */
2504         if (!(write_fault || writable))
2505                 return false;
2506
2507         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2508                 *pfn = page_to_pfn(page[0]);
2509
2510                 if (writable)
2511                         *writable = true;
2512                 return true;
2513         }
2514
2515         return false;
2516 }
2517
2518 /*
2519  * The slow path to get the pfn of the specified host virtual address,
2520  * 1 indicates success, -errno is returned if error is detected.
2521  */
2522 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2523                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2524 {
2525         unsigned int flags = FOLL_HWPOISON;
2526         struct page *page;
2527         int npages;
2528
2529         might_sleep();
2530
2531         if (writable)
2532                 *writable = write_fault;
2533
2534         if (write_fault)
2535                 flags |= FOLL_WRITE;
2536         if (async)
2537                 flags |= FOLL_NOWAIT;
2538         if (interruptible)
2539                 flags |= FOLL_INTERRUPTIBLE;
2540
2541         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2542         if (npages != 1)
2543                 return npages;
2544
2545         /* map read fault as writable if possible */
2546         if (unlikely(!write_fault) && writable) {
2547                 struct page *wpage;
2548
2549                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2550                         *writable = true;
2551                         put_page(page);
2552                         page = wpage;
2553                 }
2554         }
2555         *pfn = page_to_pfn(page);
2556         return npages;
2557 }
2558
2559 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2560 {
2561         if (unlikely(!(vma->vm_flags & VM_READ)))
2562                 return false;
2563
2564         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2565                 return false;
2566
2567         return true;
2568 }
2569
2570 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2571 {
2572         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2573
2574         if (!page)
2575                 return 1;
2576
2577         return get_page_unless_zero(page);
2578 }
2579
2580 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2581                                unsigned long addr, bool write_fault,
2582                                bool *writable, kvm_pfn_t *p_pfn)
2583 {
2584         kvm_pfn_t pfn;
2585         pte_t *ptep;
2586         spinlock_t *ptl;
2587         int r;
2588
2589         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2590         if (r) {
2591                 /*
2592                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2593                  * not call the fault handler, so do it here.
2594                  */
2595                 bool unlocked = false;
2596                 r = fixup_user_fault(current->mm, addr,
2597                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2598                                      &unlocked);
2599                 if (unlocked)
2600                         return -EAGAIN;
2601                 if (r)
2602                         return r;
2603
2604                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2605                 if (r)
2606                         return r;
2607         }
2608
2609         if (write_fault && !pte_write(*ptep)) {
2610                 pfn = KVM_PFN_ERR_RO_FAULT;
2611                 goto out;
2612         }
2613
2614         if (writable)
2615                 *writable = pte_write(*ptep);
2616         pfn = pte_pfn(*ptep);
2617
2618         /*
2619          * Get a reference here because callers of *hva_to_pfn* and
2620          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2621          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2622          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2623          * simply do nothing for reserved pfns.
2624          *
2625          * Whoever called remap_pfn_range is also going to call e.g.
2626          * unmap_mapping_range before the underlying pages are freed,
2627          * causing a call to our MMU notifier.
2628          *
2629          * Certain IO or PFNMAP mappings can be backed with valid
2630          * struct pages, but be allocated without refcounting e.g.,
2631          * tail pages of non-compound higher order allocations, which
2632          * would then underflow the refcount when the caller does the
2633          * required put_page. Don't allow those pages here.
2634          */ 
2635         if (!kvm_try_get_pfn(pfn))
2636                 r = -EFAULT;
2637
2638 out:
2639         pte_unmap_unlock(ptep, ptl);
2640         *p_pfn = pfn;
2641
2642         return r;
2643 }
2644
2645 /*
2646  * Pin guest page in memory and return its pfn.
2647  * @addr: host virtual address which maps memory to the guest
2648  * @atomic: whether this function can sleep
2649  * @interruptible: whether the process can be interrupted by non-fatal signals
2650  * @async: whether this function need to wait IO complete if the
2651  *         host page is not in the memory
2652  * @write_fault: whether we should get a writable host page
2653  * @writable: whether it allows to map a writable host page for !@write_fault
2654  *
2655  * The function will map a writable host page for these two cases:
2656  * 1): @write_fault = true
2657  * 2): @write_fault = false && @writable, @writable will tell the caller
2658  *     whether the mapping is writable.
2659  */
2660 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2661                      bool *async, bool write_fault, bool *writable)
2662 {
2663         struct vm_area_struct *vma;
2664         kvm_pfn_t pfn;
2665         int npages, r;
2666
2667         /* we can do it either atomically or asynchronously, not both */
2668         BUG_ON(atomic && async);
2669
2670         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2671                 return pfn;
2672
2673         if (atomic)
2674                 return KVM_PFN_ERR_FAULT;
2675
2676         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2677                                  writable, &pfn);
2678         if (npages == 1)
2679                 return pfn;
2680         if (npages == -EINTR)
2681                 return KVM_PFN_ERR_SIGPENDING;
2682
2683         mmap_read_lock(current->mm);
2684         if (npages == -EHWPOISON ||
2685               (!async && check_user_page_hwpoison(addr))) {
2686                 pfn = KVM_PFN_ERR_HWPOISON;
2687                 goto exit;
2688         }
2689
2690 retry:
2691         vma = vma_lookup(current->mm, addr);
2692
2693         if (vma == NULL)
2694                 pfn = KVM_PFN_ERR_FAULT;
2695         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2696                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2697                 if (r == -EAGAIN)
2698                         goto retry;
2699                 if (r < 0)
2700                         pfn = KVM_PFN_ERR_FAULT;
2701         } else {
2702                 if (async && vma_is_valid(vma, write_fault))
2703                         *async = true;
2704                 pfn = KVM_PFN_ERR_FAULT;
2705         }
2706 exit:
2707         mmap_read_unlock(current->mm);
2708         return pfn;
2709 }
2710
2711 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2712                                bool atomic, bool interruptible, bool *async,
2713                                bool write_fault, bool *writable, hva_t *hva)
2714 {
2715         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2716
2717         if (hva)
2718                 *hva = addr;
2719
2720         if (addr == KVM_HVA_ERR_RO_BAD) {
2721                 if (writable)
2722                         *writable = false;
2723                 return KVM_PFN_ERR_RO_FAULT;
2724         }
2725
2726         if (kvm_is_error_hva(addr)) {
2727                 if (writable)
2728                         *writable = false;
2729                 return KVM_PFN_NOSLOT;
2730         }
2731
2732         /* Do not map writable pfn in the readonly memslot. */
2733         if (writable && memslot_is_readonly(slot)) {
2734                 *writable = false;
2735                 writable = NULL;
2736         }
2737
2738         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2739                           writable);
2740 }
2741 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2742
2743 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2744                       bool *writable)
2745 {
2746         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2747                                     NULL, write_fault, writable, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2750
2751 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2752 {
2753         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2754                                     NULL, NULL);
2755 }
2756 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2757
2758 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2759 {
2760         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2761                                     NULL, NULL);
2762 }
2763 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2764
2765 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2766 {
2767         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2770
2771 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2772 {
2773         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2774 }
2775 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2776
2777 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2778 {
2779         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2780 }
2781 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2782
2783 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2784                             struct page **pages, int nr_pages)
2785 {
2786         unsigned long addr;
2787         gfn_t entry = 0;
2788
2789         addr = gfn_to_hva_many(slot, gfn, &entry);
2790         if (kvm_is_error_hva(addr))
2791                 return -1;
2792
2793         if (entry < nr_pages)
2794                 return 0;
2795
2796         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2797 }
2798 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2799
2800 /*
2801  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2802  * backed by 'struct page'.  A valid example is if the backing memslot is
2803  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2804  * been elevated by gfn_to_pfn().
2805  */
2806 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2807 {
2808         struct page *page;
2809         kvm_pfn_t pfn;
2810
2811         pfn = gfn_to_pfn(kvm, gfn);
2812
2813         if (is_error_noslot_pfn(pfn))
2814                 return KVM_ERR_PTR_BAD_PAGE;
2815
2816         page = kvm_pfn_to_refcounted_page(pfn);
2817         if (!page)
2818                 return KVM_ERR_PTR_BAD_PAGE;
2819
2820         return page;
2821 }
2822 EXPORT_SYMBOL_GPL(gfn_to_page);
2823
2824 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2825 {
2826         if (dirty)
2827                 kvm_release_pfn_dirty(pfn);
2828         else
2829                 kvm_release_pfn_clean(pfn);
2830 }
2831
2832 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2833 {
2834         kvm_pfn_t pfn;
2835         void *hva = NULL;
2836         struct page *page = KVM_UNMAPPED_PAGE;
2837
2838         if (!map)
2839                 return -EINVAL;
2840
2841         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2842         if (is_error_noslot_pfn(pfn))
2843                 return -EINVAL;
2844
2845         if (pfn_valid(pfn)) {
2846                 page = pfn_to_page(pfn);
2847                 hva = kmap(page);
2848 #ifdef CONFIG_HAS_IOMEM
2849         } else {
2850                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2851 #endif
2852         }
2853
2854         if (!hva)
2855                 return -EFAULT;
2856
2857         map->page = page;
2858         map->hva = hva;
2859         map->pfn = pfn;
2860         map->gfn = gfn;
2861
2862         return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2865
2866 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2867 {
2868         if (!map)
2869                 return;
2870
2871         if (!map->hva)
2872                 return;
2873
2874         if (map->page != KVM_UNMAPPED_PAGE)
2875                 kunmap(map->page);
2876 #ifdef CONFIG_HAS_IOMEM
2877         else
2878                 memunmap(map->hva);
2879 #endif
2880
2881         if (dirty)
2882                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2883
2884         kvm_release_pfn(map->pfn, dirty);
2885
2886         map->hva = NULL;
2887         map->page = NULL;
2888 }
2889 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2890
2891 static bool kvm_is_ad_tracked_page(struct page *page)
2892 {
2893         /*
2894          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2895          * touched (e.g. set dirty) except by its owner".
2896          */
2897         return !PageReserved(page);
2898 }
2899
2900 static void kvm_set_page_dirty(struct page *page)
2901 {
2902         if (kvm_is_ad_tracked_page(page))
2903                 SetPageDirty(page);
2904 }
2905
2906 static void kvm_set_page_accessed(struct page *page)
2907 {
2908         if (kvm_is_ad_tracked_page(page))
2909                 mark_page_accessed(page);
2910 }
2911
2912 void kvm_release_page_clean(struct page *page)
2913 {
2914         WARN_ON(is_error_page(page));
2915
2916         kvm_set_page_accessed(page);
2917         put_page(page);
2918 }
2919 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2920
2921 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2922 {
2923         struct page *page;
2924
2925         if (is_error_noslot_pfn(pfn))
2926                 return;
2927
2928         page = kvm_pfn_to_refcounted_page(pfn);
2929         if (!page)
2930                 return;
2931
2932         kvm_release_page_clean(page);
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2935
2936 void kvm_release_page_dirty(struct page *page)
2937 {
2938         WARN_ON(is_error_page(page));
2939
2940         kvm_set_page_dirty(page);
2941         kvm_release_page_clean(page);
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2944
2945 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2946 {
2947         struct page *page;
2948
2949         if (is_error_noslot_pfn(pfn))
2950                 return;
2951
2952         page = kvm_pfn_to_refcounted_page(pfn);
2953         if (!page)
2954                 return;
2955
2956         kvm_release_page_dirty(page);
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2959
2960 /*
2961  * Note, checking for an error/noslot pfn is the caller's responsibility when
2962  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2963  * "set" helpers are not to be used when the pfn might point at garbage.
2964  */
2965 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2966 {
2967         if (WARN_ON(is_error_noslot_pfn(pfn)))
2968                 return;
2969
2970         if (pfn_valid(pfn))
2971                 kvm_set_page_dirty(pfn_to_page(pfn));
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2974
2975 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2976 {
2977         if (WARN_ON(is_error_noslot_pfn(pfn)))
2978                 return;
2979
2980         if (pfn_valid(pfn))
2981                 kvm_set_page_accessed(pfn_to_page(pfn));
2982 }
2983 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2984
2985 static int next_segment(unsigned long len, int offset)
2986 {
2987         if (len > PAGE_SIZE - offset)
2988                 return PAGE_SIZE - offset;
2989         else
2990                 return len;
2991 }
2992
2993 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2994                                  void *data, int offset, int len)
2995 {
2996         int r;
2997         unsigned long addr;
2998
2999         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3000         if (kvm_is_error_hva(addr))
3001                 return -EFAULT;
3002         r = __copy_from_user(data, (void __user *)addr + offset, len);
3003         if (r)
3004                 return -EFAULT;
3005         return 0;
3006 }
3007
3008 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3009                         int len)
3010 {
3011         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3012
3013         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3014 }
3015 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3016
3017 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3018                              int offset, int len)
3019 {
3020         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3021
3022         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3025
3026 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3027 {
3028         gfn_t gfn = gpa >> PAGE_SHIFT;
3029         int seg;
3030         int offset = offset_in_page(gpa);
3031         int ret;
3032
3033         while ((seg = next_segment(len, offset)) != 0) {
3034                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3035                 if (ret < 0)
3036                         return ret;
3037                 offset = 0;
3038                 len -= seg;
3039                 data += seg;
3040                 ++gfn;
3041         }
3042         return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(kvm_read_guest);
3045
3046 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3047 {
3048         gfn_t gfn = gpa >> PAGE_SHIFT;
3049         int seg;
3050         int offset = offset_in_page(gpa);
3051         int ret;
3052
3053         while ((seg = next_segment(len, offset)) != 0) {
3054                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3055                 if (ret < 0)
3056                         return ret;
3057                 offset = 0;
3058                 len -= seg;
3059                 data += seg;
3060                 ++gfn;
3061         }
3062         return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3065
3066 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3067                                    void *data, int offset, unsigned long len)
3068 {
3069         int r;
3070         unsigned long addr;
3071
3072         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3073         if (kvm_is_error_hva(addr))
3074                 return -EFAULT;
3075         pagefault_disable();
3076         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3077         pagefault_enable();
3078         if (r)
3079                 return -EFAULT;
3080         return 0;
3081 }
3082
3083 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3084                                void *data, unsigned long len)
3085 {
3086         gfn_t gfn = gpa >> PAGE_SHIFT;
3087         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3088         int offset = offset_in_page(gpa);
3089
3090         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3091 }
3092 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3093
3094 static int __kvm_write_guest_page(struct kvm *kvm,
3095                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3096                                   const void *data, int offset, int len)
3097 {
3098         int r;
3099         unsigned long addr;
3100
3101         addr = gfn_to_hva_memslot(memslot, gfn);
3102         if (kvm_is_error_hva(addr))
3103                 return -EFAULT;
3104         r = __copy_to_user((void __user *)addr + offset, data, len);
3105         if (r)
3106                 return -EFAULT;
3107         mark_page_dirty_in_slot(kvm, memslot, gfn);
3108         return 0;
3109 }
3110
3111 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3112                          const void *data, int offset, int len)
3113 {
3114         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3115
3116         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3117 }
3118 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3119
3120 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3121                               const void *data, int offset, int len)
3122 {
3123         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3124
3125         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3126 }
3127 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3128
3129 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3130                     unsigned long len)
3131 {
3132         gfn_t gfn = gpa >> PAGE_SHIFT;
3133         int seg;
3134         int offset = offset_in_page(gpa);
3135         int ret;
3136
3137         while ((seg = next_segment(len, offset)) != 0) {
3138                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3139                 if (ret < 0)
3140                         return ret;
3141                 offset = 0;
3142                 len -= seg;
3143                 data += seg;
3144                 ++gfn;
3145         }
3146         return 0;
3147 }
3148 EXPORT_SYMBOL_GPL(kvm_write_guest);
3149
3150 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3151                          unsigned long len)
3152 {
3153         gfn_t gfn = gpa >> PAGE_SHIFT;
3154         int seg;
3155         int offset = offset_in_page(gpa);
3156         int ret;
3157
3158         while ((seg = next_segment(len, offset)) != 0) {
3159                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3160                 if (ret < 0)
3161                         return ret;
3162                 offset = 0;
3163                 len -= seg;
3164                 data += seg;
3165                 ++gfn;
3166         }
3167         return 0;
3168 }
3169 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3170
3171 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3172                                        struct gfn_to_hva_cache *ghc,
3173                                        gpa_t gpa, unsigned long len)
3174 {
3175         int offset = offset_in_page(gpa);
3176         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3177         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3178         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3179         gfn_t nr_pages_avail;
3180
3181         /* Update ghc->generation before performing any error checks. */
3182         ghc->generation = slots->generation;
3183
3184         if (start_gfn > end_gfn) {
3185                 ghc->hva = KVM_HVA_ERR_BAD;
3186                 return -EINVAL;
3187         }
3188
3189         /*
3190          * If the requested region crosses two memslots, we still
3191          * verify that the entire region is valid here.
3192          */
3193         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3194                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3195                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3196                                            &nr_pages_avail);
3197                 if (kvm_is_error_hva(ghc->hva))
3198                         return -EFAULT;
3199         }
3200
3201         /* Use the slow path for cross page reads and writes. */
3202         if (nr_pages_needed == 1)
3203                 ghc->hva += offset;
3204         else
3205                 ghc->memslot = NULL;
3206
3207         ghc->gpa = gpa;
3208         ghc->len = len;
3209         return 0;
3210 }
3211
3212 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3213                               gpa_t gpa, unsigned long len)
3214 {
3215         struct kvm_memslots *slots = kvm_memslots(kvm);
3216         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3217 }
3218 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3219
3220 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3221                                   void *data, unsigned int offset,
3222                                   unsigned long len)
3223 {
3224         struct kvm_memslots *slots = kvm_memslots(kvm);
3225         int r;
3226         gpa_t gpa = ghc->gpa + offset;
3227
3228         if (WARN_ON_ONCE(len + offset > ghc->len))
3229                 return -EINVAL;
3230
3231         if (slots->generation != ghc->generation) {
3232                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3233                         return -EFAULT;
3234         }
3235
3236         if (kvm_is_error_hva(ghc->hva))
3237                 return -EFAULT;
3238
3239         if (unlikely(!ghc->memslot))
3240                 return kvm_write_guest(kvm, gpa, data, len);
3241
3242         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3243         if (r)
3244                 return -EFAULT;
3245         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3246
3247         return 0;
3248 }
3249 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3250
3251 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3252                            void *data, unsigned long len)
3253 {
3254         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3255 }
3256 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3257
3258 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3259                                  void *data, unsigned int offset,
3260                                  unsigned long len)
3261 {
3262         struct kvm_memslots *slots = kvm_memslots(kvm);
3263         int r;
3264         gpa_t gpa = ghc->gpa + offset;
3265
3266         if (WARN_ON_ONCE(len + offset > ghc->len))
3267                 return -EINVAL;
3268
3269         if (slots->generation != ghc->generation) {
3270                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3271                         return -EFAULT;
3272         }
3273
3274         if (kvm_is_error_hva(ghc->hva))
3275                 return -EFAULT;
3276
3277         if (unlikely(!ghc->memslot))
3278                 return kvm_read_guest(kvm, gpa, data, len);
3279
3280         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3281         if (r)
3282                 return -EFAULT;
3283
3284         return 0;
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3287
3288 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3289                           void *data, unsigned long len)
3290 {
3291         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3294
3295 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3296 {
3297         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3298         gfn_t gfn = gpa >> PAGE_SHIFT;
3299         int seg;
3300         int offset = offset_in_page(gpa);
3301         int ret;
3302
3303         while ((seg = next_segment(len, offset)) != 0) {
3304                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3305                 if (ret < 0)
3306                         return ret;
3307                 offset = 0;
3308                 len -= seg;
3309                 ++gfn;
3310         }
3311         return 0;
3312 }
3313 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3314
3315 void mark_page_dirty_in_slot(struct kvm *kvm,
3316                              const struct kvm_memory_slot *memslot,
3317                              gfn_t gfn)
3318 {
3319         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3320
3321 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3322         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3323                 return;
3324
3325         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3326 #endif
3327
3328         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3329                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3330                 u32 slot = (memslot->as_id << 16) | memslot->id;
3331
3332                 if (kvm->dirty_ring_size && vcpu)
3333                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3334                 else if (memslot->dirty_bitmap)
3335                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3336         }
3337 }
3338 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3339
3340 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3341 {
3342         struct kvm_memory_slot *memslot;
3343
3344         memslot = gfn_to_memslot(kvm, gfn);
3345         mark_page_dirty_in_slot(kvm, memslot, gfn);
3346 }
3347 EXPORT_SYMBOL_GPL(mark_page_dirty);
3348
3349 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3350 {
3351         struct kvm_memory_slot *memslot;
3352
3353         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3354         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3357
3358 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3359 {
3360         if (!vcpu->sigset_active)
3361                 return;
3362
3363         /*
3364          * This does a lockless modification of ->real_blocked, which is fine
3365          * because, only current can change ->real_blocked and all readers of
3366          * ->real_blocked don't care as long ->real_blocked is always a subset
3367          * of ->blocked.
3368          */
3369         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3370 }
3371
3372 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3373 {
3374         if (!vcpu->sigset_active)
3375                 return;
3376
3377         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3378         sigemptyset(&current->real_blocked);
3379 }
3380
3381 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3382 {
3383         unsigned int old, val, grow, grow_start;
3384
3385         old = val = vcpu->halt_poll_ns;
3386         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3387         grow = READ_ONCE(halt_poll_ns_grow);
3388         if (!grow)
3389                 goto out;
3390
3391         val *= grow;
3392         if (val < grow_start)
3393                 val = grow_start;
3394
3395         vcpu->halt_poll_ns = val;
3396 out:
3397         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3398 }
3399
3400 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3401 {
3402         unsigned int old, val, shrink, grow_start;
3403
3404         old = val = vcpu->halt_poll_ns;
3405         shrink = READ_ONCE(halt_poll_ns_shrink);
3406         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3407         if (shrink == 0)
3408                 val = 0;
3409         else
3410                 val /= shrink;
3411
3412         if (val < grow_start)
3413                 val = 0;
3414
3415         vcpu->halt_poll_ns = val;
3416         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3417 }
3418
3419 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3420 {
3421         int ret = -EINTR;
3422         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3423
3424         if (kvm_arch_vcpu_runnable(vcpu))
3425                 goto out;
3426         if (kvm_cpu_has_pending_timer(vcpu))
3427                 goto out;
3428         if (signal_pending(current))
3429                 goto out;
3430         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3431                 goto out;
3432
3433         ret = 0;
3434 out:
3435         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3436         return ret;
3437 }
3438
3439 /*
3440  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3441  * pending.  This is mostly used when halting a vCPU, but may also be used
3442  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3443  */
3444 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3445 {
3446         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3447         bool waited = false;
3448
3449         vcpu->stat.generic.blocking = 1;
3450
3451         preempt_disable();
3452         kvm_arch_vcpu_blocking(vcpu);
3453         prepare_to_rcuwait(wait);
3454         preempt_enable();
3455
3456         for (;;) {
3457                 set_current_state(TASK_INTERRUPTIBLE);
3458
3459                 if (kvm_vcpu_check_block(vcpu) < 0)
3460                         break;
3461
3462                 waited = true;
3463                 schedule();
3464         }
3465
3466         preempt_disable();
3467         finish_rcuwait(wait);
3468         kvm_arch_vcpu_unblocking(vcpu);
3469         preempt_enable();
3470
3471         vcpu->stat.generic.blocking = 0;
3472
3473         return waited;
3474 }
3475
3476 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3477                                           ktime_t end, bool success)
3478 {
3479         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3480         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3481
3482         ++vcpu->stat.generic.halt_attempted_poll;
3483
3484         if (success) {
3485                 ++vcpu->stat.generic.halt_successful_poll;
3486
3487                 if (!vcpu_valid_wakeup(vcpu))
3488                         ++vcpu->stat.generic.halt_poll_invalid;
3489
3490                 stats->halt_poll_success_ns += poll_ns;
3491                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3492         } else {
3493                 stats->halt_poll_fail_ns += poll_ns;
3494                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3495         }
3496 }
3497
3498 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3499 {
3500         struct kvm *kvm = vcpu->kvm;
3501
3502         if (kvm->override_halt_poll_ns) {
3503                 /*
3504                  * Ensure kvm->max_halt_poll_ns is not read before
3505                  * kvm->override_halt_poll_ns.
3506                  *
3507                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3508                  */
3509                 smp_rmb();
3510                 return READ_ONCE(kvm->max_halt_poll_ns);
3511         }
3512
3513         return READ_ONCE(halt_poll_ns);
3514 }
3515
3516 /*
3517  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3518  * polling is enabled, busy wait for a short time before blocking to avoid the
3519  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3520  * is halted.
3521  */
3522 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3523 {
3524         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3525         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3526         ktime_t start, cur, poll_end;
3527         bool waited = false;
3528         bool do_halt_poll;
3529         u64 halt_ns;
3530
3531         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3532                 vcpu->halt_poll_ns = max_halt_poll_ns;
3533
3534         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3535
3536         start = cur = poll_end = ktime_get();
3537         if (do_halt_poll) {
3538                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3539
3540                 do {
3541                         if (kvm_vcpu_check_block(vcpu) < 0)
3542                                 goto out;
3543                         cpu_relax();
3544                         poll_end = cur = ktime_get();
3545                 } while (kvm_vcpu_can_poll(cur, stop));
3546         }
3547
3548         waited = kvm_vcpu_block(vcpu);
3549
3550         cur = ktime_get();
3551         if (waited) {
3552                 vcpu->stat.generic.halt_wait_ns +=
3553                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3554                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3555                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3556         }
3557 out:
3558         /* The total time the vCPU was "halted", including polling time. */
3559         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3560
3561         /*
3562          * Note, halt-polling is considered successful so long as the vCPU was
3563          * never actually scheduled out, i.e. even if the wake event arrived
3564          * after of the halt-polling loop itself, but before the full wait.
3565          */
3566         if (do_halt_poll)
3567                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3568
3569         if (halt_poll_allowed) {
3570                 /* Recompute the max halt poll time in case it changed. */
3571                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3572
3573                 if (!vcpu_valid_wakeup(vcpu)) {
3574                         shrink_halt_poll_ns(vcpu);
3575                 } else if (max_halt_poll_ns) {
3576                         if (halt_ns <= vcpu->halt_poll_ns)
3577                                 ;
3578                         /* we had a long block, shrink polling */
3579                         else if (vcpu->halt_poll_ns &&
3580                                  halt_ns > max_halt_poll_ns)
3581                                 shrink_halt_poll_ns(vcpu);
3582                         /* we had a short halt and our poll time is too small */
3583                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3584                                  halt_ns < max_halt_poll_ns)
3585                                 grow_halt_poll_ns(vcpu);
3586                 } else {
3587                         vcpu->halt_poll_ns = 0;
3588                 }
3589         }
3590
3591         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3592 }
3593 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3594
3595 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3596 {
3597         if (__kvm_vcpu_wake_up(vcpu)) {
3598                 WRITE_ONCE(vcpu->ready, true);
3599                 ++vcpu->stat.generic.halt_wakeup;
3600                 return true;
3601         }
3602
3603         return false;
3604 }
3605 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3606
3607 #ifndef CONFIG_S390
3608 /*
3609  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3610  */
3611 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3612 {
3613         int me, cpu;
3614
3615         if (kvm_vcpu_wake_up(vcpu))
3616                 return;
3617
3618         me = get_cpu();
3619         /*
3620          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3621          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3622          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3623          * within the vCPU thread itself.
3624          */
3625         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3626                 if (vcpu->mode == IN_GUEST_MODE)
3627                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3628                 goto out;
3629         }
3630
3631         /*
3632          * Note, the vCPU could get migrated to a different pCPU at any point
3633          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3634          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3635          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3636          * vCPU also requires it to leave IN_GUEST_MODE.
3637          */
3638         if (kvm_arch_vcpu_should_kick(vcpu)) {
3639                 cpu = READ_ONCE(vcpu->cpu);
3640                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3641                         smp_send_reschedule(cpu);
3642         }
3643 out:
3644         put_cpu();
3645 }
3646 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3647 #endif /* !CONFIG_S390 */
3648
3649 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3650 {
3651         struct pid *pid;
3652         struct task_struct *task = NULL;
3653         int ret = 0;
3654
3655         rcu_read_lock();
3656         pid = rcu_dereference(target->pid);
3657         if (pid)
3658                 task = get_pid_task(pid, PIDTYPE_PID);
3659         rcu_read_unlock();
3660         if (!task)
3661                 return ret;
3662         ret = yield_to(task, 1);
3663         put_task_struct(task);
3664
3665         return ret;
3666 }
3667 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3668
3669 /*
3670  * Helper that checks whether a VCPU is eligible for directed yield.
3671  * Most eligible candidate to yield is decided by following heuristics:
3672  *
3673  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3674  *  (preempted lock holder), indicated by @in_spin_loop.
3675  *  Set at the beginning and cleared at the end of interception/PLE handler.
3676  *
3677  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3678  *  chance last time (mostly it has become eligible now since we have probably
3679  *  yielded to lockholder in last iteration. This is done by toggling
3680  *  @dy_eligible each time a VCPU checked for eligibility.)
3681  *
3682  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3683  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3684  *  burning. Giving priority for a potential lock-holder increases lock
3685  *  progress.
3686  *
3687  *  Since algorithm is based on heuristics, accessing another VCPU data without
3688  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3689  *  and continue with next VCPU and so on.
3690  */
3691 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3692 {
3693 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3694         bool eligible;
3695
3696         eligible = !vcpu->spin_loop.in_spin_loop ||
3697                     vcpu->spin_loop.dy_eligible;
3698
3699         if (vcpu->spin_loop.in_spin_loop)
3700                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3701
3702         return eligible;
3703 #else
3704         return true;
3705 #endif
3706 }
3707
3708 /*
3709  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3710  * a vcpu_load/vcpu_put pair.  However, for most architectures
3711  * kvm_arch_vcpu_runnable does not require vcpu_load.
3712  */
3713 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3714 {
3715         return kvm_arch_vcpu_runnable(vcpu);
3716 }
3717
3718 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3719 {
3720         if (kvm_arch_dy_runnable(vcpu))
3721                 return true;
3722
3723 #ifdef CONFIG_KVM_ASYNC_PF
3724         if (!list_empty_careful(&vcpu->async_pf.done))
3725                 return true;
3726 #endif
3727
3728         return false;
3729 }
3730
3731 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3732 {
3733         return false;
3734 }
3735
3736 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3737 {
3738         struct kvm *kvm = me->kvm;
3739         struct kvm_vcpu *vcpu;
3740         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3741         unsigned long i;
3742         int yielded = 0;
3743         int try = 3;
3744         int pass;
3745
3746         kvm_vcpu_set_in_spin_loop(me, true);
3747         /*
3748          * We boost the priority of a VCPU that is runnable but not
3749          * currently running, because it got preempted by something
3750          * else and called schedule in __vcpu_run.  Hopefully that
3751          * VCPU is holding the lock that we need and will release it.
3752          * We approximate round-robin by starting at the last boosted VCPU.
3753          */
3754         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3755                 kvm_for_each_vcpu(i, vcpu, kvm) {
3756                         if (!pass && i <= last_boosted_vcpu) {
3757                                 i = last_boosted_vcpu;
3758                                 continue;
3759                         } else if (pass && i > last_boosted_vcpu)
3760                                 break;
3761                         if (!READ_ONCE(vcpu->ready))
3762                                 continue;
3763                         if (vcpu == me)
3764                                 continue;
3765                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3766                                 continue;
3767                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3768                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3769                             !kvm_arch_vcpu_in_kernel(vcpu))
3770                                 continue;
3771                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3772                                 continue;
3773
3774                         yielded = kvm_vcpu_yield_to(vcpu);
3775                         if (yielded > 0) {
3776                                 kvm->last_boosted_vcpu = i;
3777                                 break;
3778                         } else if (yielded < 0) {
3779                                 try--;
3780                                 if (!try)
3781                                         break;
3782                         }
3783                 }
3784         }
3785         kvm_vcpu_set_in_spin_loop(me, false);
3786
3787         /* Ensure vcpu is not eligible during next spinloop */
3788         kvm_vcpu_set_dy_eligible(me, false);
3789 }
3790 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3791
3792 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3793 {
3794 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3795         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3796             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3797              kvm->dirty_ring_size / PAGE_SIZE);
3798 #else
3799         return false;
3800 #endif
3801 }
3802
3803 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3804 {
3805         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3806         struct page *page;
3807
3808         if (vmf->pgoff == 0)
3809                 page = virt_to_page(vcpu->run);
3810 #ifdef CONFIG_X86
3811         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3812                 page = virt_to_page(vcpu->arch.pio_data);
3813 #endif
3814 #ifdef CONFIG_KVM_MMIO
3815         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3816                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3817 #endif
3818         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3819                 page = kvm_dirty_ring_get_page(
3820                     &vcpu->dirty_ring,
3821                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3822         else
3823                 return kvm_arch_vcpu_fault(vcpu, vmf);
3824         get_page(page);
3825         vmf->page = page;
3826         return 0;
3827 }
3828
3829 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3830         .fault = kvm_vcpu_fault,
3831 };
3832
3833 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3834 {
3835         struct kvm_vcpu *vcpu = file->private_data;
3836         unsigned long pages = vma_pages(vma);
3837
3838         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3839              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3840             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3841                 return -EINVAL;
3842
3843         vma->vm_ops = &kvm_vcpu_vm_ops;
3844         return 0;
3845 }
3846
3847 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3848 {
3849         struct kvm_vcpu *vcpu = filp->private_data;
3850
3851         kvm_put_kvm(vcpu->kvm);
3852         return 0;
3853 }
3854
3855 static const struct file_operations kvm_vcpu_fops = {
3856         .release        = kvm_vcpu_release,
3857         .unlocked_ioctl = kvm_vcpu_ioctl,
3858         .mmap           = kvm_vcpu_mmap,
3859         .llseek         = noop_llseek,
3860         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3861 };
3862
3863 /*
3864  * Allocates an inode for the vcpu.
3865  */
3866 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3867 {
3868         char name[8 + 1 + ITOA_MAX_LEN + 1];
3869
3870         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3871         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3872 }
3873
3874 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3875 static int vcpu_get_pid(void *data, u64 *val)
3876 {
3877         struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3878         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3879         return 0;
3880 }
3881
3882 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3883
3884 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3885 {
3886         struct dentry *debugfs_dentry;
3887         char dir_name[ITOA_MAX_LEN * 2];
3888
3889         if (!debugfs_initialized())
3890                 return;
3891
3892         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3893         debugfs_dentry = debugfs_create_dir(dir_name,
3894                                             vcpu->kvm->debugfs_dentry);
3895         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3896                             &vcpu_get_pid_fops);
3897
3898         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3899 }
3900 #endif
3901
3902 /*
3903  * Creates some virtual cpus.  Good luck creating more than one.
3904  */
3905 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3906 {
3907         int r;
3908         struct kvm_vcpu *vcpu;
3909         struct page *page;
3910
3911         if (id >= KVM_MAX_VCPU_IDS)
3912                 return -EINVAL;
3913
3914         mutex_lock(&kvm->lock);
3915         if (kvm->created_vcpus >= kvm->max_vcpus) {
3916                 mutex_unlock(&kvm->lock);
3917                 return -EINVAL;
3918         }
3919
3920         r = kvm_arch_vcpu_precreate(kvm, id);
3921         if (r) {
3922                 mutex_unlock(&kvm->lock);
3923                 return r;
3924         }
3925
3926         kvm->created_vcpus++;
3927         mutex_unlock(&kvm->lock);
3928
3929         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3930         if (!vcpu) {
3931                 r = -ENOMEM;
3932                 goto vcpu_decrement;
3933         }
3934
3935         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3936         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3937         if (!page) {
3938                 r = -ENOMEM;
3939                 goto vcpu_free;
3940         }
3941         vcpu->run = page_address(page);
3942
3943         kvm_vcpu_init(vcpu, kvm, id);
3944
3945         r = kvm_arch_vcpu_create(vcpu);
3946         if (r)
3947                 goto vcpu_free_run_page;
3948
3949         if (kvm->dirty_ring_size) {
3950                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3951                                          id, kvm->dirty_ring_size);
3952                 if (r)
3953                         goto arch_vcpu_destroy;
3954         }
3955
3956         mutex_lock(&kvm->lock);
3957
3958 #ifdef CONFIG_LOCKDEP
3959         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3960         mutex_lock(&vcpu->mutex);
3961         mutex_unlock(&vcpu->mutex);
3962 #endif
3963
3964         if (kvm_get_vcpu_by_id(kvm, id)) {
3965                 r = -EEXIST;
3966                 goto unlock_vcpu_destroy;
3967         }
3968
3969         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3970         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3971         BUG_ON(r == -EBUSY);
3972         if (r)
3973                 goto unlock_vcpu_destroy;
3974
3975         /* Now it's all set up, let userspace reach it */
3976         kvm_get_kvm(kvm);
3977         r = create_vcpu_fd(vcpu);
3978         if (r < 0) {
3979                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3980                 kvm_put_kvm_no_destroy(kvm);
3981                 goto unlock_vcpu_destroy;
3982         }
3983
3984         /*
3985          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3986          * pointer before kvm->online_vcpu's incremented value.
3987          */
3988         smp_wmb();
3989         atomic_inc(&kvm->online_vcpus);
3990
3991         mutex_unlock(&kvm->lock);
3992         kvm_arch_vcpu_postcreate(vcpu);
3993         kvm_create_vcpu_debugfs(vcpu);
3994         return r;
3995
3996 unlock_vcpu_destroy:
3997         mutex_unlock(&kvm->lock);
3998         kvm_dirty_ring_free(&vcpu->dirty_ring);
3999 arch_vcpu_destroy:
4000         kvm_arch_vcpu_destroy(vcpu);
4001 vcpu_free_run_page:
4002         free_page((unsigned long)vcpu->run);
4003 vcpu_free:
4004         kmem_cache_free(kvm_vcpu_cache, vcpu);
4005 vcpu_decrement:
4006         mutex_lock(&kvm->lock);
4007         kvm->created_vcpus--;
4008         mutex_unlock(&kvm->lock);
4009         return r;
4010 }
4011
4012 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4013 {
4014         if (sigset) {
4015                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4016                 vcpu->sigset_active = 1;
4017                 vcpu->sigset = *sigset;
4018         } else
4019                 vcpu->sigset_active = 0;
4020         return 0;
4021 }
4022
4023 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4024                               size_t size, loff_t *offset)
4025 {
4026         struct kvm_vcpu *vcpu = file->private_data;
4027
4028         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4029                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4030                         sizeof(vcpu->stat), user_buffer, size, offset);
4031 }
4032
4033 static const struct file_operations kvm_vcpu_stats_fops = {
4034         .read = kvm_vcpu_stats_read,
4035         .llseek = noop_llseek,
4036 };
4037
4038 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4039 {
4040         int fd;
4041         struct file *file;
4042         char name[15 + ITOA_MAX_LEN + 1];
4043
4044         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4045
4046         fd = get_unused_fd_flags(O_CLOEXEC);
4047         if (fd < 0)
4048                 return fd;
4049
4050         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4051         if (IS_ERR(file)) {
4052                 put_unused_fd(fd);
4053                 return PTR_ERR(file);
4054         }
4055         file->f_mode |= FMODE_PREAD;
4056         fd_install(fd, file);
4057
4058         return fd;
4059 }
4060
4061 static long kvm_vcpu_ioctl(struct file *filp,
4062                            unsigned int ioctl, unsigned long arg)
4063 {
4064         struct kvm_vcpu *vcpu = filp->private_data;
4065         void __user *argp = (void __user *)arg;
4066         int r;
4067         struct kvm_fpu *fpu = NULL;
4068         struct kvm_sregs *kvm_sregs = NULL;
4069
4070         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4071                 return -EIO;
4072
4073         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4074                 return -EINVAL;
4075
4076         /*
4077          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4078          * execution; mutex_lock() would break them.
4079          */
4080         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4081         if (r != -ENOIOCTLCMD)
4082                 return r;
4083
4084         if (mutex_lock_killable(&vcpu->mutex))
4085                 return -EINTR;
4086         switch (ioctl) {
4087         case KVM_RUN: {
4088                 struct pid *oldpid;
4089                 r = -EINVAL;
4090                 if (arg)
4091                         goto out;
4092                 oldpid = rcu_access_pointer(vcpu->pid);
4093                 if (unlikely(oldpid != task_pid(current))) {
4094                         /* The thread running this VCPU changed. */
4095                         struct pid *newpid;
4096
4097                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4098                         if (r)
4099                                 break;
4100
4101                         newpid = get_task_pid(current, PIDTYPE_PID);
4102                         rcu_assign_pointer(vcpu->pid, newpid);
4103                         if (oldpid)
4104                                 synchronize_rcu();
4105                         put_pid(oldpid);
4106                 }
4107                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4108                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4109                 break;
4110         }
4111         case KVM_GET_REGS: {
4112                 struct kvm_regs *kvm_regs;
4113
4114                 r = -ENOMEM;
4115                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4116                 if (!kvm_regs)
4117                         goto out;
4118                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4119                 if (r)
4120                         goto out_free1;
4121                 r = -EFAULT;
4122                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4123                         goto out_free1;
4124                 r = 0;
4125 out_free1:
4126                 kfree(kvm_regs);
4127                 break;
4128         }
4129         case KVM_SET_REGS: {
4130                 struct kvm_regs *kvm_regs;
4131
4132                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4133                 if (IS_ERR(kvm_regs)) {
4134                         r = PTR_ERR(kvm_regs);
4135                         goto out;
4136                 }
4137                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4138                 kfree(kvm_regs);
4139                 break;
4140         }
4141         case KVM_GET_SREGS: {
4142                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4143                                     GFP_KERNEL_ACCOUNT);
4144                 r = -ENOMEM;
4145                 if (!kvm_sregs)
4146                         goto out;
4147                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4148                 if (r)
4149                         goto out;
4150                 r = -EFAULT;
4151                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4152                         goto out;
4153                 r = 0;
4154                 break;
4155         }
4156         case KVM_SET_SREGS: {
4157                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4158                 if (IS_ERR(kvm_sregs)) {
4159                         r = PTR_ERR(kvm_sregs);
4160                         kvm_sregs = NULL;
4161                         goto out;
4162                 }
4163                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4164                 break;
4165         }
4166         case KVM_GET_MP_STATE: {
4167                 struct kvm_mp_state mp_state;
4168
4169                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4170                 if (r)
4171                         goto out;
4172                 r = -EFAULT;
4173                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4174                         goto out;
4175                 r = 0;
4176                 break;
4177         }
4178         case KVM_SET_MP_STATE: {
4179                 struct kvm_mp_state mp_state;
4180
4181                 r = -EFAULT;
4182                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4183                         goto out;
4184                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4185                 break;
4186         }
4187         case KVM_TRANSLATE: {
4188                 struct kvm_translation tr;
4189
4190                 r = -EFAULT;
4191                 if (copy_from_user(&tr, argp, sizeof(tr)))
4192                         goto out;
4193                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4194                 if (r)
4195                         goto out;
4196                 r = -EFAULT;
4197                 if (copy_to_user(argp, &tr, sizeof(tr)))
4198                         goto out;
4199                 r = 0;
4200                 break;
4201         }
4202         case KVM_SET_GUEST_DEBUG: {
4203                 struct kvm_guest_debug dbg;
4204
4205                 r = -EFAULT;
4206                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4207                         goto out;
4208                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4209                 break;
4210         }
4211         case KVM_SET_SIGNAL_MASK: {
4212                 struct kvm_signal_mask __user *sigmask_arg = argp;
4213                 struct kvm_signal_mask kvm_sigmask;
4214                 sigset_t sigset, *p;
4215
4216                 p = NULL;
4217                 if (argp) {
4218                         r = -EFAULT;
4219                         if (copy_from_user(&kvm_sigmask, argp,
4220                                            sizeof(kvm_sigmask)))
4221                                 goto out;
4222                         r = -EINVAL;
4223                         if (kvm_sigmask.len != sizeof(sigset))
4224                                 goto out;
4225                         r = -EFAULT;
4226                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4227                                            sizeof(sigset)))
4228                                 goto out;
4229                         p = &sigset;
4230                 }
4231                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4232                 break;
4233         }
4234         case KVM_GET_FPU: {
4235                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4236                 r = -ENOMEM;
4237                 if (!fpu)
4238                         goto out;
4239                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4240                 if (r)
4241                         goto out;
4242                 r = -EFAULT;
4243                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4244                         goto out;
4245                 r = 0;
4246                 break;
4247         }
4248         case KVM_SET_FPU: {
4249                 fpu = memdup_user(argp, sizeof(*fpu));
4250                 if (IS_ERR(fpu)) {
4251                         r = PTR_ERR(fpu);
4252                         fpu = NULL;
4253                         goto out;
4254                 }
4255                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4256                 break;
4257         }
4258         case KVM_GET_STATS_FD: {
4259                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4260                 break;
4261         }
4262         default:
4263                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4264         }
4265 out:
4266         mutex_unlock(&vcpu->mutex);
4267         kfree(fpu);
4268         kfree(kvm_sregs);
4269         return r;
4270 }
4271
4272 #ifdef CONFIG_KVM_COMPAT
4273 static long kvm_vcpu_compat_ioctl(struct file *filp,
4274                                   unsigned int ioctl, unsigned long arg)
4275 {
4276         struct kvm_vcpu *vcpu = filp->private_data;
4277         void __user *argp = compat_ptr(arg);
4278         int r;
4279
4280         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4281                 return -EIO;
4282
4283         switch (ioctl) {
4284         case KVM_SET_SIGNAL_MASK: {
4285                 struct kvm_signal_mask __user *sigmask_arg = argp;
4286                 struct kvm_signal_mask kvm_sigmask;
4287                 sigset_t sigset;
4288
4289                 if (argp) {
4290                         r = -EFAULT;
4291                         if (copy_from_user(&kvm_sigmask, argp,
4292                                            sizeof(kvm_sigmask)))
4293                                 goto out;
4294                         r = -EINVAL;
4295                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4296                                 goto out;
4297                         r = -EFAULT;
4298                         if (get_compat_sigset(&sigset,
4299                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4300                                 goto out;
4301                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4302                 } else
4303                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4304                 break;
4305         }
4306         default:
4307                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4308         }
4309
4310 out:
4311         return r;
4312 }
4313 #endif
4314
4315 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4316 {
4317         struct kvm_device *dev = filp->private_data;
4318
4319         if (dev->ops->mmap)
4320                 return dev->ops->mmap(dev, vma);
4321
4322         return -ENODEV;
4323 }
4324
4325 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4326                                  int (*accessor)(struct kvm_device *dev,
4327                                                  struct kvm_device_attr *attr),
4328                                  unsigned long arg)
4329 {
4330         struct kvm_device_attr attr;
4331
4332         if (!accessor)
4333                 return -EPERM;
4334
4335         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4336                 return -EFAULT;
4337
4338         return accessor(dev, &attr);
4339 }
4340
4341 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4342                              unsigned long arg)
4343 {
4344         struct kvm_device *dev = filp->private_data;
4345
4346         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4347                 return -EIO;
4348
4349         switch (ioctl) {
4350         case KVM_SET_DEVICE_ATTR:
4351                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4352         case KVM_GET_DEVICE_ATTR:
4353                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4354         case KVM_HAS_DEVICE_ATTR:
4355                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4356         default:
4357                 if (dev->ops->ioctl)
4358                         return dev->ops->ioctl(dev, ioctl, arg);
4359
4360                 return -ENOTTY;
4361         }
4362 }
4363
4364 static int kvm_device_release(struct inode *inode, struct file *filp)
4365 {
4366         struct kvm_device *dev = filp->private_data;
4367         struct kvm *kvm = dev->kvm;
4368
4369         if (dev->ops->release) {
4370                 mutex_lock(&kvm->lock);
4371                 list_del(&dev->vm_node);
4372                 dev->ops->release(dev);
4373                 mutex_unlock(&kvm->lock);
4374         }
4375
4376         kvm_put_kvm(kvm);
4377         return 0;
4378 }
4379
4380 static const struct file_operations kvm_device_fops = {
4381         .unlocked_ioctl = kvm_device_ioctl,
4382         .release = kvm_device_release,
4383         KVM_COMPAT(kvm_device_ioctl),
4384         .mmap = kvm_device_mmap,
4385 };
4386
4387 struct kvm_device *kvm_device_from_filp(struct file *filp)
4388 {
4389         if (filp->f_op != &kvm_device_fops)
4390                 return NULL;
4391
4392         return filp->private_data;
4393 }
4394
4395 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4396 #ifdef CONFIG_KVM_MPIC
4397         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4398         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4399 #endif
4400 };
4401
4402 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4403 {
4404         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4405                 return -ENOSPC;
4406
4407         if (kvm_device_ops_table[type] != NULL)
4408                 return -EEXIST;
4409
4410         kvm_device_ops_table[type] = ops;
4411         return 0;
4412 }
4413
4414 void kvm_unregister_device_ops(u32 type)
4415 {
4416         if (kvm_device_ops_table[type] != NULL)
4417                 kvm_device_ops_table[type] = NULL;
4418 }
4419
4420 static int kvm_ioctl_create_device(struct kvm *kvm,
4421                                    struct kvm_create_device *cd)
4422 {
4423         const struct kvm_device_ops *ops;
4424         struct kvm_device *dev;
4425         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4426         int type;
4427         int ret;
4428
4429         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4430                 return -ENODEV;
4431
4432         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4433         ops = kvm_device_ops_table[type];
4434         if (ops == NULL)
4435                 return -ENODEV;
4436
4437         if (test)
4438                 return 0;
4439
4440         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4441         if (!dev)
4442                 return -ENOMEM;
4443
4444         dev->ops = ops;
4445         dev->kvm = kvm;
4446
4447         mutex_lock(&kvm->lock);
4448         ret = ops->create(dev, type);
4449         if (ret < 0) {
4450                 mutex_unlock(&kvm->lock);
4451                 kfree(dev);
4452                 return ret;
4453         }
4454         list_add(&dev->vm_node, &kvm->devices);
4455         mutex_unlock(&kvm->lock);
4456
4457         if (ops->init)
4458                 ops->init(dev);
4459
4460         kvm_get_kvm(kvm);
4461         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4462         if (ret < 0) {
4463                 kvm_put_kvm_no_destroy(kvm);
4464                 mutex_lock(&kvm->lock);
4465                 list_del(&dev->vm_node);
4466                 if (ops->release)
4467                         ops->release(dev);
4468                 mutex_unlock(&kvm->lock);
4469                 if (ops->destroy)
4470                         ops->destroy(dev);
4471                 return ret;
4472         }
4473
4474         cd->fd = ret;
4475         return 0;
4476 }
4477
4478 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4479 {
4480         switch (arg) {
4481         case KVM_CAP_USER_MEMORY:
4482         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4483         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4484         case KVM_CAP_INTERNAL_ERROR_DATA:
4485 #ifdef CONFIG_HAVE_KVM_MSI
4486         case KVM_CAP_SIGNAL_MSI:
4487 #endif
4488 #ifdef CONFIG_HAVE_KVM_IRQFD
4489         case KVM_CAP_IRQFD:
4490         case KVM_CAP_IRQFD_RESAMPLE:
4491 #endif
4492         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4493         case KVM_CAP_CHECK_EXTENSION_VM:
4494         case KVM_CAP_ENABLE_CAP_VM:
4495         case KVM_CAP_HALT_POLL:
4496                 return 1;
4497 #ifdef CONFIG_KVM_MMIO
4498         case KVM_CAP_COALESCED_MMIO:
4499                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4500         case KVM_CAP_COALESCED_PIO:
4501                 return 1;
4502 #endif
4503 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4504         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4505                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4506 #endif
4507 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4508         case KVM_CAP_IRQ_ROUTING:
4509                 return KVM_MAX_IRQ_ROUTES;
4510 #endif
4511 #if KVM_ADDRESS_SPACE_NUM > 1
4512         case KVM_CAP_MULTI_ADDRESS_SPACE:
4513                 return KVM_ADDRESS_SPACE_NUM;
4514 #endif
4515         case KVM_CAP_NR_MEMSLOTS:
4516                 return KVM_USER_MEM_SLOTS;
4517         case KVM_CAP_DIRTY_LOG_RING:
4518 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4519                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4520 #else
4521                 return 0;
4522 #endif
4523         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4524 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4525                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4526 #else
4527                 return 0;
4528 #endif
4529 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4530         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4531 #endif
4532         case KVM_CAP_BINARY_STATS_FD:
4533         case KVM_CAP_SYSTEM_EVENT_DATA:
4534                 return 1;
4535         default:
4536                 break;
4537         }
4538         return kvm_vm_ioctl_check_extension(kvm, arg);
4539 }
4540
4541 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4542 {
4543         int r;
4544
4545         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4546                 return -EINVAL;
4547
4548         /* the size should be power of 2 */
4549         if (!size || (size & (size - 1)))
4550                 return -EINVAL;
4551
4552         /* Should be bigger to keep the reserved entries, or a page */
4553         if (size < kvm_dirty_ring_get_rsvd_entries() *
4554             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4555                 return -EINVAL;
4556
4557         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4558             sizeof(struct kvm_dirty_gfn))
4559                 return -E2BIG;
4560
4561         /* We only allow it to set once */
4562         if (kvm->dirty_ring_size)
4563                 return -EINVAL;
4564
4565         mutex_lock(&kvm->lock);
4566
4567         if (kvm->created_vcpus) {
4568                 /* We don't allow to change this value after vcpu created */
4569                 r = -EINVAL;
4570         } else {
4571                 kvm->dirty_ring_size = size;
4572                 r = 0;
4573         }
4574
4575         mutex_unlock(&kvm->lock);
4576         return r;
4577 }
4578
4579 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4580 {
4581         unsigned long i;
4582         struct kvm_vcpu *vcpu;
4583         int cleared = 0;
4584
4585         if (!kvm->dirty_ring_size)
4586                 return -EINVAL;
4587
4588         mutex_lock(&kvm->slots_lock);
4589
4590         kvm_for_each_vcpu(i, vcpu, kvm)
4591                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4592
4593         mutex_unlock(&kvm->slots_lock);
4594
4595         if (cleared)
4596                 kvm_flush_remote_tlbs(kvm);
4597
4598         return cleared;
4599 }
4600
4601 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4602                                                   struct kvm_enable_cap *cap)
4603 {
4604         return -EINVAL;
4605 }
4606
4607 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4608 {
4609         int i;
4610
4611         lockdep_assert_held(&kvm->slots_lock);
4612
4613         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4614                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4615                         return false;
4616         }
4617
4618         return true;
4619 }
4620
4621 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4622                                            struct kvm_enable_cap *cap)
4623 {
4624         switch (cap->cap) {
4625 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4626         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4627                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4628
4629                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4630                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4631
4632                 if (cap->flags || (cap->args[0] & ~allowed_options))
4633                         return -EINVAL;
4634                 kvm->manual_dirty_log_protect = cap->args[0];
4635                 return 0;
4636         }
4637 #endif
4638         case KVM_CAP_HALT_POLL: {
4639                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4640                         return -EINVAL;
4641
4642                 kvm->max_halt_poll_ns = cap->args[0];
4643
4644                 /*
4645                  * Ensure kvm->override_halt_poll_ns does not become visible
4646                  * before kvm->max_halt_poll_ns.
4647                  *
4648                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4649                  */
4650                 smp_wmb();
4651                 kvm->override_halt_poll_ns = true;
4652
4653                 return 0;
4654         }
4655         case KVM_CAP_DIRTY_LOG_RING:
4656         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4657                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4658                         return -EINVAL;
4659
4660                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4661         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4662                 int r = -EINVAL;
4663
4664                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4665                     !kvm->dirty_ring_size || cap->flags)
4666                         return r;
4667
4668                 mutex_lock(&kvm->slots_lock);
4669
4670                 /*
4671                  * For simplicity, allow enabling ring+bitmap if and only if
4672                  * there are no memslots, e.g. to ensure all memslots allocate
4673                  * a bitmap after the capability is enabled.
4674                  */
4675                 if (kvm_are_all_memslots_empty(kvm)) {
4676                         kvm->dirty_ring_with_bitmap = true;
4677                         r = 0;
4678                 }
4679
4680                 mutex_unlock(&kvm->slots_lock);
4681
4682                 return r;
4683         }
4684         default:
4685                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4686         }
4687 }
4688
4689 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4690                               size_t size, loff_t *offset)
4691 {
4692         struct kvm *kvm = file->private_data;
4693
4694         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4695                                 &kvm_vm_stats_desc[0], &kvm->stat,
4696                                 sizeof(kvm->stat), user_buffer, size, offset);
4697 }
4698
4699 static const struct file_operations kvm_vm_stats_fops = {
4700         .read = kvm_vm_stats_read,
4701         .llseek = noop_llseek,
4702 };
4703
4704 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4705 {
4706         int fd;
4707         struct file *file;
4708
4709         fd = get_unused_fd_flags(O_CLOEXEC);
4710         if (fd < 0)
4711                 return fd;
4712
4713         file = anon_inode_getfile("kvm-vm-stats",
4714                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4715         if (IS_ERR(file)) {
4716                 put_unused_fd(fd);
4717                 return PTR_ERR(file);
4718         }
4719         file->f_mode |= FMODE_PREAD;
4720         fd_install(fd, file);
4721
4722         return fd;
4723 }
4724
4725 static long kvm_vm_ioctl(struct file *filp,
4726                            unsigned int ioctl, unsigned long arg)
4727 {
4728         struct kvm *kvm = filp->private_data;
4729         void __user *argp = (void __user *)arg;
4730         int r;
4731
4732         if (kvm->mm != current->mm || kvm->vm_dead)
4733                 return -EIO;
4734         switch (ioctl) {
4735         case KVM_CREATE_VCPU:
4736                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4737                 break;
4738         case KVM_ENABLE_CAP: {
4739                 struct kvm_enable_cap cap;
4740
4741                 r = -EFAULT;
4742                 if (copy_from_user(&cap, argp, sizeof(cap)))
4743                         goto out;
4744                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4745                 break;
4746         }
4747         case KVM_SET_USER_MEMORY_REGION: {
4748                 struct kvm_userspace_memory_region kvm_userspace_mem;
4749
4750                 r = -EFAULT;
4751                 if (copy_from_user(&kvm_userspace_mem, argp,
4752                                                 sizeof(kvm_userspace_mem)))
4753                         goto out;
4754
4755                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4756                 break;
4757         }
4758         case KVM_GET_DIRTY_LOG: {
4759                 struct kvm_dirty_log log;
4760
4761                 r = -EFAULT;
4762                 if (copy_from_user(&log, argp, sizeof(log)))
4763                         goto out;
4764                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4765                 break;
4766         }
4767 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4768         case KVM_CLEAR_DIRTY_LOG: {
4769                 struct kvm_clear_dirty_log log;
4770
4771                 r = -EFAULT;
4772                 if (copy_from_user(&log, argp, sizeof(log)))
4773                         goto out;
4774                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4775                 break;
4776         }
4777 #endif
4778 #ifdef CONFIG_KVM_MMIO
4779         case KVM_REGISTER_COALESCED_MMIO: {
4780                 struct kvm_coalesced_mmio_zone zone;
4781
4782                 r = -EFAULT;
4783                 if (copy_from_user(&zone, argp, sizeof(zone)))
4784                         goto out;
4785                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4786                 break;
4787         }
4788         case KVM_UNREGISTER_COALESCED_MMIO: {
4789                 struct kvm_coalesced_mmio_zone zone;
4790
4791                 r = -EFAULT;
4792                 if (copy_from_user(&zone, argp, sizeof(zone)))
4793                         goto out;
4794                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4795                 break;
4796         }
4797 #endif
4798         case KVM_IRQFD: {
4799                 struct kvm_irqfd data;
4800
4801                 r = -EFAULT;
4802                 if (copy_from_user(&data, argp, sizeof(data)))
4803                         goto out;
4804                 r = kvm_irqfd(kvm, &data);
4805                 break;
4806         }
4807         case KVM_IOEVENTFD: {
4808                 struct kvm_ioeventfd data;
4809
4810                 r = -EFAULT;
4811                 if (copy_from_user(&data, argp, sizeof(data)))
4812                         goto out;
4813                 r = kvm_ioeventfd(kvm, &data);
4814                 break;
4815         }
4816 #ifdef CONFIG_HAVE_KVM_MSI
4817         case KVM_SIGNAL_MSI: {
4818                 struct kvm_msi msi;
4819
4820                 r = -EFAULT;
4821                 if (copy_from_user(&msi, argp, sizeof(msi)))
4822                         goto out;
4823                 r = kvm_send_userspace_msi(kvm, &msi);
4824                 break;
4825         }
4826 #endif
4827 #ifdef __KVM_HAVE_IRQ_LINE
4828         case KVM_IRQ_LINE_STATUS:
4829         case KVM_IRQ_LINE: {
4830                 struct kvm_irq_level irq_event;
4831
4832                 r = -EFAULT;
4833                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4834                         goto out;
4835
4836                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4837                                         ioctl == KVM_IRQ_LINE_STATUS);
4838                 if (r)
4839                         goto out;
4840
4841                 r = -EFAULT;
4842                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4843                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4844                                 goto out;
4845                 }
4846
4847                 r = 0;
4848                 break;
4849         }
4850 #endif
4851 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4852         case KVM_SET_GSI_ROUTING: {
4853                 struct kvm_irq_routing routing;
4854                 struct kvm_irq_routing __user *urouting;
4855                 struct kvm_irq_routing_entry *entries = NULL;
4856
4857                 r = -EFAULT;
4858                 if (copy_from_user(&routing, argp, sizeof(routing)))
4859                         goto out;
4860                 r = -EINVAL;
4861                 if (!kvm_arch_can_set_irq_routing(kvm))
4862                         goto out;
4863                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4864                         goto out;
4865                 if (routing.flags)
4866                         goto out;
4867                 if (routing.nr) {
4868                         urouting = argp;
4869                         entries = vmemdup_user(urouting->entries,
4870                                                array_size(sizeof(*entries),
4871                                                           routing.nr));
4872                         if (IS_ERR(entries)) {
4873                                 r = PTR_ERR(entries);
4874                                 goto out;
4875                         }
4876                 }
4877                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4878                                         routing.flags);
4879                 kvfree(entries);
4880                 break;
4881         }
4882 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4883         case KVM_CREATE_DEVICE: {
4884                 struct kvm_create_device cd;
4885
4886                 r = -EFAULT;
4887                 if (copy_from_user(&cd, argp, sizeof(cd)))
4888                         goto out;
4889
4890                 r = kvm_ioctl_create_device(kvm, &cd);
4891                 if (r)
4892                         goto out;
4893
4894                 r = -EFAULT;
4895                 if (copy_to_user(argp, &cd, sizeof(cd)))
4896                         goto out;
4897
4898                 r = 0;
4899                 break;
4900         }
4901         case KVM_CHECK_EXTENSION:
4902                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4903                 break;
4904         case KVM_RESET_DIRTY_RINGS:
4905                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4906                 break;
4907         case KVM_GET_STATS_FD:
4908                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4909                 break;
4910         default:
4911                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4912         }
4913 out:
4914         return r;
4915 }
4916
4917 #ifdef CONFIG_KVM_COMPAT
4918 struct compat_kvm_dirty_log {
4919         __u32 slot;
4920         __u32 padding1;
4921         union {
4922                 compat_uptr_t dirty_bitmap; /* one bit per page */
4923                 __u64 padding2;
4924         };
4925 };
4926
4927 struct compat_kvm_clear_dirty_log {
4928         __u32 slot;
4929         __u32 num_pages;
4930         __u64 first_page;
4931         union {
4932                 compat_uptr_t dirty_bitmap; /* one bit per page */
4933                 __u64 padding2;
4934         };
4935 };
4936
4937 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4938                                      unsigned long arg)
4939 {
4940         return -ENOTTY;
4941 }
4942
4943 static long kvm_vm_compat_ioctl(struct file *filp,
4944                            unsigned int ioctl, unsigned long arg)
4945 {
4946         struct kvm *kvm = filp->private_data;
4947         int r;
4948
4949         if (kvm->mm != current->mm || kvm->vm_dead)
4950                 return -EIO;
4951
4952         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4953         if (r != -ENOTTY)
4954                 return r;
4955
4956         switch (ioctl) {
4957 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4958         case KVM_CLEAR_DIRTY_LOG: {
4959                 struct compat_kvm_clear_dirty_log compat_log;
4960                 struct kvm_clear_dirty_log log;
4961
4962                 if (copy_from_user(&compat_log, (void __user *)arg,
4963                                    sizeof(compat_log)))
4964                         return -EFAULT;
4965                 log.slot         = compat_log.slot;
4966                 log.num_pages    = compat_log.num_pages;
4967                 log.first_page   = compat_log.first_page;
4968                 log.padding2     = compat_log.padding2;
4969                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4970
4971                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4972                 break;
4973         }
4974 #endif
4975         case KVM_GET_DIRTY_LOG: {
4976                 struct compat_kvm_dirty_log compat_log;
4977                 struct kvm_dirty_log log;
4978
4979                 if (copy_from_user(&compat_log, (void __user *)arg,
4980                                    sizeof(compat_log)))
4981                         return -EFAULT;
4982                 log.slot         = compat_log.slot;
4983                 log.padding1     = compat_log.padding1;
4984                 log.padding2     = compat_log.padding2;
4985                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4986
4987                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4988                 break;
4989         }
4990         default:
4991                 r = kvm_vm_ioctl(filp, ioctl, arg);
4992         }
4993         return r;
4994 }
4995 #endif
4996
4997 static const struct file_operations kvm_vm_fops = {
4998         .release        = kvm_vm_release,
4999         .unlocked_ioctl = kvm_vm_ioctl,
5000         .llseek         = noop_llseek,
5001         KVM_COMPAT(kvm_vm_compat_ioctl),
5002 };
5003
5004 bool file_is_kvm(struct file *file)
5005 {
5006         return file && file->f_op == &kvm_vm_fops;
5007 }
5008 EXPORT_SYMBOL_GPL(file_is_kvm);
5009
5010 static int kvm_dev_ioctl_create_vm(unsigned long type)
5011 {
5012         char fdname[ITOA_MAX_LEN + 1];
5013         int r, fd;
5014         struct kvm *kvm;
5015         struct file *file;
5016
5017         fd = get_unused_fd_flags(O_CLOEXEC);
5018         if (fd < 0)
5019                 return fd;
5020
5021         snprintf(fdname, sizeof(fdname), "%d", fd);
5022
5023         kvm = kvm_create_vm(type, fdname);
5024         if (IS_ERR(kvm)) {
5025                 r = PTR_ERR(kvm);
5026                 goto put_fd;
5027         }
5028
5029         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5030         if (IS_ERR(file)) {
5031                 r = PTR_ERR(file);
5032                 goto put_kvm;
5033         }
5034
5035         /*
5036          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5037          * already set, with ->release() being kvm_vm_release().  In error
5038          * cases it will be called by the final fput(file) and will take
5039          * care of doing kvm_put_kvm(kvm).
5040          */
5041         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5042
5043         fd_install(fd, file);
5044         return fd;
5045
5046 put_kvm:
5047         kvm_put_kvm(kvm);
5048 put_fd:
5049         put_unused_fd(fd);
5050         return r;
5051 }
5052
5053 static long kvm_dev_ioctl(struct file *filp,
5054                           unsigned int ioctl, unsigned long arg)
5055 {
5056         long r = -EINVAL;
5057
5058         switch (ioctl) {
5059         case KVM_GET_API_VERSION:
5060                 if (arg)
5061                         goto out;
5062                 r = KVM_API_VERSION;
5063                 break;
5064         case KVM_CREATE_VM:
5065                 r = kvm_dev_ioctl_create_vm(arg);
5066                 break;
5067         case KVM_CHECK_EXTENSION:
5068                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5069                 break;
5070         case KVM_GET_VCPU_MMAP_SIZE:
5071                 if (arg)
5072                         goto out;
5073                 r = PAGE_SIZE;     /* struct kvm_run */
5074 #ifdef CONFIG_X86
5075                 r += PAGE_SIZE;    /* pio data page */
5076 #endif
5077 #ifdef CONFIG_KVM_MMIO
5078                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5079 #endif
5080                 break;
5081         case KVM_TRACE_ENABLE:
5082         case KVM_TRACE_PAUSE:
5083         case KVM_TRACE_DISABLE:
5084                 r = -EOPNOTSUPP;
5085                 break;
5086         default:
5087                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5088         }
5089 out:
5090         return r;
5091 }
5092
5093 static struct file_operations kvm_chardev_ops = {
5094         .unlocked_ioctl = kvm_dev_ioctl,
5095         .llseek         = noop_llseek,
5096         KVM_COMPAT(kvm_dev_ioctl),
5097 };
5098
5099 static struct miscdevice kvm_dev = {
5100         KVM_MINOR,
5101         "kvm",
5102         &kvm_chardev_ops,
5103 };
5104
5105 static void hardware_enable_nolock(void *junk)
5106 {
5107         int cpu = raw_smp_processor_id();
5108         int r;
5109
5110         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5111                 return;
5112
5113         cpumask_set_cpu(cpu, cpus_hardware_enabled);
5114
5115         r = kvm_arch_hardware_enable();
5116
5117         if (r) {
5118                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5119                 atomic_inc(&hardware_enable_failed);
5120                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5121         }
5122 }
5123
5124 static int kvm_starting_cpu(unsigned int cpu)
5125 {
5126         raw_spin_lock(&kvm_count_lock);
5127         if (kvm_usage_count)
5128                 hardware_enable_nolock(NULL);
5129         raw_spin_unlock(&kvm_count_lock);
5130         return 0;
5131 }
5132
5133 static void hardware_disable_nolock(void *junk)
5134 {
5135         int cpu = raw_smp_processor_id();
5136
5137         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5138                 return;
5139         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5140         kvm_arch_hardware_disable();
5141 }
5142
5143 static int kvm_dying_cpu(unsigned int cpu)
5144 {
5145         raw_spin_lock(&kvm_count_lock);
5146         if (kvm_usage_count)
5147                 hardware_disable_nolock(NULL);
5148         raw_spin_unlock(&kvm_count_lock);
5149         return 0;
5150 }
5151
5152 static void hardware_disable_all_nolock(void)
5153 {
5154         BUG_ON(!kvm_usage_count);
5155
5156         kvm_usage_count--;
5157         if (!kvm_usage_count)
5158                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5159 }
5160
5161 static void hardware_disable_all(void)
5162 {
5163         raw_spin_lock(&kvm_count_lock);
5164         hardware_disable_all_nolock();
5165         raw_spin_unlock(&kvm_count_lock);
5166 }
5167
5168 static int hardware_enable_all(void)
5169 {
5170         int r = 0;
5171
5172         raw_spin_lock(&kvm_count_lock);
5173
5174         kvm_usage_count++;
5175         if (kvm_usage_count == 1) {
5176                 atomic_set(&hardware_enable_failed, 0);
5177                 on_each_cpu(hardware_enable_nolock, NULL, 1);
5178
5179                 if (atomic_read(&hardware_enable_failed)) {
5180                         hardware_disable_all_nolock();
5181                         r = -EBUSY;
5182                 }
5183         }
5184
5185         raw_spin_unlock(&kvm_count_lock);
5186
5187         return r;
5188 }
5189
5190 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5191                       void *v)
5192 {
5193         /*
5194          * Some (well, at least mine) BIOSes hang on reboot if
5195          * in vmx root mode.
5196          *
5197          * And Intel TXT required VMX off for all cpu when system shutdown.
5198          */
5199         pr_info("kvm: exiting hardware virtualization\n");
5200         kvm_rebooting = true;
5201         on_each_cpu(hardware_disable_nolock, NULL, 1);
5202         return NOTIFY_OK;
5203 }
5204
5205 static struct notifier_block kvm_reboot_notifier = {
5206         .notifier_call = kvm_reboot,
5207         .priority = 0,
5208 };
5209
5210 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5211 {
5212         int i;
5213
5214         for (i = 0; i < bus->dev_count; i++) {
5215                 struct kvm_io_device *pos = bus->range[i].dev;
5216
5217                 kvm_iodevice_destructor(pos);
5218         }
5219         kfree(bus);
5220 }
5221
5222 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5223                                  const struct kvm_io_range *r2)
5224 {
5225         gpa_t addr1 = r1->addr;
5226         gpa_t addr2 = r2->addr;
5227
5228         if (addr1 < addr2)
5229                 return -1;
5230
5231         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5232          * accept any overlapping write.  Any order is acceptable for
5233          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5234          * we process all of them.
5235          */
5236         if (r2->len) {
5237                 addr1 += r1->len;
5238                 addr2 += r2->len;
5239         }
5240
5241         if (addr1 > addr2)
5242                 return 1;
5243
5244         return 0;
5245 }
5246
5247 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5248 {
5249         return kvm_io_bus_cmp(p1, p2);
5250 }
5251
5252 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5253                              gpa_t addr, int len)
5254 {
5255         struct kvm_io_range *range, key;
5256         int off;
5257
5258         key = (struct kvm_io_range) {
5259                 .addr = addr,
5260                 .len = len,
5261         };
5262
5263         range = bsearch(&key, bus->range, bus->dev_count,
5264                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5265         if (range == NULL)
5266                 return -ENOENT;
5267
5268         off = range - bus->range;
5269
5270         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5271                 off--;
5272
5273         return off;
5274 }
5275
5276 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5277                               struct kvm_io_range *range, const void *val)
5278 {
5279         int idx;
5280
5281         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5282         if (idx < 0)
5283                 return -EOPNOTSUPP;
5284
5285         while (idx < bus->dev_count &&
5286                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5287                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5288                                         range->len, val))
5289                         return idx;
5290                 idx++;
5291         }
5292
5293         return -EOPNOTSUPP;
5294 }
5295
5296 /* kvm_io_bus_write - called under kvm->slots_lock */
5297 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5298                      int len, const void *val)
5299 {
5300         struct kvm_io_bus *bus;
5301         struct kvm_io_range range;
5302         int r;
5303
5304         range = (struct kvm_io_range) {
5305                 .addr = addr,
5306                 .len = len,
5307         };
5308
5309         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5310         if (!bus)
5311                 return -ENOMEM;
5312         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5313         return r < 0 ? r : 0;
5314 }
5315 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5316
5317 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5318 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5319                             gpa_t addr, int len, const void *val, long cookie)
5320 {
5321         struct kvm_io_bus *bus;
5322         struct kvm_io_range range;
5323
5324         range = (struct kvm_io_range) {
5325                 .addr = addr,
5326                 .len = len,
5327         };
5328
5329         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5330         if (!bus)
5331                 return -ENOMEM;
5332
5333         /* First try the device referenced by cookie. */
5334         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5335             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5336                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5337                                         val))
5338                         return cookie;
5339
5340         /*
5341          * cookie contained garbage; fall back to search and return the
5342          * correct cookie value.
5343          */
5344         return __kvm_io_bus_write(vcpu, bus, &range, val);
5345 }
5346
5347 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5348                              struct kvm_io_range *range, void *val)
5349 {
5350         int idx;
5351
5352         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5353         if (idx < 0)
5354                 return -EOPNOTSUPP;
5355
5356         while (idx < bus->dev_count &&
5357                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5358                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5359                                        range->len, val))
5360                         return idx;
5361                 idx++;
5362         }
5363
5364         return -EOPNOTSUPP;
5365 }
5366
5367 /* kvm_io_bus_read - called under kvm->slots_lock */
5368 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5369                     int len, void *val)
5370 {
5371         struct kvm_io_bus *bus;
5372         struct kvm_io_range range;
5373         int r;
5374
5375         range = (struct kvm_io_range) {
5376                 .addr = addr,
5377                 .len = len,
5378         };
5379
5380         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5381         if (!bus)
5382                 return -ENOMEM;
5383         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5384         return r < 0 ? r : 0;
5385 }
5386
5387 /* Caller must hold slots_lock. */
5388 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5389                             int len, struct kvm_io_device *dev)
5390 {
5391         int i;
5392         struct kvm_io_bus *new_bus, *bus;
5393         struct kvm_io_range range;
5394
5395         bus = kvm_get_bus(kvm, bus_idx);
5396         if (!bus)
5397                 return -ENOMEM;
5398
5399         /* exclude ioeventfd which is limited by maximum fd */
5400         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5401                 return -ENOSPC;
5402
5403         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5404                           GFP_KERNEL_ACCOUNT);
5405         if (!new_bus)
5406                 return -ENOMEM;
5407
5408         range = (struct kvm_io_range) {
5409                 .addr = addr,
5410                 .len = len,
5411                 .dev = dev,
5412         };
5413
5414         for (i = 0; i < bus->dev_count; i++)
5415                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5416                         break;
5417
5418         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5419         new_bus->dev_count++;
5420         new_bus->range[i] = range;
5421         memcpy(new_bus->range + i + 1, bus->range + i,
5422                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5423         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5424         synchronize_srcu_expedited(&kvm->srcu);
5425         kfree(bus);
5426
5427         return 0;
5428 }
5429
5430 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5431                               struct kvm_io_device *dev)
5432 {
5433         int i, j;
5434         struct kvm_io_bus *new_bus, *bus;
5435
5436         lockdep_assert_held(&kvm->slots_lock);
5437
5438         bus = kvm_get_bus(kvm, bus_idx);
5439         if (!bus)
5440                 return 0;
5441
5442         for (i = 0; i < bus->dev_count; i++) {
5443                 if (bus->range[i].dev == dev) {
5444                         break;
5445                 }
5446         }
5447
5448         if (i == bus->dev_count)
5449                 return 0;
5450
5451         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5452                           GFP_KERNEL_ACCOUNT);
5453         if (new_bus) {
5454                 memcpy(new_bus, bus, struct_size(bus, range, i));
5455                 new_bus->dev_count--;
5456                 memcpy(new_bus->range + i, bus->range + i + 1,
5457                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5458         }
5459
5460         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5461         synchronize_srcu_expedited(&kvm->srcu);
5462
5463         /* Destroy the old bus _after_ installing the (null) bus. */
5464         if (!new_bus) {
5465                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5466                 for (j = 0; j < bus->dev_count; j++) {
5467                         if (j == i)
5468                                 continue;
5469                         kvm_iodevice_destructor(bus->range[j].dev);
5470                 }
5471         }
5472
5473         kfree(bus);
5474         return new_bus ? 0 : -ENOMEM;
5475 }
5476
5477 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5478                                          gpa_t addr)
5479 {
5480         struct kvm_io_bus *bus;
5481         int dev_idx, srcu_idx;
5482         struct kvm_io_device *iodev = NULL;
5483
5484         srcu_idx = srcu_read_lock(&kvm->srcu);
5485
5486         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5487         if (!bus)
5488                 goto out_unlock;
5489
5490         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5491         if (dev_idx < 0)
5492                 goto out_unlock;
5493
5494         iodev = bus->range[dev_idx].dev;
5495
5496 out_unlock:
5497         srcu_read_unlock(&kvm->srcu, srcu_idx);
5498
5499         return iodev;
5500 }
5501 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5502
5503 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5504                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5505                            const char *fmt)
5506 {
5507         int ret;
5508         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5509                                           inode->i_private;
5510
5511         /*
5512          * The debugfs files are a reference to the kvm struct which
5513         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5514         * avoids the race between open and the removal of the debugfs directory.
5515          */
5516         if (!kvm_get_kvm_safe(stat_data->kvm))
5517                 return -ENOENT;
5518
5519         ret = simple_attr_open(inode, file, get,
5520                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5521                                ? set : NULL, fmt);
5522         if (ret)
5523                 kvm_put_kvm(stat_data->kvm);
5524
5525         return ret;
5526 }
5527
5528 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5529 {
5530         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5531                                           inode->i_private;
5532
5533         simple_attr_release(inode, file);
5534         kvm_put_kvm(stat_data->kvm);
5535
5536         return 0;
5537 }
5538
5539 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5540 {
5541         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5542
5543         return 0;
5544 }
5545
5546 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5547 {
5548         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5549
5550         return 0;
5551 }
5552
5553 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5554 {
5555         unsigned long i;
5556         struct kvm_vcpu *vcpu;
5557
5558         *val = 0;
5559
5560         kvm_for_each_vcpu(i, vcpu, kvm)
5561                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5562
5563         return 0;
5564 }
5565
5566 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5567 {
5568         unsigned long i;
5569         struct kvm_vcpu *vcpu;
5570
5571         kvm_for_each_vcpu(i, vcpu, kvm)
5572                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5573
5574         return 0;
5575 }
5576
5577 static int kvm_stat_data_get(void *data, u64 *val)
5578 {
5579         int r = -EFAULT;
5580         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5581
5582         switch (stat_data->kind) {
5583         case KVM_STAT_VM:
5584                 r = kvm_get_stat_per_vm(stat_data->kvm,
5585                                         stat_data->desc->desc.offset, val);
5586                 break;
5587         case KVM_STAT_VCPU:
5588                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5589                                           stat_data->desc->desc.offset, val);
5590                 break;
5591         }
5592
5593         return r;
5594 }
5595
5596 static int kvm_stat_data_clear(void *data, u64 val)
5597 {
5598         int r = -EFAULT;
5599         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5600
5601         if (val)
5602                 return -EINVAL;
5603
5604         switch (stat_data->kind) {
5605         case KVM_STAT_VM:
5606                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5607                                           stat_data->desc->desc.offset);
5608                 break;
5609         case KVM_STAT_VCPU:
5610                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5611                                             stat_data->desc->desc.offset);
5612                 break;
5613         }
5614
5615         return r;
5616 }
5617
5618 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5619 {
5620         __simple_attr_check_format("%llu\n", 0ull);
5621         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5622                                 kvm_stat_data_clear, "%llu\n");
5623 }
5624
5625 static const struct file_operations stat_fops_per_vm = {
5626         .owner = THIS_MODULE,
5627         .open = kvm_stat_data_open,
5628         .release = kvm_debugfs_release,
5629         .read = simple_attr_read,
5630         .write = simple_attr_write,
5631         .llseek = no_llseek,
5632 };
5633
5634 static int vm_stat_get(void *_offset, u64 *val)
5635 {
5636         unsigned offset = (long)_offset;
5637         struct kvm *kvm;
5638         u64 tmp_val;
5639
5640         *val = 0;
5641         mutex_lock(&kvm_lock);
5642         list_for_each_entry(kvm, &vm_list, vm_list) {
5643                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5644                 *val += tmp_val;
5645         }
5646         mutex_unlock(&kvm_lock);
5647         return 0;
5648 }
5649
5650 static int vm_stat_clear(void *_offset, u64 val)
5651 {
5652         unsigned offset = (long)_offset;
5653         struct kvm *kvm;
5654
5655         if (val)
5656                 return -EINVAL;
5657
5658         mutex_lock(&kvm_lock);
5659         list_for_each_entry(kvm, &vm_list, vm_list) {
5660                 kvm_clear_stat_per_vm(kvm, offset);
5661         }
5662         mutex_unlock(&kvm_lock);
5663
5664         return 0;
5665 }
5666
5667 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5668 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5669
5670 static int vcpu_stat_get(void *_offset, u64 *val)
5671 {
5672         unsigned offset = (long)_offset;
5673         struct kvm *kvm;
5674         u64 tmp_val;
5675
5676         *val = 0;
5677         mutex_lock(&kvm_lock);
5678         list_for_each_entry(kvm, &vm_list, vm_list) {
5679                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5680                 *val += tmp_val;
5681         }
5682         mutex_unlock(&kvm_lock);
5683         return 0;
5684 }
5685
5686 static int vcpu_stat_clear(void *_offset, u64 val)
5687 {
5688         unsigned offset = (long)_offset;
5689         struct kvm *kvm;
5690
5691         if (val)
5692                 return -EINVAL;
5693
5694         mutex_lock(&kvm_lock);
5695         list_for_each_entry(kvm, &vm_list, vm_list) {
5696                 kvm_clear_stat_per_vcpu(kvm, offset);
5697         }
5698         mutex_unlock(&kvm_lock);
5699
5700         return 0;
5701 }
5702
5703 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5704                         "%llu\n");
5705 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5706
5707 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5708 {
5709         struct kobj_uevent_env *env;
5710         unsigned long long created, active;
5711
5712         if (!kvm_dev.this_device || !kvm)
5713                 return;
5714
5715         mutex_lock(&kvm_lock);
5716         if (type == KVM_EVENT_CREATE_VM) {
5717                 kvm_createvm_count++;
5718                 kvm_active_vms++;
5719         } else if (type == KVM_EVENT_DESTROY_VM) {
5720                 kvm_active_vms--;
5721         }
5722         created = kvm_createvm_count;
5723         active = kvm_active_vms;
5724         mutex_unlock(&kvm_lock);
5725
5726         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5727         if (!env)
5728                 return;
5729
5730         add_uevent_var(env, "CREATED=%llu", created);
5731         add_uevent_var(env, "COUNT=%llu", active);
5732
5733         if (type == KVM_EVENT_CREATE_VM) {
5734                 add_uevent_var(env, "EVENT=create");
5735                 kvm->userspace_pid = task_pid_nr(current);
5736         } else if (type == KVM_EVENT_DESTROY_VM) {
5737                 add_uevent_var(env, "EVENT=destroy");
5738         }
5739         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5740
5741         if (!IS_ERR(kvm->debugfs_dentry)) {
5742                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5743
5744                 if (p) {
5745                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5746                         if (!IS_ERR(tmp))
5747                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5748                         kfree(p);
5749                 }
5750         }
5751         /* no need for checks, since we are adding at most only 5 keys */
5752         env->envp[env->envp_idx++] = NULL;
5753         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5754         kfree(env);
5755 }
5756
5757 static void kvm_init_debug(void)
5758 {
5759         const struct file_operations *fops;
5760         const struct _kvm_stats_desc *pdesc;
5761         int i;
5762
5763         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5764
5765         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5766                 pdesc = &kvm_vm_stats_desc[i];
5767                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5768                         fops = &vm_stat_fops;
5769                 else
5770                         fops = &vm_stat_readonly_fops;
5771                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5772                                 kvm_debugfs_dir,
5773                                 (void *)(long)pdesc->desc.offset, fops);
5774         }
5775
5776         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5777                 pdesc = &kvm_vcpu_stats_desc[i];
5778                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5779                         fops = &vcpu_stat_fops;
5780                 else
5781                         fops = &vcpu_stat_readonly_fops;
5782                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5783                                 kvm_debugfs_dir,
5784                                 (void *)(long)pdesc->desc.offset, fops);
5785         }
5786 }
5787
5788 static int kvm_suspend(void)
5789 {
5790         if (kvm_usage_count)
5791                 hardware_disable_nolock(NULL);
5792         return 0;
5793 }
5794
5795 static void kvm_resume(void)
5796 {
5797         if (kvm_usage_count) {
5798                 lockdep_assert_not_held(&kvm_count_lock);
5799                 hardware_enable_nolock(NULL);
5800         }
5801 }
5802
5803 static struct syscore_ops kvm_syscore_ops = {
5804         .suspend = kvm_suspend,
5805         .resume = kvm_resume,
5806 };
5807
5808 static inline
5809 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5810 {
5811         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5812 }
5813
5814 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5815 {
5816         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5817
5818         WRITE_ONCE(vcpu->preempted, false);
5819         WRITE_ONCE(vcpu->ready, false);
5820
5821         __this_cpu_write(kvm_running_vcpu, vcpu);
5822         kvm_arch_sched_in(vcpu, cpu);
5823         kvm_arch_vcpu_load(vcpu, cpu);
5824 }
5825
5826 static void kvm_sched_out(struct preempt_notifier *pn,
5827                           struct task_struct *next)
5828 {
5829         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5830
5831         if (current->on_rq) {
5832                 WRITE_ONCE(vcpu->preempted, true);
5833                 WRITE_ONCE(vcpu->ready, true);
5834         }
5835         kvm_arch_vcpu_put(vcpu);
5836         __this_cpu_write(kvm_running_vcpu, NULL);
5837 }
5838
5839 /**
5840  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5841  *
5842  * We can disable preemption locally around accessing the per-CPU variable,
5843  * and use the resolved vcpu pointer after enabling preemption again,
5844  * because even if the current thread is migrated to another CPU, reading
5845  * the per-CPU value later will give us the same value as we update the
5846  * per-CPU variable in the preempt notifier handlers.
5847  */
5848 struct kvm_vcpu *kvm_get_running_vcpu(void)
5849 {
5850         struct kvm_vcpu *vcpu;
5851
5852         preempt_disable();
5853         vcpu = __this_cpu_read(kvm_running_vcpu);
5854         preempt_enable();
5855
5856         return vcpu;
5857 }
5858 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5859
5860 /**
5861  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5862  */
5863 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5864 {
5865         return &kvm_running_vcpu;
5866 }
5867
5868 #ifdef CONFIG_GUEST_PERF_EVENTS
5869 static unsigned int kvm_guest_state(void)
5870 {
5871         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5872         unsigned int state;
5873
5874         if (!kvm_arch_pmi_in_guest(vcpu))
5875                 return 0;
5876
5877         state = PERF_GUEST_ACTIVE;
5878         if (!kvm_arch_vcpu_in_kernel(vcpu))
5879                 state |= PERF_GUEST_USER;
5880
5881         return state;
5882 }
5883
5884 static unsigned long kvm_guest_get_ip(void)
5885 {
5886         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5887
5888         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5889         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5890                 return 0;
5891
5892         return kvm_arch_vcpu_get_ip(vcpu);
5893 }
5894
5895 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5896         .state                  = kvm_guest_state,
5897         .get_ip                 = kvm_guest_get_ip,
5898         .handle_intel_pt_intr   = NULL,
5899 };
5900
5901 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5902 {
5903         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5904         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5905 }
5906 void kvm_unregister_perf_callbacks(void)
5907 {
5908         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5909 }
5910 #endif
5911
5912 struct kvm_cpu_compat_check {
5913         void *opaque;
5914         int *ret;
5915 };
5916
5917 static void check_processor_compat(void *data)
5918 {
5919         struct kvm_cpu_compat_check *c = data;
5920
5921         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5922 }
5923
5924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5925                   struct module *module)
5926 {
5927         struct kvm_cpu_compat_check c;
5928         int r;
5929         int cpu;
5930
5931         r = kvm_arch_init(opaque);
5932         if (r)
5933                 goto out_fail;
5934
5935         /*
5936          * kvm_arch_init makes sure there's at most one caller
5937          * for architectures that support multiple implementations,
5938          * like intel and amd on x86.
5939          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5940          * conflicts in case kvm is already setup for another implementation.
5941          */
5942         r = kvm_irqfd_init();
5943         if (r)
5944                 goto out_irqfd;
5945
5946         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5947                 r = -ENOMEM;
5948                 goto out_free_0;
5949         }
5950
5951         r = kvm_arch_hardware_setup(opaque);
5952         if (r < 0)
5953                 goto out_free_1;
5954
5955         c.ret = &r;
5956         c.opaque = opaque;
5957         for_each_online_cpu(cpu) {
5958                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5959                 if (r < 0)
5960                         goto out_free_2;
5961         }
5962
5963         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5964                                       kvm_starting_cpu, kvm_dying_cpu);
5965         if (r)
5966                 goto out_free_2;
5967         register_reboot_notifier(&kvm_reboot_notifier);
5968
5969         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5970         if (!vcpu_align)
5971                 vcpu_align = __alignof__(struct kvm_vcpu);
5972         kvm_vcpu_cache =
5973                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5974                                            SLAB_ACCOUNT,
5975                                            offsetof(struct kvm_vcpu, arch),
5976                                            offsetofend(struct kvm_vcpu, stats_id)
5977                                            - offsetof(struct kvm_vcpu, arch),
5978                                            NULL);
5979         if (!kvm_vcpu_cache) {
5980                 r = -ENOMEM;
5981                 goto out_free_3;
5982         }
5983
5984         for_each_possible_cpu(cpu) {
5985                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5986                                             GFP_KERNEL, cpu_to_node(cpu))) {
5987                         r = -ENOMEM;
5988                         goto out_free_4;
5989                 }
5990         }
5991
5992         r = kvm_async_pf_init();
5993         if (r)
5994                 goto out_free_4;
5995
5996         kvm_chardev_ops.owner = module;
5997
5998         r = misc_register(&kvm_dev);
5999         if (r) {
6000                 pr_err("kvm: misc device register failed\n");
6001                 goto out_unreg;
6002         }
6003
6004         register_syscore_ops(&kvm_syscore_ops);
6005
6006         kvm_preempt_ops.sched_in = kvm_sched_in;
6007         kvm_preempt_ops.sched_out = kvm_sched_out;
6008
6009         kvm_init_debug();
6010
6011         r = kvm_vfio_ops_init();
6012         WARN_ON(r);
6013
6014         return 0;
6015
6016 out_unreg:
6017         kvm_async_pf_deinit();
6018 out_free_4:
6019         for_each_possible_cpu(cpu)
6020                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6021         kmem_cache_destroy(kvm_vcpu_cache);
6022 out_free_3:
6023         unregister_reboot_notifier(&kvm_reboot_notifier);
6024         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6025 out_free_2:
6026         kvm_arch_hardware_unsetup();
6027 out_free_1:
6028         free_cpumask_var(cpus_hardware_enabled);
6029 out_free_0:
6030         kvm_irqfd_exit();
6031 out_irqfd:
6032         kvm_arch_exit();
6033 out_fail:
6034         return r;
6035 }
6036 EXPORT_SYMBOL_GPL(kvm_init);
6037
6038 void kvm_exit(void)
6039 {
6040         int cpu;
6041
6042         debugfs_remove_recursive(kvm_debugfs_dir);
6043         misc_deregister(&kvm_dev);
6044         for_each_possible_cpu(cpu)
6045                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6046         kmem_cache_destroy(kvm_vcpu_cache);
6047         kvm_async_pf_deinit();
6048         unregister_syscore_ops(&kvm_syscore_ops);
6049         unregister_reboot_notifier(&kvm_reboot_notifier);
6050         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6051         on_each_cpu(hardware_disable_nolock, NULL, 1);
6052         kvm_arch_hardware_unsetup();
6053         kvm_arch_exit();
6054         kvm_irqfd_exit();
6055         free_cpumask_var(cpus_hardware_enabled);
6056         kvm_vfio_ops_exit();
6057 }
6058 EXPORT_SYMBOL_GPL(kvm_exit);
6059
6060 struct kvm_vm_worker_thread_context {
6061         struct kvm *kvm;
6062         struct task_struct *parent;
6063         struct completion init_done;
6064         kvm_vm_thread_fn_t thread_fn;
6065         uintptr_t data;
6066         int err;
6067 };
6068
6069 static int kvm_vm_worker_thread(void *context)
6070 {
6071         /*
6072          * The init_context is allocated on the stack of the parent thread, so
6073          * we have to locally copy anything that is needed beyond initialization
6074          */
6075         struct kvm_vm_worker_thread_context *init_context = context;
6076         struct task_struct *parent;
6077         struct kvm *kvm = init_context->kvm;
6078         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6079         uintptr_t data = init_context->data;
6080         int err;
6081
6082         err = kthread_park(current);
6083         /* kthread_park(current) is never supposed to return an error */
6084         WARN_ON(err != 0);
6085         if (err)
6086                 goto init_complete;
6087
6088         err = cgroup_attach_task_all(init_context->parent, current);
6089         if (err) {
6090                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6091                         __func__, err);
6092                 goto init_complete;
6093         }
6094
6095         set_user_nice(current, task_nice(init_context->parent));
6096
6097 init_complete:
6098         init_context->err = err;
6099         complete(&init_context->init_done);
6100         init_context = NULL;
6101
6102         if (err)
6103                 goto out;
6104
6105         /* Wait to be woken up by the spawner before proceeding. */
6106         kthread_parkme();
6107
6108         if (!kthread_should_stop())
6109                 err = thread_fn(kvm, data);
6110
6111 out:
6112         /*
6113          * Move kthread back to its original cgroup to prevent it lingering in
6114          * the cgroup of the VM process, after the latter finishes its
6115          * execution.
6116          *
6117          * kthread_stop() waits on the 'exited' completion condition which is
6118          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6119          * kthread is removed from the cgroup in the cgroup_exit() which is
6120          * called after the exit_mm(). This causes the kthread_stop() to return
6121          * before the kthread actually quits the cgroup.
6122          */
6123         rcu_read_lock();
6124         parent = rcu_dereference(current->real_parent);
6125         get_task_struct(parent);
6126         rcu_read_unlock();
6127         cgroup_attach_task_all(parent, current);
6128         put_task_struct(parent);
6129
6130         return err;
6131 }
6132
6133 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6134                                 uintptr_t data, const char *name,
6135                                 struct task_struct **thread_ptr)
6136 {
6137         struct kvm_vm_worker_thread_context init_context = {};
6138         struct task_struct *thread;
6139
6140         *thread_ptr = NULL;
6141         init_context.kvm = kvm;
6142         init_context.parent = current;
6143         init_context.thread_fn = thread_fn;
6144         init_context.data = data;
6145         init_completion(&init_context.init_done);
6146
6147         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6148                              "%s-%d", name, task_pid_nr(current));
6149         if (IS_ERR(thread))
6150                 return PTR_ERR(thread);
6151
6152         /* kthread_run is never supposed to return NULL */
6153         WARN_ON(thread == NULL);
6154
6155         wait_for_completion(&init_context.init_done);
6156
6157         if (!init_context.err)
6158                 *thread_ptr = thread;
6159
6160         return init_context.err;
6161 }