Merge branch 'kvm-amd-fixes' into HEAD
[linux-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                 unsigned long start, unsigned long end, bool blockable)
160 {
161         return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166         /*
167          * The metadata used by is_zone_device_page() to determine whether or
168          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169          * the device has been pinned, e.g. by get_user_pages().  WARN if the
170          * page_count() is zero to help detect bad usage of this helper.
171          */
172         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173                 return false;
174
175         return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180         /*
181          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182          * perspective they are "normal" pages, albeit with slightly different
183          * usage rules.
184          */
185         if (pfn_valid(pfn))
186                 return PageReserved(pfn_to_page(pfn)) &&
187                        !is_zero_pfn(pfn) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195         struct page *page = pfn_to_page(pfn);
196
197         if (!PageTransCompoundMap(page))
198                 return false;
199
200         return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208         int cpu = get_cpu();
209
210         __this_cpu_write(kvm_running_vcpu, vcpu);
211         preempt_notifier_register(&vcpu->preempt_notifier);
212         kvm_arch_vcpu_load(vcpu, cpu);
213         put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219         preempt_disable();
220         kvm_arch_vcpu_put(vcpu);
221         preempt_notifier_unregister(&vcpu->preempt_notifier);
222         __this_cpu_write(kvm_running_vcpu, NULL);
223         preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232         /*
233          * We need to wait for the VCPU to reenable interrupts and get out of
234          * READING_SHADOW_PAGE_TABLES mode.
235          */
236         if (req & KVM_REQUEST_WAIT)
237                 return mode != OUTSIDE_GUEST_MODE;
238
239         /*
240          * Need to kick a running VCPU, but otherwise there is nothing to do.
241          */
242         return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251         if (unlikely(!cpus))
252                 cpus = cpu_online_mask;
253
254         if (cpumask_empty(cpus))
255                 return false;
256
257         smp_call_function_many(cpus, ack_flush, NULL, wait);
258         return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262                                  struct kvm_vcpu *except,
263                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265         int i, cpu, me;
266         struct kvm_vcpu *vcpu;
267         bool called;
268
269         me = get_cpu();
270
271         kvm_for_each_vcpu(i, vcpu, kvm) {
272                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273                     vcpu == except)
274                         continue;
275
276                 kvm_make_request(req, vcpu);
277                 cpu = vcpu->cpu;
278
279                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280                         continue;
281
282                 if (tmp != NULL && cpu != -1 && cpu != me &&
283                     kvm_request_needs_ipi(vcpu, req))
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286
287         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288         put_cpu();
289
290         return called;
291 }
292
293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294                                       struct kvm_vcpu *except)
295 {
296         cpumask_var_t cpus;
297         bool called;
298
299         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300
301         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302
303         free_cpumask_var(cpus);
304         return called;
305 }
306
307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 {
309         return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 }
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
346 {
347         mutex_init(&vcpu->mutex);
348         vcpu->cpu = -1;
349         vcpu->kvm = kvm;
350         vcpu->vcpu_id = id;
351         vcpu->pid = NULL;
352         init_swait_queue_head(&vcpu->wq);
353         kvm_async_pf_vcpu_init(vcpu);
354
355         vcpu->pre_pcpu = -1;
356         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357
358         kvm_vcpu_set_in_spin_loop(vcpu, false);
359         kvm_vcpu_set_dy_eligible(vcpu, false);
360         vcpu->preempted = false;
361         vcpu->ready = false;
362         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
363 }
364
365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367         kvm_arch_vcpu_destroy(vcpu);
368
369         /*
370          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371          * the vcpu->pid pointer, and at destruction time all file descriptors
372          * are already gone.
373          */
374         put_pid(rcu_dereference_protected(vcpu->pid, 1));
375
376         free_page((unsigned long)vcpu->run);
377         kmem_cache_free(kvm_vcpu_cache, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380
381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383 {
384         return container_of(mn, struct kvm, mmu_notifier);
385 }
386
387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388                                         struct mm_struct *mm,
389                                         unsigned long address,
390                                         pte_t pte)
391 {
392         struct kvm *kvm = mmu_notifier_to_kvm(mn);
393         int idx;
394
395         idx = srcu_read_lock(&kvm->srcu);
396         spin_lock(&kvm->mmu_lock);
397         kvm->mmu_notifier_seq++;
398
399         if (kvm_set_spte_hva(kvm, address, pte))
400                 kvm_flush_remote_tlbs(kvm);
401
402         spin_unlock(&kvm->mmu_lock);
403         srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
407                                         const struct mmu_notifier_range *range)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int need_tlb_flush = 0, idx;
411         int ret;
412
413         idx = srcu_read_lock(&kvm->srcu);
414         spin_lock(&kvm->mmu_lock);
415         /*
416          * The count increase must become visible at unlock time as no
417          * spte can be established without taking the mmu_lock and
418          * count is also read inside the mmu_lock critical section.
419          */
420         kvm->mmu_notifier_count++;
421         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
422         need_tlb_flush |= kvm->tlbs_dirty;
423         /* we've to flush the tlb before the pages can be freed */
424         if (need_tlb_flush)
425                 kvm_flush_remote_tlbs(kvm);
426
427         spin_unlock(&kvm->mmu_lock);
428
429         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
430                                         range->end,
431                                         mmu_notifier_range_blockable(range));
432
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return ret;
436 }
437
438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
439                                         const struct mmu_notifier_range *range)
440 {
441         struct kvm *kvm = mmu_notifier_to_kvm(mn);
442
443         spin_lock(&kvm->mmu_lock);
444         /*
445          * This sequence increase will notify the kvm page fault that
446          * the page that is going to be mapped in the spte could have
447          * been freed.
448          */
449         kvm->mmu_notifier_seq++;
450         smp_wmb();
451         /*
452          * The above sequence increase must be visible before the
453          * below count decrease, which is ensured by the smp_wmb above
454          * in conjunction with the smp_rmb in mmu_notifier_retry().
455          */
456         kvm->mmu_notifier_count--;
457         spin_unlock(&kvm->mmu_lock);
458
459         BUG_ON(kvm->mmu_notifier_count < 0);
460 }
461
462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463                                               struct mm_struct *mm,
464                                               unsigned long start,
465                                               unsigned long end)
466 {
467         struct kvm *kvm = mmu_notifier_to_kvm(mn);
468         int young, idx;
469
470         idx = srcu_read_lock(&kvm->srcu);
471         spin_lock(&kvm->mmu_lock);
472
473         young = kvm_age_hva(kvm, start, end);
474         if (young)
475                 kvm_flush_remote_tlbs(kvm);
476
477         spin_unlock(&kvm->mmu_lock);
478         srcu_read_unlock(&kvm->srcu, idx);
479
480         return young;
481 }
482
483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484                                         struct mm_struct *mm,
485                                         unsigned long start,
486                                         unsigned long end)
487 {
488         struct kvm *kvm = mmu_notifier_to_kvm(mn);
489         int young, idx;
490
491         idx = srcu_read_lock(&kvm->srcu);
492         spin_lock(&kvm->mmu_lock);
493         /*
494          * Even though we do not flush TLB, this will still adversely
495          * affect performance on pre-Haswell Intel EPT, where there is
496          * no EPT Access Bit to clear so that we have to tear down EPT
497          * tables instead. If we find this unacceptable, we can always
498          * add a parameter to kvm_age_hva so that it effectively doesn't
499          * do anything on clear_young.
500          *
501          * Also note that currently we never issue secondary TLB flushes
502          * from clear_young, leaving this job up to the regular system
503          * cadence. If we find this inaccurate, we might come up with a
504          * more sophisticated heuristic later.
505          */
506         young = kvm_age_hva(kvm, start, end);
507         spin_unlock(&kvm->mmu_lock);
508         srcu_read_unlock(&kvm->srcu, idx);
509
510         return young;
511 }
512
513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514                                        struct mm_struct *mm,
515                                        unsigned long address)
516 {
517         struct kvm *kvm = mmu_notifier_to_kvm(mn);
518         int young, idx;
519
520         idx = srcu_read_lock(&kvm->srcu);
521         spin_lock(&kvm->mmu_lock);
522         young = kvm_test_age_hva(kvm, address);
523         spin_unlock(&kvm->mmu_lock);
524         srcu_read_unlock(&kvm->srcu, idx);
525
526         return young;
527 }
528
529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530                                      struct mm_struct *mm)
531 {
532         struct kvm *kvm = mmu_notifier_to_kvm(mn);
533         int idx;
534
535         idx = srcu_read_lock(&kvm->srcu);
536         kvm_arch_flush_shadow_all(kvm);
537         srcu_read_unlock(&kvm->srcu, idx);
538 }
539
540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
541         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
542         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
543         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
544         .clear_young            = kvm_mmu_notifier_clear_young,
545         .test_young             = kvm_mmu_notifier_test_young,
546         .change_pte             = kvm_mmu_notifier_change_pte,
547         .release                = kvm_mmu_notifier_release,
548 };
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554 }
555
556 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557
558 static int kvm_init_mmu_notifier(struct kvm *kvm)
559 {
560         return 0;
561 }
562
563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564
565 static struct kvm_memslots *kvm_alloc_memslots(void)
566 {
567         int i;
568         struct kvm_memslots *slots;
569
570         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
571         if (!slots)
572                 return NULL;
573
574         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
575                 slots->id_to_index[i] = -1;
576
577         return slots;
578 }
579
580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581 {
582         if (!memslot->dirty_bitmap)
583                 return;
584
585         kvfree(memslot->dirty_bitmap);
586         memslot->dirty_bitmap = NULL;
587 }
588
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
590 {
591         kvm_destroy_dirty_bitmap(slot);
592
593         kvm_arch_free_memslot(kvm, slot);
594
595         slot->flags = 0;
596         slot->npages = 0;
597 }
598
599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600 {
601         struct kvm_memory_slot *memslot;
602
603         if (!slots)
604                 return;
605
606         kvm_for_each_memslot(memslot, slots)
607                 kvm_free_memslot(kvm, memslot);
608
609         kvfree(slots);
610 }
611
612 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613 {
614         int i;
615
616         if (!kvm->debugfs_dentry)
617                 return;
618
619         debugfs_remove_recursive(kvm->debugfs_dentry);
620
621         if (kvm->debugfs_stat_data) {
622                 for (i = 0; i < kvm_debugfs_num_entries; i++)
623                         kfree(kvm->debugfs_stat_data[i]);
624                 kfree(kvm->debugfs_stat_data);
625         }
626 }
627
628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629 {
630         char dir_name[ITOA_MAX_LEN * 2];
631         struct kvm_stat_data *stat_data;
632         struct kvm_stats_debugfs_item *p;
633
634         if (!debugfs_initialized())
635                 return 0;
636
637         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
638         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
639
640         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641                                          sizeof(*kvm->debugfs_stat_data),
642                                          GFP_KERNEL_ACCOUNT);
643         if (!kvm->debugfs_stat_data)
644                 return -ENOMEM;
645
646         for (p = debugfs_entries; p->name; p++) {
647                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
648                 if (!stat_data)
649                         return -ENOMEM;
650
651                 stat_data->kvm = kvm;
652                 stat_data->dbgfs_item = p;
653                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
654                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655                                     kvm->debugfs_dentry, stat_data,
656                                     &stat_fops_per_vm);
657         }
658         return 0;
659 }
660
661 /*
662  * Called after the VM is otherwise initialized, but just before adding it to
663  * the vm_list.
664  */
665 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666 {
667         return 0;
668 }
669
670 /*
671  * Called just after removing the VM from the vm_list, but before doing any
672  * other destruction.
673  */
674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675 {
676 }
677
678 static struct kvm *kvm_create_vm(unsigned long type)
679 {
680         struct kvm *kvm = kvm_arch_alloc_vm();
681         int r = -ENOMEM;
682         int i;
683
684         if (!kvm)
685                 return ERR_PTR(-ENOMEM);
686
687         spin_lock_init(&kvm->mmu_lock);
688         mmgrab(current->mm);
689         kvm->mm = current->mm;
690         kvm_eventfd_init(kvm);
691         mutex_init(&kvm->lock);
692         mutex_init(&kvm->irq_lock);
693         mutex_init(&kvm->slots_lock);
694         INIT_LIST_HEAD(&kvm->devices);
695
696         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697
698         if (init_srcu_struct(&kvm->srcu))
699                 goto out_err_no_srcu;
700         if (init_srcu_struct(&kvm->irq_srcu))
701                 goto out_err_no_irq_srcu;
702
703         refcount_set(&kvm->users_count, 1);
704         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
705                 struct kvm_memslots *slots = kvm_alloc_memslots();
706
707                 if (!slots)
708                         goto out_err_no_arch_destroy_vm;
709                 /* Generations must be different for each address space. */
710                 slots->generation = i;
711                 rcu_assign_pointer(kvm->memslots[i], slots);
712         }
713
714         for (i = 0; i < KVM_NR_BUSES; i++) {
715                 rcu_assign_pointer(kvm->buses[i],
716                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
717                 if (!kvm->buses[i])
718                         goto out_err_no_arch_destroy_vm;
719         }
720
721         kvm->max_halt_poll_ns = halt_poll_ns;
722
723         r = kvm_arch_init_vm(kvm, type);
724         if (r)
725                 goto out_err_no_arch_destroy_vm;
726
727         r = hardware_enable_all();
728         if (r)
729                 goto out_err_no_disable;
730
731 #ifdef CONFIG_HAVE_KVM_IRQFD
732         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
733 #endif
734
735         r = kvm_init_mmu_notifier(kvm);
736         if (r)
737                 goto out_err_no_mmu_notifier;
738
739         r = kvm_arch_post_init_vm(kvm);
740         if (r)
741                 goto out_err;
742
743         mutex_lock(&kvm_lock);
744         list_add(&kvm->vm_list, &vm_list);
745         mutex_unlock(&kvm_lock);
746
747         preempt_notifier_inc();
748
749         return kvm;
750
751 out_err:
752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
753         if (kvm->mmu_notifier.ops)
754                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
755 #endif
756 out_err_no_mmu_notifier:
757         hardware_disable_all();
758 out_err_no_disable:
759         kvm_arch_destroy_vm(kvm);
760 out_err_no_arch_destroy_vm:
761         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
762         for (i = 0; i < KVM_NR_BUSES; i++)
763                 kfree(kvm_get_bus(kvm, i));
764         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
765                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
766         cleanup_srcu_struct(&kvm->irq_srcu);
767 out_err_no_irq_srcu:
768         cleanup_srcu_struct(&kvm->srcu);
769 out_err_no_srcu:
770         kvm_arch_free_vm(kvm);
771         mmdrop(current->mm);
772         return ERR_PTR(r);
773 }
774
775 static void kvm_destroy_devices(struct kvm *kvm)
776 {
777         struct kvm_device *dev, *tmp;
778
779         /*
780          * We do not need to take the kvm->lock here, because nobody else
781          * has a reference to the struct kvm at this point and therefore
782          * cannot access the devices list anyhow.
783          */
784         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
785                 list_del(&dev->vm_node);
786                 dev->ops->destroy(dev);
787         }
788 }
789
790 static void kvm_destroy_vm(struct kvm *kvm)
791 {
792         int i;
793         struct mm_struct *mm = kvm->mm;
794
795         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
796         kvm_destroy_vm_debugfs(kvm);
797         kvm_arch_sync_events(kvm);
798         mutex_lock(&kvm_lock);
799         list_del(&kvm->vm_list);
800         mutex_unlock(&kvm_lock);
801         kvm_arch_pre_destroy_vm(kvm);
802
803         kvm_free_irq_routing(kvm);
804         for (i = 0; i < KVM_NR_BUSES; i++) {
805                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
806
807                 if (bus)
808                         kvm_io_bus_destroy(bus);
809                 kvm->buses[i] = NULL;
810         }
811         kvm_coalesced_mmio_free(kvm);
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
814 #else
815         kvm_arch_flush_shadow_all(kvm);
816 #endif
817         kvm_arch_destroy_vm(kvm);
818         kvm_destroy_devices(kvm);
819         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
820                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
821         cleanup_srcu_struct(&kvm->irq_srcu);
822         cleanup_srcu_struct(&kvm->srcu);
823         kvm_arch_free_vm(kvm);
824         preempt_notifier_dec();
825         hardware_disable_all();
826         mmdrop(mm);
827 }
828
829 void kvm_get_kvm(struct kvm *kvm)
830 {
831         refcount_inc(&kvm->users_count);
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_kvm);
834
835 void kvm_put_kvm(struct kvm *kvm)
836 {
837         if (refcount_dec_and_test(&kvm->users_count))
838                 kvm_destroy_vm(kvm);
839 }
840 EXPORT_SYMBOL_GPL(kvm_put_kvm);
841
842 /*
843  * Used to put a reference that was taken on behalf of an object associated
844  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
845  * of the new file descriptor fails and the reference cannot be transferred to
846  * its final owner.  In such cases, the caller is still actively using @kvm and
847  * will fail miserably if the refcount unexpectedly hits zero.
848  */
849 void kvm_put_kvm_no_destroy(struct kvm *kvm)
850 {
851         WARN_ON(refcount_dec_and_test(&kvm->users_count));
852 }
853 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
854
855 static int kvm_vm_release(struct inode *inode, struct file *filp)
856 {
857         struct kvm *kvm = filp->private_data;
858
859         kvm_irqfd_release(kvm);
860
861         kvm_put_kvm(kvm);
862         return 0;
863 }
864
865 /*
866  * Allocation size is twice as large as the actual dirty bitmap size.
867  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
868  */
869 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
872
873         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
874         if (!memslot->dirty_bitmap)
875                 return -ENOMEM;
876
877         return 0;
878 }
879
880 /*
881  * Delete a memslot by decrementing the number of used slots and shifting all
882  * other entries in the array forward one spot.
883  */
884 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
885                                       struct kvm_memory_slot *memslot)
886 {
887         struct kvm_memory_slot *mslots = slots->memslots;
888         int i;
889
890         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
891                 return;
892
893         slots->used_slots--;
894
895         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
896                 atomic_set(&slots->lru_slot, 0);
897
898         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
899                 mslots[i] = mslots[i + 1];
900                 slots->id_to_index[mslots[i].id] = i;
901         }
902         mslots[i] = *memslot;
903         slots->id_to_index[memslot->id] = -1;
904 }
905
906 /*
907  * "Insert" a new memslot by incrementing the number of used slots.  Returns
908  * the new slot's initial index into the memslots array.
909  */
910 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
911 {
912         return slots->used_slots++;
913 }
914
915 /*
916  * Move a changed memslot backwards in the array by shifting existing slots
917  * with a higher GFN toward the front of the array.  Note, the changed memslot
918  * itself is not preserved in the array, i.e. not swapped at this time, only
919  * its new index into the array is tracked.  Returns the changed memslot's
920  * current index into the memslots array.
921  */
922 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
923                                             struct kvm_memory_slot *memslot)
924 {
925         struct kvm_memory_slot *mslots = slots->memslots;
926         int i;
927
928         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
929             WARN_ON_ONCE(!slots->used_slots))
930                 return -1;
931
932         /*
933          * Move the target memslot backward in the array by shifting existing
934          * memslots with a higher GFN (than the target memslot) towards the
935          * front of the array.
936          */
937         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
938                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
939                         break;
940
941                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
942
943                 /* Shift the next memslot forward one and update its index. */
944                 mslots[i] = mslots[i + 1];
945                 slots->id_to_index[mslots[i].id] = i;
946         }
947         return i;
948 }
949
950 /*
951  * Move a changed memslot forwards in the array by shifting existing slots with
952  * a lower GFN toward the back of the array.  Note, the changed memslot itself
953  * is not preserved in the array, i.e. not swapped at this time, only its new
954  * index into the array is tracked.  Returns the changed memslot's final index
955  * into the memslots array.
956  */
957 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
958                                            struct kvm_memory_slot *memslot,
959                                            int start)
960 {
961         struct kvm_memory_slot *mslots = slots->memslots;
962         int i;
963
964         for (i = start; i > 0; i--) {
965                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
966                         break;
967
968                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
969
970                 /* Shift the next memslot back one and update its index. */
971                 mslots[i] = mslots[i - 1];
972                 slots->id_to_index[mslots[i].id] = i;
973         }
974         return i;
975 }
976
977 /*
978  * Re-sort memslots based on their GFN to account for an added, deleted, or
979  * moved memslot.  Sorting memslots by GFN allows using a binary search during
980  * memslot lookup.
981  *
982  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
983  * at memslots[0] has the highest GFN.
984  *
985  * The sorting algorithm takes advantage of having initially sorted memslots
986  * and knowing the position of the changed memslot.  Sorting is also optimized
987  * by not swapping the updated memslot and instead only shifting other memslots
988  * and tracking the new index for the update memslot.  Only once its final
989  * index is known is the updated memslot copied into its position in the array.
990  *
991  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
992  *    the end of the array.
993  *
994  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
995  *    end of the array and then it forward to its correct location.
996  *
997  *  - When moving a memslot, the algorithm first moves the updated memslot
998  *    backward to handle the scenario where the memslot's GFN was changed to a
999  *    lower value.  update_memslots() then falls through and runs the same flow
1000  *    as creating a memslot to move the memslot forward to handle the scenario
1001  *    where its GFN was changed to a higher value.
1002  *
1003  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1004  * historical reasons.  Originally, invalid memslots where denoted by having
1005  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1006  * to the end of the array.  The current algorithm uses dedicated logic to
1007  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1008  *
1009  * The other historical motiviation for highest->lowest was to improve the
1010  * performance of memslot lookup.  KVM originally used a linear search starting
1011  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1012  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1013  * single memslot above the 4gb boundary.  As the largest memslot is also the
1014  * most likely to be referenced, sorting it to the front of the array was
1015  * advantageous.  The current binary search starts from the middle of the array
1016  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1017  */
1018 static void update_memslots(struct kvm_memslots *slots,
1019                             struct kvm_memory_slot *memslot,
1020                             enum kvm_mr_change change)
1021 {
1022         int i;
1023
1024         if (change == KVM_MR_DELETE) {
1025                 kvm_memslot_delete(slots, memslot);
1026         } else {
1027                 if (change == KVM_MR_CREATE)
1028                         i = kvm_memslot_insert_back(slots);
1029                 else
1030                         i = kvm_memslot_move_backward(slots, memslot);
1031                 i = kvm_memslot_move_forward(slots, memslot, i);
1032
1033                 /*
1034                  * Copy the memslot to its new position in memslots and update
1035                  * its index accordingly.
1036                  */
1037                 slots->memslots[i] = *memslot;
1038                 slots->id_to_index[memslot->id] = i;
1039         }
1040 }
1041
1042 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1043 {
1044         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1045
1046 #ifdef __KVM_HAVE_READONLY_MEM
1047         valid_flags |= KVM_MEM_READONLY;
1048 #endif
1049
1050         if (mem->flags & ~valid_flags)
1051                 return -EINVAL;
1052
1053         return 0;
1054 }
1055
1056 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1057                 int as_id, struct kvm_memslots *slots)
1058 {
1059         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1060         u64 gen = old_memslots->generation;
1061
1062         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1063         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1064
1065         rcu_assign_pointer(kvm->memslots[as_id], slots);
1066         synchronize_srcu_expedited(&kvm->srcu);
1067
1068         /*
1069          * Increment the new memslot generation a second time, dropping the
1070          * update in-progress flag and incrementing the generation based on
1071          * the number of address spaces.  This provides a unique and easily
1072          * identifiable generation number while the memslots are in flux.
1073          */
1074         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1075
1076         /*
1077          * Generations must be unique even across address spaces.  We do not need
1078          * a global counter for that, instead the generation space is evenly split
1079          * across address spaces.  For example, with two address spaces, address
1080          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1081          * use generations 1, 3, 5, ...
1082          */
1083         gen += KVM_ADDRESS_SPACE_NUM;
1084
1085         kvm_arch_memslots_updated(kvm, gen);
1086
1087         slots->generation = gen;
1088
1089         return old_memslots;
1090 }
1091
1092 /*
1093  * Note, at a minimum, the current number of used slots must be allocated, even
1094  * when deleting a memslot, as we need a complete duplicate of the memslots for
1095  * use when invalidating a memslot prior to deleting/moving the memslot.
1096  */
1097 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1098                                              enum kvm_mr_change change)
1099 {
1100         struct kvm_memslots *slots;
1101         size_t old_size, new_size;
1102
1103         old_size = sizeof(struct kvm_memslots) +
1104                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1105
1106         if (change == KVM_MR_CREATE)
1107                 new_size = old_size + sizeof(struct kvm_memory_slot);
1108         else
1109                 new_size = old_size;
1110
1111         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1112         if (likely(slots))
1113                 memcpy(slots, old, old_size);
1114
1115         return slots;
1116 }
1117
1118 static int kvm_set_memslot(struct kvm *kvm,
1119                            const struct kvm_userspace_memory_region *mem,
1120                            struct kvm_memory_slot *old,
1121                            struct kvm_memory_slot *new, int as_id,
1122                            enum kvm_mr_change change)
1123 {
1124         struct kvm_memory_slot *slot;
1125         struct kvm_memslots *slots;
1126         int r;
1127
1128         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1129         if (!slots)
1130                 return -ENOMEM;
1131
1132         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1133                 /*
1134                  * Note, the INVALID flag needs to be in the appropriate entry
1135                  * in the freshly allocated memslots, not in @old or @new.
1136                  */
1137                 slot = id_to_memslot(slots, old->id);
1138                 slot->flags |= KVM_MEMSLOT_INVALID;
1139
1140                 /*
1141                  * We can re-use the old memslots, the only difference from the
1142                  * newly installed memslots is the invalid flag, which will get
1143                  * dropped by update_memslots anyway.  We'll also revert to the
1144                  * old memslots if preparing the new memory region fails.
1145                  */
1146                 slots = install_new_memslots(kvm, as_id, slots);
1147
1148                 /* From this point no new shadow pages pointing to a deleted,
1149                  * or moved, memslot will be created.
1150                  *
1151                  * validation of sp->gfn happens in:
1152                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1153                  *      - kvm_is_visible_gfn (mmu_check_root)
1154                  */
1155                 kvm_arch_flush_shadow_memslot(kvm, slot);
1156         }
1157
1158         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1159         if (r)
1160                 goto out_slots;
1161
1162         update_memslots(slots, new, change);
1163         slots = install_new_memslots(kvm, as_id, slots);
1164
1165         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1166
1167         kvfree(slots);
1168         return 0;
1169
1170 out_slots:
1171         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1172                 slots = install_new_memslots(kvm, as_id, slots);
1173         kvfree(slots);
1174         return r;
1175 }
1176
1177 static int kvm_delete_memslot(struct kvm *kvm,
1178                               const struct kvm_userspace_memory_region *mem,
1179                               struct kvm_memory_slot *old, int as_id)
1180 {
1181         struct kvm_memory_slot new;
1182         int r;
1183
1184         if (!old->npages)
1185                 return -EINVAL;
1186
1187         memset(&new, 0, sizeof(new));
1188         new.id = old->id;
1189
1190         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1191         if (r)
1192                 return r;
1193
1194         kvm_free_memslot(kvm, old);
1195         return 0;
1196 }
1197
1198 /*
1199  * Allocate some memory and give it an address in the guest physical address
1200  * space.
1201  *
1202  * Discontiguous memory is allowed, mostly for framebuffers.
1203  *
1204  * Must be called holding kvm->slots_lock for write.
1205  */
1206 int __kvm_set_memory_region(struct kvm *kvm,
1207                             const struct kvm_userspace_memory_region *mem)
1208 {
1209         struct kvm_memory_slot old, new;
1210         struct kvm_memory_slot *tmp;
1211         enum kvm_mr_change change;
1212         int as_id, id;
1213         int r;
1214
1215         r = check_memory_region_flags(mem);
1216         if (r)
1217                 return r;
1218
1219         as_id = mem->slot >> 16;
1220         id = (u16)mem->slot;
1221
1222         /* General sanity checks */
1223         if (mem->memory_size & (PAGE_SIZE - 1))
1224                 return -EINVAL;
1225         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1226                 return -EINVAL;
1227         /* We can read the guest memory with __xxx_user() later on. */
1228         if ((id < KVM_USER_MEM_SLOTS) &&
1229             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1230              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1231                         mem->memory_size)))
1232                 return -EINVAL;
1233         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1234                 return -EINVAL;
1235         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1236                 return -EINVAL;
1237
1238         /*
1239          * Make a full copy of the old memslot, the pointer will become stale
1240          * when the memslots are re-sorted by update_memslots(), and the old
1241          * memslot needs to be referenced after calling update_memslots(), e.g.
1242          * to free its resources and for arch specific behavior.
1243          */
1244         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1245         if (tmp) {
1246                 old = *tmp;
1247                 tmp = NULL;
1248         } else {
1249                 memset(&old, 0, sizeof(old));
1250                 old.id = id;
1251         }
1252
1253         if (!mem->memory_size)
1254                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1255
1256         new.id = id;
1257         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1258         new.npages = mem->memory_size >> PAGE_SHIFT;
1259         new.flags = mem->flags;
1260         new.userspace_addr = mem->userspace_addr;
1261
1262         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1263                 return -EINVAL;
1264
1265         if (!old.npages) {
1266                 change = KVM_MR_CREATE;
1267                 new.dirty_bitmap = NULL;
1268                 memset(&new.arch, 0, sizeof(new.arch));
1269         } else { /* Modify an existing slot. */
1270                 if ((new.userspace_addr != old.userspace_addr) ||
1271                     (new.npages != old.npages) ||
1272                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1273                         return -EINVAL;
1274
1275                 if (new.base_gfn != old.base_gfn)
1276                         change = KVM_MR_MOVE;
1277                 else if (new.flags != old.flags)
1278                         change = KVM_MR_FLAGS_ONLY;
1279                 else /* Nothing to change. */
1280                         return 0;
1281
1282                 /* Copy dirty_bitmap and arch from the current memslot. */
1283                 new.dirty_bitmap = old.dirty_bitmap;
1284                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1285         }
1286
1287         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1288                 /* Check for overlaps */
1289                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1290                         if (tmp->id == id)
1291                                 continue;
1292                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1293                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1294                                 return -EEXIST;
1295                 }
1296         }
1297
1298         /* Allocate/free page dirty bitmap as needed */
1299         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1300                 new.dirty_bitmap = NULL;
1301         else if (!new.dirty_bitmap) {
1302                 r = kvm_alloc_dirty_bitmap(&new);
1303                 if (r)
1304                         return r;
1305
1306                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1307                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1308         }
1309
1310         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1311         if (r)
1312                 goto out_bitmap;
1313
1314         if (old.dirty_bitmap && !new.dirty_bitmap)
1315                 kvm_destroy_dirty_bitmap(&old);
1316         return 0;
1317
1318 out_bitmap:
1319         if (new.dirty_bitmap && !old.dirty_bitmap)
1320                 kvm_destroy_dirty_bitmap(&new);
1321         return r;
1322 }
1323 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1324
1325 int kvm_set_memory_region(struct kvm *kvm,
1326                           const struct kvm_userspace_memory_region *mem)
1327 {
1328         int r;
1329
1330         mutex_lock(&kvm->slots_lock);
1331         r = __kvm_set_memory_region(kvm, mem);
1332         mutex_unlock(&kvm->slots_lock);
1333         return r;
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1336
1337 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1338                                           struct kvm_userspace_memory_region *mem)
1339 {
1340         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1341                 return -EINVAL;
1342
1343         return kvm_set_memory_region(kvm, mem);
1344 }
1345
1346 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1347 /**
1348  * kvm_get_dirty_log - get a snapshot of dirty pages
1349  * @kvm:        pointer to kvm instance
1350  * @log:        slot id and address to which we copy the log
1351  * @is_dirty:   set to '1' if any dirty pages were found
1352  * @memslot:    set to the associated memslot, always valid on success
1353  */
1354 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1355                       int *is_dirty, struct kvm_memory_slot **memslot)
1356 {
1357         struct kvm_memslots *slots;
1358         int i, as_id, id;
1359         unsigned long n;
1360         unsigned long any = 0;
1361
1362         *memslot = NULL;
1363         *is_dirty = 0;
1364
1365         as_id = log->slot >> 16;
1366         id = (u16)log->slot;
1367         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1368                 return -EINVAL;
1369
1370         slots = __kvm_memslots(kvm, as_id);
1371         *memslot = id_to_memslot(slots, id);
1372         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1373                 return -ENOENT;
1374
1375         kvm_arch_sync_dirty_log(kvm, *memslot);
1376
1377         n = kvm_dirty_bitmap_bytes(*memslot);
1378
1379         for (i = 0; !any && i < n/sizeof(long); ++i)
1380                 any = (*memslot)->dirty_bitmap[i];
1381
1382         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1383                 return -EFAULT;
1384
1385         if (any)
1386                 *is_dirty = 1;
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1390
1391 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1392 /**
1393  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1394  *      and reenable dirty page tracking for the corresponding pages.
1395  * @kvm:        pointer to kvm instance
1396  * @log:        slot id and address to which we copy the log
1397  *
1398  * We need to keep it in mind that VCPU threads can write to the bitmap
1399  * concurrently. So, to avoid losing track of dirty pages we keep the
1400  * following order:
1401  *
1402  *    1. Take a snapshot of the bit and clear it if needed.
1403  *    2. Write protect the corresponding page.
1404  *    3. Copy the snapshot to the userspace.
1405  *    4. Upon return caller flushes TLB's if needed.
1406  *
1407  * Between 2 and 4, the guest may write to the page using the remaining TLB
1408  * entry.  This is not a problem because the page is reported dirty using
1409  * the snapshot taken before and step 4 ensures that writes done after
1410  * exiting to userspace will be logged for the next call.
1411  *
1412  */
1413 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1414 {
1415         struct kvm_memslots *slots;
1416         struct kvm_memory_slot *memslot;
1417         int i, as_id, id;
1418         unsigned long n;
1419         unsigned long *dirty_bitmap;
1420         unsigned long *dirty_bitmap_buffer;
1421         bool flush;
1422
1423         as_id = log->slot >> 16;
1424         id = (u16)log->slot;
1425         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1426                 return -EINVAL;
1427
1428         slots = __kvm_memslots(kvm, as_id);
1429         memslot = id_to_memslot(slots, id);
1430         if (!memslot || !memslot->dirty_bitmap)
1431                 return -ENOENT;
1432
1433         dirty_bitmap = memslot->dirty_bitmap;
1434
1435         kvm_arch_sync_dirty_log(kvm, memslot);
1436
1437         n = kvm_dirty_bitmap_bytes(memslot);
1438         flush = false;
1439         if (kvm->manual_dirty_log_protect) {
1440                 /*
1441                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1442                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1443                  * is some code duplication between this function and
1444                  * kvm_get_dirty_log, but hopefully all architecture
1445                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1446                  * can be eliminated.
1447                  */
1448                 dirty_bitmap_buffer = dirty_bitmap;
1449         } else {
1450                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1451                 memset(dirty_bitmap_buffer, 0, n);
1452
1453                 spin_lock(&kvm->mmu_lock);
1454                 for (i = 0; i < n / sizeof(long); i++) {
1455                         unsigned long mask;
1456                         gfn_t offset;
1457
1458                         if (!dirty_bitmap[i])
1459                                 continue;
1460
1461                         flush = true;
1462                         mask = xchg(&dirty_bitmap[i], 0);
1463                         dirty_bitmap_buffer[i] = mask;
1464
1465                         offset = i * BITS_PER_LONG;
1466                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1467                                                                 offset, mask);
1468                 }
1469                 spin_unlock(&kvm->mmu_lock);
1470         }
1471
1472         if (flush)
1473                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1474
1475         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1476                 return -EFAULT;
1477         return 0;
1478 }
1479
1480
1481 /**
1482  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1483  * @kvm: kvm instance
1484  * @log: slot id and address to which we copy the log
1485  *
1486  * Steps 1-4 below provide general overview of dirty page logging. See
1487  * kvm_get_dirty_log_protect() function description for additional details.
1488  *
1489  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1490  * always flush the TLB (step 4) even if previous step failed  and the dirty
1491  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1492  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1493  * writes will be marked dirty for next log read.
1494  *
1495  *   1. Take a snapshot of the bit and clear it if needed.
1496  *   2. Write protect the corresponding page.
1497  *   3. Copy the snapshot to the userspace.
1498  *   4. Flush TLB's if needed.
1499  */
1500 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1501                                       struct kvm_dirty_log *log)
1502 {
1503         int r;
1504
1505         mutex_lock(&kvm->slots_lock);
1506
1507         r = kvm_get_dirty_log_protect(kvm, log);
1508
1509         mutex_unlock(&kvm->slots_lock);
1510         return r;
1511 }
1512
1513 /**
1514  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1515  *      and reenable dirty page tracking for the corresponding pages.
1516  * @kvm:        pointer to kvm instance
1517  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1518  */
1519 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1520                                        struct kvm_clear_dirty_log *log)
1521 {
1522         struct kvm_memslots *slots;
1523         struct kvm_memory_slot *memslot;
1524         int as_id, id;
1525         gfn_t offset;
1526         unsigned long i, n;
1527         unsigned long *dirty_bitmap;
1528         unsigned long *dirty_bitmap_buffer;
1529         bool flush;
1530
1531         as_id = log->slot >> 16;
1532         id = (u16)log->slot;
1533         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1534                 return -EINVAL;
1535
1536         if (log->first_page & 63)
1537                 return -EINVAL;
1538
1539         slots = __kvm_memslots(kvm, as_id);
1540         memslot = id_to_memslot(slots, id);
1541         if (!memslot || !memslot->dirty_bitmap)
1542                 return -ENOENT;
1543
1544         dirty_bitmap = memslot->dirty_bitmap;
1545
1546         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1547
1548         if (log->first_page > memslot->npages ||
1549             log->num_pages > memslot->npages - log->first_page ||
1550             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1551             return -EINVAL;
1552
1553         kvm_arch_sync_dirty_log(kvm, memslot);
1554
1555         flush = false;
1556         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1557         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1558                 return -EFAULT;
1559
1560         spin_lock(&kvm->mmu_lock);
1561         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1562                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1563              i++, offset += BITS_PER_LONG) {
1564                 unsigned long mask = *dirty_bitmap_buffer++;
1565                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1566                 if (!mask)
1567                         continue;
1568
1569                 mask &= atomic_long_fetch_andnot(mask, p);
1570
1571                 /*
1572                  * mask contains the bits that really have been cleared.  This
1573                  * never includes any bits beyond the length of the memslot (if
1574                  * the length is not aligned to 64 pages), therefore it is not
1575                  * a problem if userspace sets them in log->dirty_bitmap.
1576                 */
1577                 if (mask) {
1578                         flush = true;
1579                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1580                                                                 offset, mask);
1581                 }
1582         }
1583         spin_unlock(&kvm->mmu_lock);
1584
1585         if (flush)
1586                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1587
1588         return 0;
1589 }
1590
1591 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1592                                         struct kvm_clear_dirty_log *log)
1593 {
1594         int r;
1595
1596         mutex_lock(&kvm->slots_lock);
1597
1598         r = kvm_clear_dirty_log_protect(kvm, log);
1599
1600         mutex_unlock(&kvm->slots_lock);
1601         return r;
1602 }
1603 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1604
1605 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1606 {
1607         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1610
1611 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1612 {
1613         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1616
1617 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1618 {
1619         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1620
1621         return kvm_is_visible_memslot(memslot);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1624
1625 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1626 {
1627         struct vm_area_struct *vma;
1628         unsigned long addr, size;
1629
1630         size = PAGE_SIZE;
1631
1632         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1633         if (kvm_is_error_hva(addr))
1634                 return PAGE_SIZE;
1635
1636         down_read(&current->mm->mmap_sem);
1637         vma = find_vma(current->mm, addr);
1638         if (!vma)
1639                 goto out;
1640
1641         size = vma_kernel_pagesize(vma);
1642
1643 out:
1644         up_read(&current->mm->mmap_sem);
1645
1646         return size;
1647 }
1648
1649 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1650 {
1651         return slot->flags & KVM_MEM_READONLY;
1652 }
1653
1654 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1655                                        gfn_t *nr_pages, bool write)
1656 {
1657         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1658                 return KVM_HVA_ERR_BAD;
1659
1660         if (memslot_is_readonly(slot) && write)
1661                 return KVM_HVA_ERR_RO_BAD;
1662
1663         if (nr_pages)
1664                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1665
1666         return __gfn_to_hva_memslot(slot, gfn);
1667 }
1668
1669 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1670                                      gfn_t *nr_pages)
1671 {
1672         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1673 }
1674
1675 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1676                                         gfn_t gfn)
1677 {
1678         return gfn_to_hva_many(slot, gfn, NULL);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1681
1682 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1683 {
1684         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_hva);
1687
1688 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1689 {
1690         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1693
1694 /*
1695  * Return the hva of a @gfn and the R/W attribute if possible.
1696  *
1697  * @slot: the kvm_memory_slot which contains @gfn
1698  * @gfn: the gfn to be translated
1699  * @writable: used to return the read/write attribute of the @slot if the hva
1700  * is valid and @writable is not NULL
1701  */
1702 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1703                                       gfn_t gfn, bool *writable)
1704 {
1705         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1706
1707         if (!kvm_is_error_hva(hva) && writable)
1708                 *writable = !memslot_is_readonly(slot);
1709
1710         return hva;
1711 }
1712
1713 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1714 {
1715         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1716
1717         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1718 }
1719
1720 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1721 {
1722         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1723
1724         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1725 }
1726
1727 static inline int check_user_page_hwpoison(unsigned long addr)
1728 {
1729         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1730
1731         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1732         return rc == -EHWPOISON;
1733 }
1734
1735 /*
1736  * The fast path to get the writable pfn which will be stored in @pfn,
1737  * true indicates success, otherwise false is returned.  It's also the
1738  * only part that runs if we can in atomic context.
1739  */
1740 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1741                             bool *writable, kvm_pfn_t *pfn)
1742 {
1743         struct page *page[1];
1744         int npages;
1745
1746         /*
1747          * Fast pin a writable pfn only if it is a write fault request
1748          * or the caller allows to map a writable pfn for a read fault
1749          * request.
1750          */
1751         if (!(write_fault || writable))
1752                 return false;
1753
1754         npages = __get_user_pages_fast(addr, 1, 1, page);
1755         if (npages == 1) {
1756                 *pfn = page_to_pfn(page[0]);
1757
1758                 if (writable)
1759                         *writable = true;
1760                 return true;
1761         }
1762
1763         return false;
1764 }
1765
1766 /*
1767  * The slow path to get the pfn of the specified host virtual address,
1768  * 1 indicates success, -errno is returned if error is detected.
1769  */
1770 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1771                            bool *writable, kvm_pfn_t *pfn)
1772 {
1773         unsigned int flags = FOLL_HWPOISON;
1774         struct page *page;
1775         int npages = 0;
1776
1777         might_sleep();
1778
1779         if (writable)
1780                 *writable = write_fault;
1781
1782         if (write_fault)
1783                 flags |= FOLL_WRITE;
1784         if (async)
1785                 flags |= FOLL_NOWAIT;
1786
1787         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1788         if (npages != 1)
1789                 return npages;
1790
1791         /* map read fault as writable if possible */
1792         if (unlikely(!write_fault) && writable) {
1793                 struct page *wpage;
1794
1795                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1796                         *writable = true;
1797                         put_page(page);
1798                         page = wpage;
1799                 }
1800         }
1801         *pfn = page_to_pfn(page);
1802         return npages;
1803 }
1804
1805 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1806 {
1807         if (unlikely(!(vma->vm_flags & VM_READ)))
1808                 return false;
1809
1810         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1817                                unsigned long addr, bool *async,
1818                                bool write_fault, bool *writable,
1819                                kvm_pfn_t *p_pfn)
1820 {
1821         unsigned long pfn;
1822         int r;
1823
1824         r = follow_pfn(vma, addr, &pfn);
1825         if (r) {
1826                 /*
1827                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1828                  * not call the fault handler, so do it here.
1829                  */
1830                 bool unlocked = false;
1831                 r = fixup_user_fault(current, current->mm, addr,
1832                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1833                                      &unlocked);
1834                 if (unlocked)
1835                         return -EAGAIN;
1836                 if (r)
1837                         return r;
1838
1839                 r = follow_pfn(vma, addr, &pfn);
1840                 if (r)
1841                         return r;
1842
1843         }
1844
1845         if (writable)
1846                 *writable = true;
1847
1848         /*
1849          * Get a reference here because callers of *hva_to_pfn* and
1850          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1851          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1852          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1853          * simply do nothing for reserved pfns.
1854          *
1855          * Whoever called remap_pfn_range is also going to call e.g.
1856          * unmap_mapping_range before the underlying pages are freed,
1857          * causing a call to our MMU notifier.
1858          */ 
1859         kvm_get_pfn(pfn);
1860
1861         *p_pfn = pfn;
1862         return 0;
1863 }
1864
1865 /*
1866  * Pin guest page in memory and return its pfn.
1867  * @addr: host virtual address which maps memory to the guest
1868  * @atomic: whether this function can sleep
1869  * @async: whether this function need to wait IO complete if the
1870  *         host page is not in the memory
1871  * @write_fault: whether we should get a writable host page
1872  * @writable: whether it allows to map a writable host page for !@write_fault
1873  *
1874  * The function will map a writable host page for these two cases:
1875  * 1): @write_fault = true
1876  * 2): @write_fault = false && @writable, @writable will tell the caller
1877  *     whether the mapping is writable.
1878  */
1879 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1880                         bool write_fault, bool *writable)
1881 {
1882         struct vm_area_struct *vma;
1883         kvm_pfn_t pfn = 0;
1884         int npages, r;
1885
1886         /* we can do it either atomically or asynchronously, not both */
1887         BUG_ON(atomic && async);
1888
1889         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1890                 return pfn;
1891
1892         if (atomic)
1893                 return KVM_PFN_ERR_FAULT;
1894
1895         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1896         if (npages == 1)
1897                 return pfn;
1898
1899         down_read(&current->mm->mmap_sem);
1900         if (npages == -EHWPOISON ||
1901               (!async && check_user_page_hwpoison(addr))) {
1902                 pfn = KVM_PFN_ERR_HWPOISON;
1903                 goto exit;
1904         }
1905
1906 retry:
1907         vma = find_vma_intersection(current->mm, addr, addr + 1);
1908
1909         if (vma == NULL)
1910                 pfn = KVM_PFN_ERR_FAULT;
1911         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1912                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1913                 if (r == -EAGAIN)
1914                         goto retry;
1915                 if (r < 0)
1916                         pfn = KVM_PFN_ERR_FAULT;
1917         } else {
1918                 if (async && vma_is_valid(vma, write_fault))
1919                         *async = true;
1920                 pfn = KVM_PFN_ERR_FAULT;
1921         }
1922 exit:
1923         up_read(&current->mm->mmap_sem);
1924         return pfn;
1925 }
1926
1927 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1928                                bool atomic, bool *async, bool write_fault,
1929                                bool *writable)
1930 {
1931         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1932
1933         if (addr == KVM_HVA_ERR_RO_BAD) {
1934                 if (writable)
1935                         *writable = false;
1936                 return KVM_PFN_ERR_RO_FAULT;
1937         }
1938
1939         if (kvm_is_error_hva(addr)) {
1940                 if (writable)
1941                         *writable = false;
1942                 return KVM_PFN_NOSLOT;
1943         }
1944
1945         /* Do not map writable pfn in the readonly memslot. */
1946         if (writable && memslot_is_readonly(slot)) {
1947                 *writable = false;
1948                 writable = NULL;
1949         }
1950
1951         return hva_to_pfn(addr, atomic, async, write_fault,
1952                           writable);
1953 }
1954 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1955
1956 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1957                       bool *writable)
1958 {
1959         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1960                                     write_fault, writable);
1961 }
1962 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1963
1964 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1965 {
1966         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1967 }
1968 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1969
1970 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1971 {
1972         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1973 }
1974 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1975
1976 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1977 {
1978         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1981
1982 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1983 {
1984         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1985 }
1986 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1987
1988 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1989 {
1990         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1993
1994 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1995                             struct page **pages, int nr_pages)
1996 {
1997         unsigned long addr;
1998         gfn_t entry = 0;
1999
2000         addr = gfn_to_hva_many(slot, gfn, &entry);
2001         if (kvm_is_error_hva(addr))
2002                 return -1;
2003
2004         if (entry < nr_pages)
2005                 return 0;
2006
2007         return __get_user_pages_fast(addr, nr_pages, 1, pages);
2008 }
2009 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2010
2011 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2012 {
2013         if (is_error_noslot_pfn(pfn))
2014                 return KVM_ERR_PTR_BAD_PAGE;
2015
2016         if (kvm_is_reserved_pfn(pfn)) {
2017                 WARN_ON(1);
2018                 return KVM_ERR_PTR_BAD_PAGE;
2019         }
2020
2021         return pfn_to_page(pfn);
2022 }
2023
2024 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2025 {
2026         kvm_pfn_t pfn;
2027
2028         pfn = gfn_to_pfn(kvm, gfn);
2029
2030         return kvm_pfn_to_page(pfn);
2031 }
2032 EXPORT_SYMBOL_GPL(gfn_to_page);
2033
2034 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2035 {
2036         if (pfn == 0)
2037                 return;
2038
2039         if (cache)
2040                 cache->pfn = cache->gfn = 0;
2041
2042         if (dirty)
2043                 kvm_release_pfn_dirty(pfn);
2044         else
2045                 kvm_release_pfn_clean(pfn);
2046 }
2047
2048 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2049                                  struct gfn_to_pfn_cache *cache, u64 gen)
2050 {
2051         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2052
2053         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2054         cache->gfn = gfn;
2055         cache->dirty = false;
2056         cache->generation = gen;
2057 }
2058
2059 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2060                          struct kvm_host_map *map,
2061                          struct gfn_to_pfn_cache *cache,
2062                          bool atomic)
2063 {
2064         kvm_pfn_t pfn;
2065         void *hva = NULL;
2066         struct page *page = KVM_UNMAPPED_PAGE;
2067         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2068         u64 gen = slots->generation;
2069
2070         if (!map)
2071                 return -EINVAL;
2072
2073         if (cache) {
2074                 if (!cache->pfn || cache->gfn != gfn ||
2075                         cache->generation != gen) {
2076                         if (atomic)
2077                                 return -EAGAIN;
2078                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2079                 }
2080                 pfn = cache->pfn;
2081         } else {
2082                 if (atomic)
2083                         return -EAGAIN;
2084                 pfn = gfn_to_pfn_memslot(slot, gfn);
2085         }
2086         if (is_error_noslot_pfn(pfn))
2087                 return -EINVAL;
2088
2089         if (pfn_valid(pfn)) {
2090                 page = pfn_to_page(pfn);
2091                 if (atomic)
2092                         hva = kmap_atomic(page);
2093                 else
2094                         hva = kmap(page);
2095 #ifdef CONFIG_HAS_IOMEM
2096         } else if (!atomic) {
2097                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2098         } else {
2099                 return -EINVAL;
2100 #endif
2101         }
2102
2103         if (!hva)
2104                 return -EFAULT;
2105
2106         map->page = page;
2107         map->hva = hva;
2108         map->pfn = pfn;
2109         map->gfn = gfn;
2110
2111         return 0;
2112 }
2113
2114 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2115                 struct gfn_to_pfn_cache *cache, bool atomic)
2116 {
2117         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2118                         cache, atomic);
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2121
2122 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2123 {
2124         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2125                 NULL, false);
2126 }
2127 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2128
2129 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2130                         struct kvm_host_map *map,
2131                         struct gfn_to_pfn_cache *cache,
2132                         bool dirty, bool atomic)
2133 {
2134         if (!map)
2135                 return;
2136
2137         if (!map->hva)
2138                 return;
2139
2140         if (map->page != KVM_UNMAPPED_PAGE) {
2141                 if (atomic)
2142                         kunmap_atomic(map->hva);
2143                 else
2144                         kunmap(map->page);
2145         }
2146 #ifdef CONFIG_HAS_IOMEM
2147         else if (!atomic)
2148                 memunmap(map->hva);
2149         else
2150                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2151 #endif
2152
2153         if (dirty)
2154                 mark_page_dirty_in_slot(memslot, map->gfn);
2155
2156         if (cache)
2157                 cache->dirty |= dirty;
2158         else
2159                 kvm_release_pfn(map->pfn, dirty, NULL);
2160
2161         map->hva = NULL;
2162         map->page = NULL;
2163 }
2164
2165 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2166                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2167 {
2168         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2169                         cache, dirty, atomic);
2170         return 0;
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2173
2174 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2175 {
2176         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2177                         dirty, false);
2178 }
2179 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2180
2181 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2182 {
2183         kvm_pfn_t pfn;
2184
2185         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2186
2187         return kvm_pfn_to_page(pfn);
2188 }
2189 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2190
2191 void kvm_release_page_clean(struct page *page)
2192 {
2193         WARN_ON(is_error_page(page));
2194
2195         kvm_release_pfn_clean(page_to_pfn(page));
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2198
2199 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2200 {
2201         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2202                 put_page(pfn_to_page(pfn));
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2205
2206 void kvm_release_page_dirty(struct page *page)
2207 {
2208         WARN_ON(is_error_page(page));
2209
2210         kvm_release_pfn_dirty(page_to_pfn(page));
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2213
2214 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2215 {
2216         kvm_set_pfn_dirty(pfn);
2217         kvm_release_pfn_clean(pfn);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2220
2221 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2222 {
2223         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2224                 SetPageDirty(pfn_to_page(pfn));
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2227
2228 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2229 {
2230         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2231                 mark_page_accessed(pfn_to_page(pfn));
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2234
2235 void kvm_get_pfn(kvm_pfn_t pfn)
2236 {
2237         if (!kvm_is_reserved_pfn(pfn))
2238                 get_page(pfn_to_page(pfn));
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2241
2242 static int next_segment(unsigned long len, int offset)
2243 {
2244         if (len > PAGE_SIZE - offset)
2245                 return PAGE_SIZE - offset;
2246         else
2247                 return len;
2248 }
2249
2250 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2251                                  void *data, int offset, int len)
2252 {
2253         int r;
2254         unsigned long addr;
2255
2256         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2257         if (kvm_is_error_hva(addr))
2258                 return -EFAULT;
2259         r = __copy_from_user(data, (void __user *)addr + offset, len);
2260         if (r)
2261                 return -EFAULT;
2262         return 0;
2263 }
2264
2265 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2266                         int len)
2267 {
2268         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2269
2270         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2271 }
2272 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2273
2274 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2275                              int offset, int len)
2276 {
2277         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2278
2279         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2282
2283 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2284 {
2285         gfn_t gfn = gpa >> PAGE_SHIFT;
2286         int seg;
2287         int offset = offset_in_page(gpa);
2288         int ret;
2289
2290         while ((seg = next_segment(len, offset)) != 0) {
2291                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2292                 if (ret < 0)
2293                         return ret;
2294                 offset = 0;
2295                 len -= seg;
2296                 data += seg;
2297                 ++gfn;
2298         }
2299         return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(kvm_read_guest);
2302
2303 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2304 {
2305         gfn_t gfn = gpa >> PAGE_SHIFT;
2306         int seg;
2307         int offset = offset_in_page(gpa);
2308         int ret;
2309
2310         while ((seg = next_segment(len, offset)) != 0) {
2311                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2312                 if (ret < 0)
2313                         return ret;
2314                 offset = 0;
2315                 len -= seg;
2316                 data += seg;
2317                 ++gfn;
2318         }
2319         return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2322
2323 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2324                                    void *data, int offset, unsigned long len)
2325 {
2326         int r;
2327         unsigned long addr;
2328
2329         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2330         if (kvm_is_error_hva(addr))
2331                 return -EFAULT;
2332         pagefault_disable();
2333         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2334         pagefault_enable();
2335         if (r)
2336                 return -EFAULT;
2337         return 0;
2338 }
2339
2340 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2341                                void *data, unsigned long len)
2342 {
2343         gfn_t gfn = gpa >> PAGE_SHIFT;
2344         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2345         int offset = offset_in_page(gpa);
2346
2347         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2350
2351 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2352                                   const void *data, int offset, int len)
2353 {
2354         int r;
2355         unsigned long addr;
2356
2357         addr = gfn_to_hva_memslot(memslot, gfn);
2358         if (kvm_is_error_hva(addr))
2359                 return -EFAULT;
2360         r = __copy_to_user((void __user *)addr + offset, data, len);
2361         if (r)
2362                 return -EFAULT;
2363         mark_page_dirty_in_slot(memslot, gfn);
2364         return 0;
2365 }
2366
2367 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2368                          const void *data, int offset, int len)
2369 {
2370         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2371
2372         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2375
2376 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2377                               const void *data, int offset, int len)
2378 {
2379         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2380
2381         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2384
2385 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2386                     unsigned long len)
2387 {
2388         gfn_t gfn = gpa >> PAGE_SHIFT;
2389         int seg;
2390         int offset = offset_in_page(gpa);
2391         int ret;
2392
2393         while ((seg = next_segment(len, offset)) != 0) {
2394                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2395                 if (ret < 0)
2396                         return ret;
2397                 offset = 0;
2398                 len -= seg;
2399                 data += seg;
2400                 ++gfn;
2401         }
2402         return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(kvm_write_guest);
2405
2406 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2407                          unsigned long len)
2408 {
2409         gfn_t gfn = gpa >> PAGE_SHIFT;
2410         int seg;
2411         int offset = offset_in_page(gpa);
2412         int ret;
2413
2414         while ((seg = next_segment(len, offset)) != 0) {
2415                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2416                 if (ret < 0)
2417                         return ret;
2418                 offset = 0;
2419                 len -= seg;
2420                 data += seg;
2421                 ++gfn;
2422         }
2423         return 0;
2424 }
2425 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2426
2427 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2428                                        struct gfn_to_hva_cache *ghc,
2429                                        gpa_t gpa, unsigned long len)
2430 {
2431         int offset = offset_in_page(gpa);
2432         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2433         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2434         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2435         gfn_t nr_pages_avail;
2436
2437         /* Update ghc->generation before performing any error checks. */
2438         ghc->generation = slots->generation;
2439
2440         if (start_gfn > end_gfn) {
2441                 ghc->hva = KVM_HVA_ERR_BAD;
2442                 return -EINVAL;
2443         }
2444
2445         /*
2446          * If the requested region crosses two memslots, we still
2447          * verify that the entire region is valid here.
2448          */
2449         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2450                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2451                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2452                                            &nr_pages_avail);
2453                 if (kvm_is_error_hva(ghc->hva))
2454                         return -EFAULT;
2455         }
2456
2457         /* Use the slow path for cross page reads and writes. */
2458         if (nr_pages_needed == 1)
2459                 ghc->hva += offset;
2460         else
2461                 ghc->memslot = NULL;
2462
2463         ghc->gpa = gpa;
2464         ghc->len = len;
2465         return 0;
2466 }
2467
2468 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2469                               gpa_t gpa, unsigned long len)
2470 {
2471         struct kvm_memslots *slots = kvm_memslots(kvm);
2472         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2475
2476 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2477                                   void *data, unsigned int offset,
2478                                   unsigned long len)
2479 {
2480         struct kvm_memslots *slots = kvm_memslots(kvm);
2481         int r;
2482         gpa_t gpa = ghc->gpa + offset;
2483
2484         BUG_ON(len + offset > ghc->len);
2485
2486         if (slots->generation != ghc->generation) {
2487                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2488                         return -EFAULT;
2489         }
2490
2491         if (kvm_is_error_hva(ghc->hva))
2492                 return -EFAULT;
2493
2494         if (unlikely(!ghc->memslot))
2495                 return kvm_write_guest(kvm, gpa, data, len);
2496
2497         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2498         if (r)
2499                 return -EFAULT;
2500         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2501
2502         return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2505
2506 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2507                            void *data, unsigned long len)
2508 {
2509         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2510 }
2511 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2512
2513 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2514                            void *data, unsigned long len)
2515 {
2516         struct kvm_memslots *slots = kvm_memslots(kvm);
2517         int r;
2518
2519         BUG_ON(len > ghc->len);
2520
2521         if (slots->generation != ghc->generation) {
2522                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2523                         return -EFAULT;
2524         }
2525
2526         if (kvm_is_error_hva(ghc->hva))
2527                 return -EFAULT;
2528
2529         if (unlikely(!ghc->memslot))
2530                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2531
2532         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2533         if (r)
2534                 return -EFAULT;
2535
2536         return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2539
2540 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2541 {
2542         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2543
2544         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2547
2548 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2549 {
2550         gfn_t gfn = gpa >> PAGE_SHIFT;
2551         int seg;
2552         int offset = offset_in_page(gpa);
2553         int ret;
2554
2555         while ((seg = next_segment(len, offset)) != 0) {
2556                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2557                 if (ret < 0)
2558                         return ret;
2559                 offset = 0;
2560                 len -= seg;
2561                 ++gfn;
2562         }
2563         return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2566
2567 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2568                                     gfn_t gfn)
2569 {
2570         if (memslot && memslot->dirty_bitmap) {
2571                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2572
2573                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2574         }
2575 }
2576
2577 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2578 {
2579         struct kvm_memory_slot *memslot;
2580
2581         memslot = gfn_to_memslot(kvm, gfn);
2582         mark_page_dirty_in_slot(memslot, gfn);
2583 }
2584 EXPORT_SYMBOL_GPL(mark_page_dirty);
2585
2586 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2587 {
2588         struct kvm_memory_slot *memslot;
2589
2590         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2591         mark_page_dirty_in_slot(memslot, gfn);
2592 }
2593 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2594
2595 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2596 {
2597         if (!vcpu->sigset_active)
2598                 return;
2599
2600         /*
2601          * This does a lockless modification of ->real_blocked, which is fine
2602          * because, only current can change ->real_blocked and all readers of
2603          * ->real_blocked don't care as long ->real_blocked is always a subset
2604          * of ->blocked.
2605          */
2606         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2607 }
2608
2609 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2610 {
2611         if (!vcpu->sigset_active)
2612                 return;
2613
2614         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2615         sigemptyset(&current->real_blocked);
2616 }
2617
2618 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2619 {
2620         unsigned int old, val, grow, grow_start;
2621
2622         old = val = vcpu->halt_poll_ns;
2623         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2624         grow = READ_ONCE(halt_poll_ns_grow);
2625         if (!grow)
2626                 goto out;
2627
2628         val *= grow;
2629         if (val < grow_start)
2630                 val = grow_start;
2631
2632         if (val > halt_poll_ns)
2633                 val = halt_poll_ns;
2634
2635         vcpu->halt_poll_ns = val;
2636 out:
2637         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2638 }
2639
2640 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2641 {
2642         unsigned int old, val, shrink;
2643
2644         old = val = vcpu->halt_poll_ns;
2645         shrink = READ_ONCE(halt_poll_ns_shrink);
2646         if (shrink == 0)
2647                 val = 0;
2648         else
2649                 val /= shrink;
2650
2651         vcpu->halt_poll_ns = val;
2652         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2653 }
2654
2655 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2656 {
2657         int ret = -EINTR;
2658         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2659
2660         if (kvm_arch_vcpu_runnable(vcpu)) {
2661                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2662                 goto out;
2663         }
2664         if (kvm_cpu_has_pending_timer(vcpu))
2665                 goto out;
2666         if (signal_pending(current))
2667                 goto out;
2668
2669         ret = 0;
2670 out:
2671         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2672         return ret;
2673 }
2674
2675 /*
2676  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2677  */
2678 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2679 {
2680         ktime_t start, cur;
2681         DECLARE_SWAITQUEUE(wait);
2682         bool waited = false;
2683         u64 block_ns;
2684
2685         kvm_arch_vcpu_blocking(vcpu);
2686
2687         start = cur = ktime_get();
2688         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2689                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2690
2691                 ++vcpu->stat.halt_attempted_poll;
2692                 do {
2693                         /*
2694                          * This sets KVM_REQ_UNHALT if an interrupt
2695                          * arrives.
2696                          */
2697                         if (kvm_vcpu_check_block(vcpu) < 0) {
2698                                 ++vcpu->stat.halt_successful_poll;
2699                                 if (!vcpu_valid_wakeup(vcpu))
2700                                         ++vcpu->stat.halt_poll_invalid;
2701                                 goto out;
2702                         }
2703                         cur = ktime_get();
2704                 } while (single_task_running() && ktime_before(cur, stop));
2705         }
2706
2707         for (;;) {
2708                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2709
2710                 if (kvm_vcpu_check_block(vcpu) < 0)
2711                         break;
2712
2713                 waited = true;
2714                 schedule();
2715         }
2716
2717         finish_swait(&vcpu->wq, &wait);
2718         cur = ktime_get();
2719 out:
2720         kvm_arch_vcpu_unblocking(vcpu);
2721         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2722
2723         if (!kvm_arch_no_poll(vcpu)) {
2724                 if (!vcpu_valid_wakeup(vcpu)) {
2725                         shrink_halt_poll_ns(vcpu);
2726                 } else if (vcpu->kvm->max_halt_poll_ns) {
2727                         if (block_ns <= vcpu->halt_poll_ns)
2728                                 ;
2729                         /* we had a long block, shrink polling */
2730                         else if (vcpu->halt_poll_ns &&
2731                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2732                                 shrink_halt_poll_ns(vcpu);
2733                         /* we had a short halt and our poll time is too small */
2734                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2735                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2736                                 grow_halt_poll_ns(vcpu);
2737                 } else {
2738                         vcpu->halt_poll_ns = 0;
2739                 }
2740         }
2741
2742         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2743         kvm_arch_vcpu_block_finish(vcpu);
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2746
2747 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2748 {
2749         struct swait_queue_head *wqp;
2750
2751         wqp = kvm_arch_vcpu_wq(vcpu);
2752         if (swq_has_sleeper(wqp)) {
2753                 swake_up_one(wqp);
2754                 WRITE_ONCE(vcpu->ready, true);
2755                 ++vcpu->stat.halt_wakeup;
2756                 return true;
2757         }
2758
2759         return false;
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2762
2763 #ifndef CONFIG_S390
2764 /*
2765  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2766  */
2767 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2768 {
2769         int me;
2770         int cpu = vcpu->cpu;
2771
2772         if (kvm_vcpu_wake_up(vcpu))
2773                 return;
2774
2775         me = get_cpu();
2776         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2777                 if (kvm_arch_vcpu_should_kick(vcpu))
2778                         smp_send_reschedule(cpu);
2779         put_cpu();
2780 }
2781 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2782 #endif /* !CONFIG_S390 */
2783
2784 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2785 {
2786         struct pid *pid;
2787         struct task_struct *task = NULL;
2788         int ret = 0;
2789
2790         rcu_read_lock();
2791         pid = rcu_dereference(target->pid);
2792         if (pid)
2793                 task = get_pid_task(pid, PIDTYPE_PID);
2794         rcu_read_unlock();
2795         if (!task)
2796                 return ret;
2797         ret = yield_to(task, 1);
2798         put_task_struct(task);
2799
2800         return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2803
2804 /*
2805  * Helper that checks whether a VCPU is eligible for directed yield.
2806  * Most eligible candidate to yield is decided by following heuristics:
2807  *
2808  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2809  *  (preempted lock holder), indicated by @in_spin_loop.
2810  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2811  *
2812  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2813  *  chance last time (mostly it has become eligible now since we have probably
2814  *  yielded to lockholder in last iteration. This is done by toggling
2815  *  @dy_eligible each time a VCPU checked for eligibility.)
2816  *
2817  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2818  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2819  *  burning. Giving priority for a potential lock-holder increases lock
2820  *  progress.
2821  *
2822  *  Since algorithm is based on heuristics, accessing another VCPU data without
2823  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2824  *  and continue with next VCPU and so on.
2825  */
2826 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2827 {
2828 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2829         bool eligible;
2830
2831         eligible = !vcpu->spin_loop.in_spin_loop ||
2832                     vcpu->spin_loop.dy_eligible;
2833
2834         if (vcpu->spin_loop.in_spin_loop)
2835                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2836
2837         return eligible;
2838 #else
2839         return true;
2840 #endif
2841 }
2842
2843 /*
2844  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2845  * a vcpu_load/vcpu_put pair.  However, for most architectures
2846  * kvm_arch_vcpu_runnable does not require vcpu_load.
2847  */
2848 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2849 {
2850         return kvm_arch_vcpu_runnable(vcpu);
2851 }
2852
2853 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2854 {
2855         if (kvm_arch_dy_runnable(vcpu))
2856                 return true;
2857
2858 #ifdef CONFIG_KVM_ASYNC_PF
2859         if (!list_empty_careful(&vcpu->async_pf.done))
2860                 return true;
2861 #endif
2862
2863         return false;
2864 }
2865
2866 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2867 {
2868         struct kvm *kvm = me->kvm;
2869         struct kvm_vcpu *vcpu;
2870         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2871         int yielded = 0;
2872         int try = 3;
2873         int pass;
2874         int i;
2875
2876         kvm_vcpu_set_in_spin_loop(me, true);
2877         /*
2878          * We boost the priority of a VCPU that is runnable but not
2879          * currently running, because it got preempted by something
2880          * else and called schedule in __vcpu_run.  Hopefully that
2881          * VCPU is holding the lock that we need and will release it.
2882          * We approximate round-robin by starting at the last boosted VCPU.
2883          */
2884         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2885                 kvm_for_each_vcpu(i, vcpu, kvm) {
2886                         if (!pass && i <= last_boosted_vcpu) {
2887                                 i = last_boosted_vcpu;
2888                                 continue;
2889                         } else if (pass && i > last_boosted_vcpu)
2890                                 break;
2891                         if (!READ_ONCE(vcpu->ready))
2892                                 continue;
2893                         if (vcpu == me)
2894                                 continue;
2895                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2896                                 continue;
2897                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2898                                 !kvm_arch_vcpu_in_kernel(vcpu))
2899                                 continue;
2900                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2901                                 continue;
2902
2903                         yielded = kvm_vcpu_yield_to(vcpu);
2904                         if (yielded > 0) {
2905                                 kvm->last_boosted_vcpu = i;
2906                                 break;
2907                         } else if (yielded < 0) {
2908                                 try--;
2909                                 if (!try)
2910                                         break;
2911                         }
2912                 }
2913         }
2914         kvm_vcpu_set_in_spin_loop(me, false);
2915
2916         /* Ensure vcpu is not eligible during next spinloop */
2917         kvm_vcpu_set_dy_eligible(me, false);
2918 }
2919 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2920
2921 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2922 {
2923         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2924         struct page *page;
2925
2926         if (vmf->pgoff == 0)
2927                 page = virt_to_page(vcpu->run);
2928 #ifdef CONFIG_X86
2929         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2930                 page = virt_to_page(vcpu->arch.pio_data);
2931 #endif
2932 #ifdef CONFIG_KVM_MMIO
2933         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2934                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2935 #endif
2936         else
2937                 return kvm_arch_vcpu_fault(vcpu, vmf);
2938         get_page(page);
2939         vmf->page = page;
2940         return 0;
2941 }
2942
2943 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2944         .fault = kvm_vcpu_fault,
2945 };
2946
2947 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2948 {
2949         vma->vm_ops = &kvm_vcpu_vm_ops;
2950         return 0;
2951 }
2952
2953 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2954 {
2955         struct kvm_vcpu *vcpu = filp->private_data;
2956
2957         debugfs_remove_recursive(vcpu->debugfs_dentry);
2958         kvm_put_kvm(vcpu->kvm);
2959         return 0;
2960 }
2961
2962 static struct file_operations kvm_vcpu_fops = {
2963         .release        = kvm_vcpu_release,
2964         .unlocked_ioctl = kvm_vcpu_ioctl,
2965         .mmap           = kvm_vcpu_mmap,
2966         .llseek         = noop_llseek,
2967         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2968 };
2969
2970 /*
2971  * Allocates an inode for the vcpu.
2972  */
2973 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2974 {
2975         char name[8 + 1 + ITOA_MAX_LEN + 1];
2976
2977         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2978         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2979 }
2980
2981 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2982 {
2983 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2984         char dir_name[ITOA_MAX_LEN * 2];
2985
2986         if (!debugfs_initialized())
2987                 return;
2988
2989         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2990         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2991                                                   vcpu->kvm->debugfs_dentry);
2992
2993         kvm_arch_create_vcpu_debugfs(vcpu);
2994 #endif
2995 }
2996
2997 /*
2998  * Creates some virtual cpus.  Good luck creating more than one.
2999  */
3000 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3001 {
3002         int r;
3003         struct kvm_vcpu *vcpu;
3004         struct page *page;
3005
3006         if (id >= KVM_MAX_VCPU_ID)
3007                 return -EINVAL;
3008
3009         mutex_lock(&kvm->lock);
3010         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3011                 mutex_unlock(&kvm->lock);
3012                 return -EINVAL;
3013         }
3014
3015         kvm->created_vcpus++;
3016         mutex_unlock(&kvm->lock);
3017
3018         r = kvm_arch_vcpu_precreate(kvm, id);
3019         if (r)
3020                 goto vcpu_decrement;
3021
3022         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3023         if (!vcpu) {
3024                 r = -ENOMEM;
3025                 goto vcpu_decrement;
3026         }
3027
3028         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3029         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3030         if (!page) {
3031                 r = -ENOMEM;
3032                 goto vcpu_free;
3033         }
3034         vcpu->run = page_address(page);
3035
3036         kvm_vcpu_init(vcpu, kvm, id);
3037
3038         r = kvm_arch_vcpu_create(vcpu);
3039         if (r)
3040                 goto vcpu_free_run_page;
3041
3042         mutex_lock(&kvm->lock);
3043         if (kvm_get_vcpu_by_id(kvm, id)) {
3044                 r = -EEXIST;
3045                 goto unlock_vcpu_destroy;
3046         }
3047
3048         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3049         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3050
3051         /* Now it's all set up, let userspace reach it */
3052         kvm_get_kvm(kvm);
3053         r = create_vcpu_fd(vcpu);
3054         if (r < 0) {
3055                 kvm_put_kvm_no_destroy(kvm);
3056                 goto unlock_vcpu_destroy;
3057         }
3058
3059         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3060
3061         /*
3062          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3063          * before kvm->online_vcpu's incremented value.
3064          */
3065         smp_wmb();
3066         atomic_inc(&kvm->online_vcpus);
3067
3068         mutex_unlock(&kvm->lock);
3069         kvm_arch_vcpu_postcreate(vcpu);
3070         kvm_create_vcpu_debugfs(vcpu);
3071         return r;
3072
3073 unlock_vcpu_destroy:
3074         mutex_unlock(&kvm->lock);
3075         kvm_arch_vcpu_destroy(vcpu);
3076 vcpu_free_run_page:
3077         free_page((unsigned long)vcpu->run);
3078 vcpu_free:
3079         kmem_cache_free(kvm_vcpu_cache, vcpu);
3080 vcpu_decrement:
3081         mutex_lock(&kvm->lock);
3082         kvm->created_vcpus--;
3083         mutex_unlock(&kvm->lock);
3084         return r;
3085 }
3086
3087 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3088 {
3089         if (sigset) {
3090                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3091                 vcpu->sigset_active = 1;
3092                 vcpu->sigset = *sigset;
3093         } else
3094                 vcpu->sigset_active = 0;
3095         return 0;
3096 }
3097
3098 static long kvm_vcpu_ioctl(struct file *filp,
3099                            unsigned int ioctl, unsigned long arg)
3100 {
3101         struct kvm_vcpu *vcpu = filp->private_data;
3102         void __user *argp = (void __user *)arg;
3103         int r;
3104         struct kvm_fpu *fpu = NULL;
3105         struct kvm_sregs *kvm_sregs = NULL;
3106
3107         if (vcpu->kvm->mm != current->mm)
3108                 return -EIO;
3109
3110         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3111                 return -EINVAL;
3112
3113         /*
3114          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3115          * execution; mutex_lock() would break them.
3116          */
3117         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3118         if (r != -ENOIOCTLCMD)
3119                 return r;
3120
3121         if (mutex_lock_killable(&vcpu->mutex))
3122                 return -EINTR;
3123         switch (ioctl) {
3124         case KVM_RUN: {
3125                 struct pid *oldpid;
3126                 r = -EINVAL;
3127                 if (arg)
3128                         goto out;
3129                 oldpid = rcu_access_pointer(vcpu->pid);
3130                 if (unlikely(oldpid != task_pid(current))) {
3131                         /* The thread running this VCPU changed. */
3132                         struct pid *newpid;
3133
3134                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3135                         if (r)
3136                                 break;
3137
3138                         newpid = get_task_pid(current, PIDTYPE_PID);
3139                         rcu_assign_pointer(vcpu->pid, newpid);
3140                         if (oldpid)
3141                                 synchronize_rcu();
3142                         put_pid(oldpid);
3143                 }
3144                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3145                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3146                 break;
3147         }
3148         case KVM_GET_REGS: {
3149                 struct kvm_regs *kvm_regs;
3150
3151                 r = -ENOMEM;
3152                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3153                 if (!kvm_regs)
3154                         goto out;
3155                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3156                 if (r)
3157                         goto out_free1;
3158                 r = -EFAULT;
3159                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3160                         goto out_free1;
3161                 r = 0;
3162 out_free1:
3163                 kfree(kvm_regs);
3164                 break;
3165         }
3166         case KVM_SET_REGS: {
3167                 struct kvm_regs *kvm_regs;
3168
3169                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3170                 if (IS_ERR(kvm_regs)) {
3171                         r = PTR_ERR(kvm_regs);
3172                         goto out;
3173                 }
3174                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3175                 kfree(kvm_regs);
3176                 break;
3177         }
3178         case KVM_GET_SREGS: {
3179                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3180                                     GFP_KERNEL_ACCOUNT);
3181                 r = -ENOMEM;
3182                 if (!kvm_sregs)
3183                         goto out;
3184                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3185                 if (r)
3186                         goto out;
3187                 r = -EFAULT;
3188                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3189                         goto out;
3190                 r = 0;
3191                 break;
3192         }
3193         case KVM_SET_SREGS: {
3194                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3195                 if (IS_ERR(kvm_sregs)) {
3196                         r = PTR_ERR(kvm_sregs);
3197                         kvm_sregs = NULL;
3198                         goto out;
3199                 }
3200                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3201                 break;
3202         }
3203         case KVM_GET_MP_STATE: {
3204                 struct kvm_mp_state mp_state;
3205
3206                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3207                 if (r)
3208                         goto out;
3209                 r = -EFAULT;
3210                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3211                         goto out;
3212                 r = 0;
3213                 break;
3214         }
3215         case KVM_SET_MP_STATE: {
3216                 struct kvm_mp_state mp_state;
3217
3218                 r = -EFAULT;
3219                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3220                         goto out;
3221                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3222                 break;
3223         }
3224         case KVM_TRANSLATE: {
3225                 struct kvm_translation tr;
3226
3227                 r = -EFAULT;
3228                 if (copy_from_user(&tr, argp, sizeof(tr)))
3229                         goto out;
3230                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3231                 if (r)
3232                         goto out;
3233                 r = -EFAULT;
3234                 if (copy_to_user(argp, &tr, sizeof(tr)))
3235                         goto out;
3236                 r = 0;
3237                 break;
3238         }
3239         case KVM_SET_GUEST_DEBUG: {
3240                 struct kvm_guest_debug dbg;
3241
3242                 r = -EFAULT;
3243                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3244                         goto out;
3245                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3246                 break;
3247         }
3248         case KVM_SET_SIGNAL_MASK: {
3249                 struct kvm_signal_mask __user *sigmask_arg = argp;
3250                 struct kvm_signal_mask kvm_sigmask;
3251                 sigset_t sigset, *p;
3252
3253                 p = NULL;
3254                 if (argp) {
3255                         r = -EFAULT;
3256                         if (copy_from_user(&kvm_sigmask, argp,
3257                                            sizeof(kvm_sigmask)))
3258                                 goto out;
3259                         r = -EINVAL;
3260                         if (kvm_sigmask.len != sizeof(sigset))
3261                                 goto out;
3262                         r = -EFAULT;
3263                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3264                                            sizeof(sigset)))
3265                                 goto out;
3266                         p = &sigset;
3267                 }
3268                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3269                 break;
3270         }
3271         case KVM_GET_FPU: {
3272                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3273                 r = -ENOMEM;
3274                 if (!fpu)
3275                         goto out;
3276                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3277                 if (r)
3278                         goto out;
3279                 r = -EFAULT;
3280                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3281                         goto out;
3282                 r = 0;
3283                 break;
3284         }
3285         case KVM_SET_FPU: {
3286                 fpu = memdup_user(argp, sizeof(*fpu));
3287                 if (IS_ERR(fpu)) {
3288                         r = PTR_ERR(fpu);
3289                         fpu = NULL;
3290                         goto out;
3291                 }
3292                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3293                 break;
3294         }
3295         default:
3296                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3297         }
3298 out:
3299         mutex_unlock(&vcpu->mutex);
3300         kfree(fpu);
3301         kfree(kvm_sregs);
3302         return r;
3303 }
3304
3305 #ifdef CONFIG_KVM_COMPAT
3306 static long kvm_vcpu_compat_ioctl(struct file *filp,
3307                                   unsigned int ioctl, unsigned long arg)
3308 {
3309         struct kvm_vcpu *vcpu = filp->private_data;
3310         void __user *argp = compat_ptr(arg);
3311         int r;
3312
3313         if (vcpu->kvm->mm != current->mm)
3314                 return -EIO;
3315
3316         switch (ioctl) {
3317         case KVM_SET_SIGNAL_MASK: {
3318                 struct kvm_signal_mask __user *sigmask_arg = argp;
3319                 struct kvm_signal_mask kvm_sigmask;
3320                 sigset_t sigset;
3321
3322                 if (argp) {
3323                         r = -EFAULT;
3324                         if (copy_from_user(&kvm_sigmask, argp,
3325                                            sizeof(kvm_sigmask)))
3326                                 goto out;
3327                         r = -EINVAL;
3328                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3329                                 goto out;
3330                         r = -EFAULT;
3331                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3332                                 goto out;
3333                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3334                 } else
3335                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3336                 break;
3337         }
3338         default:
3339                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3340         }
3341
3342 out:
3343         return r;
3344 }
3345 #endif
3346
3347 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3348 {
3349         struct kvm_device *dev = filp->private_data;
3350
3351         if (dev->ops->mmap)
3352                 return dev->ops->mmap(dev, vma);
3353
3354         return -ENODEV;
3355 }
3356
3357 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3358                                  int (*accessor)(struct kvm_device *dev,
3359                                                  struct kvm_device_attr *attr),
3360                                  unsigned long arg)
3361 {
3362         struct kvm_device_attr attr;
3363
3364         if (!accessor)
3365                 return -EPERM;
3366
3367         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3368                 return -EFAULT;
3369
3370         return accessor(dev, &attr);
3371 }
3372
3373 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3374                              unsigned long arg)
3375 {
3376         struct kvm_device *dev = filp->private_data;
3377
3378         if (dev->kvm->mm != current->mm)
3379                 return -EIO;
3380
3381         switch (ioctl) {
3382         case KVM_SET_DEVICE_ATTR:
3383                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3384         case KVM_GET_DEVICE_ATTR:
3385                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3386         case KVM_HAS_DEVICE_ATTR:
3387                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3388         default:
3389                 if (dev->ops->ioctl)
3390                         return dev->ops->ioctl(dev, ioctl, arg);
3391
3392                 return -ENOTTY;
3393         }
3394 }
3395
3396 static int kvm_device_release(struct inode *inode, struct file *filp)
3397 {
3398         struct kvm_device *dev = filp->private_data;
3399         struct kvm *kvm = dev->kvm;
3400
3401         if (dev->ops->release) {
3402                 mutex_lock(&kvm->lock);
3403                 list_del(&dev->vm_node);
3404                 dev->ops->release(dev);
3405                 mutex_unlock(&kvm->lock);
3406         }
3407
3408         kvm_put_kvm(kvm);
3409         return 0;
3410 }
3411
3412 static const struct file_operations kvm_device_fops = {
3413         .unlocked_ioctl = kvm_device_ioctl,
3414         .release = kvm_device_release,
3415         KVM_COMPAT(kvm_device_ioctl),
3416         .mmap = kvm_device_mmap,
3417 };
3418
3419 struct kvm_device *kvm_device_from_filp(struct file *filp)
3420 {
3421         if (filp->f_op != &kvm_device_fops)
3422                 return NULL;
3423
3424         return filp->private_data;
3425 }
3426
3427 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3428 #ifdef CONFIG_KVM_MPIC
3429         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3430         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3431 #endif
3432 };
3433
3434 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3435 {
3436         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3437                 return -ENOSPC;
3438
3439         if (kvm_device_ops_table[type] != NULL)
3440                 return -EEXIST;
3441
3442         kvm_device_ops_table[type] = ops;
3443         return 0;
3444 }
3445
3446 void kvm_unregister_device_ops(u32 type)
3447 {
3448         if (kvm_device_ops_table[type] != NULL)
3449                 kvm_device_ops_table[type] = NULL;
3450 }
3451
3452 static int kvm_ioctl_create_device(struct kvm *kvm,
3453                                    struct kvm_create_device *cd)
3454 {
3455         const struct kvm_device_ops *ops = NULL;
3456         struct kvm_device *dev;
3457         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3458         int type;
3459         int ret;
3460
3461         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3462                 return -ENODEV;
3463
3464         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3465         ops = kvm_device_ops_table[type];
3466         if (ops == NULL)
3467                 return -ENODEV;
3468
3469         if (test)
3470                 return 0;
3471
3472         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3473         if (!dev)
3474                 return -ENOMEM;
3475
3476         dev->ops = ops;
3477         dev->kvm = kvm;
3478
3479         mutex_lock(&kvm->lock);
3480         ret = ops->create(dev, type);
3481         if (ret < 0) {
3482                 mutex_unlock(&kvm->lock);
3483                 kfree(dev);
3484                 return ret;
3485         }
3486         list_add(&dev->vm_node, &kvm->devices);
3487         mutex_unlock(&kvm->lock);
3488
3489         if (ops->init)
3490                 ops->init(dev);
3491
3492         kvm_get_kvm(kvm);
3493         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3494         if (ret < 0) {
3495                 kvm_put_kvm_no_destroy(kvm);
3496                 mutex_lock(&kvm->lock);
3497                 list_del(&dev->vm_node);
3498                 mutex_unlock(&kvm->lock);
3499                 ops->destroy(dev);
3500                 return ret;
3501         }
3502
3503         cd->fd = ret;
3504         return 0;
3505 }
3506
3507 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3508 {
3509         switch (arg) {
3510         case KVM_CAP_USER_MEMORY:
3511         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3512         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3513         case KVM_CAP_INTERNAL_ERROR_DATA:
3514 #ifdef CONFIG_HAVE_KVM_MSI
3515         case KVM_CAP_SIGNAL_MSI:
3516 #endif
3517 #ifdef CONFIG_HAVE_KVM_IRQFD
3518         case KVM_CAP_IRQFD:
3519         case KVM_CAP_IRQFD_RESAMPLE:
3520 #endif
3521         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3522         case KVM_CAP_CHECK_EXTENSION_VM:
3523         case KVM_CAP_ENABLE_CAP_VM:
3524         case KVM_CAP_HALT_POLL:
3525                 return 1;
3526 #ifdef CONFIG_KVM_MMIO
3527         case KVM_CAP_COALESCED_MMIO:
3528                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3529         case KVM_CAP_COALESCED_PIO:
3530                 return 1;
3531 #endif
3532 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3533         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3534                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3535 #endif
3536 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3537         case KVM_CAP_IRQ_ROUTING:
3538                 return KVM_MAX_IRQ_ROUTES;
3539 #endif
3540 #if KVM_ADDRESS_SPACE_NUM > 1
3541         case KVM_CAP_MULTI_ADDRESS_SPACE:
3542                 return KVM_ADDRESS_SPACE_NUM;
3543 #endif
3544         case KVM_CAP_NR_MEMSLOTS:
3545                 return KVM_USER_MEM_SLOTS;
3546         default:
3547                 break;
3548         }
3549         return kvm_vm_ioctl_check_extension(kvm, arg);
3550 }
3551
3552 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3553                                                   struct kvm_enable_cap *cap)
3554 {
3555         return -EINVAL;
3556 }
3557
3558 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3559                                            struct kvm_enable_cap *cap)
3560 {
3561         switch (cap->cap) {
3562 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3563         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3564                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3565
3566                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3567                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3568
3569                 if (cap->flags || (cap->args[0] & ~allowed_options))
3570                         return -EINVAL;
3571                 kvm->manual_dirty_log_protect = cap->args[0];
3572                 return 0;
3573         }
3574 #endif
3575         case KVM_CAP_HALT_POLL: {
3576                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3577                         return -EINVAL;
3578
3579                 kvm->max_halt_poll_ns = cap->args[0];
3580                 return 0;
3581         }
3582         default:
3583                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3584         }
3585 }
3586
3587 static long kvm_vm_ioctl(struct file *filp,
3588                            unsigned int ioctl, unsigned long arg)
3589 {
3590         struct kvm *kvm = filp->private_data;
3591         void __user *argp = (void __user *)arg;
3592         int r;
3593
3594         if (kvm->mm != current->mm)
3595                 return -EIO;
3596         switch (ioctl) {
3597         case KVM_CREATE_VCPU:
3598                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3599                 break;
3600         case KVM_ENABLE_CAP: {
3601                 struct kvm_enable_cap cap;
3602
3603                 r = -EFAULT;
3604                 if (copy_from_user(&cap, argp, sizeof(cap)))
3605                         goto out;
3606                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3607                 break;
3608         }
3609         case KVM_SET_USER_MEMORY_REGION: {
3610                 struct kvm_userspace_memory_region kvm_userspace_mem;
3611
3612                 r = -EFAULT;
3613                 if (copy_from_user(&kvm_userspace_mem, argp,
3614                                                 sizeof(kvm_userspace_mem)))
3615                         goto out;
3616
3617                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3618                 break;
3619         }
3620         case KVM_GET_DIRTY_LOG: {
3621                 struct kvm_dirty_log log;
3622
3623                 r = -EFAULT;
3624                 if (copy_from_user(&log, argp, sizeof(log)))
3625                         goto out;
3626                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3627                 break;
3628         }
3629 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3630         case KVM_CLEAR_DIRTY_LOG: {
3631                 struct kvm_clear_dirty_log log;
3632
3633                 r = -EFAULT;
3634                 if (copy_from_user(&log, argp, sizeof(log)))
3635                         goto out;
3636                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3637                 break;
3638         }
3639 #endif
3640 #ifdef CONFIG_KVM_MMIO
3641         case KVM_REGISTER_COALESCED_MMIO: {
3642                 struct kvm_coalesced_mmio_zone zone;
3643
3644                 r = -EFAULT;
3645                 if (copy_from_user(&zone, argp, sizeof(zone)))
3646                         goto out;
3647                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3648                 break;
3649         }
3650         case KVM_UNREGISTER_COALESCED_MMIO: {
3651                 struct kvm_coalesced_mmio_zone zone;
3652
3653                 r = -EFAULT;
3654                 if (copy_from_user(&zone, argp, sizeof(zone)))
3655                         goto out;
3656                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3657                 break;
3658         }
3659 #endif
3660         case KVM_IRQFD: {
3661                 struct kvm_irqfd data;
3662
3663                 r = -EFAULT;
3664                 if (copy_from_user(&data, argp, sizeof(data)))
3665                         goto out;
3666                 r = kvm_irqfd(kvm, &data);
3667                 break;
3668         }
3669         case KVM_IOEVENTFD: {
3670                 struct kvm_ioeventfd data;
3671
3672                 r = -EFAULT;
3673                 if (copy_from_user(&data, argp, sizeof(data)))
3674                         goto out;
3675                 r = kvm_ioeventfd(kvm, &data);
3676                 break;
3677         }
3678 #ifdef CONFIG_HAVE_KVM_MSI
3679         case KVM_SIGNAL_MSI: {
3680                 struct kvm_msi msi;
3681
3682                 r = -EFAULT;
3683                 if (copy_from_user(&msi, argp, sizeof(msi)))
3684                         goto out;
3685                 r = kvm_send_userspace_msi(kvm, &msi);
3686                 break;
3687         }
3688 #endif
3689 #ifdef __KVM_HAVE_IRQ_LINE
3690         case KVM_IRQ_LINE_STATUS:
3691         case KVM_IRQ_LINE: {
3692                 struct kvm_irq_level irq_event;
3693
3694                 r = -EFAULT;
3695                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3696                         goto out;
3697
3698                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3699                                         ioctl == KVM_IRQ_LINE_STATUS);
3700                 if (r)
3701                         goto out;
3702
3703                 r = -EFAULT;
3704                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3705                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3706                                 goto out;
3707                 }
3708
3709                 r = 0;
3710                 break;
3711         }
3712 #endif
3713 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3714         case KVM_SET_GSI_ROUTING: {
3715                 struct kvm_irq_routing routing;
3716                 struct kvm_irq_routing __user *urouting;
3717                 struct kvm_irq_routing_entry *entries = NULL;
3718
3719                 r = -EFAULT;
3720                 if (copy_from_user(&routing, argp, sizeof(routing)))
3721                         goto out;
3722                 r = -EINVAL;
3723                 if (!kvm_arch_can_set_irq_routing(kvm))
3724                         goto out;
3725                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3726                         goto out;
3727                 if (routing.flags)
3728                         goto out;
3729                 if (routing.nr) {
3730                         r = -ENOMEM;
3731                         entries = vmalloc(array_size(sizeof(*entries),
3732                                                      routing.nr));
3733                         if (!entries)
3734                                 goto out;
3735                         r = -EFAULT;
3736                         urouting = argp;
3737                         if (copy_from_user(entries, urouting->entries,
3738                                            routing.nr * sizeof(*entries)))
3739                                 goto out_free_irq_routing;
3740                 }
3741                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3742                                         routing.flags);
3743 out_free_irq_routing:
3744                 vfree(entries);
3745                 break;
3746         }
3747 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3748         case KVM_CREATE_DEVICE: {
3749                 struct kvm_create_device cd;
3750
3751                 r = -EFAULT;
3752                 if (copy_from_user(&cd, argp, sizeof(cd)))
3753                         goto out;
3754
3755                 r = kvm_ioctl_create_device(kvm, &cd);
3756                 if (r)
3757                         goto out;
3758
3759                 r = -EFAULT;
3760                 if (copy_to_user(argp, &cd, sizeof(cd)))
3761                         goto out;
3762
3763                 r = 0;
3764                 break;
3765         }
3766         case KVM_CHECK_EXTENSION:
3767                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3768                 break;
3769         default:
3770                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3771         }
3772 out:
3773         return r;
3774 }
3775
3776 #ifdef CONFIG_KVM_COMPAT
3777 struct compat_kvm_dirty_log {
3778         __u32 slot;
3779         __u32 padding1;
3780         union {
3781                 compat_uptr_t dirty_bitmap; /* one bit per page */
3782                 __u64 padding2;
3783         };
3784 };
3785
3786 static long kvm_vm_compat_ioctl(struct file *filp,
3787                            unsigned int ioctl, unsigned long arg)
3788 {
3789         struct kvm *kvm = filp->private_data;
3790         int r;
3791
3792         if (kvm->mm != current->mm)
3793                 return -EIO;
3794         switch (ioctl) {
3795         case KVM_GET_DIRTY_LOG: {
3796                 struct compat_kvm_dirty_log compat_log;
3797                 struct kvm_dirty_log log;
3798
3799                 if (copy_from_user(&compat_log, (void __user *)arg,
3800                                    sizeof(compat_log)))
3801                         return -EFAULT;
3802                 log.slot         = compat_log.slot;
3803                 log.padding1     = compat_log.padding1;
3804                 log.padding2     = compat_log.padding2;
3805                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3806
3807                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3808                 break;
3809         }
3810         default:
3811                 r = kvm_vm_ioctl(filp, ioctl, arg);
3812         }
3813         return r;
3814 }
3815 #endif
3816
3817 static struct file_operations kvm_vm_fops = {
3818         .release        = kvm_vm_release,
3819         .unlocked_ioctl = kvm_vm_ioctl,
3820         .llseek         = noop_llseek,
3821         KVM_COMPAT(kvm_vm_compat_ioctl),
3822 };
3823
3824 static int kvm_dev_ioctl_create_vm(unsigned long type)
3825 {
3826         int r;
3827         struct kvm *kvm;
3828         struct file *file;
3829
3830         kvm = kvm_create_vm(type);
3831         if (IS_ERR(kvm))
3832                 return PTR_ERR(kvm);
3833 #ifdef CONFIG_KVM_MMIO
3834         r = kvm_coalesced_mmio_init(kvm);
3835         if (r < 0)
3836                 goto put_kvm;
3837 #endif
3838         r = get_unused_fd_flags(O_CLOEXEC);
3839         if (r < 0)
3840                 goto put_kvm;
3841
3842         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3843         if (IS_ERR(file)) {
3844                 put_unused_fd(r);
3845                 r = PTR_ERR(file);
3846                 goto put_kvm;
3847         }
3848
3849         /*
3850          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3851          * already set, with ->release() being kvm_vm_release().  In error
3852          * cases it will be called by the final fput(file) and will take
3853          * care of doing kvm_put_kvm(kvm).
3854          */
3855         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3856                 put_unused_fd(r);
3857                 fput(file);
3858                 return -ENOMEM;
3859         }
3860         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3861
3862         fd_install(r, file);
3863         return r;
3864
3865 put_kvm:
3866         kvm_put_kvm(kvm);
3867         return r;
3868 }
3869
3870 static long kvm_dev_ioctl(struct file *filp,
3871                           unsigned int ioctl, unsigned long arg)
3872 {
3873         long r = -EINVAL;
3874
3875         switch (ioctl) {
3876         case KVM_GET_API_VERSION:
3877                 if (arg)
3878                         goto out;
3879                 r = KVM_API_VERSION;
3880                 break;
3881         case KVM_CREATE_VM:
3882                 r = kvm_dev_ioctl_create_vm(arg);
3883                 break;
3884         case KVM_CHECK_EXTENSION:
3885                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3886                 break;
3887         case KVM_GET_VCPU_MMAP_SIZE:
3888                 if (arg)
3889                         goto out;
3890                 r = PAGE_SIZE;     /* struct kvm_run */
3891 #ifdef CONFIG_X86
3892                 r += PAGE_SIZE;    /* pio data page */
3893 #endif
3894 #ifdef CONFIG_KVM_MMIO
3895                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3896 #endif
3897                 break;
3898         case KVM_TRACE_ENABLE:
3899         case KVM_TRACE_PAUSE:
3900         case KVM_TRACE_DISABLE:
3901                 r = -EOPNOTSUPP;
3902                 break;
3903         default:
3904                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3905         }
3906 out:
3907         return r;
3908 }
3909
3910 static struct file_operations kvm_chardev_ops = {
3911         .unlocked_ioctl = kvm_dev_ioctl,
3912         .llseek         = noop_llseek,
3913         KVM_COMPAT(kvm_dev_ioctl),
3914 };
3915
3916 static struct miscdevice kvm_dev = {
3917         KVM_MINOR,
3918         "kvm",
3919         &kvm_chardev_ops,
3920 };
3921
3922 static void hardware_enable_nolock(void *junk)
3923 {
3924         int cpu = raw_smp_processor_id();
3925         int r;
3926
3927         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3928                 return;
3929
3930         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3931
3932         r = kvm_arch_hardware_enable();
3933
3934         if (r) {
3935                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3936                 atomic_inc(&hardware_enable_failed);
3937                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3938         }
3939 }
3940
3941 static int kvm_starting_cpu(unsigned int cpu)
3942 {
3943         raw_spin_lock(&kvm_count_lock);
3944         if (kvm_usage_count)
3945                 hardware_enable_nolock(NULL);
3946         raw_spin_unlock(&kvm_count_lock);
3947         return 0;
3948 }
3949
3950 static void hardware_disable_nolock(void *junk)
3951 {
3952         int cpu = raw_smp_processor_id();
3953
3954         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3955                 return;
3956         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3957         kvm_arch_hardware_disable();
3958 }
3959
3960 static int kvm_dying_cpu(unsigned int cpu)
3961 {
3962         raw_spin_lock(&kvm_count_lock);
3963         if (kvm_usage_count)
3964                 hardware_disable_nolock(NULL);
3965         raw_spin_unlock(&kvm_count_lock);
3966         return 0;
3967 }
3968
3969 static void hardware_disable_all_nolock(void)
3970 {
3971         BUG_ON(!kvm_usage_count);
3972
3973         kvm_usage_count--;
3974         if (!kvm_usage_count)
3975                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3976 }
3977
3978 static void hardware_disable_all(void)
3979 {
3980         raw_spin_lock(&kvm_count_lock);
3981         hardware_disable_all_nolock();
3982         raw_spin_unlock(&kvm_count_lock);
3983 }
3984
3985 static int hardware_enable_all(void)
3986 {
3987         int r = 0;
3988
3989         raw_spin_lock(&kvm_count_lock);
3990
3991         kvm_usage_count++;
3992         if (kvm_usage_count == 1) {
3993                 atomic_set(&hardware_enable_failed, 0);
3994                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3995
3996                 if (atomic_read(&hardware_enable_failed)) {
3997                         hardware_disable_all_nolock();
3998                         r = -EBUSY;
3999                 }
4000         }
4001
4002         raw_spin_unlock(&kvm_count_lock);
4003
4004         return r;
4005 }
4006
4007 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4008                       void *v)
4009 {
4010         /*
4011          * Some (well, at least mine) BIOSes hang on reboot if
4012          * in vmx root mode.
4013          *
4014          * And Intel TXT required VMX off for all cpu when system shutdown.
4015          */
4016         pr_info("kvm: exiting hardware virtualization\n");
4017         kvm_rebooting = true;
4018         on_each_cpu(hardware_disable_nolock, NULL, 1);
4019         return NOTIFY_OK;
4020 }
4021
4022 static struct notifier_block kvm_reboot_notifier = {
4023         .notifier_call = kvm_reboot,
4024         .priority = 0,
4025 };
4026
4027 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4028 {
4029         int i;
4030
4031         for (i = 0; i < bus->dev_count; i++) {
4032                 struct kvm_io_device *pos = bus->range[i].dev;
4033
4034                 kvm_iodevice_destructor(pos);
4035         }
4036         kfree(bus);
4037 }
4038
4039 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4040                                  const struct kvm_io_range *r2)
4041 {
4042         gpa_t addr1 = r1->addr;
4043         gpa_t addr2 = r2->addr;
4044
4045         if (addr1 < addr2)
4046                 return -1;
4047
4048         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4049          * accept any overlapping write.  Any order is acceptable for
4050          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4051          * we process all of them.
4052          */
4053         if (r2->len) {
4054                 addr1 += r1->len;
4055                 addr2 += r2->len;
4056         }
4057
4058         if (addr1 > addr2)
4059                 return 1;
4060
4061         return 0;
4062 }
4063
4064 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4065 {
4066         return kvm_io_bus_cmp(p1, p2);
4067 }
4068
4069 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4070                              gpa_t addr, int len)
4071 {
4072         struct kvm_io_range *range, key;
4073         int off;
4074
4075         key = (struct kvm_io_range) {
4076                 .addr = addr,
4077                 .len = len,
4078         };
4079
4080         range = bsearch(&key, bus->range, bus->dev_count,
4081                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4082         if (range == NULL)
4083                 return -ENOENT;
4084
4085         off = range - bus->range;
4086
4087         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4088                 off--;
4089
4090         return off;
4091 }
4092
4093 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4094                               struct kvm_io_range *range, const void *val)
4095 {
4096         int idx;
4097
4098         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4099         if (idx < 0)
4100                 return -EOPNOTSUPP;
4101
4102         while (idx < bus->dev_count &&
4103                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4104                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4105                                         range->len, val))
4106                         return idx;
4107                 idx++;
4108         }
4109
4110         return -EOPNOTSUPP;
4111 }
4112
4113 /* kvm_io_bus_write - called under kvm->slots_lock */
4114 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4115                      int len, const void *val)
4116 {
4117         struct kvm_io_bus *bus;
4118         struct kvm_io_range range;
4119         int r;
4120
4121         range = (struct kvm_io_range) {
4122                 .addr = addr,
4123                 .len = len,
4124         };
4125
4126         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4127         if (!bus)
4128                 return -ENOMEM;
4129         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4130         return r < 0 ? r : 0;
4131 }
4132 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4133
4134 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4135 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4136                             gpa_t addr, int len, const void *val, long cookie)
4137 {
4138         struct kvm_io_bus *bus;
4139         struct kvm_io_range range;
4140
4141         range = (struct kvm_io_range) {
4142                 .addr = addr,
4143                 .len = len,
4144         };
4145
4146         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4147         if (!bus)
4148                 return -ENOMEM;
4149
4150         /* First try the device referenced by cookie. */
4151         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4152             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4153                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4154                                         val))
4155                         return cookie;
4156
4157         /*
4158          * cookie contained garbage; fall back to search and return the
4159          * correct cookie value.
4160          */
4161         return __kvm_io_bus_write(vcpu, bus, &range, val);
4162 }
4163
4164 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4165                              struct kvm_io_range *range, void *val)
4166 {
4167         int idx;
4168
4169         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4170         if (idx < 0)
4171                 return -EOPNOTSUPP;
4172
4173         while (idx < bus->dev_count &&
4174                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4175                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4176                                        range->len, val))
4177                         return idx;
4178                 idx++;
4179         }
4180
4181         return -EOPNOTSUPP;
4182 }
4183
4184 /* kvm_io_bus_read - called under kvm->slots_lock */
4185 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4186                     int len, void *val)
4187 {
4188         struct kvm_io_bus *bus;
4189         struct kvm_io_range range;
4190         int r;
4191
4192         range = (struct kvm_io_range) {
4193                 .addr = addr,
4194                 .len = len,
4195         };
4196
4197         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4198         if (!bus)
4199                 return -ENOMEM;
4200         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4201         return r < 0 ? r : 0;
4202 }
4203
4204 /* Caller must hold slots_lock. */
4205 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4206                             int len, struct kvm_io_device *dev)
4207 {
4208         int i;
4209         struct kvm_io_bus *new_bus, *bus;
4210         struct kvm_io_range range;
4211
4212         bus = kvm_get_bus(kvm, bus_idx);
4213         if (!bus)
4214                 return -ENOMEM;
4215
4216         /* exclude ioeventfd which is limited by maximum fd */
4217         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4218                 return -ENOSPC;
4219
4220         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4221                           GFP_KERNEL_ACCOUNT);
4222         if (!new_bus)
4223                 return -ENOMEM;
4224
4225         range = (struct kvm_io_range) {
4226                 .addr = addr,
4227                 .len = len,
4228                 .dev = dev,
4229         };
4230
4231         for (i = 0; i < bus->dev_count; i++)
4232                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4233                         break;
4234
4235         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4236         new_bus->dev_count++;
4237         new_bus->range[i] = range;
4238         memcpy(new_bus->range + i + 1, bus->range + i,
4239                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4240         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4241         synchronize_srcu_expedited(&kvm->srcu);
4242         kfree(bus);
4243
4244         return 0;
4245 }
4246
4247 /* Caller must hold slots_lock. */
4248 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4249                                struct kvm_io_device *dev)
4250 {
4251         int i;
4252         struct kvm_io_bus *new_bus, *bus;
4253
4254         bus = kvm_get_bus(kvm, bus_idx);
4255         if (!bus)
4256                 return;
4257
4258         for (i = 0; i < bus->dev_count; i++)
4259                 if (bus->range[i].dev == dev) {
4260                         break;
4261                 }
4262
4263         if (i == bus->dev_count)
4264                 return;
4265
4266         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4267                           GFP_KERNEL_ACCOUNT);
4268         if (!new_bus)  {
4269                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4270                 goto broken;
4271         }
4272
4273         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4274         new_bus->dev_count--;
4275         memcpy(new_bus->range + i, bus->range + i + 1,
4276                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4277
4278 broken:
4279         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4280         synchronize_srcu_expedited(&kvm->srcu);
4281         kfree(bus);
4282         return;
4283 }
4284
4285 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4286                                          gpa_t addr)
4287 {
4288         struct kvm_io_bus *bus;
4289         int dev_idx, srcu_idx;
4290         struct kvm_io_device *iodev = NULL;
4291
4292         srcu_idx = srcu_read_lock(&kvm->srcu);
4293
4294         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4295         if (!bus)
4296                 goto out_unlock;
4297
4298         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4299         if (dev_idx < 0)
4300                 goto out_unlock;
4301
4302         iodev = bus->range[dev_idx].dev;
4303
4304 out_unlock:
4305         srcu_read_unlock(&kvm->srcu, srcu_idx);
4306
4307         return iodev;
4308 }
4309 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4310
4311 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4312                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4313                            const char *fmt)
4314 {
4315         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4316                                           inode->i_private;
4317
4318         /* The debugfs files are a reference to the kvm struct which
4319          * is still valid when kvm_destroy_vm is called.
4320          * To avoid the race between open and the removal of the debugfs
4321          * directory we test against the users count.
4322          */
4323         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4324                 return -ENOENT;
4325
4326         if (simple_attr_open(inode, file, get,
4327                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4328                     ? set : NULL,
4329                     fmt)) {
4330                 kvm_put_kvm(stat_data->kvm);
4331                 return -ENOMEM;
4332         }
4333
4334         return 0;
4335 }
4336
4337 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4338 {
4339         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4340                                           inode->i_private;
4341
4342         simple_attr_release(inode, file);
4343         kvm_put_kvm(stat_data->kvm);
4344
4345         return 0;
4346 }
4347
4348 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4349 {
4350         *val = *(ulong *)((void *)kvm + offset);
4351
4352         return 0;
4353 }
4354
4355 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4356 {
4357         *(ulong *)((void *)kvm + offset) = 0;
4358
4359         return 0;
4360 }
4361
4362 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4363 {
4364         int i;
4365         struct kvm_vcpu *vcpu;
4366
4367         *val = 0;
4368
4369         kvm_for_each_vcpu(i, vcpu, kvm)
4370                 *val += *(u64 *)((void *)vcpu + offset);
4371
4372         return 0;
4373 }
4374
4375 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4376 {
4377         int i;
4378         struct kvm_vcpu *vcpu;
4379
4380         kvm_for_each_vcpu(i, vcpu, kvm)
4381                 *(u64 *)((void *)vcpu + offset) = 0;
4382
4383         return 0;
4384 }
4385
4386 static int kvm_stat_data_get(void *data, u64 *val)
4387 {
4388         int r = -EFAULT;
4389         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4390
4391         switch (stat_data->dbgfs_item->kind) {
4392         case KVM_STAT_VM:
4393                 r = kvm_get_stat_per_vm(stat_data->kvm,
4394                                         stat_data->dbgfs_item->offset, val);
4395                 break;
4396         case KVM_STAT_VCPU:
4397                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4398                                           stat_data->dbgfs_item->offset, val);
4399                 break;
4400         }
4401
4402         return r;
4403 }
4404
4405 static int kvm_stat_data_clear(void *data, u64 val)
4406 {
4407         int r = -EFAULT;
4408         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4409
4410         if (val)
4411                 return -EINVAL;
4412
4413         switch (stat_data->dbgfs_item->kind) {
4414         case KVM_STAT_VM:
4415                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4416                                           stat_data->dbgfs_item->offset);
4417                 break;
4418         case KVM_STAT_VCPU:
4419                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4420                                             stat_data->dbgfs_item->offset);
4421                 break;
4422         }
4423
4424         return r;
4425 }
4426
4427 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4428 {
4429         __simple_attr_check_format("%llu\n", 0ull);
4430         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4431                                 kvm_stat_data_clear, "%llu\n");
4432 }
4433
4434 static const struct file_operations stat_fops_per_vm = {
4435         .owner = THIS_MODULE,
4436         .open = kvm_stat_data_open,
4437         .release = kvm_debugfs_release,
4438         .read = simple_attr_read,
4439         .write = simple_attr_write,
4440         .llseek = no_llseek,
4441 };
4442
4443 static int vm_stat_get(void *_offset, u64 *val)
4444 {
4445         unsigned offset = (long)_offset;
4446         struct kvm *kvm;
4447         u64 tmp_val;
4448
4449         *val = 0;
4450         mutex_lock(&kvm_lock);
4451         list_for_each_entry(kvm, &vm_list, vm_list) {
4452                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4453                 *val += tmp_val;
4454         }
4455         mutex_unlock(&kvm_lock);
4456         return 0;
4457 }
4458
4459 static int vm_stat_clear(void *_offset, u64 val)
4460 {
4461         unsigned offset = (long)_offset;
4462         struct kvm *kvm;
4463
4464         if (val)
4465                 return -EINVAL;
4466
4467         mutex_lock(&kvm_lock);
4468         list_for_each_entry(kvm, &vm_list, vm_list) {
4469                 kvm_clear_stat_per_vm(kvm, offset);
4470         }
4471         mutex_unlock(&kvm_lock);
4472
4473         return 0;
4474 }
4475
4476 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4477
4478 static int vcpu_stat_get(void *_offset, u64 *val)
4479 {
4480         unsigned offset = (long)_offset;
4481         struct kvm *kvm;
4482         u64 tmp_val;
4483
4484         *val = 0;
4485         mutex_lock(&kvm_lock);
4486         list_for_each_entry(kvm, &vm_list, vm_list) {
4487                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4488                 *val += tmp_val;
4489         }
4490         mutex_unlock(&kvm_lock);
4491         return 0;
4492 }
4493
4494 static int vcpu_stat_clear(void *_offset, u64 val)
4495 {
4496         unsigned offset = (long)_offset;
4497         struct kvm *kvm;
4498
4499         if (val)
4500                 return -EINVAL;
4501
4502         mutex_lock(&kvm_lock);
4503         list_for_each_entry(kvm, &vm_list, vm_list) {
4504                 kvm_clear_stat_per_vcpu(kvm, offset);
4505         }
4506         mutex_unlock(&kvm_lock);
4507
4508         return 0;
4509 }
4510
4511 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4512                         "%llu\n");
4513
4514 static const struct file_operations *stat_fops[] = {
4515         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4516         [KVM_STAT_VM]   = &vm_stat_fops,
4517 };
4518
4519 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4520 {
4521         struct kobj_uevent_env *env;
4522         unsigned long long created, active;
4523
4524         if (!kvm_dev.this_device || !kvm)
4525                 return;
4526
4527         mutex_lock(&kvm_lock);
4528         if (type == KVM_EVENT_CREATE_VM) {
4529                 kvm_createvm_count++;
4530                 kvm_active_vms++;
4531         } else if (type == KVM_EVENT_DESTROY_VM) {
4532                 kvm_active_vms--;
4533         }
4534         created = kvm_createvm_count;
4535         active = kvm_active_vms;
4536         mutex_unlock(&kvm_lock);
4537
4538         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4539         if (!env)
4540                 return;
4541
4542         add_uevent_var(env, "CREATED=%llu", created);
4543         add_uevent_var(env, "COUNT=%llu", active);
4544
4545         if (type == KVM_EVENT_CREATE_VM) {
4546                 add_uevent_var(env, "EVENT=create");
4547                 kvm->userspace_pid = task_pid_nr(current);
4548         } else if (type == KVM_EVENT_DESTROY_VM) {
4549                 add_uevent_var(env, "EVENT=destroy");
4550         }
4551         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4552
4553         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4554                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4555
4556                 if (p) {
4557                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4558                         if (!IS_ERR(tmp))
4559                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4560                         kfree(p);
4561                 }
4562         }
4563         /* no need for checks, since we are adding at most only 5 keys */
4564         env->envp[env->envp_idx++] = NULL;
4565         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4566         kfree(env);
4567 }
4568
4569 static void kvm_init_debug(void)
4570 {
4571         struct kvm_stats_debugfs_item *p;
4572
4573         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4574
4575         kvm_debugfs_num_entries = 0;
4576         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4577                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4578                                     kvm_debugfs_dir, (void *)(long)p->offset,
4579                                     stat_fops[p->kind]);
4580         }
4581 }
4582
4583 static int kvm_suspend(void)
4584 {
4585         if (kvm_usage_count)
4586                 hardware_disable_nolock(NULL);
4587         return 0;
4588 }
4589
4590 static void kvm_resume(void)
4591 {
4592         if (kvm_usage_count) {
4593 #ifdef CONFIG_LOCKDEP
4594                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4595 #endif
4596                 hardware_enable_nolock(NULL);
4597         }
4598 }
4599
4600 static struct syscore_ops kvm_syscore_ops = {
4601         .suspend = kvm_suspend,
4602         .resume = kvm_resume,
4603 };
4604
4605 static inline
4606 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4607 {
4608         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4609 }
4610
4611 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4612 {
4613         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4614
4615         WRITE_ONCE(vcpu->preempted, false);
4616         WRITE_ONCE(vcpu->ready, false);
4617
4618         __this_cpu_write(kvm_running_vcpu, vcpu);
4619         kvm_arch_sched_in(vcpu, cpu);
4620         kvm_arch_vcpu_load(vcpu, cpu);
4621 }
4622
4623 static void kvm_sched_out(struct preempt_notifier *pn,
4624                           struct task_struct *next)
4625 {
4626         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4627
4628         if (current->state == TASK_RUNNING) {
4629                 WRITE_ONCE(vcpu->preempted, true);
4630                 WRITE_ONCE(vcpu->ready, true);
4631         }
4632         kvm_arch_vcpu_put(vcpu);
4633         __this_cpu_write(kvm_running_vcpu, NULL);
4634 }
4635
4636 /**
4637  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4638  *
4639  * We can disable preemption locally around accessing the per-CPU variable,
4640  * and use the resolved vcpu pointer after enabling preemption again,
4641  * because even if the current thread is migrated to another CPU, reading
4642  * the per-CPU value later will give us the same value as we update the
4643  * per-CPU variable in the preempt notifier handlers.
4644  */
4645 struct kvm_vcpu *kvm_get_running_vcpu(void)
4646 {
4647         struct kvm_vcpu *vcpu;
4648
4649         preempt_disable();
4650         vcpu = __this_cpu_read(kvm_running_vcpu);
4651         preempt_enable();
4652
4653         return vcpu;
4654 }
4655
4656 /**
4657  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4658  */
4659 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4660 {
4661         return &kvm_running_vcpu;
4662 }
4663
4664 struct kvm_cpu_compat_check {
4665         void *opaque;
4666         int *ret;
4667 };
4668
4669 static void check_processor_compat(void *data)
4670 {
4671         struct kvm_cpu_compat_check *c = data;
4672
4673         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4674 }
4675
4676 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4677                   struct module *module)
4678 {
4679         struct kvm_cpu_compat_check c;
4680         int r;
4681         int cpu;
4682
4683         r = kvm_arch_init(opaque);
4684         if (r)
4685                 goto out_fail;
4686
4687         /*
4688          * kvm_arch_init makes sure there's at most one caller
4689          * for architectures that support multiple implementations,
4690          * like intel and amd on x86.
4691          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4692          * conflicts in case kvm is already setup for another implementation.
4693          */
4694         r = kvm_irqfd_init();
4695         if (r)
4696                 goto out_irqfd;
4697
4698         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4699                 r = -ENOMEM;
4700                 goto out_free_0;
4701         }
4702
4703         r = kvm_arch_hardware_setup(opaque);
4704         if (r < 0)
4705                 goto out_free_1;
4706
4707         c.ret = &r;
4708         c.opaque = opaque;
4709         for_each_online_cpu(cpu) {
4710                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4711                 if (r < 0)
4712                         goto out_free_2;
4713         }
4714
4715         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4716                                       kvm_starting_cpu, kvm_dying_cpu);
4717         if (r)
4718                 goto out_free_2;
4719         register_reboot_notifier(&kvm_reboot_notifier);
4720
4721         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4722         if (!vcpu_align)
4723                 vcpu_align = __alignof__(struct kvm_vcpu);
4724         kvm_vcpu_cache =
4725                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4726                                            SLAB_ACCOUNT,
4727                                            offsetof(struct kvm_vcpu, arch),
4728                                            sizeof_field(struct kvm_vcpu, arch),
4729                                            NULL);
4730         if (!kvm_vcpu_cache) {
4731                 r = -ENOMEM;
4732                 goto out_free_3;
4733         }
4734
4735         r = kvm_async_pf_init();
4736         if (r)
4737                 goto out_free;
4738
4739         kvm_chardev_ops.owner = module;
4740         kvm_vm_fops.owner = module;
4741         kvm_vcpu_fops.owner = module;
4742
4743         r = misc_register(&kvm_dev);
4744         if (r) {
4745                 pr_err("kvm: misc device register failed\n");
4746                 goto out_unreg;
4747         }
4748
4749         register_syscore_ops(&kvm_syscore_ops);
4750
4751         kvm_preempt_ops.sched_in = kvm_sched_in;
4752         kvm_preempt_ops.sched_out = kvm_sched_out;
4753
4754         kvm_init_debug();
4755
4756         r = kvm_vfio_ops_init();
4757         WARN_ON(r);
4758
4759         return 0;
4760
4761 out_unreg:
4762         kvm_async_pf_deinit();
4763 out_free:
4764         kmem_cache_destroy(kvm_vcpu_cache);
4765 out_free_3:
4766         unregister_reboot_notifier(&kvm_reboot_notifier);
4767         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4768 out_free_2:
4769         kvm_arch_hardware_unsetup();
4770 out_free_1:
4771         free_cpumask_var(cpus_hardware_enabled);
4772 out_free_0:
4773         kvm_irqfd_exit();
4774 out_irqfd:
4775         kvm_arch_exit();
4776 out_fail:
4777         return r;
4778 }
4779 EXPORT_SYMBOL_GPL(kvm_init);
4780
4781 void kvm_exit(void)
4782 {
4783         debugfs_remove_recursive(kvm_debugfs_dir);
4784         misc_deregister(&kvm_dev);
4785         kmem_cache_destroy(kvm_vcpu_cache);
4786         kvm_async_pf_deinit();
4787         unregister_syscore_ops(&kvm_syscore_ops);
4788         unregister_reboot_notifier(&kvm_reboot_notifier);
4789         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4790         on_each_cpu(hardware_disable_nolock, NULL, 1);
4791         kvm_arch_hardware_unsetup();
4792         kvm_arch_exit();
4793         kvm_irqfd_exit();
4794         free_cpumask_var(cpus_hardware_enabled);
4795         kvm_vfio_ops_exit();
4796 }
4797 EXPORT_SYMBOL_GPL(kvm_exit);
4798
4799 struct kvm_vm_worker_thread_context {
4800         struct kvm *kvm;
4801         struct task_struct *parent;
4802         struct completion init_done;
4803         kvm_vm_thread_fn_t thread_fn;
4804         uintptr_t data;
4805         int err;
4806 };
4807
4808 static int kvm_vm_worker_thread(void *context)
4809 {
4810         /*
4811          * The init_context is allocated on the stack of the parent thread, so
4812          * we have to locally copy anything that is needed beyond initialization
4813          */
4814         struct kvm_vm_worker_thread_context *init_context = context;
4815         struct kvm *kvm = init_context->kvm;
4816         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4817         uintptr_t data = init_context->data;
4818         int err;
4819
4820         err = kthread_park(current);
4821         /* kthread_park(current) is never supposed to return an error */
4822         WARN_ON(err != 0);
4823         if (err)
4824                 goto init_complete;
4825
4826         err = cgroup_attach_task_all(init_context->parent, current);
4827         if (err) {
4828                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4829                         __func__, err);
4830                 goto init_complete;
4831         }
4832
4833         set_user_nice(current, task_nice(init_context->parent));
4834
4835 init_complete:
4836         init_context->err = err;
4837         complete(&init_context->init_done);
4838         init_context = NULL;
4839
4840         if (err)
4841                 return err;
4842
4843         /* Wait to be woken up by the spawner before proceeding. */
4844         kthread_parkme();
4845
4846         if (!kthread_should_stop())
4847                 err = thread_fn(kvm, data);
4848
4849         return err;
4850 }
4851
4852 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4853                                 uintptr_t data, const char *name,
4854                                 struct task_struct **thread_ptr)
4855 {
4856         struct kvm_vm_worker_thread_context init_context = {};
4857         struct task_struct *thread;
4858
4859         *thread_ptr = NULL;
4860         init_context.kvm = kvm;
4861         init_context.parent = current;
4862         init_context.thread_fn = thread_fn;
4863         init_context.data = data;
4864         init_completion(&init_context.init_done);
4865
4866         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4867                              "%s-%d", name, task_pid_nr(current));
4868         if (IS_ERR(thread))
4869                 return PTR_ERR(thread);
4870
4871         /* kthread_run is never supposed to return NULL */
4872         WARN_ON(thread == NULL);
4873
4874         wait_for_completion(&init_context.init_done);
4875
4876         if (!init_context.err)
4877                 *thread_ptr = thread;
4878
4879         return init_context.err;
4880 }