x86/insn: Directly assign x86_64 state in insn_init()
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161         /*
162          * The metadata used by is_zone_device_page() to determine whether or
163          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164          * the device has been pinned, e.g. by get_user_pages().  WARN if the
165          * page_count() is zero to help detect bad usage of this helper.
166          */
167         if (WARN_ON_ONCE(!page_count(page)))
168                 return false;
169
170         return is_zone_device_page(page);
171 }
172
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181         struct page *page;
182
183         if (!pfn_valid(pfn))
184                 return NULL;
185
186         page = pfn_to_page(pfn);
187         if (!PageReserved(page))
188                 return page;
189
190         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191         if (is_zero_pfn(pfn))
192                 return page;
193
194         /*
195          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196          * perspective they are "normal" pages, albeit with slightly different
197          * usage rules.
198          */
199         if (kvm_is_zone_device_page(page))
200                 return page;
201
202         return NULL;
203 }
204
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210         int cpu = get_cpu();
211
212         __this_cpu_write(kvm_running_vcpu, vcpu);
213         preempt_notifier_register(&vcpu->preempt_notifier);
214         kvm_arch_vcpu_load(vcpu, cpu);
215         put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221         preempt_disable();
222         kvm_arch_vcpu_put(vcpu);
223         preempt_notifier_unregister(&vcpu->preempt_notifier);
224         __this_cpu_write(kvm_running_vcpu, NULL);
225         preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234         /*
235          * We need to wait for the VCPU to reenable interrupts and get out of
236          * READING_SHADOW_PAGE_TABLES mode.
237          */
238         if (req & KVM_REQUEST_WAIT)
239                 return mode != OUTSIDE_GUEST_MODE;
240
241         /*
242          * Need to kick a running VCPU, but otherwise there is nothing to do.
243          */
244         return mode == IN_GUEST_MODE;
245 }
246
247 static void ack_kick(void *_completed)
248 {
249 }
250
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_kick, NULL, wait);
257         return true;
258 }
259
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261                                   struct cpumask *tmp, int current_cpu)
262 {
263         int cpu;
264
265         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266                 __kvm_make_request(req, vcpu);
267
268         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269                 return;
270
271         /*
272          * Note, the vCPU could get migrated to a different pCPU at any point
273          * after kvm_request_needs_ipi(), which could result in sending an IPI
274          * to the previous pCPU.  But, that's OK because the purpose of the IPI
275          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277          * after this point is also OK, as the requirement is only that KVM wait
278          * for vCPUs that were reading SPTEs _before_ any changes were
279          * finalized. See kvm_vcpu_kick() for more details on handling requests.
280          */
281         if (kvm_request_needs_ipi(vcpu, req)) {
282                 cpu = READ_ONCE(vcpu->cpu);
283                 if (cpu != -1 && cpu != current_cpu)
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286 }
287
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289                                  unsigned long *vcpu_bitmap)
290 {
291         struct kvm_vcpu *vcpu;
292         struct cpumask *cpus;
293         int i, me;
294         bool called;
295
296         me = get_cpu();
297
298         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299         cpumask_clear(cpus);
300
301         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302                 vcpu = kvm_get_vcpu(kvm, i);
303                 if (!vcpu)
304                         continue;
305                 kvm_make_vcpu_request(vcpu, req, cpus, me);
306         }
307
308         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309         put_cpu();
310
311         return called;
312 }
313
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315                                       struct kvm_vcpu *except)
316 {
317         struct kvm_vcpu *vcpu;
318         struct cpumask *cpus;
319         unsigned long i;
320         bool called;
321         int me;
322
323         me = get_cpu();
324
325         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326         cpumask_clear(cpus);
327
328         kvm_for_each_vcpu(i, vcpu, kvm) {
329                 if (vcpu == except)
330                         continue;
331                 kvm_make_vcpu_request(vcpu, req, cpus, me);
332         }
333
334         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335         put_cpu();
336
337         return called;
338 }
339
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342         return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348         ++kvm->stat.generic.remote_tlb_flush_requests;
349
350         /*
351          * We want to publish modifications to the page tables before reading
352          * mode. Pairs with a memory barrier in arch-specific code.
353          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354          * and smp_mb in walk_shadow_page_lockless_begin/end.
355          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356          *
357          * There is already an smp_mb__after_atomic() before
358          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359          * barrier here.
360          */
361         if (!kvm_arch_flush_remote_tlbs(kvm)
362             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363                 ++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370                 return;
371
372         /*
373          * Fall back to a flushing entire TLBs if the architecture range-based
374          * TLB invalidation is unsupported or can't be performed for whatever
375          * reason.
376          */
377         kvm_flush_remote_tlbs(kvm);
378 }
379
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381                                    const struct kvm_memory_slot *memslot)
382 {
383         /*
384          * All current use cases for flushing the TLBs for a specific memslot
385          * are related to dirty logging, and many do the TLB flush out of
386          * mmu_lock. The interaction between the various operations on memslot
387          * must be serialized by slots_locks to ensure the TLB flush from one
388          * operation is observed by any other operation on the same memslot.
389          */
390         lockdep_assert_held(&kvm->slots_lock);
391         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396         kvm_arch_flush_shadow_all(kvm);
397         kvm_arch_guest_memory_reclaimed(kvm);
398 }
399
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402                                                gfp_t gfp_flags)
403 {
404         gfp_flags |= mc->gfp_zero;
405
406         if (mc->kmem_cache)
407                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408         else
409                 return (void *)__get_free_page(gfp_flags);
410 }
411
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415         void *obj;
416
417         if (mc->nobjs >= min)
418                 return 0;
419
420         if (unlikely(!mc->objects)) {
421                 if (WARN_ON_ONCE(!capacity))
422                         return -EIO;
423
424                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425                 if (!mc->objects)
426                         return -ENOMEM;
427
428                 mc->capacity = capacity;
429         }
430
431         /* It is illegal to request a different capacity across topups. */
432         if (WARN_ON_ONCE(mc->capacity != capacity))
433                 return -EIO;
434
435         while (mc->nobjs < mc->capacity) {
436                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437                 if (!obj)
438                         return mc->nobjs >= min ? 0 : -ENOMEM;
439                 mc->objects[mc->nobjs++] = obj;
440         }
441         return 0;
442 }
443
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451         return mc->nobjs;
452 }
453
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456         while (mc->nobjs) {
457                 if (mc->kmem_cache)
458                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459                 else
460                         free_page((unsigned long)mc->objects[--mc->nobjs]);
461         }
462
463         kvfree(mc->objects);
464
465         mc->objects = NULL;
466         mc->capacity = 0;
467 }
468
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471         void *p;
472
473         if (WARN_ON(!mc->nobjs))
474                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475         else
476                 p = mc->objects[--mc->nobjs];
477         BUG_ON(!p);
478         return p;
479 }
480 #endif
481
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484         mutex_init(&vcpu->mutex);
485         vcpu->cpu = -1;
486         vcpu->kvm = kvm;
487         vcpu->vcpu_id = id;
488         vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490         rcuwait_init(&vcpu->wait);
491 #endif
492         kvm_async_pf_vcpu_init(vcpu);
493
494         kvm_vcpu_set_in_spin_loop(vcpu, false);
495         kvm_vcpu_set_dy_eligible(vcpu, false);
496         vcpu->preempted = false;
497         vcpu->ready = false;
498         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499         vcpu->last_used_slot = NULL;
500
501         /* Fill the stats id string for the vcpu */
502         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503                  task_pid_nr(current), id);
504 }
505
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508         kvm_arch_vcpu_destroy(vcpu);
509         kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511         /*
512          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513          * the vcpu->pid pointer, and at destruction time all file descriptors
514          * are already gone.
515          */
516         put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518         free_page((unsigned long)vcpu->run);
519         kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524         unsigned long i;
525         struct kvm_vcpu *vcpu;
526
527         kvm_for_each_vcpu(i, vcpu, kvm) {
528                 kvm_vcpu_destroy(vcpu);
529                 xa_erase(&kvm->vcpu_array, i);
530         }
531
532         atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539         return container_of(mn, struct kvm, mmu_notifier);
540 }
541
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545
546 struct kvm_mmu_notifier_range {
547         /*
548          * 64-bit addresses, as KVM notifiers can operate on host virtual
549          * addresses (unsigned long) and guest physical addresses (64-bit).
550          */
551         u64 start;
552         u64 end;
553         union kvm_mmu_notifier_arg arg;
554         gfn_handler_t handler;
555         on_lock_fn_t on_lock;
556         bool flush_on_ret;
557         bool may_block;
558 };
559
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569         bool ret;
570         bool found_memslot;
571 } kvm_mn_ret_t;
572
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
590         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591              node;                                                           \
592              node = interval_tree_iter_next(node, start, last))      \
593
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595                                                            const struct kvm_mmu_notifier_range *range)
596 {
597         struct kvm_mmu_notifier_return r = {
598                 .ret = false,
599                 .found_memslot = false,
600         };
601         struct kvm_gfn_range gfn_range;
602         struct kvm_memory_slot *slot;
603         struct kvm_memslots *slots;
604         int i, idx;
605
606         if (WARN_ON_ONCE(range->end <= range->start))
607                 return r;
608
609         /* A null handler is allowed if and only if on_lock() is provided. */
610         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611                          IS_KVM_NULL_FN(range->handler)))
612                 return r;
613
614         idx = srcu_read_lock(&kvm->srcu);
615
616         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617                 struct interval_tree_node *node;
618
619                 slots = __kvm_memslots(kvm, i);
620                 kvm_for_each_memslot_in_hva_range(node, slots,
621                                                   range->start, range->end - 1) {
622                         unsigned long hva_start, hva_end;
623
624                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625                         hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626                         hva_end = min_t(unsigned long, range->end,
627                                         slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628
629                         /*
630                          * To optimize for the likely case where the address
631                          * range is covered by zero or one memslots, don't
632                          * bother making these conditional (to avoid writes on
633                          * the second or later invocation of the handler).
634                          */
635                         gfn_range.arg = range->arg;
636                         gfn_range.may_block = range->may_block;
637
638                         /*
639                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
640                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641                          */
642                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644                         gfn_range.slot = slot;
645
646                         if (!r.found_memslot) {
647                                 r.found_memslot = true;
648                                 KVM_MMU_LOCK(kvm);
649                                 if (!IS_KVM_NULL_FN(range->on_lock))
650                                         range->on_lock(kvm);
651
652                                 if (IS_KVM_NULL_FN(range->handler))
653                                         break;
654                         }
655                         r.ret |= range->handler(kvm, &gfn_range);
656                 }
657         }
658
659         if (range->flush_on_ret && r.ret)
660                 kvm_flush_remote_tlbs(kvm);
661
662         if (r.found_memslot)
663                 KVM_MMU_UNLOCK(kvm);
664
665         srcu_read_unlock(&kvm->srcu, idx);
666
667         return r;
668 }
669
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671                                                 unsigned long start,
672                                                 unsigned long end,
673                                                 union kvm_mmu_notifier_arg arg,
674                                                 gfn_handler_t handler)
675 {
676         struct kvm *kvm = mmu_notifier_to_kvm(mn);
677         const struct kvm_mmu_notifier_range range = {
678                 .start          = start,
679                 .end            = end,
680                 .arg            = arg,
681                 .handler        = handler,
682                 .on_lock        = (void *)kvm_null_fn,
683                 .flush_on_ret   = true,
684                 .may_block      = false,
685         };
686
687         return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691                                                          unsigned long start,
692                                                          unsigned long end,
693                                                          gfn_handler_t handler)
694 {
695         struct kvm *kvm = mmu_notifier_to_kvm(mn);
696         const struct kvm_mmu_notifier_range range = {
697                 .start          = start,
698                 .end            = end,
699                 .handler        = handler,
700                 .on_lock        = (void *)kvm_null_fn,
701                 .flush_on_ret   = false,
702                 .may_block      = false,
703         };
704
705         return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710         /*
711          * Skipping invalid memslots is correct if and only change_pte() is
712          * surrounded by invalidate_range_{start,end}(), which is currently
713          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714          * unmap the memslot instead of skipping the memslot to ensure that KVM
715          * doesn't hold references to the old PFN.
716          */
717         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718
719         if (range->slot->flags & KVM_MEMSLOT_INVALID)
720                 return false;
721
722         return kvm_set_spte_gfn(kvm, range);
723 }
724
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726                                         struct mm_struct *mm,
727                                         unsigned long address,
728                                         pte_t pte)
729 {
730         struct kvm *kvm = mmu_notifier_to_kvm(mn);
731         const union kvm_mmu_notifier_arg arg = { .pte = pte };
732
733         trace_kvm_set_spte_hva(address);
734
735         /*
736          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737          * If mmu_invalidate_in_progress is zero, then no in-progress
738          * invalidations, including this one, found a relevant memslot at
739          * start(); rechecking memslots here is unnecessary.  Note, a false
740          * positive (count elevated by a different invalidation) is sub-optimal
741          * but functionally ok.
742          */
743         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745                 return;
746
747         kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752         lockdep_assert_held_write(&kvm->mmu_lock);
753         /*
754          * The count increase must become visible at unlock time as no
755          * spte can be established without taking the mmu_lock and
756          * count is also read inside the mmu_lock critical section.
757          */
758         kvm->mmu_invalidate_in_progress++;
759
760         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761                 kvm->mmu_invalidate_range_start = INVALID_GPA;
762                 kvm->mmu_invalidate_range_end = INVALID_GPA;
763         }
764 }
765
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768         lockdep_assert_held_write(&kvm->mmu_lock);
769
770         WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771
772         if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773                 kvm->mmu_invalidate_range_start = start;
774                 kvm->mmu_invalidate_range_end = end;
775         } else {
776                 /*
777                  * Fully tracking multiple concurrent ranges has diminishing
778                  * returns. Keep things simple and just find the minimal range
779                  * which includes the current and new ranges. As there won't be
780                  * enough information to subtract a range after its invalidate
781                  * completes, any ranges invalidated concurrently will
782                  * accumulate and persist until all outstanding invalidates
783                  * complete.
784                  */
785                 kvm->mmu_invalidate_range_start =
786                         min(kvm->mmu_invalidate_range_start, start);
787                 kvm->mmu_invalidate_range_end =
788                         max(kvm->mmu_invalidate_range_end, end);
789         }
790 }
791
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795         return kvm_unmap_gfn_range(kvm, range);
796 }
797
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799                                         const struct mmu_notifier_range *range)
800 {
801         struct kvm *kvm = mmu_notifier_to_kvm(mn);
802         const struct kvm_mmu_notifier_range hva_range = {
803                 .start          = range->start,
804                 .end            = range->end,
805                 .handler        = kvm_mmu_unmap_gfn_range,
806                 .on_lock        = kvm_mmu_invalidate_begin,
807                 .flush_on_ret   = true,
808                 .may_block      = mmu_notifier_range_blockable(range),
809         };
810
811         trace_kvm_unmap_hva_range(range->start, range->end);
812
813         /*
814          * Prevent memslot modification between range_start() and range_end()
815          * so that conditionally locking provides the same result in both
816          * functions.  Without that guarantee, the mmu_invalidate_in_progress
817          * adjustments will be imbalanced.
818          *
819          * Pairs with the decrement in range_end().
820          */
821         spin_lock(&kvm->mn_invalidate_lock);
822         kvm->mn_active_invalidate_count++;
823         spin_unlock(&kvm->mn_invalidate_lock);
824
825         /*
826          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828          * each cache's lock.  There are relatively few caches in existence at
829          * any given time, and the caches themselves can check for hva overlap,
830          * i.e. don't need to rely on memslot overlap checks for performance.
831          * Because this runs without holding mmu_lock, the pfn caches must use
832          * mn_active_invalidate_count (see above) instead of
833          * mmu_invalidate_in_progress.
834          */
835         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836                                           hva_range.may_block);
837
838         /*
839          * If one or more memslots were found and thus zapped, notify arch code
840          * that guest memory has been reclaimed.  This needs to be done *after*
841          * dropping mmu_lock, as x86's reclaim path is slooooow.
842          */
843         if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844                 kvm_arch_guest_memory_reclaimed(kvm);
845
846         return 0;
847 }
848
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851         lockdep_assert_held_write(&kvm->mmu_lock);
852
853         /*
854          * This sequence increase will notify the kvm page fault that
855          * the page that is going to be mapped in the spte could have
856          * been freed.
857          */
858         kvm->mmu_invalidate_seq++;
859         smp_wmb();
860         /*
861          * The above sequence increase must be visible before the
862          * below count decrease, which is ensured by the smp_wmb above
863          * in conjunction with the smp_rmb in mmu_invalidate_retry().
864          */
865         kvm->mmu_invalidate_in_progress--;
866         KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867
868         /*
869          * Assert that at least one range was added between start() and end().
870          * Not adding a range isn't fatal, but it is a KVM bug.
871          */
872         WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876                                         const struct mmu_notifier_range *range)
877 {
878         struct kvm *kvm = mmu_notifier_to_kvm(mn);
879         const struct kvm_mmu_notifier_range hva_range = {
880                 .start          = range->start,
881                 .end            = range->end,
882                 .handler        = (void *)kvm_null_fn,
883                 .on_lock        = kvm_mmu_invalidate_end,
884                 .flush_on_ret   = false,
885                 .may_block      = mmu_notifier_range_blockable(range),
886         };
887         bool wake;
888
889         __kvm_handle_hva_range(kvm, &hva_range);
890
891         /* Pairs with the increment in range_start(). */
892         spin_lock(&kvm->mn_invalidate_lock);
893         wake = (--kvm->mn_active_invalidate_count == 0);
894         spin_unlock(&kvm->mn_invalidate_lock);
895
896         /*
897          * There can only be one waiter, since the wait happens under
898          * slots_lock.
899          */
900         if (wake)
901                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902 }
903
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905                                               struct mm_struct *mm,
906                                               unsigned long start,
907                                               unsigned long end)
908 {
909         trace_kvm_age_hva(start, end);
910
911         return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912                                     kvm_age_gfn);
913 }
914
915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916                                         struct mm_struct *mm,
917                                         unsigned long start,
918                                         unsigned long end)
919 {
920         trace_kvm_age_hva(start, end);
921
922         /*
923          * Even though we do not flush TLB, this will still adversely
924          * affect performance on pre-Haswell Intel EPT, where there is
925          * no EPT Access Bit to clear so that we have to tear down EPT
926          * tables instead. If we find this unacceptable, we can always
927          * add a parameter to kvm_age_hva so that it effectively doesn't
928          * do anything on clear_young.
929          *
930          * Also note that currently we never issue secondary TLB flushes
931          * from clear_young, leaving this job up to the regular system
932          * cadence. If we find this inaccurate, we might come up with a
933          * more sophisticated heuristic later.
934          */
935         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936 }
937
938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939                                        struct mm_struct *mm,
940                                        unsigned long address)
941 {
942         trace_kvm_test_age_hva(address);
943
944         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
945                                              kvm_test_age_gfn);
946 }
947
948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949                                      struct mm_struct *mm)
950 {
951         struct kvm *kvm = mmu_notifier_to_kvm(mn);
952         int idx;
953
954         idx = srcu_read_lock(&kvm->srcu);
955         kvm_flush_shadow_all(kvm);
956         srcu_read_unlock(&kvm->srcu, idx);
957 }
958
959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
961         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
962         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
963         .clear_young            = kvm_mmu_notifier_clear_young,
964         .test_young             = kvm_mmu_notifier_test_young,
965         .change_pte             = kvm_mmu_notifier_change_pte,
966         .release                = kvm_mmu_notifier_release,
967 };
968
969 static int kvm_init_mmu_notifier(struct kvm *kvm)
970 {
971         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973 }
974
975 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976
977 static int kvm_init_mmu_notifier(struct kvm *kvm)
978 {
979         return 0;
980 }
981
982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983
984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985 static int kvm_pm_notifier_call(struct notifier_block *bl,
986                                 unsigned long state,
987                                 void *unused)
988 {
989         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990
991         return kvm_arch_pm_notifier(kvm, state);
992 }
993
994 static void kvm_init_pm_notifier(struct kvm *kvm)
995 {
996         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997         /* Suspend KVM before we suspend ftrace, RCU, etc. */
998         kvm->pm_notifier.priority = INT_MAX;
999         register_pm_notifier(&kvm->pm_notifier);
1000 }
1001
1002 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003 {
1004         unregister_pm_notifier(&kvm->pm_notifier);
1005 }
1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007 static void kvm_init_pm_notifier(struct kvm *kvm)
1008 {
1009 }
1010
1011 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012 {
1013 }
1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015
1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017 {
1018         if (!memslot->dirty_bitmap)
1019                 return;
1020
1021         kvfree(memslot->dirty_bitmap);
1022         memslot->dirty_bitmap = NULL;
1023 }
1024
1025 /* This does not remove the slot from struct kvm_memslots data structures */
1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027 {
1028         if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029                 kvm_gmem_unbind(slot);
1030
1031         kvm_destroy_dirty_bitmap(slot);
1032
1033         kvm_arch_free_memslot(kvm, slot);
1034
1035         kfree(slot);
1036 }
1037
1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039 {
1040         struct hlist_node *idnode;
1041         struct kvm_memory_slot *memslot;
1042         int bkt;
1043
1044         /*
1045          * The same memslot objects live in both active and inactive sets,
1046          * arbitrarily free using index '1' so the second invocation of this
1047          * function isn't operating over a structure with dangling pointers
1048          * (even though this function isn't actually touching them).
1049          */
1050         if (!slots->node_idx)
1051                 return;
1052
1053         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054                 kvm_free_memslot(kvm, memslot);
1055 }
1056
1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058 {
1059         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060         case KVM_STATS_TYPE_INSTANT:
1061                 return 0444;
1062         case KVM_STATS_TYPE_CUMULATIVE:
1063         case KVM_STATS_TYPE_PEAK:
1064         default:
1065                 return 0644;
1066         }
1067 }
1068
1069
1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071 {
1072         int i;
1073         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074                                       kvm_vcpu_stats_header.num_desc;
1075
1076         if (IS_ERR(kvm->debugfs_dentry))
1077                 return;
1078
1079         debugfs_remove_recursive(kvm->debugfs_dentry);
1080
1081         if (kvm->debugfs_stat_data) {
1082                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1083                         kfree(kvm->debugfs_stat_data[i]);
1084                 kfree(kvm->debugfs_stat_data);
1085         }
1086 }
1087
1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089 {
1090         static DEFINE_MUTEX(kvm_debugfs_lock);
1091         struct dentry *dent;
1092         char dir_name[ITOA_MAX_LEN * 2];
1093         struct kvm_stat_data *stat_data;
1094         const struct _kvm_stats_desc *pdesc;
1095         int i, ret = -ENOMEM;
1096         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097                                       kvm_vcpu_stats_header.num_desc;
1098
1099         if (!debugfs_initialized())
1100                 return 0;
1101
1102         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103         mutex_lock(&kvm_debugfs_lock);
1104         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105         if (dent) {
1106                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107                 dput(dent);
1108                 mutex_unlock(&kvm_debugfs_lock);
1109                 return 0;
1110         }
1111         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112         mutex_unlock(&kvm_debugfs_lock);
1113         if (IS_ERR(dent))
1114                 return 0;
1115
1116         kvm->debugfs_dentry = dent;
1117         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118                                          sizeof(*kvm->debugfs_stat_data),
1119                                          GFP_KERNEL_ACCOUNT);
1120         if (!kvm->debugfs_stat_data)
1121                 goto out_err;
1122
1123         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124                 pdesc = &kvm_vm_stats_desc[i];
1125                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126                 if (!stat_data)
1127                         goto out_err;
1128
1129                 stat_data->kvm = kvm;
1130                 stat_data->desc = pdesc;
1131                 stat_data->kind = KVM_STAT_VM;
1132                 kvm->debugfs_stat_data[i] = stat_data;
1133                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134                                     kvm->debugfs_dentry, stat_data,
1135                                     &stat_fops_per_vm);
1136         }
1137
1138         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139                 pdesc = &kvm_vcpu_stats_desc[i];
1140                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141                 if (!stat_data)
1142                         goto out_err;
1143
1144                 stat_data->kvm = kvm;
1145                 stat_data->desc = pdesc;
1146                 stat_data->kind = KVM_STAT_VCPU;
1147                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149                                     kvm->debugfs_dentry, stat_data,
1150                                     &stat_fops_per_vm);
1151         }
1152
1153         ret = kvm_arch_create_vm_debugfs(kvm);
1154         if (ret)
1155                 goto out_err;
1156
1157         return 0;
1158 out_err:
1159         kvm_destroy_vm_debugfs(kvm);
1160         return ret;
1161 }
1162
1163 /*
1164  * Called after the VM is otherwise initialized, but just before adding it to
1165  * the vm_list.
1166  */
1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1168 {
1169         return 0;
1170 }
1171
1172 /*
1173  * Called just after removing the VM from the vm_list, but before doing any
1174  * other destruction.
1175  */
1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1177 {
1178 }
1179
1180 /*
1181  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1182  * be setup already, so we can create arch-specific debugfs entries under it.
1183  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1184  * a per-arch destroy interface is not needed.
1185  */
1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1187 {
1188         return 0;
1189 }
1190
1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1192 {
1193         struct kvm *kvm = kvm_arch_alloc_vm();
1194         struct kvm_memslots *slots;
1195         int r = -ENOMEM;
1196         int i, j;
1197
1198         if (!kvm)
1199                 return ERR_PTR(-ENOMEM);
1200
1201         KVM_MMU_LOCK_INIT(kvm);
1202         mmgrab(current->mm);
1203         kvm->mm = current->mm;
1204         kvm_eventfd_init(kvm);
1205         mutex_init(&kvm->lock);
1206         mutex_init(&kvm->irq_lock);
1207         mutex_init(&kvm->slots_lock);
1208         mutex_init(&kvm->slots_arch_lock);
1209         spin_lock_init(&kvm->mn_invalidate_lock);
1210         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1211         xa_init(&kvm->vcpu_array);
1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1213         xa_init(&kvm->mem_attr_array);
1214 #endif
1215
1216         INIT_LIST_HEAD(&kvm->gpc_list);
1217         spin_lock_init(&kvm->gpc_lock);
1218
1219         INIT_LIST_HEAD(&kvm->devices);
1220         kvm->max_vcpus = KVM_MAX_VCPUS;
1221
1222         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1223
1224         /*
1225          * Force subsequent debugfs file creations to fail if the VM directory
1226          * is not created (by kvm_create_vm_debugfs()).
1227          */
1228         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1229
1230         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1231                  task_pid_nr(current));
1232
1233         if (init_srcu_struct(&kvm->srcu))
1234                 goto out_err_no_srcu;
1235         if (init_srcu_struct(&kvm->irq_srcu))
1236                 goto out_err_no_irq_srcu;
1237
1238         refcount_set(&kvm->users_count, 1);
1239         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1240                 for (j = 0; j < 2; j++) {
1241                         slots = &kvm->__memslots[i][j];
1242
1243                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1244                         slots->hva_tree = RB_ROOT_CACHED;
1245                         slots->gfn_tree = RB_ROOT;
1246                         hash_init(slots->id_hash);
1247                         slots->node_idx = j;
1248
1249                         /* Generations must be different for each address space. */
1250                         slots->generation = i;
1251                 }
1252
1253                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1254         }
1255
1256         for (i = 0; i < KVM_NR_BUSES; i++) {
1257                 rcu_assign_pointer(kvm->buses[i],
1258                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1259                 if (!kvm->buses[i])
1260                         goto out_err_no_arch_destroy_vm;
1261         }
1262
1263         r = kvm_arch_init_vm(kvm, type);
1264         if (r)
1265                 goto out_err_no_arch_destroy_vm;
1266
1267         r = hardware_enable_all();
1268         if (r)
1269                 goto out_err_no_disable;
1270
1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1272         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1273 #endif
1274
1275         r = kvm_init_mmu_notifier(kvm);
1276         if (r)
1277                 goto out_err_no_mmu_notifier;
1278
1279         r = kvm_coalesced_mmio_init(kvm);
1280         if (r < 0)
1281                 goto out_no_coalesced_mmio;
1282
1283         r = kvm_create_vm_debugfs(kvm, fdname);
1284         if (r)
1285                 goto out_err_no_debugfs;
1286
1287         r = kvm_arch_post_init_vm(kvm);
1288         if (r)
1289                 goto out_err;
1290
1291         mutex_lock(&kvm_lock);
1292         list_add(&kvm->vm_list, &vm_list);
1293         mutex_unlock(&kvm_lock);
1294
1295         preempt_notifier_inc();
1296         kvm_init_pm_notifier(kvm);
1297
1298         return kvm;
1299
1300 out_err:
1301         kvm_destroy_vm_debugfs(kvm);
1302 out_err_no_debugfs:
1303         kvm_coalesced_mmio_free(kvm);
1304 out_no_coalesced_mmio:
1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1306         if (kvm->mmu_notifier.ops)
1307                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1308 #endif
1309 out_err_no_mmu_notifier:
1310         hardware_disable_all();
1311 out_err_no_disable:
1312         kvm_arch_destroy_vm(kvm);
1313 out_err_no_arch_destroy_vm:
1314         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1315         for (i = 0; i < KVM_NR_BUSES; i++)
1316                 kfree(kvm_get_bus(kvm, i));
1317         cleanup_srcu_struct(&kvm->irq_srcu);
1318 out_err_no_irq_srcu:
1319         cleanup_srcu_struct(&kvm->srcu);
1320 out_err_no_srcu:
1321         kvm_arch_free_vm(kvm);
1322         mmdrop(current->mm);
1323         return ERR_PTR(r);
1324 }
1325
1326 static void kvm_destroy_devices(struct kvm *kvm)
1327 {
1328         struct kvm_device *dev, *tmp;
1329
1330         /*
1331          * We do not need to take the kvm->lock here, because nobody else
1332          * has a reference to the struct kvm at this point and therefore
1333          * cannot access the devices list anyhow.
1334          */
1335         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1336                 list_del(&dev->vm_node);
1337                 dev->ops->destroy(dev);
1338         }
1339 }
1340
1341 static void kvm_destroy_vm(struct kvm *kvm)
1342 {
1343         int i;
1344         struct mm_struct *mm = kvm->mm;
1345
1346         kvm_destroy_pm_notifier(kvm);
1347         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1348         kvm_destroy_vm_debugfs(kvm);
1349         kvm_arch_sync_events(kvm);
1350         mutex_lock(&kvm_lock);
1351         list_del(&kvm->vm_list);
1352         mutex_unlock(&kvm_lock);
1353         kvm_arch_pre_destroy_vm(kvm);
1354
1355         kvm_free_irq_routing(kvm);
1356         for (i = 0; i < KVM_NR_BUSES; i++) {
1357                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1358
1359                 if (bus)
1360                         kvm_io_bus_destroy(bus);
1361                 kvm->buses[i] = NULL;
1362         }
1363         kvm_coalesced_mmio_free(kvm);
1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1365         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1366         /*
1367          * At this point, pending calls to invalidate_range_start()
1368          * have completed but no more MMU notifiers will run, so
1369          * mn_active_invalidate_count may remain unbalanced.
1370          * No threads can be waiting in kvm_swap_active_memslots() as the
1371          * last reference on KVM has been dropped, but freeing
1372          * memslots would deadlock without this manual intervention.
1373          *
1374          * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1375          * notifier between a start() and end(), then there shouldn't be any
1376          * in-progress invalidations.
1377          */
1378         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1379         if (kvm->mn_active_invalidate_count)
1380                 kvm->mn_active_invalidate_count = 0;
1381         else
1382                 WARN_ON(kvm->mmu_invalidate_in_progress);
1383 #else
1384         kvm_flush_shadow_all(kvm);
1385 #endif
1386         kvm_arch_destroy_vm(kvm);
1387         kvm_destroy_devices(kvm);
1388         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1389                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1390                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1391         }
1392         cleanup_srcu_struct(&kvm->irq_srcu);
1393         cleanup_srcu_struct(&kvm->srcu);
1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1395         xa_destroy(&kvm->mem_attr_array);
1396 #endif
1397         kvm_arch_free_vm(kvm);
1398         preempt_notifier_dec();
1399         hardware_disable_all();
1400         mmdrop(mm);
1401 }
1402
1403 void kvm_get_kvm(struct kvm *kvm)
1404 {
1405         refcount_inc(&kvm->users_count);
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1408
1409 /*
1410  * Make sure the vm is not during destruction, which is a safe version of
1411  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1412  */
1413 bool kvm_get_kvm_safe(struct kvm *kvm)
1414 {
1415         return refcount_inc_not_zero(&kvm->users_count);
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1418
1419 void kvm_put_kvm(struct kvm *kvm)
1420 {
1421         if (refcount_dec_and_test(&kvm->users_count))
1422                 kvm_destroy_vm(kvm);
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1425
1426 /*
1427  * Used to put a reference that was taken on behalf of an object associated
1428  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1429  * of the new file descriptor fails and the reference cannot be transferred to
1430  * its final owner.  In such cases, the caller is still actively using @kvm and
1431  * will fail miserably if the refcount unexpectedly hits zero.
1432  */
1433 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1434 {
1435         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1438
1439 static int kvm_vm_release(struct inode *inode, struct file *filp)
1440 {
1441         struct kvm *kvm = filp->private_data;
1442
1443         kvm_irqfd_release(kvm);
1444
1445         kvm_put_kvm(kvm);
1446         return 0;
1447 }
1448
1449 /*
1450  * Allocation size is twice as large as the actual dirty bitmap size.
1451  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1452  */
1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1454 {
1455         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1456
1457         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1458         if (!memslot->dirty_bitmap)
1459                 return -ENOMEM;
1460
1461         return 0;
1462 }
1463
1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1465 {
1466         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1467         int node_idx_inactive = active->node_idx ^ 1;
1468
1469         return &kvm->__memslots[as_id][node_idx_inactive];
1470 }
1471
1472 /*
1473  * Helper to get the address space ID when one of memslot pointers may be NULL.
1474  * This also serves as a sanity that at least one of the pointers is non-NULL,
1475  * and that their address space IDs don't diverge.
1476  */
1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1478                                   struct kvm_memory_slot *b)
1479 {
1480         if (WARN_ON_ONCE(!a && !b))
1481                 return 0;
1482
1483         if (!a)
1484                 return b->as_id;
1485         if (!b)
1486                 return a->as_id;
1487
1488         WARN_ON_ONCE(a->as_id != b->as_id);
1489         return a->as_id;
1490 }
1491
1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1493                                 struct kvm_memory_slot *slot)
1494 {
1495         struct rb_root *gfn_tree = &slots->gfn_tree;
1496         struct rb_node **node, *parent;
1497         int idx = slots->node_idx;
1498
1499         parent = NULL;
1500         for (node = &gfn_tree->rb_node; *node; ) {
1501                 struct kvm_memory_slot *tmp;
1502
1503                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1504                 parent = *node;
1505                 if (slot->base_gfn < tmp->base_gfn)
1506                         node = &(*node)->rb_left;
1507                 else if (slot->base_gfn > tmp->base_gfn)
1508                         node = &(*node)->rb_right;
1509                 else
1510                         BUG();
1511         }
1512
1513         rb_link_node(&slot->gfn_node[idx], parent, node);
1514         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1515 }
1516
1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1518                                struct kvm_memory_slot *slot)
1519 {
1520         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1521 }
1522
1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1524                                  struct kvm_memory_slot *old,
1525                                  struct kvm_memory_slot *new)
1526 {
1527         int idx = slots->node_idx;
1528
1529         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1530
1531         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1532                         &slots->gfn_tree);
1533 }
1534
1535 /*
1536  * Replace @old with @new in the inactive memslots.
1537  *
1538  * With NULL @old this simply adds @new.
1539  * With NULL @new this simply removes @old.
1540  *
1541  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1542  * appropriately.
1543  */
1544 static void kvm_replace_memslot(struct kvm *kvm,
1545                                 struct kvm_memory_slot *old,
1546                                 struct kvm_memory_slot *new)
1547 {
1548         int as_id = kvm_memslots_get_as_id(old, new);
1549         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550         int idx = slots->node_idx;
1551
1552         if (old) {
1553                 hash_del(&old->id_node[idx]);
1554                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1555
1556                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1557                         atomic_long_set(&slots->last_used_slot, (long)new);
1558
1559                 if (!new) {
1560                         kvm_erase_gfn_node(slots, old);
1561                         return;
1562                 }
1563         }
1564
1565         /*
1566          * Initialize @new's hva range.  Do this even when replacing an @old
1567          * slot, kvm_copy_memslot() deliberately does not touch node data.
1568          */
1569         new->hva_node[idx].start = new->userspace_addr;
1570         new->hva_node[idx].last = new->userspace_addr +
1571                                   (new->npages << PAGE_SHIFT) - 1;
1572
1573         /*
1574          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1575          * hva_node needs to be swapped with remove+insert even though hva can't
1576          * change when replacing an existing slot.
1577          */
1578         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1579         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1580
1581         /*
1582          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1583          * switch the node in the gfn tree instead of removing the old and
1584          * inserting the new as two separate operations. Replacement is a
1585          * single O(1) operation versus two O(log(n)) operations for
1586          * remove+insert.
1587          */
1588         if (old && old->base_gfn == new->base_gfn) {
1589                 kvm_replace_gfn_node(slots, old, new);
1590         } else {
1591                 if (old)
1592                         kvm_erase_gfn_node(slots, old);
1593                 kvm_insert_gfn_node(slots, new);
1594         }
1595 }
1596
1597 /*
1598  * Flags that do not access any of the extra space of struct
1599  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1600  * only allows these.
1601  */
1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1603         (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1604
1605 static int check_memory_region_flags(struct kvm *kvm,
1606                                      const struct kvm_userspace_memory_region2 *mem)
1607 {
1608         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1609
1610         if (kvm_arch_has_private_mem(kvm))
1611                 valid_flags |= KVM_MEM_GUEST_MEMFD;
1612
1613         /* Dirty logging private memory is not currently supported. */
1614         if (mem->flags & KVM_MEM_GUEST_MEMFD)
1615                 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1616
1617 #ifdef __KVM_HAVE_READONLY_MEM
1618         valid_flags |= KVM_MEM_READONLY;
1619 #endif
1620
1621         if (mem->flags & ~valid_flags)
1622                 return -EINVAL;
1623
1624         return 0;
1625 }
1626
1627 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1628 {
1629         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1630
1631         /* Grab the generation from the activate memslots. */
1632         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1633
1634         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1635         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1636
1637         /*
1638          * Do not store the new memslots while there are invalidations in
1639          * progress, otherwise the locking in invalidate_range_start and
1640          * invalidate_range_end will be unbalanced.
1641          */
1642         spin_lock(&kvm->mn_invalidate_lock);
1643         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1644         while (kvm->mn_active_invalidate_count) {
1645                 set_current_state(TASK_UNINTERRUPTIBLE);
1646                 spin_unlock(&kvm->mn_invalidate_lock);
1647                 schedule();
1648                 spin_lock(&kvm->mn_invalidate_lock);
1649         }
1650         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1651         rcu_assign_pointer(kvm->memslots[as_id], slots);
1652         spin_unlock(&kvm->mn_invalidate_lock);
1653
1654         /*
1655          * Acquired in kvm_set_memslot. Must be released before synchronize
1656          * SRCU below in order to avoid deadlock with another thread
1657          * acquiring the slots_arch_lock in an srcu critical section.
1658          */
1659         mutex_unlock(&kvm->slots_arch_lock);
1660
1661         synchronize_srcu_expedited(&kvm->srcu);
1662
1663         /*
1664          * Increment the new memslot generation a second time, dropping the
1665          * update in-progress flag and incrementing the generation based on
1666          * the number of address spaces.  This provides a unique and easily
1667          * identifiable generation number while the memslots are in flux.
1668          */
1669         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1670
1671         /*
1672          * Generations must be unique even across address spaces.  We do not need
1673          * a global counter for that, instead the generation space is evenly split
1674          * across address spaces.  For example, with two address spaces, address
1675          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1676          * use generations 1, 3, 5, ...
1677          */
1678         gen += kvm_arch_nr_memslot_as_ids(kvm);
1679
1680         kvm_arch_memslots_updated(kvm, gen);
1681
1682         slots->generation = gen;
1683 }
1684
1685 static int kvm_prepare_memory_region(struct kvm *kvm,
1686                                      const struct kvm_memory_slot *old,
1687                                      struct kvm_memory_slot *new,
1688                                      enum kvm_mr_change change)
1689 {
1690         int r;
1691
1692         /*
1693          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1694          * will be freed on "commit".  If logging is enabled in both old and
1695          * new, reuse the existing bitmap.  If logging is enabled only in the
1696          * new and KVM isn't using a ring buffer, allocate and initialize a
1697          * new bitmap.
1698          */
1699         if (change != KVM_MR_DELETE) {
1700                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1701                         new->dirty_bitmap = NULL;
1702                 else if (old && old->dirty_bitmap)
1703                         new->dirty_bitmap = old->dirty_bitmap;
1704                 else if (kvm_use_dirty_bitmap(kvm)) {
1705                         r = kvm_alloc_dirty_bitmap(new);
1706                         if (r)
1707                                 return r;
1708
1709                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1710                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1711                 }
1712         }
1713
1714         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1715
1716         /* Free the bitmap on failure if it was allocated above. */
1717         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1718                 kvm_destroy_dirty_bitmap(new);
1719
1720         return r;
1721 }
1722
1723 static void kvm_commit_memory_region(struct kvm *kvm,
1724                                      struct kvm_memory_slot *old,
1725                                      const struct kvm_memory_slot *new,
1726                                      enum kvm_mr_change change)
1727 {
1728         int old_flags = old ? old->flags : 0;
1729         int new_flags = new ? new->flags : 0;
1730         /*
1731          * Update the total number of memslot pages before calling the arch
1732          * hook so that architectures can consume the result directly.
1733          */
1734         if (change == KVM_MR_DELETE)
1735                 kvm->nr_memslot_pages -= old->npages;
1736         else if (change == KVM_MR_CREATE)
1737                 kvm->nr_memslot_pages += new->npages;
1738
1739         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1740                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1741                 atomic_set(&kvm->nr_memslots_dirty_logging,
1742                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1743         }
1744
1745         kvm_arch_commit_memory_region(kvm, old, new, change);
1746
1747         switch (change) {
1748         case KVM_MR_CREATE:
1749                 /* Nothing more to do. */
1750                 break;
1751         case KVM_MR_DELETE:
1752                 /* Free the old memslot and all its metadata. */
1753                 kvm_free_memslot(kvm, old);
1754                 break;
1755         case KVM_MR_MOVE:
1756         case KVM_MR_FLAGS_ONLY:
1757                 /*
1758                  * Free the dirty bitmap as needed; the below check encompasses
1759                  * both the flags and whether a ring buffer is being used)
1760                  */
1761                 if (old->dirty_bitmap && !new->dirty_bitmap)
1762                         kvm_destroy_dirty_bitmap(old);
1763
1764                 /*
1765                  * The final quirk.  Free the detached, old slot, but only its
1766                  * memory, not any metadata.  Metadata, including arch specific
1767                  * data, may be reused by @new.
1768                  */
1769                 kfree(old);
1770                 break;
1771         default:
1772                 BUG();
1773         }
1774 }
1775
1776 /*
1777  * Activate @new, which must be installed in the inactive slots by the caller,
1778  * by swapping the active slots and then propagating @new to @old once @old is
1779  * unreachable and can be safely modified.
1780  *
1781  * With NULL @old this simply adds @new to @active (while swapping the sets).
1782  * With NULL @new this simply removes @old from @active and frees it
1783  * (while also swapping the sets).
1784  */
1785 static void kvm_activate_memslot(struct kvm *kvm,
1786                                  struct kvm_memory_slot *old,
1787                                  struct kvm_memory_slot *new)
1788 {
1789         int as_id = kvm_memslots_get_as_id(old, new);
1790
1791         kvm_swap_active_memslots(kvm, as_id);
1792
1793         /* Propagate the new memslot to the now inactive memslots. */
1794         kvm_replace_memslot(kvm, old, new);
1795 }
1796
1797 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1798                              const struct kvm_memory_slot *src)
1799 {
1800         dest->base_gfn = src->base_gfn;
1801         dest->npages = src->npages;
1802         dest->dirty_bitmap = src->dirty_bitmap;
1803         dest->arch = src->arch;
1804         dest->userspace_addr = src->userspace_addr;
1805         dest->flags = src->flags;
1806         dest->id = src->id;
1807         dest->as_id = src->as_id;
1808 }
1809
1810 static void kvm_invalidate_memslot(struct kvm *kvm,
1811                                    struct kvm_memory_slot *old,
1812                                    struct kvm_memory_slot *invalid_slot)
1813 {
1814         /*
1815          * Mark the current slot INVALID.  As with all memslot modifications,
1816          * this must be done on an unreachable slot to avoid modifying the
1817          * current slot in the active tree.
1818          */
1819         kvm_copy_memslot(invalid_slot, old);
1820         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1821         kvm_replace_memslot(kvm, old, invalid_slot);
1822
1823         /*
1824          * Activate the slot that is now marked INVALID, but don't propagate
1825          * the slot to the now inactive slots. The slot is either going to be
1826          * deleted or recreated as a new slot.
1827          */
1828         kvm_swap_active_memslots(kvm, old->as_id);
1829
1830         /*
1831          * From this point no new shadow pages pointing to a deleted, or moved,
1832          * memslot will be created.  Validation of sp->gfn happens in:
1833          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1834          *      - kvm_is_visible_gfn (mmu_check_root)
1835          */
1836         kvm_arch_flush_shadow_memslot(kvm, old);
1837         kvm_arch_guest_memory_reclaimed(kvm);
1838
1839         /* Was released by kvm_swap_active_memslots(), reacquire. */
1840         mutex_lock(&kvm->slots_arch_lock);
1841
1842         /*
1843          * Copy the arch-specific field of the newly-installed slot back to the
1844          * old slot as the arch data could have changed between releasing
1845          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1846          * above.  Writers are required to retrieve memslots *after* acquiring
1847          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1848          */
1849         old->arch = invalid_slot->arch;
1850 }
1851
1852 static void kvm_create_memslot(struct kvm *kvm,
1853                                struct kvm_memory_slot *new)
1854 {
1855         /* Add the new memslot to the inactive set and activate. */
1856         kvm_replace_memslot(kvm, NULL, new);
1857         kvm_activate_memslot(kvm, NULL, new);
1858 }
1859
1860 static void kvm_delete_memslot(struct kvm *kvm,
1861                                struct kvm_memory_slot *old,
1862                                struct kvm_memory_slot *invalid_slot)
1863 {
1864         /*
1865          * Remove the old memslot (in the inactive memslots) by passing NULL as
1866          * the "new" slot, and for the invalid version in the active slots.
1867          */
1868         kvm_replace_memslot(kvm, old, NULL);
1869         kvm_activate_memslot(kvm, invalid_slot, NULL);
1870 }
1871
1872 static void kvm_move_memslot(struct kvm *kvm,
1873                              struct kvm_memory_slot *old,
1874                              struct kvm_memory_slot *new,
1875                              struct kvm_memory_slot *invalid_slot)
1876 {
1877         /*
1878          * Replace the old memslot in the inactive slots, and then swap slots
1879          * and replace the current INVALID with the new as well.
1880          */
1881         kvm_replace_memslot(kvm, old, new);
1882         kvm_activate_memslot(kvm, invalid_slot, new);
1883 }
1884
1885 static void kvm_update_flags_memslot(struct kvm *kvm,
1886                                      struct kvm_memory_slot *old,
1887                                      struct kvm_memory_slot *new)
1888 {
1889         /*
1890          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1891          * an intermediate step. Instead, the old memslot is simply replaced
1892          * with a new, updated copy in both memslot sets.
1893          */
1894         kvm_replace_memslot(kvm, old, new);
1895         kvm_activate_memslot(kvm, old, new);
1896 }
1897
1898 static int kvm_set_memslot(struct kvm *kvm,
1899                            struct kvm_memory_slot *old,
1900                            struct kvm_memory_slot *new,
1901                            enum kvm_mr_change change)
1902 {
1903         struct kvm_memory_slot *invalid_slot;
1904         int r;
1905
1906         /*
1907          * Released in kvm_swap_active_memslots().
1908          *
1909          * Must be held from before the current memslots are copied until after
1910          * the new memslots are installed with rcu_assign_pointer, then
1911          * released before the synchronize srcu in kvm_swap_active_memslots().
1912          *
1913          * When modifying memslots outside of the slots_lock, must be held
1914          * before reading the pointer to the current memslots until after all
1915          * changes to those memslots are complete.
1916          *
1917          * These rules ensure that installing new memslots does not lose
1918          * changes made to the previous memslots.
1919          */
1920         mutex_lock(&kvm->slots_arch_lock);
1921
1922         /*
1923          * Invalidate the old slot if it's being deleted or moved.  This is
1924          * done prior to actually deleting/moving the memslot to allow vCPUs to
1925          * continue running by ensuring there are no mappings or shadow pages
1926          * for the memslot when it is deleted/moved.  Without pre-invalidation
1927          * (and without a lock), a window would exist between effecting the
1928          * delete/move and committing the changes in arch code where KVM or a
1929          * guest could access a non-existent memslot.
1930          *
1931          * Modifications are done on a temporary, unreachable slot.  The old
1932          * slot needs to be preserved in case a later step fails and the
1933          * invalidation needs to be reverted.
1934          */
1935         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1936                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1937                 if (!invalid_slot) {
1938                         mutex_unlock(&kvm->slots_arch_lock);
1939                         return -ENOMEM;
1940                 }
1941                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1942         }
1943
1944         r = kvm_prepare_memory_region(kvm, old, new, change);
1945         if (r) {
1946                 /*
1947                  * For DELETE/MOVE, revert the above INVALID change.  No
1948                  * modifications required since the original slot was preserved
1949                  * in the inactive slots.  Changing the active memslots also
1950                  * release slots_arch_lock.
1951                  */
1952                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1953                         kvm_activate_memslot(kvm, invalid_slot, old);
1954                         kfree(invalid_slot);
1955                 } else {
1956                         mutex_unlock(&kvm->slots_arch_lock);
1957                 }
1958                 return r;
1959         }
1960
1961         /*
1962          * For DELETE and MOVE, the working slot is now active as the INVALID
1963          * version of the old slot.  MOVE is particularly special as it reuses
1964          * the old slot and returns a copy of the old slot (in working_slot).
1965          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1966          * old slot is detached but otherwise preserved.
1967          */
1968         if (change == KVM_MR_CREATE)
1969                 kvm_create_memslot(kvm, new);
1970         else if (change == KVM_MR_DELETE)
1971                 kvm_delete_memslot(kvm, old, invalid_slot);
1972         else if (change == KVM_MR_MOVE)
1973                 kvm_move_memslot(kvm, old, new, invalid_slot);
1974         else if (change == KVM_MR_FLAGS_ONLY)
1975                 kvm_update_flags_memslot(kvm, old, new);
1976         else
1977                 BUG();
1978
1979         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1980         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1981                 kfree(invalid_slot);
1982
1983         /*
1984          * No need to refresh new->arch, changes after dropping slots_arch_lock
1985          * will directly hit the final, active memslot.  Architectures are
1986          * responsible for knowing that new->arch may be stale.
1987          */
1988         kvm_commit_memory_region(kvm, old, new, change);
1989
1990         return 0;
1991 }
1992
1993 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1994                                       gfn_t start, gfn_t end)
1995 {
1996         struct kvm_memslot_iter iter;
1997
1998         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1999                 if (iter.slot->id != id)
2000                         return true;
2001         }
2002
2003         return false;
2004 }
2005
2006 /*
2007  * Allocate some memory and give it an address in the guest physical address
2008  * space.
2009  *
2010  * Discontiguous memory is allowed, mostly for framebuffers.
2011  *
2012  * Must be called holding kvm->slots_lock for write.
2013  */
2014 int __kvm_set_memory_region(struct kvm *kvm,
2015                             const struct kvm_userspace_memory_region2 *mem)
2016 {
2017         struct kvm_memory_slot *old, *new;
2018         struct kvm_memslots *slots;
2019         enum kvm_mr_change change;
2020         unsigned long npages;
2021         gfn_t base_gfn;
2022         int as_id, id;
2023         int r;
2024
2025         r = check_memory_region_flags(kvm, mem);
2026         if (r)
2027                 return r;
2028
2029         as_id = mem->slot >> 16;
2030         id = (u16)mem->slot;
2031
2032         /* General sanity checks */
2033         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2034             (mem->memory_size != (unsigned long)mem->memory_size))
2035                 return -EINVAL;
2036         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2037                 return -EINVAL;
2038         /* We can read the guest memory with __xxx_user() later on. */
2039         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2040             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2041              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2042                         mem->memory_size))
2043                 return -EINVAL;
2044         if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2045             (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2046              mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2047                 return -EINVAL;
2048         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2049                 return -EINVAL;
2050         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2051                 return -EINVAL;
2052         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2053                 return -EINVAL;
2054
2055         slots = __kvm_memslots(kvm, as_id);
2056
2057         /*
2058          * Note, the old memslot (and the pointer itself!) may be invalidated
2059          * and/or destroyed by kvm_set_memslot().
2060          */
2061         old = id_to_memslot(slots, id);
2062
2063         if (!mem->memory_size) {
2064                 if (!old || !old->npages)
2065                         return -EINVAL;
2066
2067                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2068                         return -EIO;
2069
2070                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2071         }
2072
2073         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2074         npages = (mem->memory_size >> PAGE_SHIFT);
2075
2076         if (!old || !old->npages) {
2077                 change = KVM_MR_CREATE;
2078
2079                 /*
2080                  * To simplify KVM internals, the total number of pages across
2081                  * all memslots must fit in an unsigned long.
2082                  */
2083                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2084                         return -EINVAL;
2085         } else { /* Modify an existing slot. */
2086                 /* Private memslots are immutable, they can only be deleted. */
2087                 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2088                         return -EINVAL;
2089                 if ((mem->userspace_addr != old->userspace_addr) ||
2090                     (npages != old->npages) ||
2091                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2092                         return -EINVAL;
2093
2094                 if (base_gfn != old->base_gfn)
2095                         change = KVM_MR_MOVE;
2096                 else if (mem->flags != old->flags)
2097                         change = KVM_MR_FLAGS_ONLY;
2098                 else /* Nothing to change. */
2099                         return 0;
2100         }
2101
2102         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2103             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2104                 return -EEXIST;
2105
2106         /* Allocate a slot that will persist in the memslot. */
2107         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2108         if (!new)
2109                 return -ENOMEM;
2110
2111         new->as_id = as_id;
2112         new->id = id;
2113         new->base_gfn = base_gfn;
2114         new->npages = npages;
2115         new->flags = mem->flags;
2116         new->userspace_addr = mem->userspace_addr;
2117         if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2118                 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2119                 if (r)
2120                         goto out;
2121         }
2122
2123         r = kvm_set_memslot(kvm, old, new, change);
2124         if (r)
2125                 goto out_unbind;
2126
2127         return 0;
2128
2129 out_unbind:
2130         if (mem->flags & KVM_MEM_GUEST_MEMFD)
2131                 kvm_gmem_unbind(new);
2132 out:
2133         kfree(new);
2134         return r;
2135 }
2136 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2137
2138 int kvm_set_memory_region(struct kvm *kvm,
2139                           const struct kvm_userspace_memory_region2 *mem)
2140 {
2141         int r;
2142
2143         mutex_lock(&kvm->slots_lock);
2144         r = __kvm_set_memory_region(kvm, mem);
2145         mutex_unlock(&kvm->slots_lock);
2146         return r;
2147 }
2148 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2149
2150 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2151                                           struct kvm_userspace_memory_region2 *mem)
2152 {
2153         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2154                 return -EINVAL;
2155
2156         return kvm_set_memory_region(kvm, mem);
2157 }
2158
2159 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2160 /**
2161  * kvm_get_dirty_log - get a snapshot of dirty pages
2162  * @kvm:        pointer to kvm instance
2163  * @log:        slot id and address to which we copy the log
2164  * @is_dirty:   set to '1' if any dirty pages were found
2165  * @memslot:    set to the associated memslot, always valid on success
2166  */
2167 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2168                       int *is_dirty, struct kvm_memory_slot **memslot)
2169 {
2170         struct kvm_memslots *slots;
2171         int i, as_id, id;
2172         unsigned long n;
2173         unsigned long any = 0;
2174
2175         /* Dirty ring tracking may be exclusive to dirty log tracking */
2176         if (!kvm_use_dirty_bitmap(kvm))
2177                 return -ENXIO;
2178
2179         *memslot = NULL;
2180         *is_dirty = 0;
2181
2182         as_id = log->slot >> 16;
2183         id = (u16)log->slot;
2184         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2185                 return -EINVAL;
2186
2187         slots = __kvm_memslots(kvm, as_id);
2188         *memslot = id_to_memslot(slots, id);
2189         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2190                 return -ENOENT;
2191
2192         kvm_arch_sync_dirty_log(kvm, *memslot);
2193
2194         n = kvm_dirty_bitmap_bytes(*memslot);
2195
2196         for (i = 0; !any && i < n/sizeof(long); ++i)
2197                 any = (*memslot)->dirty_bitmap[i];
2198
2199         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2200                 return -EFAULT;
2201
2202         if (any)
2203                 *is_dirty = 1;
2204         return 0;
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2207
2208 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2209 /**
2210  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2211  *      and reenable dirty page tracking for the corresponding pages.
2212  * @kvm:        pointer to kvm instance
2213  * @log:        slot id and address to which we copy the log
2214  *
2215  * We need to keep it in mind that VCPU threads can write to the bitmap
2216  * concurrently. So, to avoid losing track of dirty pages we keep the
2217  * following order:
2218  *
2219  *    1. Take a snapshot of the bit and clear it if needed.
2220  *    2. Write protect the corresponding page.
2221  *    3. Copy the snapshot to the userspace.
2222  *    4. Upon return caller flushes TLB's if needed.
2223  *
2224  * Between 2 and 4, the guest may write to the page using the remaining TLB
2225  * entry.  This is not a problem because the page is reported dirty using
2226  * the snapshot taken before and step 4 ensures that writes done after
2227  * exiting to userspace will be logged for the next call.
2228  *
2229  */
2230 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2231 {
2232         struct kvm_memslots *slots;
2233         struct kvm_memory_slot *memslot;
2234         int i, as_id, id;
2235         unsigned long n;
2236         unsigned long *dirty_bitmap;
2237         unsigned long *dirty_bitmap_buffer;
2238         bool flush;
2239
2240         /* Dirty ring tracking may be exclusive to dirty log tracking */
2241         if (!kvm_use_dirty_bitmap(kvm))
2242                 return -ENXIO;
2243
2244         as_id = log->slot >> 16;
2245         id = (u16)log->slot;
2246         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2247                 return -EINVAL;
2248
2249         slots = __kvm_memslots(kvm, as_id);
2250         memslot = id_to_memslot(slots, id);
2251         if (!memslot || !memslot->dirty_bitmap)
2252                 return -ENOENT;
2253
2254         dirty_bitmap = memslot->dirty_bitmap;
2255
2256         kvm_arch_sync_dirty_log(kvm, memslot);
2257
2258         n = kvm_dirty_bitmap_bytes(memslot);
2259         flush = false;
2260         if (kvm->manual_dirty_log_protect) {
2261                 /*
2262                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2263                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2264                  * is some code duplication between this function and
2265                  * kvm_get_dirty_log, but hopefully all architecture
2266                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2267                  * can be eliminated.
2268                  */
2269                 dirty_bitmap_buffer = dirty_bitmap;
2270         } else {
2271                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2272                 memset(dirty_bitmap_buffer, 0, n);
2273
2274                 KVM_MMU_LOCK(kvm);
2275                 for (i = 0; i < n / sizeof(long); i++) {
2276                         unsigned long mask;
2277                         gfn_t offset;
2278
2279                         if (!dirty_bitmap[i])
2280                                 continue;
2281
2282                         flush = true;
2283                         mask = xchg(&dirty_bitmap[i], 0);
2284                         dirty_bitmap_buffer[i] = mask;
2285
2286                         offset = i * BITS_PER_LONG;
2287                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2288                                                                 offset, mask);
2289                 }
2290                 KVM_MMU_UNLOCK(kvm);
2291         }
2292
2293         if (flush)
2294                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2295
2296         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2297                 return -EFAULT;
2298         return 0;
2299 }
2300
2301
2302 /**
2303  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2304  * @kvm: kvm instance
2305  * @log: slot id and address to which we copy the log
2306  *
2307  * Steps 1-4 below provide general overview of dirty page logging. See
2308  * kvm_get_dirty_log_protect() function description for additional details.
2309  *
2310  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2311  * always flush the TLB (step 4) even if previous step failed  and the dirty
2312  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2313  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2314  * writes will be marked dirty for next log read.
2315  *
2316  *   1. Take a snapshot of the bit and clear it if needed.
2317  *   2. Write protect the corresponding page.
2318  *   3. Copy the snapshot to the userspace.
2319  *   4. Flush TLB's if needed.
2320  */
2321 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2322                                       struct kvm_dirty_log *log)
2323 {
2324         int r;
2325
2326         mutex_lock(&kvm->slots_lock);
2327
2328         r = kvm_get_dirty_log_protect(kvm, log);
2329
2330         mutex_unlock(&kvm->slots_lock);
2331         return r;
2332 }
2333
2334 /**
2335  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2336  *      and reenable dirty page tracking for the corresponding pages.
2337  * @kvm:        pointer to kvm instance
2338  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2339  */
2340 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2341                                        struct kvm_clear_dirty_log *log)
2342 {
2343         struct kvm_memslots *slots;
2344         struct kvm_memory_slot *memslot;
2345         int as_id, id;
2346         gfn_t offset;
2347         unsigned long i, n;
2348         unsigned long *dirty_bitmap;
2349         unsigned long *dirty_bitmap_buffer;
2350         bool flush;
2351
2352         /* Dirty ring tracking may be exclusive to dirty log tracking */
2353         if (!kvm_use_dirty_bitmap(kvm))
2354                 return -ENXIO;
2355
2356         as_id = log->slot >> 16;
2357         id = (u16)log->slot;
2358         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2359                 return -EINVAL;
2360
2361         if (log->first_page & 63)
2362                 return -EINVAL;
2363
2364         slots = __kvm_memslots(kvm, as_id);
2365         memslot = id_to_memslot(slots, id);
2366         if (!memslot || !memslot->dirty_bitmap)
2367                 return -ENOENT;
2368
2369         dirty_bitmap = memslot->dirty_bitmap;
2370
2371         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2372
2373         if (log->first_page > memslot->npages ||
2374             log->num_pages > memslot->npages - log->first_page ||
2375             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2376             return -EINVAL;
2377
2378         kvm_arch_sync_dirty_log(kvm, memslot);
2379
2380         flush = false;
2381         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2382         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2383                 return -EFAULT;
2384
2385         KVM_MMU_LOCK(kvm);
2386         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2387                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2388              i++, offset += BITS_PER_LONG) {
2389                 unsigned long mask = *dirty_bitmap_buffer++;
2390                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2391                 if (!mask)
2392                         continue;
2393
2394                 mask &= atomic_long_fetch_andnot(mask, p);
2395
2396                 /*
2397                  * mask contains the bits that really have been cleared.  This
2398                  * never includes any bits beyond the length of the memslot (if
2399                  * the length is not aligned to 64 pages), therefore it is not
2400                  * a problem if userspace sets them in log->dirty_bitmap.
2401                 */
2402                 if (mask) {
2403                         flush = true;
2404                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2405                                                                 offset, mask);
2406                 }
2407         }
2408         KVM_MMU_UNLOCK(kvm);
2409
2410         if (flush)
2411                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2412
2413         return 0;
2414 }
2415
2416 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2417                                         struct kvm_clear_dirty_log *log)
2418 {
2419         int r;
2420
2421         mutex_lock(&kvm->slots_lock);
2422
2423         r = kvm_clear_dirty_log_protect(kvm, log);
2424
2425         mutex_unlock(&kvm->slots_lock);
2426         return r;
2427 }
2428 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2429
2430 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2431 /*
2432  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2433  * matching @attrs.
2434  */
2435 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2436                                      unsigned long attrs)
2437 {
2438         XA_STATE(xas, &kvm->mem_attr_array, start);
2439         unsigned long index;
2440         bool has_attrs;
2441         void *entry;
2442
2443         rcu_read_lock();
2444
2445         if (!attrs) {
2446                 has_attrs = !xas_find(&xas, end - 1);
2447                 goto out;
2448         }
2449
2450         has_attrs = true;
2451         for (index = start; index < end; index++) {
2452                 do {
2453                         entry = xas_next(&xas);
2454                 } while (xas_retry(&xas, entry));
2455
2456                 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2457                         has_attrs = false;
2458                         break;
2459                 }
2460         }
2461
2462 out:
2463         rcu_read_unlock();
2464         return has_attrs;
2465 }
2466
2467 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2468 {
2469         if (!kvm || kvm_arch_has_private_mem(kvm))
2470                 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2471
2472         return 0;
2473 }
2474
2475 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2476                                                  struct kvm_mmu_notifier_range *range)
2477 {
2478         struct kvm_gfn_range gfn_range;
2479         struct kvm_memory_slot *slot;
2480         struct kvm_memslots *slots;
2481         struct kvm_memslot_iter iter;
2482         bool found_memslot = false;
2483         bool ret = false;
2484         int i;
2485
2486         gfn_range.arg = range->arg;
2487         gfn_range.may_block = range->may_block;
2488
2489         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2490                 slots = __kvm_memslots(kvm, i);
2491
2492                 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2493                         slot = iter.slot;
2494                         gfn_range.slot = slot;
2495
2496                         gfn_range.start = max(range->start, slot->base_gfn);
2497                         gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2498                         if (gfn_range.start >= gfn_range.end)
2499                                 continue;
2500
2501                         if (!found_memslot) {
2502                                 found_memslot = true;
2503                                 KVM_MMU_LOCK(kvm);
2504                                 if (!IS_KVM_NULL_FN(range->on_lock))
2505                                         range->on_lock(kvm);
2506                         }
2507
2508                         ret |= range->handler(kvm, &gfn_range);
2509                 }
2510         }
2511
2512         if (range->flush_on_ret && ret)
2513                 kvm_flush_remote_tlbs(kvm);
2514
2515         if (found_memslot)
2516                 KVM_MMU_UNLOCK(kvm);
2517 }
2518
2519 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2520                                           struct kvm_gfn_range *range)
2521 {
2522         /*
2523          * Unconditionally add the range to the invalidation set, regardless of
2524          * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2525          * if KVM supports RWX attributes in the future and the attributes are
2526          * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2527          * adding the range allows KVM to require that MMU invalidations add at
2528          * least one range between begin() and end(), e.g. allows KVM to detect
2529          * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2530          * but it's not obvious that allowing new mappings while the attributes
2531          * are in flux is desirable or worth the complexity.
2532          */
2533         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2534
2535         return kvm_arch_pre_set_memory_attributes(kvm, range);
2536 }
2537
2538 /* Set @attributes for the gfn range [@start, @end). */
2539 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2540                                      unsigned long attributes)
2541 {
2542         struct kvm_mmu_notifier_range pre_set_range = {
2543                 .start = start,
2544                 .end = end,
2545                 .handler = kvm_pre_set_memory_attributes,
2546                 .on_lock = kvm_mmu_invalidate_begin,
2547                 .flush_on_ret = true,
2548                 .may_block = true,
2549         };
2550         struct kvm_mmu_notifier_range post_set_range = {
2551                 .start = start,
2552                 .end = end,
2553                 .arg.attributes = attributes,
2554                 .handler = kvm_arch_post_set_memory_attributes,
2555                 .on_lock = kvm_mmu_invalidate_end,
2556                 .may_block = true,
2557         };
2558         unsigned long i;
2559         void *entry;
2560         int r = 0;
2561
2562         entry = attributes ? xa_mk_value(attributes) : NULL;
2563
2564         mutex_lock(&kvm->slots_lock);
2565
2566         /* Nothing to do if the entire range as the desired attributes. */
2567         if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2568                 goto out_unlock;
2569
2570         /*
2571          * Reserve memory ahead of time to avoid having to deal with failures
2572          * partway through setting the new attributes.
2573          */
2574         for (i = start; i < end; i++) {
2575                 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2576                 if (r)
2577                         goto out_unlock;
2578         }
2579
2580         kvm_handle_gfn_range(kvm, &pre_set_range);
2581
2582         for (i = start; i < end; i++) {
2583                 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2584                                     GFP_KERNEL_ACCOUNT));
2585                 KVM_BUG_ON(r, kvm);
2586         }
2587
2588         kvm_handle_gfn_range(kvm, &post_set_range);
2589
2590 out_unlock:
2591         mutex_unlock(&kvm->slots_lock);
2592
2593         return r;
2594 }
2595 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2596                                            struct kvm_memory_attributes *attrs)
2597 {
2598         gfn_t start, end;
2599
2600         /* flags is currently not used. */
2601         if (attrs->flags)
2602                 return -EINVAL;
2603         if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2604                 return -EINVAL;
2605         if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2606                 return -EINVAL;
2607         if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2608                 return -EINVAL;
2609
2610         start = attrs->address >> PAGE_SHIFT;
2611         end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2612
2613         /*
2614          * xarray tracks data using "unsigned long", and as a result so does
2615          * KVM.  For simplicity, supports generic attributes only on 64-bit
2616          * architectures.
2617          */
2618         BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2619
2620         return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2621 }
2622 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2623
2624 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2625 {
2626         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2627 }
2628 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2629
2630 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2631 {
2632         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2633         u64 gen = slots->generation;
2634         struct kvm_memory_slot *slot;
2635
2636         /*
2637          * This also protects against using a memslot from a different address space,
2638          * since different address spaces have different generation numbers.
2639          */
2640         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2641                 vcpu->last_used_slot = NULL;
2642                 vcpu->last_used_slot_gen = gen;
2643         }
2644
2645         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2646         if (slot)
2647                 return slot;
2648
2649         /*
2650          * Fall back to searching all memslots. We purposely use
2651          * search_memslots() instead of __gfn_to_memslot() to avoid
2652          * thrashing the VM-wide last_used_slot in kvm_memslots.
2653          */
2654         slot = search_memslots(slots, gfn, false);
2655         if (slot) {
2656                 vcpu->last_used_slot = slot;
2657                 return slot;
2658         }
2659
2660         return NULL;
2661 }
2662
2663 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2664 {
2665         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2666
2667         return kvm_is_visible_memslot(memslot);
2668 }
2669 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2670
2671 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2672 {
2673         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2674
2675         return kvm_is_visible_memslot(memslot);
2676 }
2677 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2678
2679 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2680 {
2681         struct vm_area_struct *vma;
2682         unsigned long addr, size;
2683
2684         size = PAGE_SIZE;
2685
2686         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2687         if (kvm_is_error_hva(addr))
2688                 return PAGE_SIZE;
2689
2690         mmap_read_lock(current->mm);
2691         vma = find_vma(current->mm, addr);
2692         if (!vma)
2693                 goto out;
2694
2695         size = vma_kernel_pagesize(vma);
2696
2697 out:
2698         mmap_read_unlock(current->mm);
2699
2700         return size;
2701 }
2702
2703 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2704 {
2705         return slot->flags & KVM_MEM_READONLY;
2706 }
2707
2708 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2709                                        gfn_t *nr_pages, bool write)
2710 {
2711         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2712                 return KVM_HVA_ERR_BAD;
2713
2714         if (memslot_is_readonly(slot) && write)
2715                 return KVM_HVA_ERR_RO_BAD;
2716
2717         if (nr_pages)
2718                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2719
2720         return __gfn_to_hva_memslot(slot, gfn);
2721 }
2722
2723 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2724                                      gfn_t *nr_pages)
2725 {
2726         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2727 }
2728
2729 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2730                                         gfn_t gfn)
2731 {
2732         return gfn_to_hva_many(slot, gfn, NULL);
2733 }
2734 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2735
2736 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2737 {
2738         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2739 }
2740 EXPORT_SYMBOL_GPL(gfn_to_hva);
2741
2742 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2743 {
2744         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2747
2748 /*
2749  * Return the hva of a @gfn and the R/W attribute if possible.
2750  *
2751  * @slot: the kvm_memory_slot which contains @gfn
2752  * @gfn: the gfn to be translated
2753  * @writable: used to return the read/write attribute of the @slot if the hva
2754  * is valid and @writable is not NULL
2755  */
2756 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2757                                       gfn_t gfn, bool *writable)
2758 {
2759         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2760
2761         if (!kvm_is_error_hva(hva) && writable)
2762                 *writable = !memslot_is_readonly(slot);
2763
2764         return hva;
2765 }
2766
2767 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2768 {
2769         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2770
2771         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2772 }
2773
2774 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2775 {
2776         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2777
2778         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2779 }
2780
2781 static inline int check_user_page_hwpoison(unsigned long addr)
2782 {
2783         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2784
2785         rc = get_user_pages(addr, 1, flags, NULL);
2786         return rc == -EHWPOISON;
2787 }
2788
2789 /*
2790  * The fast path to get the writable pfn which will be stored in @pfn,
2791  * true indicates success, otherwise false is returned.  It's also the
2792  * only part that runs if we can in atomic context.
2793  */
2794 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2795                             bool *writable, kvm_pfn_t *pfn)
2796 {
2797         struct page *page[1];
2798
2799         /*
2800          * Fast pin a writable pfn only if it is a write fault request
2801          * or the caller allows to map a writable pfn for a read fault
2802          * request.
2803          */
2804         if (!(write_fault || writable))
2805                 return false;
2806
2807         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2808                 *pfn = page_to_pfn(page[0]);
2809
2810                 if (writable)
2811                         *writable = true;
2812                 return true;
2813         }
2814
2815         return false;
2816 }
2817
2818 /*
2819  * The slow path to get the pfn of the specified host virtual address,
2820  * 1 indicates success, -errno is returned if error is detected.
2821  */
2822 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2823                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2824 {
2825         /*
2826          * When a VCPU accesses a page that is not mapped into the secondary
2827          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2828          * make progress. We always want to honor NUMA hinting faults in that
2829          * case, because GUP usage corresponds to memory accesses from the VCPU.
2830          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2831          * mapped into the secondary MMU and gets accessed by a VCPU.
2832          *
2833          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2834          * implicitly honor NUMA hinting faults and don't need this flag.
2835          */
2836         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2837         struct page *page;
2838         int npages;
2839
2840         might_sleep();
2841
2842         if (writable)
2843                 *writable = write_fault;
2844
2845         if (write_fault)
2846                 flags |= FOLL_WRITE;
2847         if (async)
2848                 flags |= FOLL_NOWAIT;
2849         if (interruptible)
2850                 flags |= FOLL_INTERRUPTIBLE;
2851
2852         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2853         if (npages != 1)
2854                 return npages;
2855
2856         /* map read fault as writable if possible */
2857         if (unlikely(!write_fault) && writable) {
2858                 struct page *wpage;
2859
2860                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2861                         *writable = true;
2862                         put_page(page);
2863                         page = wpage;
2864                 }
2865         }
2866         *pfn = page_to_pfn(page);
2867         return npages;
2868 }
2869
2870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2871 {
2872         if (unlikely(!(vma->vm_flags & VM_READ)))
2873                 return false;
2874
2875         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2876                 return false;
2877
2878         return true;
2879 }
2880
2881 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2882 {
2883         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2884
2885         if (!page)
2886                 return 1;
2887
2888         return get_page_unless_zero(page);
2889 }
2890
2891 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2892                                unsigned long addr, bool write_fault,
2893                                bool *writable, kvm_pfn_t *p_pfn)
2894 {
2895         kvm_pfn_t pfn;
2896         pte_t *ptep;
2897         pte_t pte;
2898         spinlock_t *ptl;
2899         int r;
2900
2901         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2902         if (r) {
2903                 /*
2904                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2905                  * not call the fault handler, so do it here.
2906                  */
2907                 bool unlocked = false;
2908                 r = fixup_user_fault(current->mm, addr,
2909                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2910                                      &unlocked);
2911                 if (unlocked)
2912                         return -EAGAIN;
2913                 if (r)
2914                         return r;
2915
2916                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2917                 if (r)
2918                         return r;
2919         }
2920
2921         pte = ptep_get(ptep);
2922
2923         if (write_fault && !pte_write(pte)) {
2924                 pfn = KVM_PFN_ERR_RO_FAULT;
2925                 goto out;
2926         }
2927
2928         if (writable)
2929                 *writable = pte_write(pte);
2930         pfn = pte_pfn(pte);
2931
2932         /*
2933          * Get a reference here because callers of *hva_to_pfn* and
2934          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2935          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2936          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2937          * simply do nothing for reserved pfns.
2938          *
2939          * Whoever called remap_pfn_range is also going to call e.g.
2940          * unmap_mapping_range before the underlying pages are freed,
2941          * causing a call to our MMU notifier.
2942          *
2943          * Certain IO or PFNMAP mappings can be backed with valid
2944          * struct pages, but be allocated without refcounting e.g.,
2945          * tail pages of non-compound higher order allocations, which
2946          * would then underflow the refcount when the caller does the
2947          * required put_page. Don't allow those pages here.
2948          */
2949         if (!kvm_try_get_pfn(pfn))
2950                 r = -EFAULT;
2951
2952 out:
2953         pte_unmap_unlock(ptep, ptl);
2954         *p_pfn = pfn;
2955
2956         return r;
2957 }
2958
2959 /*
2960  * Pin guest page in memory and return its pfn.
2961  * @addr: host virtual address which maps memory to the guest
2962  * @atomic: whether this function can sleep
2963  * @interruptible: whether the process can be interrupted by non-fatal signals
2964  * @async: whether this function need to wait IO complete if the
2965  *         host page is not in the memory
2966  * @write_fault: whether we should get a writable host page
2967  * @writable: whether it allows to map a writable host page for !@write_fault
2968  *
2969  * The function will map a writable host page for these two cases:
2970  * 1): @write_fault = true
2971  * 2): @write_fault = false && @writable, @writable will tell the caller
2972  *     whether the mapping is writable.
2973  */
2974 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2975                      bool *async, bool write_fault, bool *writable)
2976 {
2977         struct vm_area_struct *vma;
2978         kvm_pfn_t pfn;
2979         int npages, r;
2980
2981         /* we can do it either atomically or asynchronously, not both */
2982         BUG_ON(atomic && async);
2983
2984         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2985                 return pfn;
2986
2987         if (atomic)
2988                 return KVM_PFN_ERR_FAULT;
2989
2990         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2991                                  writable, &pfn);
2992         if (npages == 1)
2993                 return pfn;
2994         if (npages == -EINTR)
2995                 return KVM_PFN_ERR_SIGPENDING;
2996
2997         mmap_read_lock(current->mm);
2998         if (npages == -EHWPOISON ||
2999               (!async && check_user_page_hwpoison(addr))) {
3000                 pfn = KVM_PFN_ERR_HWPOISON;
3001                 goto exit;
3002         }
3003
3004 retry:
3005         vma = vma_lookup(current->mm, addr);
3006
3007         if (vma == NULL)
3008                 pfn = KVM_PFN_ERR_FAULT;
3009         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3010                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3011                 if (r == -EAGAIN)
3012                         goto retry;
3013                 if (r < 0)
3014                         pfn = KVM_PFN_ERR_FAULT;
3015         } else {
3016                 if (async && vma_is_valid(vma, write_fault))
3017                         *async = true;
3018                 pfn = KVM_PFN_ERR_FAULT;
3019         }
3020 exit:
3021         mmap_read_unlock(current->mm);
3022         return pfn;
3023 }
3024
3025 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3026                                bool atomic, bool interruptible, bool *async,
3027                                bool write_fault, bool *writable, hva_t *hva)
3028 {
3029         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3030
3031         if (hva)
3032                 *hva = addr;
3033
3034         if (addr == KVM_HVA_ERR_RO_BAD) {
3035                 if (writable)
3036                         *writable = false;
3037                 return KVM_PFN_ERR_RO_FAULT;
3038         }
3039
3040         if (kvm_is_error_hva(addr)) {
3041                 if (writable)
3042                         *writable = false;
3043                 return KVM_PFN_NOSLOT;
3044         }
3045
3046         /* Do not map writable pfn in the readonly memslot. */
3047         if (writable && memslot_is_readonly(slot)) {
3048                 *writable = false;
3049                 writable = NULL;
3050         }
3051
3052         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3053                           writable);
3054 }
3055 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3056
3057 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3058                       bool *writable)
3059 {
3060         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3061                                     NULL, write_fault, writable, NULL);
3062 }
3063 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3064
3065 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3066 {
3067         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3068                                     NULL, NULL);
3069 }
3070 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3071
3072 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3073 {
3074         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3075                                     NULL, NULL);
3076 }
3077 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3078
3079 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3080 {
3081         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3082 }
3083 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3084
3085 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3086 {
3087         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3088 }
3089 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3090
3091 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3092 {
3093         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3094 }
3095 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3096
3097 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3098                             struct page **pages, int nr_pages)
3099 {
3100         unsigned long addr;
3101         gfn_t entry = 0;
3102
3103         addr = gfn_to_hva_many(slot, gfn, &entry);
3104         if (kvm_is_error_hva(addr))
3105                 return -1;
3106
3107         if (entry < nr_pages)
3108                 return 0;
3109
3110         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3111 }
3112 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3113
3114 /*
3115  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3116  * backed by 'struct page'.  A valid example is if the backing memslot is
3117  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3118  * been elevated by gfn_to_pfn().
3119  */
3120 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3121 {
3122         struct page *page;
3123         kvm_pfn_t pfn;
3124
3125         pfn = gfn_to_pfn(kvm, gfn);
3126
3127         if (is_error_noslot_pfn(pfn))
3128                 return KVM_ERR_PTR_BAD_PAGE;
3129
3130         page = kvm_pfn_to_refcounted_page(pfn);
3131         if (!page)
3132                 return KVM_ERR_PTR_BAD_PAGE;
3133
3134         return page;
3135 }
3136 EXPORT_SYMBOL_GPL(gfn_to_page);
3137
3138 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3139 {
3140         if (dirty)
3141                 kvm_release_pfn_dirty(pfn);
3142         else
3143                 kvm_release_pfn_clean(pfn);
3144 }
3145
3146 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3147 {
3148         kvm_pfn_t pfn;
3149         void *hva = NULL;
3150         struct page *page = KVM_UNMAPPED_PAGE;
3151
3152         if (!map)
3153                 return -EINVAL;
3154
3155         pfn = gfn_to_pfn(vcpu->kvm, gfn);
3156         if (is_error_noslot_pfn(pfn))
3157                 return -EINVAL;
3158
3159         if (pfn_valid(pfn)) {
3160                 page = pfn_to_page(pfn);
3161                 hva = kmap(page);
3162 #ifdef CONFIG_HAS_IOMEM
3163         } else {
3164                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3165 #endif
3166         }
3167
3168         if (!hva)
3169                 return -EFAULT;
3170
3171         map->page = page;
3172         map->hva = hva;
3173         map->pfn = pfn;
3174         map->gfn = gfn;
3175
3176         return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3179
3180 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3181 {
3182         if (!map)
3183                 return;
3184
3185         if (!map->hva)
3186                 return;
3187
3188         if (map->page != KVM_UNMAPPED_PAGE)
3189                 kunmap(map->page);
3190 #ifdef CONFIG_HAS_IOMEM
3191         else
3192                 memunmap(map->hva);
3193 #endif
3194
3195         if (dirty)
3196                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3197
3198         kvm_release_pfn(map->pfn, dirty);
3199
3200         map->hva = NULL;
3201         map->page = NULL;
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3204
3205 static bool kvm_is_ad_tracked_page(struct page *page)
3206 {
3207         /*
3208          * Per page-flags.h, pages tagged PG_reserved "should in general not be
3209          * touched (e.g. set dirty) except by its owner".
3210          */
3211         return !PageReserved(page);
3212 }
3213
3214 static void kvm_set_page_dirty(struct page *page)
3215 {
3216         if (kvm_is_ad_tracked_page(page))
3217                 SetPageDirty(page);
3218 }
3219
3220 static void kvm_set_page_accessed(struct page *page)
3221 {
3222         if (kvm_is_ad_tracked_page(page))
3223                 mark_page_accessed(page);
3224 }
3225
3226 void kvm_release_page_clean(struct page *page)
3227 {
3228         WARN_ON(is_error_page(page));
3229
3230         kvm_set_page_accessed(page);
3231         put_page(page);
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3234
3235 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3236 {
3237         struct page *page;
3238
3239         if (is_error_noslot_pfn(pfn))
3240                 return;
3241
3242         page = kvm_pfn_to_refcounted_page(pfn);
3243         if (!page)
3244                 return;
3245
3246         kvm_release_page_clean(page);
3247 }
3248 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3249
3250 void kvm_release_page_dirty(struct page *page)
3251 {
3252         WARN_ON(is_error_page(page));
3253
3254         kvm_set_page_dirty(page);
3255         kvm_release_page_clean(page);
3256 }
3257 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3258
3259 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3260 {
3261         struct page *page;
3262
3263         if (is_error_noslot_pfn(pfn))
3264                 return;
3265
3266         page = kvm_pfn_to_refcounted_page(pfn);
3267         if (!page)
3268                 return;
3269
3270         kvm_release_page_dirty(page);
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3273
3274 /*
3275  * Note, checking for an error/noslot pfn is the caller's responsibility when
3276  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3277  * "set" helpers are not to be used when the pfn might point at garbage.
3278  */
3279 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3280 {
3281         if (WARN_ON(is_error_noslot_pfn(pfn)))
3282                 return;
3283
3284         if (pfn_valid(pfn))
3285                 kvm_set_page_dirty(pfn_to_page(pfn));
3286 }
3287 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3288
3289 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3290 {
3291         if (WARN_ON(is_error_noslot_pfn(pfn)))
3292                 return;
3293
3294         if (pfn_valid(pfn))
3295                 kvm_set_page_accessed(pfn_to_page(pfn));
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3298
3299 static int next_segment(unsigned long len, int offset)
3300 {
3301         if (len > PAGE_SIZE - offset)
3302                 return PAGE_SIZE - offset;
3303         else
3304                 return len;
3305 }
3306
3307 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3308                                  void *data, int offset, int len)
3309 {
3310         int r;
3311         unsigned long addr;
3312
3313         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3314         if (kvm_is_error_hva(addr))
3315                 return -EFAULT;
3316         r = __copy_from_user(data, (void __user *)addr + offset, len);
3317         if (r)
3318                 return -EFAULT;
3319         return 0;
3320 }
3321
3322 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3323                         int len)
3324 {
3325         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3326
3327         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3328 }
3329 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3330
3331 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3332                              int offset, int len)
3333 {
3334         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3335
3336         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3337 }
3338 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3339
3340 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3341 {
3342         gfn_t gfn = gpa >> PAGE_SHIFT;
3343         int seg;
3344         int offset = offset_in_page(gpa);
3345         int ret;
3346
3347         while ((seg = next_segment(len, offset)) != 0) {
3348                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3349                 if (ret < 0)
3350                         return ret;
3351                 offset = 0;
3352                 len -= seg;
3353                 data += seg;
3354                 ++gfn;
3355         }
3356         return 0;
3357 }
3358 EXPORT_SYMBOL_GPL(kvm_read_guest);
3359
3360 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3361 {
3362         gfn_t gfn = gpa >> PAGE_SHIFT;
3363         int seg;
3364         int offset = offset_in_page(gpa);
3365         int ret;
3366
3367         while ((seg = next_segment(len, offset)) != 0) {
3368                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3369                 if (ret < 0)
3370                         return ret;
3371                 offset = 0;
3372                 len -= seg;
3373                 data += seg;
3374                 ++gfn;
3375         }
3376         return 0;
3377 }
3378 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3379
3380 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3381                                    void *data, int offset, unsigned long len)
3382 {
3383         int r;
3384         unsigned long addr;
3385
3386         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3387         if (kvm_is_error_hva(addr))
3388                 return -EFAULT;
3389         pagefault_disable();
3390         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3391         pagefault_enable();
3392         if (r)
3393                 return -EFAULT;
3394         return 0;
3395 }
3396
3397 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3398                                void *data, unsigned long len)
3399 {
3400         gfn_t gfn = gpa >> PAGE_SHIFT;
3401         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3402         int offset = offset_in_page(gpa);
3403
3404         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3405 }
3406 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3407
3408 static int __kvm_write_guest_page(struct kvm *kvm,
3409                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3410                                   const void *data, int offset, int len)
3411 {
3412         int r;
3413         unsigned long addr;
3414
3415         addr = gfn_to_hva_memslot(memslot, gfn);
3416         if (kvm_is_error_hva(addr))
3417                 return -EFAULT;
3418         r = __copy_to_user((void __user *)addr + offset, data, len);
3419         if (r)
3420                 return -EFAULT;
3421         mark_page_dirty_in_slot(kvm, memslot, gfn);
3422         return 0;
3423 }
3424
3425 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3426                          const void *data, int offset, int len)
3427 {
3428         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3429
3430         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3431 }
3432 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3433
3434 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3435                               const void *data, int offset, int len)
3436 {
3437         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3438
3439         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3440 }
3441 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3442
3443 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3444                     unsigned long len)
3445 {
3446         gfn_t gfn = gpa >> PAGE_SHIFT;
3447         int seg;
3448         int offset = offset_in_page(gpa);
3449         int ret;
3450
3451         while ((seg = next_segment(len, offset)) != 0) {
3452                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3453                 if (ret < 0)
3454                         return ret;
3455                 offset = 0;
3456                 len -= seg;
3457                 data += seg;
3458                 ++gfn;
3459         }
3460         return 0;
3461 }
3462 EXPORT_SYMBOL_GPL(kvm_write_guest);
3463
3464 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3465                          unsigned long len)
3466 {
3467         gfn_t gfn = gpa >> PAGE_SHIFT;
3468         int seg;
3469         int offset = offset_in_page(gpa);
3470         int ret;
3471
3472         while ((seg = next_segment(len, offset)) != 0) {
3473                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3474                 if (ret < 0)
3475                         return ret;
3476                 offset = 0;
3477                 len -= seg;
3478                 data += seg;
3479                 ++gfn;
3480         }
3481         return 0;
3482 }
3483 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3484
3485 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3486                                        struct gfn_to_hva_cache *ghc,
3487                                        gpa_t gpa, unsigned long len)
3488 {
3489         int offset = offset_in_page(gpa);
3490         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3491         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3492         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3493         gfn_t nr_pages_avail;
3494
3495         /* Update ghc->generation before performing any error checks. */
3496         ghc->generation = slots->generation;
3497
3498         if (start_gfn > end_gfn) {
3499                 ghc->hva = KVM_HVA_ERR_BAD;
3500                 return -EINVAL;
3501         }
3502
3503         /*
3504          * If the requested region crosses two memslots, we still
3505          * verify that the entire region is valid here.
3506          */
3507         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3508                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3509                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3510                                            &nr_pages_avail);
3511                 if (kvm_is_error_hva(ghc->hva))
3512                         return -EFAULT;
3513         }
3514
3515         /* Use the slow path for cross page reads and writes. */
3516         if (nr_pages_needed == 1)
3517                 ghc->hva += offset;
3518         else
3519                 ghc->memslot = NULL;
3520
3521         ghc->gpa = gpa;
3522         ghc->len = len;
3523         return 0;
3524 }
3525
3526 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3527                               gpa_t gpa, unsigned long len)
3528 {
3529         struct kvm_memslots *slots = kvm_memslots(kvm);
3530         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3533
3534 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3535                                   void *data, unsigned int offset,
3536                                   unsigned long len)
3537 {
3538         struct kvm_memslots *slots = kvm_memslots(kvm);
3539         int r;
3540         gpa_t gpa = ghc->gpa + offset;
3541
3542         if (WARN_ON_ONCE(len + offset > ghc->len))
3543                 return -EINVAL;
3544
3545         if (slots->generation != ghc->generation) {
3546                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3547                         return -EFAULT;
3548         }
3549
3550         if (kvm_is_error_hva(ghc->hva))
3551                 return -EFAULT;
3552
3553         if (unlikely(!ghc->memslot))
3554                 return kvm_write_guest(kvm, gpa, data, len);
3555
3556         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3557         if (r)
3558                 return -EFAULT;
3559         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3560
3561         return 0;
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3564
3565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3566                            void *data, unsigned long len)
3567 {
3568         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3569 }
3570 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3571
3572 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3573                                  void *data, unsigned int offset,
3574                                  unsigned long len)
3575 {
3576         struct kvm_memslots *slots = kvm_memslots(kvm);
3577         int r;
3578         gpa_t gpa = ghc->gpa + offset;
3579
3580         if (WARN_ON_ONCE(len + offset > ghc->len))
3581                 return -EINVAL;
3582
3583         if (slots->generation != ghc->generation) {
3584                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3585                         return -EFAULT;
3586         }
3587
3588         if (kvm_is_error_hva(ghc->hva))
3589                 return -EFAULT;
3590
3591         if (unlikely(!ghc->memslot))
3592                 return kvm_read_guest(kvm, gpa, data, len);
3593
3594         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3595         if (r)
3596                 return -EFAULT;
3597
3598         return 0;
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3601
3602 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3603                           void *data, unsigned long len)
3604 {
3605         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3608
3609 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3610 {
3611         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3612         gfn_t gfn = gpa >> PAGE_SHIFT;
3613         int seg;
3614         int offset = offset_in_page(gpa);
3615         int ret;
3616
3617         while ((seg = next_segment(len, offset)) != 0) {
3618                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3619                 if (ret < 0)
3620                         return ret;
3621                 offset = 0;
3622                 len -= seg;
3623                 ++gfn;
3624         }
3625         return 0;
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3628
3629 void mark_page_dirty_in_slot(struct kvm *kvm,
3630                              const struct kvm_memory_slot *memslot,
3631                              gfn_t gfn)
3632 {
3633         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3634
3635 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3636         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3637                 return;
3638
3639         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3640 #endif
3641
3642         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3643                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3644                 u32 slot = (memslot->as_id << 16) | memslot->id;
3645
3646                 if (kvm->dirty_ring_size && vcpu)
3647                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3648                 else if (memslot->dirty_bitmap)
3649                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3650         }
3651 }
3652 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3653
3654 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3655 {
3656         struct kvm_memory_slot *memslot;
3657
3658         memslot = gfn_to_memslot(kvm, gfn);
3659         mark_page_dirty_in_slot(kvm, memslot, gfn);
3660 }
3661 EXPORT_SYMBOL_GPL(mark_page_dirty);
3662
3663 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3664 {
3665         struct kvm_memory_slot *memslot;
3666
3667         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3668         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3669 }
3670 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3671
3672 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3673 {
3674         if (!vcpu->sigset_active)
3675                 return;
3676
3677         /*
3678          * This does a lockless modification of ->real_blocked, which is fine
3679          * because, only current can change ->real_blocked and all readers of
3680          * ->real_blocked don't care as long ->real_blocked is always a subset
3681          * of ->blocked.
3682          */
3683         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3684 }
3685
3686 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3687 {
3688         if (!vcpu->sigset_active)
3689                 return;
3690
3691         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3692         sigemptyset(&current->real_blocked);
3693 }
3694
3695 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3696 {
3697         unsigned int old, val, grow, grow_start;
3698
3699         old = val = vcpu->halt_poll_ns;
3700         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3701         grow = READ_ONCE(halt_poll_ns_grow);
3702         if (!grow)
3703                 goto out;
3704
3705         val *= grow;
3706         if (val < grow_start)
3707                 val = grow_start;
3708
3709         vcpu->halt_poll_ns = val;
3710 out:
3711         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3712 }
3713
3714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3715 {
3716         unsigned int old, val, shrink, grow_start;
3717
3718         old = val = vcpu->halt_poll_ns;
3719         shrink = READ_ONCE(halt_poll_ns_shrink);
3720         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3721         if (shrink == 0)
3722                 val = 0;
3723         else
3724                 val /= shrink;
3725
3726         if (val < grow_start)
3727                 val = 0;
3728
3729         vcpu->halt_poll_ns = val;
3730         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3731 }
3732
3733 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3734 {
3735         int ret = -EINTR;
3736         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3737
3738         if (kvm_arch_vcpu_runnable(vcpu))
3739                 goto out;
3740         if (kvm_cpu_has_pending_timer(vcpu))
3741                 goto out;
3742         if (signal_pending(current))
3743                 goto out;
3744         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3745                 goto out;
3746
3747         ret = 0;
3748 out:
3749         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3750         return ret;
3751 }
3752
3753 /*
3754  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3755  * pending.  This is mostly used when halting a vCPU, but may also be used
3756  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3757  */
3758 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3759 {
3760         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3761         bool waited = false;
3762
3763         vcpu->stat.generic.blocking = 1;
3764
3765         preempt_disable();
3766         kvm_arch_vcpu_blocking(vcpu);
3767         prepare_to_rcuwait(wait);
3768         preempt_enable();
3769
3770         for (;;) {
3771                 set_current_state(TASK_INTERRUPTIBLE);
3772
3773                 if (kvm_vcpu_check_block(vcpu) < 0)
3774                         break;
3775
3776                 waited = true;
3777                 schedule();
3778         }
3779
3780         preempt_disable();
3781         finish_rcuwait(wait);
3782         kvm_arch_vcpu_unblocking(vcpu);
3783         preempt_enable();
3784
3785         vcpu->stat.generic.blocking = 0;
3786
3787         return waited;
3788 }
3789
3790 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3791                                           ktime_t end, bool success)
3792 {
3793         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3794         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3795
3796         ++vcpu->stat.generic.halt_attempted_poll;
3797
3798         if (success) {
3799                 ++vcpu->stat.generic.halt_successful_poll;
3800
3801                 if (!vcpu_valid_wakeup(vcpu))
3802                         ++vcpu->stat.generic.halt_poll_invalid;
3803
3804                 stats->halt_poll_success_ns += poll_ns;
3805                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3806         } else {
3807                 stats->halt_poll_fail_ns += poll_ns;
3808                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3809         }
3810 }
3811
3812 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3813 {
3814         struct kvm *kvm = vcpu->kvm;
3815
3816         if (kvm->override_halt_poll_ns) {
3817                 /*
3818                  * Ensure kvm->max_halt_poll_ns is not read before
3819                  * kvm->override_halt_poll_ns.
3820                  *
3821                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3822                  */
3823                 smp_rmb();
3824                 return READ_ONCE(kvm->max_halt_poll_ns);
3825         }
3826
3827         return READ_ONCE(halt_poll_ns);
3828 }
3829
3830 /*
3831  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3832  * polling is enabled, busy wait for a short time before blocking to avoid the
3833  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3834  * is halted.
3835  */
3836 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3837 {
3838         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3839         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3840         ktime_t start, cur, poll_end;
3841         bool waited = false;
3842         bool do_halt_poll;
3843         u64 halt_ns;
3844
3845         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3846                 vcpu->halt_poll_ns = max_halt_poll_ns;
3847
3848         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3849
3850         start = cur = poll_end = ktime_get();
3851         if (do_halt_poll) {
3852                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3853
3854                 do {
3855                         if (kvm_vcpu_check_block(vcpu) < 0)
3856                                 goto out;
3857                         cpu_relax();
3858                         poll_end = cur = ktime_get();
3859                 } while (kvm_vcpu_can_poll(cur, stop));
3860         }
3861
3862         waited = kvm_vcpu_block(vcpu);
3863
3864         cur = ktime_get();
3865         if (waited) {
3866                 vcpu->stat.generic.halt_wait_ns +=
3867                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3868                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3869                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3870         }
3871 out:
3872         /* The total time the vCPU was "halted", including polling time. */
3873         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3874
3875         /*
3876          * Note, halt-polling is considered successful so long as the vCPU was
3877          * never actually scheduled out, i.e. even if the wake event arrived
3878          * after of the halt-polling loop itself, but before the full wait.
3879          */
3880         if (do_halt_poll)
3881                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3882
3883         if (halt_poll_allowed) {
3884                 /* Recompute the max halt poll time in case it changed. */
3885                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3886
3887                 if (!vcpu_valid_wakeup(vcpu)) {
3888                         shrink_halt_poll_ns(vcpu);
3889                 } else if (max_halt_poll_ns) {
3890                         if (halt_ns <= vcpu->halt_poll_ns)
3891                                 ;
3892                         /* we had a long block, shrink polling */
3893                         else if (vcpu->halt_poll_ns &&
3894                                  halt_ns > max_halt_poll_ns)
3895                                 shrink_halt_poll_ns(vcpu);
3896                         /* we had a short halt and our poll time is too small */
3897                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3898                                  halt_ns < max_halt_poll_ns)
3899                                 grow_halt_poll_ns(vcpu);
3900                 } else {
3901                         vcpu->halt_poll_ns = 0;
3902                 }
3903         }
3904
3905         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3906 }
3907 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3908
3909 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3910 {
3911         if (__kvm_vcpu_wake_up(vcpu)) {
3912                 WRITE_ONCE(vcpu->ready, true);
3913                 ++vcpu->stat.generic.halt_wakeup;
3914                 return true;
3915         }
3916
3917         return false;
3918 }
3919 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3920
3921 #ifndef CONFIG_S390
3922 /*
3923  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3924  */
3925 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3926 {
3927         int me, cpu;
3928
3929         if (kvm_vcpu_wake_up(vcpu))
3930                 return;
3931
3932         me = get_cpu();
3933         /*
3934          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3935          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3936          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3937          * within the vCPU thread itself.
3938          */
3939         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3940                 if (vcpu->mode == IN_GUEST_MODE)
3941                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3942                 goto out;
3943         }
3944
3945         /*
3946          * Note, the vCPU could get migrated to a different pCPU at any point
3947          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3948          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3949          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3950          * vCPU also requires it to leave IN_GUEST_MODE.
3951          */
3952         if (kvm_arch_vcpu_should_kick(vcpu)) {
3953                 cpu = READ_ONCE(vcpu->cpu);
3954                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3955                         smp_send_reschedule(cpu);
3956         }
3957 out:
3958         put_cpu();
3959 }
3960 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3961 #endif /* !CONFIG_S390 */
3962
3963 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3964 {
3965         struct pid *pid;
3966         struct task_struct *task = NULL;
3967         int ret = 0;
3968
3969         rcu_read_lock();
3970         pid = rcu_dereference(target->pid);
3971         if (pid)
3972                 task = get_pid_task(pid, PIDTYPE_PID);
3973         rcu_read_unlock();
3974         if (!task)
3975                 return ret;
3976         ret = yield_to(task, 1);
3977         put_task_struct(task);
3978
3979         return ret;
3980 }
3981 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3982
3983 /*
3984  * Helper that checks whether a VCPU is eligible for directed yield.
3985  * Most eligible candidate to yield is decided by following heuristics:
3986  *
3987  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3988  *  (preempted lock holder), indicated by @in_spin_loop.
3989  *  Set at the beginning and cleared at the end of interception/PLE handler.
3990  *
3991  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3992  *  chance last time (mostly it has become eligible now since we have probably
3993  *  yielded to lockholder in last iteration. This is done by toggling
3994  *  @dy_eligible each time a VCPU checked for eligibility.)
3995  *
3996  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3997  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3998  *  burning. Giving priority for a potential lock-holder increases lock
3999  *  progress.
4000  *
4001  *  Since algorithm is based on heuristics, accessing another VCPU data without
4002  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4003  *  and continue with next VCPU and so on.
4004  */
4005 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4006 {
4007 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4008         bool eligible;
4009
4010         eligible = !vcpu->spin_loop.in_spin_loop ||
4011                     vcpu->spin_loop.dy_eligible;
4012
4013         if (vcpu->spin_loop.in_spin_loop)
4014                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4015
4016         return eligible;
4017 #else
4018         return true;
4019 #endif
4020 }
4021
4022 /*
4023  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4024  * a vcpu_load/vcpu_put pair.  However, for most architectures
4025  * kvm_arch_vcpu_runnable does not require vcpu_load.
4026  */
4027 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4028 {
4029         return kvm_arch_vcpu_runnable(vcpu);
4030 }
4031
4032 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4033 {
4034         if (kvm_arch_dy_runnable(vcpu))
4035                 return true;
4036
4037 #ifdef CONFIG_KVM_ASYNC_PF
4038         if (!list_empty_careful(&vcpu->async_pf.done))
4039                 return true;
4040 #endif
4041
4042         return false;
4043 }
4044
4045 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4046 {
4047         return false;
4048 }
4049
4050 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4051 {
4052         struct kvm *kvm = me->kvm;
4053         struct kvm_vcpu *vcpu;
4054         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4055         unsigned long i;
4056         int yielded = 0;
4057         int try = 3;
4058         int pass;
4059
4060         kvm_vcpu_set_in_spin_loop(me, true);
4061         /*
4062          * We boost the priority of a VCPU that is runnable but not
4063          * currently running, because it got preempted by something
4064          * else and called schedule in __vcpu_run.  Hopefully that
4065          * VCPU is holding the lock that we need and will release it.
4066          * We approximate round-robin by starting at the last boosted VCPU.
4067          */
4068         for (pass = 0; pass < 2 && !yielded && try; pass++) {
4069                 kvm_for_each_vcpu(i, vcpu, kvm) {
4070                         if (!pass && i <= last_boosted_vcpu) {
4071                                 i = last_boosted_vcpu;
4072                                 continue;
4073                         } else if (pass && i > last_boosted_vcpu)
4074                                 break;
4075                         if (!READ_ONCE(vcpu->ready))
4076                                 continue;
4077                         if (vcpu == me)
4078                                 continue;
4079                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4080                                 continue;
4081                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4082                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4083                             !kvm_arch_vcpu_in_kernel(vcpu))
4084                                 continue;
4085                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4086                                 continue;
4087
4088                         yielded = kvm_vcpu_yield_to(vcpu);
4089                         if (yielded > 0) {
4090                                 kvm->last_boosted_vcpu = i;
4091                                 break;
4092                         } else if (yielded < 0) {
4093                                 try--;
4094                                 if (!try)
4095                                         break;
4096                         }
4097                 }
4098         }
4099         kvm_vcpu_set_in_spin_loop(me, false);
4100
4101         /* Ensure vcpu is not eligible during next spinloop */
4102         kvm_vcpu_set_dy_eligible(me, false);
4103 }
4104 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4105
4106 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4107 {
4108 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4109         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4110             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4111              kvm->dirty_ring_size / PAGE_SIZE);
4112 #else
4113         return false;
4114 #endif
4115 }
4116
4117 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4118 {
4119         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4120         struct page *page;
4121
4122         if (vmf->pgoff == 0)
4123                 page = virt_to_page(vcpu->run);
4124 #ifdef CONFIG_X86
4125         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4126                 page = virt_to_page(vcpu->arch.pio_data);
4127 #endif
4128 #ifdef CONFIG_KVM_MMIO
4129         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4130                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4131 #endif
4132         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4133                 page = kvm_dirty_ring_get_page(
4134                     &vcpu->dirty_ring,
4135                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4136         else
4137                 return kvm_arch_vcpu_fault(vcpu, vmf);
4138         get_page(page);
4139         vmf->page = page;
4140         return 0;
4141 }
4142
4143 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4144         .fault = kvm_vcpu_fault,
4145 };
4146
4147 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4148 {
4149         struct kvm_vcpu *vcpu = file->private_data;
4150         unsigned long pages = vma_pages(vma);
4151
4152         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4153              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4154             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4155                 return -EINVAL;
4156
4157         vma->vm_ops = &kvm_vcpu_vm_ops;
4158         return 0;
4159 }
4160
4161 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4162 {
4163         struct kvm_vcpu *vcpu = filp->private_data;
4164
4165         kvm_put_kvm(vcpu->kvm);
4166         return 0;
4167 }
4168
4169 static struct file_operations kvm_vcpu_fops = {
4170         .release        = kvm_vcpu_release,
4171         .unlocked_ioctl = kvm_vcpu_ioctl,
4172         .mmap           = kvm_vcpu_mmap,
4173         .llseek         = noop_llseek,
4174         KVM_COMPAT(kvm_vcpu_compat_ioctl),
4175 };
4176
4177 /*
4178  * Allocates an inode for the vcpu.
4179  */
4180 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4181 {
4182         char name[8 + 1 + ITOA_MAX_LEN + 1];
4183
4184         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4185         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4186 }
4187
4188 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4189 static int vcpu_get_pid(void *data, u64 *val)
4190 {
4191         struct kvm_vcpu *vcpu = data;
4192
4193         rcu_read_lock();
4194         *val = pid_nr(rcu_dereference(vcpu->pid));
4195         rcu_read_unlock();
4196         return 0;
4197 }
4198
4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4200
4201 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4202 {
4203         struct dentry *debugfs_dentry;
4204         char dir_name[ITOA_MAX_LEN * 2];
4205
4206         if (!debugfs_initialized())
4207                 return;
4208
4209         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4210         debugfs_dentry = debugfs_create_dir(dir_name,
4211                                             vcpu->kvm->debugfs_dentry);
4212         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4213                             &vcpu_get_pid_fops);
4214
4215         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4216 }
4217 #endif
4218
4219 /*
4220  * Creates some virtual cpus.  Good luck creating more than one.
4221  */
4222 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4223 {
4224         int r;
4225         struct kvm_vcpu *vcpu;
4226         struct page *page;
4227
4228         if (id >= KVM_MAX_VCPU_IDS)
4229                 return -EINVAL;
4230
4231         mutex_lock(&kvm->lock);
4232         if (kvm->created_vcpus >= kvm->max_vcpus) {
4233                 mutex_unlock(&kvm->lock);
4234                 return -EINVAL;
4235         }
4236
4237         r = kvm_arch_vcpu_precreate(kvm, id);
4238         if (r) {
4239                 mutex_unlock(&kvm->lock);
4240                 return r;
4241         }
4242
4243         kvm->created_vcpus++;
4244         mutex_unlock(&kvm->lock);
4245
4246         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4247         if (!vcpu) {
4248                 r = -ENOMEM;
4249                 goto vcpu_decrement;
4250         }
4251
4252         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4253         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4254         if (!page) {
4255                 r = -ENOMEM;
4256                 goto vcpu_free;
4257         }
4258         vcpu->run = page_address(page);
4259
4260         kvm_vcpu_init(vcpu, kvm, id);
4261
4262         r = kvm_arch_vcpu_create(vcpu);
4263         if (r)
4264                 goto vcpu_free_run_page;
4265
4266         if (kvm->dirty_ring_size) {
4267                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4268                                          id, kvm->dirty_ring_size);
4269                 if (r)
4270                         goto arch_vcpu_destroy;
4271         }
4272
4273         mutex_lock(&kvm->lock);
4274
4275 #ifdef CONFIG_LOCKDEP
4276         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4277         mutex_lock(&vcpu->mutex);
4278         mutex_unlock(&vcpu->mutex);
4279 #endif
4280
4281         if (kvm_get_vcpu_by_id(kvm, id)) {
4282                 r = -EEXIST;
4283                 goto unlock_vcpu_destroy;
4284         }
4285
4286         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4287         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4288         if (r)
4289                 goto unlock_vcpu_destroy;
4290
4291         /* Now it's all set up, let userspace reach it */
4292         kvm_get_kvm(kvm);
4293         r = create_vcpu_fd(vcpu);
4294         if (r < 0)
4295                 goto kvm_put_xa_release;
4296
4297         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4298                 r = -EINVAL;
4299                 goto kvm_put_xa_release;
4300         }
4301
4302         /*
4303          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4304          * pointer before kvm->online_vcpu's incremented value.
4305          */
4306         smp_wmb();
4307         atomic_inc(&kvm->online_vcpus);
4308
4309         mutex_unlock(&kvm->lock);
4310         kvm_arch_vcpu_postcreate(vcpu);
4311         kvm_create_vcpu_debugfs(vcpu);
4312         return r;
4313
4314 kvm_put_xa_release:
4315         kvm_put_kvm_no_destroy(kvm);
4316         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4317 unlock_vcpu_destroy:
4318         mutex_unlock(&kvm->lock);
4319         kvm_dirty_ring_free(&vcpu->dirty_ring);
4320 arch_vcpu_destroy:
4321         kvm_arch_vcpu_destroy(vcpu);
4322 vcpu_free_run_page:
4323         free_page((unsigned long)vcpu->run);
4324 vcpu_free:
4325         kmem_cache_free(kvm_vcpu_cache, vcpu);
4326 vcpu_decrement:
4327         mutex_lock(&kvm->lock);
4328         kvm->created_vcpus--;
4329         mutex_unlock(&kvm->lock);
4330         return r;
4331 }
4332
4333 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4334 {
4335         if (sigset) {
4336                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4337                 vcpu->sigset_active = 1;
4338                 vcpu->sigset = *sigset;
4339         } else
4340                 vcpu->sigset_active = 0;
4341         return 0;
4342 }
4343
4344 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4345                               size_t size, loff_t *offset)
4346 {
4347         struct kvm_vcpu *vcpu = file->private_data;
4348
4349         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4350                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4351                         sizeof(vcpu->stat), user_buffer, size, offset);
4352 }
4353
4354 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4355 {
4356         struct kvm_vcpu *vcpu = file->private_data;
4357
4358         kvm_put_kvm(vcpu->kvm);
4359         return 0;
4360 }
4361
4362 static const struct file_operations kvm_vcpu_stats_fops = {
4363         .owner = THIS_MODULE,
4364         .read = kvm_vcpu_stats_read,
4365         .release = kvm_vcpu_stats_release,
4366         .llseek = noop_llseek,
4367 };
4368
4369 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4370 {
4371         int fd;
4372         struct file *file;
4373         char name[15 + ITOA_MAX_LEN + 1];
4374
4375         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4376
4377         fd = get_unused_fd_flags(O_CLOEXEC);
4378         if (fd < 0)
4379                 return fd;
4380
4381         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4382         if (IS_ERR(file)) {
4383                 put_unused_fd(fd);
4384                 return PTR_ERR(file);
4385         }
4386
4387         kvm_get_kvm(vcpu->kvm);
4388
4389         file->f_mode |= FMODE_PREAD;
4390         fd_install(fd, file);
4391
4392         return fd;
4393 }
4394
4395 static long kvm_vcpu_ioctl(struct file *filp,
4396                            unsigned int ioctl, unsigned long arg)
4397 {
4398         struct kvm_vcpu *vcpu = filp->private_data;
4399         void __user *argp = (void __user *)arg;
4400         int r;
4401         struct kvm_fpu *fpu = NULL;
4402         struct kvm_sregs *kvm_sregs = NULL;
4403
4404         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4405                 return -EIO;
4406
4407         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4408                 return -EINVAL;
4409
4410         /*
4411          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4412          * execution; mutex_lock() would break them.
4413          */
4414         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4415         if (r != -ENOIOCTLCMD)
4416                 return r;
4417
4418         if (mutex_lock_killable(&vcpu->mutex))
4419                 return -EINTR;
4420         switch (ioctl) {
4421         case KVM_RUN: {
4422                 struct pid *oldpid;
4423                 r = -EINVAL;
4424                 if (arg)
4425                         goto out;
4426                 oldpid = rcu_access_pointer(vcpu->pid);
4427                 if (unlikely(oldpid != task_pid(current))) {
4428                         /* The thread running this VCPU changed. */
4429                         struct pid *newpid;
4430
4431                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4432                         if (r)
4433                                 break;
4434
4435                         newpid = get_task_pid(current, PIDTYPE_PID);
4436                         rcu_assign_pointer(vcpu->pid, newpid);
4437                         if (oldpid)
4438                                 synchronize_rcu();
4439                         put_pid(oldpid);
4440                 }
4441                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4442                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4443                 break;
4444         }
4445         case KVM_GET_REGS: {
4446                 struct kvm_regs *kvm_regs;
4447
4448                 r = -ENOMEM;
4449                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4450                 if (!kvm_regs)
4451                         goto out;
4452                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4453                 if (r)
4454                         goto out_free1;
4455                 r = -EFAULT;
4456                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4457                         goto out_free1;
4458                 r = 0;
4459 out_free1:
4460                 kfree(kvm_regs);
4461                 break;
4462         }
4463         case KVM_SET_REGS: {
4464                 struct kvm_regs *kvm_regs;
4465
4466                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4467                 if (IS_ERR(kvm_regs)) {
4468                         r = PTR_ERR(kvm_regs);
4469                         goto out;
4470                 }
4471                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4472                 kfree(kvm_regs);
4473                 break;
4474         }
4475         case KVM_GET_SREGS: {
4476                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4477                                     GFP_KERNEL_ACCOUNT);
4478                 r = -ENOMEM;
4479                 if (!kvm_sregs)
4480                         goto out;
4481                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4482                 if (r)
4483                         goto out;
4484                 r = -EFAULT;
4485                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4486                         goto out;
4487                 r = 0;
4488                 break;
4489         }
4490         case KVM_SET_SREGS: {
4491                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4492                 if (IS_ERR(kvm_sregs)) {
4493                         r = PTR_ERR(kvm_sregs);
4494                         kvm_sregs = NULL;
4495                         goto out;
4496                 }
4497                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4498                 break;
4499         }
4500         case KVM_GET_MP_STATE: {
4501                 struct kvm_mp_state mp_state;
4502
4503                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4504                 if (r)
4505                         goto out;
4506                 r = -EFAULT;
4507                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4508                         goto out;
4509                 r = 0;
4510                 break;
4511         }
4512         case KVM_SET_MP_STATE: {
4513                 struct kvm_mp_state mp_state;
4514
4515                 r = -EFAULT;
4516                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4517                         goto out;
4518                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4519                 break;
4520         }
4521         case KVM_TRANSLATE: {
4522                 struct kvm_translation tr;
4523
4524                 r = -EFAULT;
4525                 if (copy_from_user(&tr, argp, sizeof(tr)))
4526                         goto out;
4527                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4528                 if (r)
4529                         goto out;
4530                 r = -EFAULT;
4531                 if (copy_to_user(argp, &tr, sizeof(tr)))
4532                         goto out;
4533                 r = 0;
4534                 break;
4535         }
4536         case KVM_SET_GUEST_DEBUG: {
4537                 struct kvm_guest_debug dbg;
4538
4539                 r = -EFAULT;
4540                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4541                         goto out;
4542                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4543                 break;
4544         }
4545         case KVM_SET_SIGNAL_MASK: {
4546                 struct kvm_signal_mask __user *sigmask_arg = argp;
4547                 struct kvm_signal_mask kvm_sigmask;
4548                 sigset_t sigset, *p;
4549
4550                 p = NULL;
4551                 if (argp) {
4552                         r = -EFAULT;
4553                         if (copy_from_user(&kvm_sigmask, argp,
4554                                            sizeof(kvm_sigmask)))
4555                                 goto out;
4556                         r = -EINVAL;
4557                         if (kvm_sigmask.len != sizeof(sigset))
4558                                 goto out;
4559                         r = -EFAULT;
4560                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4561                                            sizeof(sigset)))
4562                                 goto out;
4563                         p = &sigset;
4564                 }
4565                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4566                 break;
4567         }
4568         case KVM_GET_FPU: {
4569                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4570                 r = -ENOMEM;
4571                 if (!fpu)
4572                         goto out;
4573                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4574                 if (r)
4575                         goto out;
4576                 r = -EFAULT;
4577                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4578                         goto out;
4579                 r = 0;
4580                 break;
4581         }
4582         case KVM_SET_FPU: {
4583                 fpu = memdup_user(argp, sizeof(*fpu));
4584                 if (IS_ERR(fpu)) {
4585                         r = PTR_ERR(fpu);
4586                         fpu = NULL;
4587                         goto out;
4588                 }
4589                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4590                 break;
4591         }
4592         case KVM_GET_STATS_FD: {
4593                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4594                 break;
4595         }
4596         default:
4597                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4598         }
4599 out:
4600         mutex_unlock(&vcpu->mutex);
4601         kfree(fpu);
4602         kfree(kvm_sregs);
4603         return r;
4604 }
4605
4606 #ifdef CONFIG_KVM_COMPAT
4607 static long kvm_vcpu_compat_ioctl(struct file *filp,
4608                                   unsigned int ioctl, unsigned long arg)
4609 {
4610         struct kvm_vcpu *vcpu = filp->private_data;
4611         void __user *argp = compat_ptr(arg);
4612         int r;
4613
4614         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4615                 return -EIO;
4616
4617         switch (ioctl) {
4618         case KVM_SET_SIGNAL_MASK: {
4619                 struct kvm_signal_mask __user *sigmask_arg = argp;
4620                 struct kvm_signal_mask kvm_sigmask;
4621                 sigset_t sigset;
4622
4623                 if (argp) {
4624                         r = -EFAULT;
4625                         if (copy_from_user(&kvm_sigmask, argp,
4626                                            sizeof(kvm_sigmask)))
4627                                 goto out;
4628                         r = -EINVAL;
4629                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4630                                 goto out;
4631                         r = -EFAULT;
4632                         if (get_compat_sigset(&sigset,
4633                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4634                                 goto out;
4635                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4636                 } else
4637                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4638                 break;
4639         }
4640         default:
4641                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4642         }
4643
4644 out:
4645         return r;
4646 }
4647 #endif
4648
4649 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4650 {
4651         struct kvm_device *dev = filp->private_data;
4652
4653         if (dev->ops->mmap)
4654                 return dev->ops->mmap(dev, vma);
4655
4656         return -ENODEV;
4657 }
4658
4659 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4660                                  int (*accessor)(struct kvm_device *dev,
4661                                                  struct kvm_device_attr *attr),
4662                                  unsigned long arg)
4663 {
4664         struct kvm_device_attr attr;
4665
4666         if (!accessor)
4667                 return -EPERM;
4668
4669         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4670                 return -EFAULT;
4671
4672         return accessor(dev, &attr);
4673 }
4674
4675 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4676                              unsigned long arg)
4677 {
4678         struct kvm_device *dev = filp->private_data;
4679
4680         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4681                 return -EIO;
4682
4683         switch (ioctl) {
4684         case KVM_SET_DEVICE_ATTR:
4685                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4686         case KVM_GET_DEVICE_ATTR:
4687                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4688         case KVM_HAS_DEVICE_ATTR:
4689                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4690         default:
4691                 if (dev->ops->ioctl)
4692                         return dev->ops->ioctl(dev, ioctl, arg);
4693
4694                 return -ENOTTY;
4695         }
4696 }
4697
4698 static int kvm_device_release(struct inode *inode, struct file *filp)
4699 {
4700         struct kvm_device *dev = filp->private_data;
4701         struct kvm *kvm = dev->kvm;
4702
4703         if (dev->ops->release) {
4704                 mutex_lock(&kvm->lock);
4705                 list_del(&dev->vm_node);
4706                 dev->ops->release(dev);
4707                 mutex_unlock(&kvm->lock);
4708         }
4709
4710         kvm_put_kvm(kvm);
4711         return 0;
4712 }
4713
4714 static struct file_operations kvm_device_fops = {
4715         .unlocked_ioctl = kvm_device_ioctl,
4716         .release = kvm_device_release,
4717         KVM_COMPAT(kvm_device_ioctl),
4718         .mmap = kvm_device_mmap,
4719 };
4720
4721 struct kvm_device *kvm_device_from_filp(struct file *filp)
4722 {
4723         if (filp->f_op != &kvm_device_fops)
4724                 return NULL;
4725
4726         return filp->private_data;
4727 }
4728
4729 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4730 #ifdef CONFIG_KVM_MPIC
4731         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4732         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4733 #endif
4734 };
4735
4736 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4737 {
4738         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4739                 return -ENOSPC;
4740
4741         if (kvm_device_ops_table[type] != NULL)
4742                 return -EEXIST;
4743
4744         kvm_device_ops_table[type] = ops;
4745         return 0;
4746 }
4747
4748 void kvm_unregister_device_ops(u32 type)
4749 {
4750         if (kvm_device_ops_table[type] != NULL)
4751                 kvm_device_ops_table[type] = NULL;
4752 }
4753
4754 static int kvm_ioctl_create_device(struct kvm *kvm,
4755                                    struct kvm_create_device *cd)
4756 {
4757         const struct kvm_device_ops *ops;
4758         struct kvm_device *dev;
4759         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4760         int type;
4761         int ret;
4762
4763         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4764                 return -ENODEV;
4765
4766         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4767         ops = kvm_device_ops_table[type];
4768         if (ops == NULL)
4769                 return -ENODEV;
4770
4771         if (test)
4772                 return 0;
4773
4774         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4775         if (!dev)
4776                 return -ENOMEM;
4777
4778         dev->ops = ops;
4779         dev->kvm = kvm;
4780
4781         mutex_lock(&kvm->lock);
4782         ret = ops->create(dev, type);
4783         if (ret < 0) {
4784                 mutex_unlock(&kvm->lock);
4785                 kfree(dev);
4786                 return ret;
4787         }
4788         list_add(&dev->vm_node, &kvm->devices);
4789         mutex_unlock(&kvm->lock);
4790
4791         if (ops->init)
4792                 ops->init(dev);
4793
4794         kvm_get_kvm(kvm);
4795         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4796         if (ret < 0) {
4797                 kvm_put_kvm_no_destroy(kvm);
4798                 mutex_lock(&kvm->lock);
4799                 list_del(&dev->vm_node);
4800                 if (ops->release)
4801                         ops->release(dev);
4802                 mutex_unlock(&kvm->lock);
4803                 if (ops->destroy)
4804                         ops->destroy(dev);
4805                 return ret;
4806         }
4807
4808         cd->fd = ret;
4809         return 0;
4810 }
4811
4812 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4813 {
4814         switch (arg) {
4815         case KVM_CAP_USER_MEMORY:
4816         case KVM_CAP_USER_MEMORY2:
4817         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4818         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4819         case KVM_CAP_INTERNAL_ERROR_DATA:
4820 #ifdef CONFIG_HAVE_KVM_MSI
4821         case KVM_CAP_SIGNAL_MSI:
4822 #endif
4823 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4824         case KVM_CAP_IRQFD:
4825 #endif
4826         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4827         case KVM_CAP_CHECK_EXTENSION_VM:
4828         case KVM_CAP_ENABLE_CAP_VM:
4829         case KVM_CAP_HALT_POLL:
4830                 return 1;
4831 #ifdef CONFIG_KVM_MMIO
4832         case KVM_CAP_COALESCED_MMIO:
4833                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4834         case KVM_CAP_COALESCED_PIO:
4835                 return 1;
4836 #endif
4837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4838         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4839                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4840 #endif
4841 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4842         case KVM_CAP_IRQ_ROUTING:
4843                 return KVM_MAX_IRQ_ROUTES;
4844 #endif
4845 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4846         case KVM_CAP_MULTI_ADDRESS_SPACE:
4847                 if (kvm)
4848                         return kvm_arch_nr_memslot_as_ids(kvm);
4849                 return KVM_MAX_NR_ADDRESS_SPACES;
4850 #endif
4851         case KVM_CAP_NR_MEMSLOTS:
4852                 return KVM_USER_MEM_SLOTS;
4853         case KVM_CAP_DIRTY_LOG_RING:
4854 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4855                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4856 #else
4857                 return 0;
4858 #endif
4859         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4861                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862 #else
4863                 return 0;
4864 #endif
4865 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4866         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4867 #endif
4868         case KVM_CAP_BINARY_STATS_FD:
4869         case KVM_CAP_SYSTEM_EVENT_DATA:
4870         case KVM_CAP_DEVICE_CTRL:
4871                 return 1;
4872 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4873         case KVM_CAP_MEMORY_ATTRIBUTES:
4874                 return kvm_supported_mem_attributes(kvm);
4875 #endif
4876 #ifdef CONFIG_KVM_PRIVATE_MEM
4877         case KVM_CAP_GUEST_MEMFD:
4878                 return !kvm || kvm_arch_has_private_mem(kvm);
4879 #endif
4880         default:
4881                 break;
4882         }
4883         return kvm_vm_ioctl_check_extension(kvm, arg);
4884 }
4885
4886 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4887 {
4888         int r;
4889
4890         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4891                 return -EINVAL;
4892
4893         /* the size should be power of 2 */
4894         if (!size || (size & (size - 1)))
4895                 return -EINVAL;
4896
4897         /* Should be bigger to keep the reserved entries, or a page */
4898         if (size < kvm_dirty_ring_get_rsvd_entries() *
4899             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4900                 return -EINVAL;
4901
4902         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4903             sizeof(struct kvm_dirty_gfn))
4904                 return -E2BIG;
4905
4906         /* We only allow it to set once */
4907         if (kvm->dirty_ring_size)
4908                 return -EINVAL;
4909
4910         mutex_lock(&kvm->lock);
4911
4912         if (kvm->created_vcpus) {
4913                 /* We don't allow to change this value after vcpu created */
4914                 r = -EINVAL;
4915         } else {
4916                 kvm->dirty_ring_size = size;
4917                 r = 0;
4918         }
4919
4920         mutex_unlock(&kvm->lock);
4921         return r;
4922 }
4923
4924 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4925 {
4926         unsigned long i;
4927         struct kvm_vcpu *vcpu;
4928         int cleared = 0;
4929
4930         if (!kvm->dirty_ring_size)
4931                 return -EINVAL;
4932
4933         mutex_lock(&kvm->slots_lock);
4934
4935         kvm_for_each_vcpu(i, vcpu, kvm)
4936                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4937
4938         mutex_unlock(&kvm->slots_lock);
4939
4940         if (cleared)
4941                 kvm_flush_remote_tlbs(kvm);
4942
4943         return cleared;
4944 }
4945
4946 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4947                                                   struct kvm_enable_cap *cap)
4948 {
4949         return -EINVAL;
4950 }
4951
4952 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4953 {
4954         int i;
4955
4956         lockdep_assert_held(&kvm->slots_lock);
4957
4958         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4959                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4960                         return false;
4961         }
4962
4963         return true;
4964 }
4965 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4966
4967 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4968                                            struct kvm_enable_cap *cap)
4969 {
4970         switch (cap->cap) {
4971 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4972         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4973                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4974
4975                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4976                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4977
4978                 if (cap->flags || (cap->args[0] & ~allowed_options))
4979                         return -EINVAL;
4980                 kvm->manual_dirty_log_protect = cap->args[0];
4981                 return 0;
4982         }
4983 #endif
4984         case KVM_CAP_HALT_POLL: {
4985                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4986                         return -EINVAL;
4987
4988                 kvm->max_halt_poll_ns = cap->args[0];
4989
4990                 /*
4991                  * Ensure kvm->override_halt_poll_ns does not become visible
4992                  * before kvm->max_halt_poll_ns.
4993                  *
4994                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4995                  */
4996                 smp_wmb();
4997                 kvm->override_halt_poll_ns = true;
4998
4999                 return 0;
5000         }
5001         case KVM_CAP_DIRTY_LOG_RING:
5002         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5003                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5004                         return -EINVAL;
5005
5006                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5007         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5008                 int r = -EINVAL;
5009
5010                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5011                     !kvm->dirty_ring_size || cap->flags)
5012                         return r;
5013
5014                 mutex_lock(&kvm->slots_lock);
5015
5016                 /*
5017                  * For simplicity, allow enabling ring+bitmap if and only if
5018                  * there are no memslots, e.g. to ensure all memslots allocate
5019                  * a bitmap after the capability is enabled.
5020                  */
5021                 if (kvm_are_all_memslots_empty(kvm)) {
5022                         kvm->dirty_ring_with_bitmap = true;
5023                         r = 0;
5024                 }
5025
5026                 mutex_unlock(&kvm->slots_lock);
5027
5028                 return r;
5029         }
5030         default:
5031                 return kvm_vm_ioctl_enable_cap(kvm, cap);
5032         }
5033 }
5034
5035 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5036                               size_t size, loff_t *offset)
5037 {
5038         struct kvm *kvm = file->private_data;
5039
5040         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5041                                 &kvm_vm_stats_desc[0], &kvm->stat,
5042                                 sizeof(kvm->stat), user_buffer, size, offset);
5043 }
5044
5045 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5046 {
5047         struct kvm *kvm = file->private_data;
5048
5049         kvm_put_kvm(kvm);
5050         return 0;
5051 }
5052
5053 static const struct file_operations kvm_vm_stats_fops = {
5054         .owner = THIS_MODULE,
5055         .read = kvm_vm_stats_read,
5056         .release = kvm_vm_stats_release,
5057         .llseek = noop_llseek,
5058 };
5059
5060 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5061 {
5062         int fd;
5063         struct file *file;
5064
5065         fd = get_unused_fd_flags(O_CLOEXEC);
5066         if (fd < 0)
5067                 return fd;
5068
5069         file = anon_inode_getfile("kvm-vm-stats",
5070                         &kvm_vm_stats_fops, kvm, O_RDONLY);
5071         if (IS_ERR(file)) {
5072                 put_unused_fd(fd);
5073                 return PTR_ERR(file);
5074         }
5075
5076         kvm_get_kvm(kvm);
5077
5078         file->f_mode |= FMODE_PREAD;
5079         fd_install(fd, file);
5080
5081         return fd;
5082 }
5083
5084 #define SANITY_CHECK_MEM_REGION_FIELD(field)                                    \
5085 do {                                                                            \
5086         BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=             \
5087                      offsetof(struct kvm_userspace_memory_region2, field));     \
5088         BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=         \
5089                      sizeof_field(struct kvm_userspace_memory_region2, field)); \
5090 } while (0)
5091
5092 static long kvm_vm_ioctl(struct file *filp,
5093                            unsigned int ioctl, unsigned long arg)
5094 {
5095         struct kvm *kvm = filp->private_data;
5096         void __user *argp = (void __user *)arg;
5097         int r;
5098
5099         if (kvm->mm != current->mm || kvm->vm_dead)
5100                 return -EIO;
5101         switch (ioctl) {
5102         case KVM_CREATE_VCPU:
5103                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5104                 break;
5105         case KVM_ENABLE_CAP: {
5106                 struct kvm_enable_cap cap;
5107
5108                 r = -EFAULT;
5109                 if (copy_from_user(&cap, argp, sizeof(cap)))
5110                         goto out;
5111                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5112                 break;
5113         }
5114         case KVM_SET_USER_MEMORY_REGION2:
5115         case KVM_SET_USER_MEMORY_REGION: {
5116                 struct kvm_userspace_memory_region2 mem;
5117                 unsigned long size;
5118
5119                 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5120                         /*
5121                          * Fields beyond struct kvm_userspace_memory_region shouldn't be
5122                          * accessed, but avoid leaking kernel memory in case of a bug.
5123                          */
5124                         memset(&mem, 0, sizeof(mem));
5125                         size = sizeof(struct kvm_userspace_memory_region);
5126                 } else {
5127                         size = sizeof(struct kvm_userspace_memory_region2);
5128                 }
5129
5130                 /* Ensure the common parts of the two structs are identical. */
5131                 SANITY_CHECK_MEM_REGION_FIELD(slot);
5132                 SANITY_CHECK_MEM_REGION_FIELD(flags);
5133                 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5134                 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5135                 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5136
5137                 r = -EFAULT;
5138                 if (copy_from_user(&mem, argp, size))
5139                         goto out;
5140
5141                 r = -EINVAL;
5142                 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5143                     (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5144                         goto out;
5145
5146                 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5147                 break;
5148         }
5149         case KVM_GET_DIRTY_LOG: {
5150                 struct kvm_dirty_log log;
5151
5152                 r = -EFAULT;
5153                 if (copy_from_user(&log, argp, sizeof(log)))
5154                         goto out;
5155                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5156                 break;
5157         }
5158 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5159         case KVM_CLEAR_DIRTY_LOG: {
5160                 struct kvm_clear_dirty_log log;
5161
5162                 r = -EFAULT;
5163                 if (copy_from_user(&log, argp, sizeof(log)))
5164                         goto out;
5165                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5166                 break;
5167         }
5168 #endif
5169 #ifdef CONFIG_KVM_MMIO
5170         case KVM_REGISTER_COALESCED_MMIO: {
5171                 struct kvm_coalesced_mmio_zone zone;
5172
5173                 r = -EFAULT;
5174                 if (copy_from_user(&zone, argp, sizeof(zone)))
5175                         goto out;
5176                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5177                 break;
5178         }
5179         case KVM_UNREGISTER_COALESCED_MMIO: {
5180                 struct kvm_coalesced_mmio_zone zone;
5181
5182                 r = -EFAULT;
5183                 if (copy_from_user(&zone, argp, sizeof(zone)))
5184                         goto out;
5185                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5186                 break;
5187         }
5188 #endif
5189         case KVM_IRQFD: {
5190                 struct kvm_irqfd data;
5191
5192                 r = -EFAULT;
5193                 if (copy_from_user(&data, argp, sizeof(data)))
5194                         goto out;
5195                 r = kvm_irqfd(kvm, &data);
5196                 break;
5197         }
5198         case KVM_IOEVENTFD: {
5199                 struct kvm_ioeventfd data;
5200
5201                 r = -EFAULT;
5202                 if (copy_from_user(&data, argp, sizeof(data)))
5203                         goto out;
5204                 r = kvm_ioeventfd(kvm, &data);
5205                 break;
5206         }
5207 #ifdef CONFIG_HAVE_KVM_MSI
5208         case KVM_SIGNAL_MSI: {
5209                 struct kvm_msi msi;
5210
5211                 r = -EFAULT;
5212                 if (copy_from_user(&msi, argp, sizeof(msi)))
5213                         goto out;
5214                 r = kvm_send_userspace_msi(kvm, &msi);
5215                 break;
5216         }
5217 #endif
5218 #ifdef __KVM_HAVE_IRQ_LINE
5219         case KVM_IRQ_LINE_STATUS:
5220         case KVM_IRQ_LINE: {
5221                 struct kvm_irq_level irq_event;
5222
5223                 r = -EFAULT;
5224                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5225                         goto out;
5226
5227                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5228                                         ioctl == KVM_IRQ_LINE_STATUS);
5229                 if (r)
5230                         goto out;
5231
5232                 r = -EFAULT;
5233                 if (ioctl == KVM_IRQ_LINE_STATUS) {
5234                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5235                                 goto out;
5236                 }
5237
5238                 r = 0;
5239                 break;
5240         }
5241 #endif
5242 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5243         case KVM_SET_GSI_ROUTING: {
5244                 struct kvm_irq_routing routing;
5245                 struct kvm_irq_routing __user *urouting;
5246                 struct kvm_irq_routing_entry *entries = NULL;
5247
5248                 r = -EFAULT;
5249                 if (copy_from_user(&routing, argp, sizeof(routing)))
5250                         goto out;
5251                 r = -EINVAL;
5252                 if (!kvm_arch_can_set_irq_routing(kvm))
5253                         goto out;
5254                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5255                         goto out;
5256                 if (routing.flags)
5257                         goto out;
5258                 if (routing.nr) {
5259                         urouting = argp;
5260                         entries = vmemdup_array_user(urouting->entries,
5261                                                      routing.nr, sizeof(*entries));
5262                         if (IS_ERR(entries)) {
5263                                 r = PTR_ERR(entries);
5264                                 goto out;
5265                         }
5266                 }
5267                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5268                                         routing.flags);
5269                 kvfree(entries);
5270                 break;
5271         }
5272 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5273 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5274         case KVM_SET_MEMORY_ATTRIBUTES: {
5275                 struct kvm_memory_attributes attrs;
5276
5277                 r = -EFAULT;
5278                 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5279                         goto out;
5280
5281                 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5282                 break;
5283         }
5284 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5285         case KVM_CREATE_DEVICE: {
5286                 struct kvm_create_device cd;
5287
5288                 r = -EFAULT;
5289                 if (copy_from_user(&cd, argp, sizeof(cd)))
5290                         goto out;
5291
5292                 r = kvm_ioctl_create_device(kvm, &cd);
5293                 if (r)
5294                         goto out;
5295
5296                 r = -EFAULT;
5297                 if (copy_to_user(argp, &cd, sizeof(cd)))
5298                         goto out;
5299
5300                 r = 0;
5301                 break;
5302         }
5303         case KVM_CHECK_EXTENSION:
5304                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5305                 break;
5306         case KVM_RESET_DIRTY_RINGS:
5307                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5308                 break;
5309         case KVM_GET_STATS_FD:
5310                 r = kvm_vm_ioctl_get_stats_fd(kvm);
5311                 break;
5312 #ifdef CONFIG_KVM_PRIVATE_MEM
5313         case KVM_CREATE_GUEST_MEMFD: {
5314                 struct kvm_create_guest_memfd guest_memfd;
5315
5316                 r = -EFAULT;
5317                 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5318                         goto out;
5319
5320                 r = kvm_gmem_create(kvm, &guest_memfd);
5321                 break;
5322         }
5323 #endif
5324         default:
5325                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5326         }
5327 out:
5328         return r;
5329 }
5330
5331 #ifdef CONFIG_KVM_COMPAT
5332 struct compat_kvm_dirty_log {
5333         __u32 slot;
5334         __u32 padding1;
5335         union {
5336                 compat_uptr_t dirty_bitmap; /* one bit per page */
5337                 __u64 padding2;
5338         };
5339 };
5340
5341 struct compat_kvm_clear_dirty_log {
5342         __u32 slot;
5343         __u32 num_pages;
5344         __u64 first_page;
5345         union {
5346                 compat_uptr_t dirty_bitmap; /* one bit per page */
5347                 __u64 padding2;
5348         };
5349 };
5350
5351 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5352                                      unsigned long arg)
5353 {
5354         return -ENOTTY;
5355 }
5356
5357 static long kvm_vm_compat_ioctl(struct file *filp,
5358                            unsigned int ioctl, unsigned long arg)
5359 {
5360         struct kvm *kvm = filp->private_data;
5361         int r;
5362
5363         if (kvm->mm != current->mm || kvm->vm_dead)
5364                 return -EIO;
5365
5366         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5367         if (r != -ENOTTY)
5368                 return r;
5369
5370         switch (ioctl) {
5371 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5372         case KVM_CLEAR_DIRTY_LOG: {
5373                 struct compat_kvm_clear_dirty_log compat_log;
5374                 struct kvm_clear_dirty_log log;
5375
5376                 if (copy_from_user(&compat_log, (void __user *)arg,
5377                                    sizeof(compat_log)))
5378                         return -EFAULT;
5379                 log.slot         = compat_log.slot;
5380                 log.num_pages    = compat_log.num_pages;
5381                 log.first_page   = compat_log.first_page;
5382                 log.padding2     = compat_log.padding2;
5383                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5384
5385                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5386                 break;
5387         }
5388 #endif
5389         case KVM_GET_DIRTY_LOG: {
5390                 struct compat_kvm_dirty_log compat_log;
5391                 struct kvm_dirty_log log;
5392
5393                 if (copy_from_user(&compat_log, (void __user *)arg,
5394                                    sizeof(compat_log)))
5395                         return -EFAULT;
5396                 log.slot         = compat_log.slot;
5397                 log.padding1     = compat_log.padding1;
5398                 log.padding2     = compat_log.padding2;
5399                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5400
5401                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5402                 break;
5403         }
5404         default:
5405                 r = kvm_vm_ioctl(filp, ioctl, arg);
5406         }
5407         return r;
5408 }
5409 #endif
5410
5411 static struct file_operations kvm_vm_fops = {
5412         .release        = kvm_vm_release,
5413         .unlocked_ioctl = kvm_vm_ioctl,
5414         .llseek         = noop_llseek,
5415         KVM_COMPAT(kvm_vm_compat_ioctl),
5416 };
5417
5418 bool file_is_kvm(struct file *file)
5419 {
5420         return file && file->f_op == &kvm_vm_fops;
5421 }
5422 EXPORT_SYMBOL_GPL(file_is_kvm);
5423
5424 static int kvm_dev_ioctl_create_vm(unsigned long type)
5425 {
5426         char fdname[ITOA_MAX_LEN + 1];
5427         int r, fd;
5428         struct kvm *kvm;
5429         struct file *file;
5430
5431         fd = get_unused_fd_flags(O_CLOEXEC);
5432         if (fd < 0)
5433                 return fd;
5434
5435         snprintf(fdname, sizeof(fdname), "%d", fd);
5436
5437         kvm = kvm_create_vm(type, fdname);
5438         if (IS_ERR(kvm)) {
5439                 r = PTR_ERR(kvm);
5440                 goto put_fd;
5441         }
5442
5443         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5444         if (IS_ERR(file)) {
5445                 r = PTR_ERR(file);
5446                 goto put_kvm;
5447         }
5448
5449         /*
5450          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5451          * already set, with ->release() being kvm_vm_release().  In error
5452          * cases it will be called by the final fput(file) and will take
5453          * care of doing kvm_put_kvm(kvm).
5454          */
5455         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5456
5457         fd_install(fd, file);
5458         return fd;
5459
5460 put_kvm:
5461         kvm_put_kvm(kvm);
5462 put_fd:
5463         put_unused_fd(fd);
5464         return r;
5465 }
5466
5467 static long kvm_dev_ioctl(struct file *filp,
5468                           unsigned int ioctl, unsigned long arg)
5469 {
5470         int r = -EINVAL;
5471
5472         switch (ioctl) {
5473         case KVM_GET_API_VERSION:
5474                 if (arg)
5475                         goto out;
5476                 r = KVM_API_VERSION;
5477                 break;
5478         case KVM_CREATE_VM:
5479                 r = kvm_dev_ioctl_create_vm(arg);
5480                 break;
5481         case KVM_CHECK_EXTENSION:
5482                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5483                 break;
5484         case KVM_GET_VCPU_MMAP_SIZE:
5485                 if (arg)
5486                         goto out;
5487                 r = PAGE_SIZE;     /* struct kvm_run */
5488 #ifdef CONFIG_X86
5489                 r += PAGE_SIZE;    /* pio data page */
5490 #endif
5491 #ifdef CONFIG_KVM_MMIO
5492                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5493 #endif
5494                 break;
5495         default:
5496                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5497         }
5498 out:
5499         return r;
5500 }
5501
5502 static struct file_operations kvm_chardev_ops = {
5503         .unlocked_ioctl = kvm_dev_ioctl,
5504         .llseek         = noop_llseek,
5505         KVM_COMPAT(kvm_dev_ioctl),
5506 };
5507
5508 static struct miscdevice kvm_dev = {
5509         KVM_MINOR,
5510         "kvm",
5511         &kvm_chardev_ops,
5512 };
5513
5514 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5515 __visible bool kvm_rebooting;
5516 EXPORT_SYMBOL_GPL(kvm_rebooting);
5517
5518 static DEFINE_PER_CPU(bool, hardware_enabled);
5519 static int kvm_usage_count;
5520
5521 static int __hardware_enable_nolock(void)
5522 {
5523         if (__this_cpu_read(hardware_enabled))
5524                 return 0;
5525
5526         if (kvm_arch_hardware_enable()) {
5527                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5528                         raw_smp_processor_id());
5529                 return -EIO;
5530         }
5531
5532         __this_cpu_write(hardware_enabled, true);
5533         return 0;
5534 }
5535
5536 static void hardware_enable_nolock(void *failed)
5537 {
5538         if (__hardware_enable_nolock())
5539                 atomic_inc(failed);
5540 }
5541
5542 static int kvm_online_cpu(unsigned int cpu)
5543 {
5544         int ret = 0;
5545
5546         /*
5547          * Abort the CPU online process if hardware virtualization cannot
5548          * be enabled. Otherwise running VMs would encounter unrecoverable
5549          * errors when scheduled to this CPU.
5550          */
5551         mutex_lock(&kvm_lock);
5552         if (kvm_usage_count)
5553                 ret = __hardware_enable_nolock();
5554         mutex_unlock(&kvm_lock);
5555         return ret;
5556 }
5557
5558 static void hardware_disable_nolock(void *junk)
5559 {
5560         /*
5561          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5562          * hardware, not just CPUs that successfully enabled hardware!
5563          */
5564         if (!__this_cpu_read(hardware_enabled))
5565                 return;
5566
5567         kvm_arch_hardware_disable();
5568
5569         __this_cpu_write(hardware_enabled, false);
5570 }
5571
5572 static int kvm_offline_cpu(unsigned int cpu)
5573 {
5574         mutex_lock(&kvm_lock);
5575         if (kvm_usage_count)
5576                 hardware_disable_nolock(NULL);
5577         mutex_unlock(&kvm_lock);
5578         return 0;
5579 }
5580
5581 static void hardware_disable_all_nolock(void)
5582 {
5583         BUG_ON(!kvm_usage_count);
5584
5585         kvm_usage_count--;
5586         if (!kvm_usage_count)
5587                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5588 }
5589
5590 static void hardware_disable_all(void)
5591 {
5592         cpus_read_lock();
5593         mutex_lock(&kvm_lock);
5594         hardware_disable_all_nolock();
5595         mutex_unlock(&kvm_lock);
5596         cpus_read_unlock();
5597 }
5598
5599 static int hardware_enable_all(void)
5600 {
5601         atomic_t failed = ATOMIC_INIT(0);
5602         int r;
5603
5604         /*
5605          * Do not enable hardware virtualization if the system is going down.
5606          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5607          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5608          * after kvm_reboot() is called.  Note, this relies on system_state
5609          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5610          * hook instead of registering a dedicated reboot notifier (the latter
5611          * runs before system_state is updated).
5612          */
5613         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5614             system_state == SYSTEM_RESTART)
5615                 return -EBUSY;
5616
5617         /*
5618          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5619          * is called, and so on_each_cpu() between them includes the CPU that
5620          * is being onlined.  As a result, hardware_enable_nolock() may get
5621          * invoked before kvm_online_cpu(), which also enables hardware if the
5622          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5623          * enable hardware multiple times.
5624          */
5625         cpus_read_lock();
5626         mutex_lock(&kvm_lock);
5627
5628         r = 0;
5629
5630         kvm_usage_count++;
5631         if (kvm_usage_count == 1) {
5632                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5633
5634                 if (atomic_read(&failed)) {
5635                         hardware_disable_all_nolock();
5636                         r = -EBUSY;
5637                 }
5638         }
5639
5640         mutex_unlock(&kvm_lock);
5641         cpus_read_unlock();
5642
5643         return r;
5644 }
5645
5646 static void kvm_shutdown(void)
5647 {
5648         /*
5649          * Disable hardware virtualization and set kvm_rebooting to indicate
5650          * that KVM has asynchronously disabled hardware virtualization, i.e.
5651          * that relevant errors and exceptions aren't entirely unexpected.
5652          * Some flavors of hardware virtualization need to be disabled before
5653          * transferring control to firmware (to perform shutdown/reboot), e.g.
5654          * on x86, virtualization can block INIT interrupts, which are used by
5655          * firmware to pull APs back under firmware control.  Note, this path
5656          * is used for both shutdown and reboot scenarios, i.e. neither name is
5657          * 100% comprehensive.
5658          */
5659         pr_info("kvm: exiting hardware virtualization\n");
5660         kvm_rebooting = true;
5661         on_each_cpu(hardware_disable_nolock, NULL, 1);
5662 }
5663
5664 static int kvm_suspend(void)
5665 {
5666         /*
5667          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5668          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5669          * is stable.  Assert that kvm_lock is not held to ensure the system
5670          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5671          * can be preempted, but the task cannot be frozen until it has dropped
5672          * all locks (userspace tasks are frozen via a fake signal).
5673          */
5674         lockdep_assert_not_held(&kvm_lock);
5675         lockdep_assert_irqs_disabled();
5676
5677         if (kvm_usage_count)
5678                 hardware_disable_nolock(NULL);
5679         return 0;
5680 }
5681
5682 static void kvm_resume(void)
5683 {
5684         lockdep_assert_not_held(&kvm_lock);
5685         lockdep_assert_irqs_disabled();
5686
5687         if (kvm_usage_count)
5688                 WARN_ON_ONCE(__hardware_enable_nolock());
5689 }
5690
5691 static struct syscore_ops kvm_syscore_ops = {
5692         .suspend = kvm_suspend,
5693         .resume = kvm_resume,
5694         .shutdown = kvm_shutdown,
5695 };
5696 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5697 static int hardware_enable_all(void)
5698 {
5699         return 0;
5700 }
5701
5702 static void hardware_disable_all(void)
5703 {
5704
5705 }
5706 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5707
5708 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5709 {
5710         if (dev->ops->destructor)
5711                 dev->ops->destructor(dev);
5712 }
5713
5714 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5715 {
5716         int i;
5717
5718         for (i = 0; i < bus->dev_count; i++) {
5719                 struct kvm_io_device *pos = bus->range[i].dev;
5720
5721                 kvm_iodevice_destructor(pos);
5722         }
5723         kfree(bus);
5724 }
5725
5726 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5727                                  const struct kvm_io_range *r2)
5728 {
5729         gpa_t addr1 = r1->addr;
5730         gpa_t addr2 = r2->addr;
5731
5732         if (addr1 < addr2)
5733                 return -1;
5734
5735         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5736          * accept any overlapping write.  Any order is acceptable for
5737          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5738          * we process all of them.
5739          */
5740         if (r2->len) {
5741                 addr1 += r1->len;
5742                 addr2 += r2->len;
5743         }
5744
5745         if (addr1 > addr2)
5746                 return 1;
5747
5748         return 0;
5749 }
5750
5751 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5752 {
5753         return kvm_io_bus_cmp(p1, p2);
5754 }
5755
5756 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5757                              gpa_t addr, int len)
5758 {
5759         struct kvm_io_range *range, key;
5760         int off;
5761
5762         key = (struct kvm_io_range) {
5763                 .addr = addr,
5764                 .len = len,
5765         };
5766
5767         range = bsearch(&key, bus->range, bus->dev_count,
5768                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5769         if (range == NULL)
5770                 return -ENOENT;
5771
5772         off = range - bus->range;
5773
5774         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5775                 off--;
5776
5777         return off;
5778 }
5779
5780 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5781                               struct kvm_io_range *range, const void *val)
5782 {
5783         int idx;
5784
5785         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5786         if (idx < 0)
5787                 return -EOPNOTSUPP;
5788
5789         while (idx < bus->dev_count &&
5790                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5791                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5792                                         range->len, val))
5793                         return idx;
5794                 idx++;
5795         }
5796
5797         return -EOPNOTSUPP;
5798 }
5799
5800 /* kvm_io_bus_write - called under kvm->slots_lock */
5801 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5802                      int len, const void *val)
5803 {
5804         struct kvm_io_bus *bus;
5805         struct kvm_io_range range;
5806         int r;
5807
5808         range = (struct kvm_io_range) {
5809                 .addr = addr,
5810                 .len = len,
5811         };
5812
5813         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5814         if (!bus)
5815                 return -ENOMEM;
5816         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5817         return r < 0 ? r : 0;
5818 }
5819 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5820
5821 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5822 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5823                             gpa_t addr, int len, const void *val, long cookie)
5824 {
5825         struct kvm_io_bus *bus;
5826         struct kvm_io_range range;
5827
5828         range = (struct kvm_io_range) {
5829                 .addr = addr,
5830                 .len = len,
5831         };
5832
5833         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5834         if (!bus)
5835                 return -ENOMEM;
5836
5837         /* First try the device referenced by cookie. */
5838         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5839             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5840                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5841                                         val))
5842                         return cookie;
5843
5844         /*
5845          * cookie contained garbage; fall back to search and return the
5846          * correct cookie value.
5847          */
5848         return __kvm_io_bus_write(vcpu, bus, &range, val);
5849 }
5850
5851 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5852                              struct kvm_io_range *range, void *val)
5853 {
5854         int idx;
5855
5856         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5857         if (idx < 0)
5858                 return -EOPNOTSUPP;
5859
5860         while (idx < bus->dev_count &&
5861                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5862                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5863                                        range->len, val))
5864                         return idx;
5865                 idx++;
5866         }
5867
5868         return -EOPNOTSUPP;
5869 }
5870
5871 /* kvm_io_bus_read - called under kvm->slots_lock */
5872 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5873                     int len, void *val)
5874 {
5875         struct kvm_io_bus *bus;
5876         struct kvm_io_range range;
5877         int r;
5878
5879         range = (struct kvm_io_range) {
5880                 .addr = addr,
5881                 .len = len,
5882         };
5883
5884         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5885         if (!bus)
5886                 return -ENOMEM;
5887         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5888         return r < 0 ? r : 0;
5889 }
5890
5891 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5892                             int len, struct kvm_io_device *dev)
5893 {
5894         int i;
5895         struct kvm_io_bus *new_bus, *bus;
5896         struct kvm_io_range range;
5897
5898         lockdep_assert_held(&kvm->slots_lock);
5899
5900         bus = kvm_get_bus(kvm, bus_idx);
5901         if (!bus)
5902                 return -ENOMEM;
5903
5904         /* exclude ioeventfd which is limited by maximum fd */
5905         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5906                 return -ENOSPC;
5907
5908         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5909                           GFP_KERNEL_ACCOUNT);
5910         if (!new_bus)
5911                 return -ENOMEM;
5912
5913         range = (struct kvm_io_range) {
5914                 .addr = addr,
5915                 .len = len,
5916                 .dev = dev,
5917         };
5918
5919         for (i = 0; i < bus->dev_count; i++)
5920                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5921                         break;
5922
5923         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5924         new_bus->dev_count++;
5925         new_bus->range[i] = range;
5926         memcpy(new_bus->range + i + 1, bus->range + i,
5927                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5928         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5929         synchronize_srcu_expedited(&kvm->srcu);
5930         kfree(bus);
5931
5932         return 0;
5933 }
5934
5935 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5936                               struct kvm_io_device *dev)
5937 {
5938         int i;
5939         struct kvm_io_bus *new_bus, *bus;
5940
5941         lockdep_assert_held(&kvm->slots_lock);
5942
5943         bus = kvm_get_bus(kvm, bus_idx);
5944         if (!bus)
5945                 return 0;
5946
5947         for (i = 0; i < bus->dev_count; i++) {
5948                 if (bus->range[i].dev == dev) {
5949                         break;
5950                 }
5951         }
5952
5953         if (i == bus->dev_count)
5954                 return 0;
5955
5956         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5957                           GFP_KERNEL_ACCOUNT);
5958         if (new_bus) {
5959                 memcpy(new_bus, bus, struct_size(bus, range, i));
5960                 new_bus->dev_count--;
5961                 memcpy(new_bus->range + i, bus->range + i + 1,
5962                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5963         }
5964
5965         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5966         synchronize_srcu_expedited(&kvm->srcu);
5967
5968         /*
5969          * If NULL bus is installed, destroy the old bus, including all the
5970          * attached devices. Otherwise, destroy the caller's device only.
5971          */
5972         if (!new_bus) {
5973                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5974                 kvm_io_bus_destroy(bus);
5975                 return -ENOMEM;
5976         }
5977
5978         kvm_iodevice_destructor(dev);
5979         kfree(bus);
5980         return 0;
5981 }
5982
5983 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5984                                          gpa_t addr)
5985 {
5986         struct kvm_io_bus *bus;
5987         int dev_idx, srcu_idx;
5988         struct kvm_io_device *iodev = NULL;
5989
5990         srcu_idx = srcu_read_lock(&kvm->srcu);
5991
5992         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5993         if (!bus)
5994                 goto out_unlock;
5995
5996         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5997         if (dev_idx < 0)
5998                 goto out_unlock;
5999
6000         iodev = bus->range[dev_idx].dev;
6001
6002 out_unlock:
6003         srcu_read_unlock(&kvm->srcu, srcu_idx);
6004
6005         return iodev;
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6008
6009 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6010                            int (*get)(void *, u64 *), int (*set)(void *, u64),
6011                            const char *fmt)
6012 {
6013         int ret;
6014         struct kvm_stat_data *stat_data = inode->i_private;
6015
6016         /*
6017          * The debugfs files are a reference to the kvm struct which
6018         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6019         * avoids the race between open and the removal of the debugfs directory.
6020          */
6021         if (!kvm_get_kvm_safe(stat_data->kvm))
6022                 return -ENOENT;
6023
6024         ret = simple_attr_open(inode, file, get,
6025                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
6026                                ? set : NULL, fmt);
6027         if (ret)
6028                 kvm_put_kvm(stat_data->kvm);
6029
6030         return ret;
6031 }
6032
6033 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6034 {
6035         struct kvm_stat_data *stat_data = inode->i_private;
6036
6037         simple_attr_release(inode, file);
6038         kvm_put_kvm(stat_data->kvm);
6039
6040         return 0;
6041 }
6042
6043 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6044 {
6045         *val = *(u64 *)((void *)(&kvm->stat) + offset);
6046
6047         return 0;
6048 }
6049
6050 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6051 {
6052         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6053
6054         return 0;
6055 }
6056
6057 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6058 {
6059         unsigned long i;
6060         struct kvm_vcpu *vcpu;
6061
6062         *val = 0;
6063
6064         kvm_for_each_vcpu(i, vcpu, kvm)
6065                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6066
6067         return 0;
6068 }
6069
6070 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6071 {
6072         unsigned long i;
6073         struct kvm_vcpu *vcpu;
6074
6075         kvm_for_each_vcpu(i, vcpu, kvm)
6076                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6077
6078         return 0;
6079 }
6080
6081 static int kvm_stat_data_get(void *data, u64 *val)
6082 {
6083         int r = -EFAULT;
6084         struct kvm_stat_data *stat_data = data;
6085
6086         switch (stat_data->kind) {
6087         case KVM_STAT_VM:
6088                 r = kvm_get_stat_per_vm(stat_data->kvm,
6089                                         stat_data->desc->desc.offset, val);
6090                 break;
6091         case KVM_STAT_VCPU:
6092                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6093                                           stat_data->desc->desc.offset, val);
6094                 break;
6095         }
6096
6097         return r;
6098 }
6099
6100 static int kvm_stat_data_clear(void *data, u64 val)
6101 {
6102         int r = -EFAULT;
6103         struct kvm_stat_data *stat_data = data;
6104
6105         if (val)
6106                 return -EINVAL;
6107
6108         switch (stat_data->kind) {
6109         case KVM_STAT_VM:
6110                 r = kvm_clear_stat_per_vm(stat_data->kvm,
6111                                           stat_data->desc->desc.offset);
6112                 break;
6113         case KVM_STAT_VCPU:
6114                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6115                                             stat_data->desc->desc.offset);
6116                 break;
6117         }
6118
6119         return r;
6120 }
6121
6122 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6123 {
6124         __simple_attr_check_format("%llu\n", 0ull);
6125         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6126                                 kvm_stat_data_clear, "%llu\n");
6127 }
6128
6129 static const struct file_operations stat_fops_per_vm = {
6130         .owner = THIS_MODULE,
6131         .open = kvm_stat_data_open,
6132         .release = kvm_debugfs_release,
6133         .read = simple_attr_read,
6134         .write = simple_attr_write,
6135         .llseek = no_llseek,
6136 };
6137
6138 static int vm_stat_get(void *_offset, u64 *val)
6139 {
6140         unsigned offset = (long)_offset;
6141         struct kvm *kvm;
6142         u64 tmp_val;
6143
6144         *val = 0;
6145         mutex_lock(&kvm_lock);
6146         list_for_each_entry(kvm, &vm_list, vm_list) {
6147                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6148                 *val += tmp_val;
6149         }
6150         mutex_unlock(&kvm_lock);
6151         return 0;
6152 }
6153
6154 static int vm_stat_clear(void *_offset, u64 val)
6155 {
6156         unsigned offset = (long)_offset;
6157         struct kvm *kvm;
6158
6159         if (val)
6160                 return -EINVAL;
6161
6162         mutex_lock(&kvm_lock);
6163         list_for_each_entry(kvm, &vm_list, vm_list) {
6164                 kvm_clear_stat_per_vm(kvm, offset);
6165         }
6166         mutex_unlock(&kvm_lock);
6167
6168         return 0;
6169 }
6170
6171 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6172 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6173
6174 static int vcpu_stat_get(void *_offset, u64 *val)
6175 {
6176         unsigned offset = (long)_offset;
6177         struct kvm *kvm;
6178         u64 tmp_val;
6179
6180         *val = 0;
6181         mutex_lock(&kvm_lock);
6182         list_for_each_entry(kvm, &vm_list, vm_list) {
6183                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6184                 *val += tmp_val;
6185         }
6186         mutex_unlock(&kvm_lock);
6187         return 0;
6188 }
6189
6190 static int vcpu_stat_clear(void *_offset, u64 val)
6191 {
6192         unsigned offset = (long)_offset;
6193         struct kvm *kvm;
6194
6195         if (val)
6196                 return -EINVAL;
6197
6198         mutex_lock(&kvm_lock);
6199         list_for_each_entry(kvm, &vm_list, vm_list) {
6200                 kvm_clear_stat_per_vcpu(kvm, offset);
6201         }
6202         mutex_unlock(&kvm_lock);
6203
6204         return 0;
6205 }
6206
6207 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6208                         "%llu\n");
6209 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6210
6211 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6212 {
6213         struct kobj_uevent_env *env;
6214         unsigned long long created, active;
6215
6216         if (!kvm_dev.this_device || !kvm)
6217                 return;
6218
6219         mutex_lock(&kvm_lock);
6220         if (type == KVM_EVENT_CREATE_VM) {
6221                 kvm_createvm_count++;
6222                 kvm_active_vms++;
6223         } else if (type == KVM_EVENT_DESTROY_VM) {
6224                 kvm_active_vms--;
6225         }
6226         created = kvm_createvm_count;
6227         active = kvm_active_vms;
6228         mutex_unlock(&kvm_lock);
6229
6230         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6231         if (!env)
6232                 return;
6233
6234         add_uevent_var(env, "CREATED=%llu", created);
6235         add_uevent_var(env, "COUNT=%llu", active);
6236
6237         if (type == KVM_EVENT_CREATE_VM) {
6238                 add_uevent_var(env, "EVENT=create");
6239                 kvm->userspace_pid = task_pid_nr(current);
6240         } else if (type == KVM_EVENT_DESTROY_VM) {
6241                 add_uevent_var(env, "EVENT=destroy");
6242         }
6243         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6244
6245         if (!IS_ERR(kvm->debugfs_dentry)) {
6246                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6247
6248                 if (p) {
6249                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6250                         if (!IS_ERR(tmp))
6251                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
6252                         kfree(p);
6253                 }
6254         }
6255         /* no need for checks, since we are adding at most only 5 keys */
6256         env->envp[env->envp_idx++] = NULL;
6257         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6258         kfree(env);
6259 }
6260
6261 static void kvm_init_debug(void)
6262 {
6263         const struct file_operations *fops;
6264         const struct _kvm_stats_desc *pdesc;
6265         int i;
6266
6267         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6268
6269         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6270                 pdesc = &kvm_vm_stats_desc[i];
6271                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6272                         fops = &vm_stat_fops;
6273                 else
6274                         fops = &vm_stat_readonly_fops;
6275                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6276                                 kvm_debugfs_dir,
6277                                 (void *)(long)pdesc->desc.offset, fops);
6278         }
6279
6280         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6281                 pdesc = &kvm_vcpu_stats_desc[i];
6282                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6283                         fops = &vcpu_stat_fops;
6284                 else
6285                         fops = &vcpu_stat_readonly_fops;
6286                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6287                                 kvm_debugfs_dir,
6288                                 (void *)(long)pdesc->desc.offset, fops);
6289         }
6290 }
6291
6292 static inline
6293 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6294 {
6295         return container_of(pn, struct kvm_vcpu, preempt_notifier);
6296 }
6297
6298 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6299 {
6300         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6301
6302         WRITE_ONCE(vcpu->preempted, false);
6303         WRITE_ONCE(vcpu->ready, false);
6304
6305         __this_cpu_write(kvm_running_vcpu, vcpu);
6306         kvm_arch_sched_in(vcpu, cpu);
6307         kvm_arch_vcpu_load(vcpu, cpu);
6308 }
6309
6310 static void kvm_sched_out(struct preempt_notifier *pn,
6311                           struct task_struct *next)
6312 {
6313         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6314
6315         if (current->on_rq) {
6316                 WRITE_ONCE(vcpu->preempted, true);
6317                 WRITE_ONCE(vcpu->ready, true);
6318         }
6319         kvm_arch_vcpu_put(vcpu);
6320         __this_cpu_write(kvm_running_vcpu, NULL);
6321 }
6322
6323 /**
6324  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6325  *
6326  * We can disable preemption locally around accessing the per-CPU variable,
6327  * and use the resolved vcpu pointer after enabling preemption again,
6328  * because even if the current thread is migrated to another CPU, reading
6329  * the per-CPU value later will give us the same value as we update the
6330  * per-CPU variable in the preempt notifier handlers.
6331  */
6332 struct kvm_vcpu *kvm_get_running_vcpu(void)
6333 {
6334         struct kvm_vcpu *vcpu;
6335
6336         preempt_disable();
6337         vcpu = __this_cpu_read(kvm_running_vcpu);
6338         preempt_enable();
6339
6340         return vcpu;
6341 }
6342 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6343
6344 /**
6345  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6346  */
6347 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6348 {
6349         return &kvm_running_vcpu;
6350 }
6351
6352 #ifdef CONFIG_GUEST_PERF_EVENTS
6353 static unsigned int kvm_guest_state(void)
6354 {
6355         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6356         unsigned int state;
6357
6358         if (!kvm_arch_pmi_in_guest(vcpu))
6359                 return 0;
6360
6361         state = PERF_GUEST_ACTIVE;
6362         if (!kvm_arch_vcpu_in_kernel(vcpu))
6363                 state |= PERF_GUEST_USER;
6364
6365         return state;
6366 }
6367
6368 static unsigned long kvm_guest_get_ip(void)
6369 {
6370         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6371
6372         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6373         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6374                 return 0;
6375
6376         return kvm_arch_vcpu_get_ip(vcpu);
6377 }
6378
6379 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6380         .state                  = kvm_guest_state,
6381         .get_ip                 = kvm_guest_get_ip,
6382         .handle_intel_pt_intr   = NULL,
6383 };
6384
6385 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6386 {
6387         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6388         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6389 }
6390 void kvm_unregister_perf_callbacks(void)
6391 {
6392         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6393 }
6394 #endif
6395
6396 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6397 {
6398         int r;
6399         int cpu;
6400
6401 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6402         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6403                                       kvm_online_cpu, kvm_offline_cpu);
6404         if (r)
6405                 return r;
6406
6407         register_syscore_ops(&kvm_syscore_ops);
6408 #endif
6409
6410         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6411         if (!vcpu_align)
6412                 vcpu_align = __alignof__(struct kvm_vcpu);
6413         kvm_vcpu_cache =
6414                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6415                                            SLAB_ACCOUNT,
6416                                            offsetof(struct kvm_vcpu, arch),
6417                                            offsetofend(struct kvm_vcpu, stats_id)
6418                                            - offsetof(struct kvm_vcpu, arch),
6419                                            NULL);
6420         if (!kvm_vcpu_cache) {
6421                 r = -ENOMEM;
6422                 goto err_vcpu_cache;
6423         }
6424
6425         for_each_possible_cpu(cpu) {
6426                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6427                                             GFP_KERNEL, cpu_to_node(cpu))) {
6428                         r = -ENOMEM;
6429                         goto err_cpu_kick_mask;
6430                 }
6431         }
6432
6433         r = kvm_irqfd_init();
6434         if (r)
6435                 goto err_irqfd;
6436
6437         r = kvm_async_pf_init();
6438         if (r)
6439                 goto err_async_pf;
6440
6441         kvm_chardev_ops.owner = module;
6442         kvm_vm_fops.owner = module;
6443         kvm_vcpu_fops.owner = module;
6444         kvm_device_fops.owner = module;
6445
6446         kvm_preempt_ops.sched_in = kvm_sched_in;
6447         kvm_preempt_ops.sched_out = kvm_sched_out;
6448
6449         kvm_init_debug();
6450
6451         r = kvm_vfio_ops_init();
6452         if (WARN_ON_ONCE(r))
6453                 goto err_vfio;
6454
6455         kvm_gmem_init(module);
6456
6457         /*
6458          * Registration _must_ be the very last thing done, as this exposes
6459          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6460          */
6461         r = misc_register(&kvm_dev);
6462         if (r) {
6463                 pr_err("kvm: misc device register failed\n");
6464                 goto err_register;
6465         }
6466
6467         return 0;
6468
6469 err_register:
6470         kvm_vfio_ops_exit();
6471 err_vfio:
6472         kvm_async_pf_deinit();
6473 err_async_pf:
6474         kvm_irqfd_exit();
6475 err_irqfd:
6476 err_cpu_kick_mask:
6477         for_each_possible_cpu(cpu)
6478                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6479         kmem_cache_destroy(kvm_vcpu_cache);
6480 err_vcpu_cache:
6481 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6482         unregister_syscore_ops(&kvm_syscore_ops);
6483         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6484 #endif
6485         return r;
6486 }
6487 EXPORT_SYMBOL_GPL(kvm_init);
6488
6489 void kvm_exit(void)
6490 {
6491         int cpu;
6492
6493         /*
6494          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6495          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6496          * to KVM while the module is being stopped.
6497          */
6498         misc_deregister(&kvm_dev);
6499
6500         debugfs_remove_recursive(kvm_debugfs_dir);
6501         for_each_possible_cpu(cpu)
6502                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6503         kmem_cache_destroy(kvm_vcpu_cache);
6504         kvm_vfio_ops_exit();
6505         kvm_async_pf_deinit();
6506 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6507         unregister_syscore_ops(&kvm_syscore_ops);
6508         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6509 #endif
6510         kvm_irqfd_exit();
6511 }
6512 EXPORT_SYMBOL_GPL(kvm_exit);
6513
6514 struct kvm_vm_worker_thread_context {
6515         struct kvm *kvm;
6516         struct task_struct *parent;
6517         struct completion init_done;
6518         kvm_vm_thread_fn_t thread_fn;
6519         uintptr_t data;
6520         int err;
6521 };
6522
6523 static int kvm_vm_worker_thread(void *context)
6524 {
6525         /*
6526          * The init_context is allocated on the stack of the parent thread, so
6527          * we have to locally copy anything that is needed beyond initialization
6528          */
6529         struct kvm_vm_worker_thread_context *init_context = context;
6530         struct task_struct *parent;
6531         struct kvm *kvm = init_context->kvm;
6532         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6533         uintptr_t data = init_context->data;
6534         int err;
6535
6536         err = kthread_park(current);
6537         /* kthread_park(current) is never supposed to return an error */
6538         WARN_ON(err != 0);
6539         if (err)
6540                 goto init_complete;
6541
6542         err = cgroup_attach_task_all(init_context->parent, current);
6543         if (err) {
6544                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6545                         __func__, err);
6546                 goto init_complete;
6547         }
6548
6549         set_user_nice(current, task_nice(init_context->parent));
6550
6551 init_complete:
6552         init_context->err = err;
6553         complete(&init_context->init_done);
6554         init_context = NULL;
6555
6556         if (err)
6557                 goto out;
6558
6559         /* Wait to be woken up by the spawner before proceeding. */
6560         kthread_parkme();
6561
6562         if (!kthread_should_stop())
6563                 err = thread_fn(kvm, data);
6564
6565 out:
6566         /*
6567          * Move kthread back to its original cgroup to prevent it lingering in
6568          * the cgroup of the VM process, after the latter finishes its
6569          * execution.
6570          *
6571          * kthread_stop() waits on the 'exited' completion condition which is
6572          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6573          * kthread is removed from the cgroup in the cgroup_exit() which is
6574          * called after the exit_mm(). This causes the kthread_stop() to return
6575          * before the kthread actually quits the cgroup.
6576          */
6577         rcu_read_lock();
6578         parent = rcu_dereference(current->real_parent);
6579         get_task_struct(parent);
6580         rcu_read_unlock();
6581         cgroup_attach_task_all(parent, current);
6582         put_task_struct(parent);
6583
6584         return err;
6585 }
6586
6587 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6588                                 uintptr_t data, const char *name,
6589                                 struct task_struct **thread_ptr)
6590 {
6591         struct kvm_vm_worker_thread_context init_context = {};
6592         struct task_struct *thread;
6593
6594         *thread_ptr = NULL;
6595         init_context.kvm = kvm;
6596         init_context.parent = current;
6597         init_context.thread_fn = thread_fn;
6598         init_context.data = data;
6599         init_completion(&init_context.init_done);
6600
6601         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6602                              "%s-%d", name, task_pid_nr(current));
6603         if (IS_ERR(thread))
6604                 return PTR_ERR(thread);
6605
6606         /* kthread_run is never supposed to return NULL */
6607         WARN_ON(thread == NULL);
6608
6609         wait_for_completion(&init_context.init_done);
6610
6611         if (!init_context.err)
6612                 *thread_ptr = thread;
6613
6614         return init_context.err;
6615 }