Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / tools / testing / selftests / kvm / lib / x86_64 / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 #include "vmx.h"
13
14 #define PAGE_SHIFT_4K  12
15
16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
17
18 bool enable_evmcs;
19
20 struct eptPageTableEntry {
21         uint64_t readable:1;
22         uint64_t writable:1;
23         uint64_t executable:1;
24         uint64_t memory_type:3;
25         uint64_t ignore_pat:1;
26         uint64_t page_size:1;
27         uint64_t accessed:1;
28         uint64_t dirty:1;
29         uint64_t ignored_11_10:2;
30         uint64_t address:40;
31         uint64_t ignored_62_52:11;
32         uint64_t suppress_ve:1;
33 };
34
35 struct eptPageTablePointer {
36         uint64_t memory_type:3;
37         uint64_t page_walk_length:3;
38         uint64_t ad_enabled:1;
39         uint64_t reserved_11_07:5;
40         uint64_t address:40;
41         uint64_t reserved_63_52:12;
42 };
43 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
44 {
45         uint16_t evmcs_ver;
46
47         struct kvm_enable_cap enable_evmcs_cap = {
48                 .cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
49                  .args[0] = (unsigned long)&evmcs_ver
50         };
51
52         vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);
53
54         /* KVM should return supported EVMCS version range */
55         TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
56                     (evmcs_ver & 0xff) > 0,
57                     "Incorrect EVMCS version range: %x:%x\n",
58                     evmcs_ver & 0xff, evmcs_ver >> 8);
59
60         return evmcs_ver;
61 }
62
63 /* Allocate memory regions for nested VMX tests.
64  *
65  * Input Args:
66  *   vm - The VM to allocate guest-virtual addresses in.
67  *
68  * Output Args:
69  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
70  *
71  * Return:
72  *   Pointer to structure with the addresses of the VMX areas.
73  */
74 struct vmx_pages *
75 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
76 {
77         vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
78         struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
79
80         /* Setup of a region of guest memory for the vmxon region. */
81         vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
82         vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
83         vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
84
85         /* Setup of a region of guest memory for a vmcs. */
86         vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
87         vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
88         vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
89
90         /* Setup of a region of guest memory for the MSR bitmap. */
91         vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
92         vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
93         vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
94         memset(vmx->msr_hva, 0, getpagesize());
95
96         /* Setup of a region of guest memory for the shadow VMCS. */
97         vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
98         vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
99         vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
100
101         /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
102         vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
103         vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
104         vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
105         memset(vmx->vmread_hva, 0, getpagesize());
106
107         vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
108         vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
109         vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
110         memset(vmx->vmwrite_hva, 0, getpagesize());
111
112         /* Setup of a region of guest memory for the VP Assist page. */
113         vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(),
114                                                 0x10000, 0, 0);
115         vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
116         vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
117
118         /* Setup of a region of guest memory for the enlightened VMCS. */
119         vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(),
120                                                        0x10000, 0, 0);
121         vmx->enlightened_vmcs_hva =
122                 addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
123         vmx->enlightened_vmcs_gpa =
124                 addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
125
126         *p_vmx_gva = vmx_gva;
127         return vmx;
128 }
129
130 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
131 {
132         uint64_t feature_control;
133         uint64_t required;
134         unsigned long cr0;
135         unsigned long cr4;
136
137         /*
138          * Ensure bits in CR0 and CR4 are valid in VMX operation:
139          * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
140          * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
141          */
142         __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
143         cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
144         cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
145         __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
146
147         __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
148         cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
149         cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
150         /* Enable VMX operation */
151         cr4 |= X86_CR4_VMXE;
152         __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
153
154         /*
155          * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
156          *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
157          *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
158          *    outside of SMX causes a #GP.
159          */
160         required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
161         required |= FEATURE_CONTROL_LOCKED;
162         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
163         if ((feature_control & required) != required)
164                 wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required);
165
166         /* Enter VMX root operation. */
167         *(uint32_t *)(vmx->vmxon) = vmcs_revision();
168         if (vmxon(vmx->vmxon_gpa))
169                 return false;
170
171         return true;
172 }
173
174 bool load_vmcs(struct vmx_pages *vmx)
175 {
176         if (!enable_evmcs) {
177                 /* Load a VMCS. */
178                 *(uint32_t *)(vmx->vmcs) = vmcs_revision();
179                 if (vmclear(vmx->vmcs_gpa))
180                         return false;
181
182                 if (vmptrld(vmx->vmcs_gpa))
183                         return false;
184
185                 /* Setup shadow VMCS, do not load it yet. */
186                 *(uint32_t *)(vmx->shadow_vmcs) =
187                         vmcs_revision() | 0x80000000ul;
188                 if (vmclear(vmx->shadow_vmcs_gpa))
189                         return false;
190         } else {
191                 if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
192                                   vmx->enlightened_vmcs))
193                         return false;
194                 current_evmcs->revision_id = vmcs_revision();
195         }
196
197         return true;
198 }
199
200 /*
201  * Initialize the control fields to the most basic settings possible.
202  */
203 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
204 {
205         uint32_t sec_exec_ctl = 0;
206
207         vmwrite(VIRTUAL_PROCESSOR_ID, 0);
208         vmwrite(POSTED_INTR_NV, 0);
209
210         vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
211
212         if (vmx->eptp_gpa) {
213                 uint64_t ept_paddr;
214                 struct eptPageTablePointer eptp = {
215                         .memory_type = VMX_BASIC_MEM_TYPE_WB,
216                         .page_walk_length = 3, /* + 1 */
217                         .ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS),
218                         .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
219                 };
220
221                 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
222                 vmwrite(EPT_POINTER, ept_paddr);
223                 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
224         }
225
226         if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
227                 vmwrite(CPU_BASED_VM_EXEC_CONTROL,
228                         rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
229         else {
230                 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
231                 GUEST_ASSERT(!sec_exec_ctl);
232         }
233
234         vmwrite(EXCEPTION_BITMAP, 0);
235         vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
236         vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
237         vmwrite(CR3_TARGET_COUNT, 0);
238         vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
239                 VM_EXIT_HOST_ADDR_SPACE_SIZE);    /* 64-bit host */
240         vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
241         vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
242         vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
243                 VM_ENTRY_IA32E_MODE);             /* 64-bit guest */
244         vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
245         vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
246         vmwrite(TPR_THRESHOLD, 0);
247
248         vmwrite(CR0_GUEST_HOST_MASK, 0);
249         vmwrite(CR4_GUEST_HOST_MASK, 0);
250         vmwrite(CR0_READ_SHADOW, get_cr0());
251         vmwrite(CR4_READ_SHADOW, get_cr4());
252
253         vmwrite(MSR_BITMAP, vmx->msr_gpa);
254         vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
255         vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
256 }
257
258 /*
259  * Initialize the host state fields based on the current host state, with
260  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
261  * or vmresume.
262  */
263 static inline void init_vmcs_host_state(void)
264 {
265         uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
266
267         vmwrite(HOST_ES_SELECTOR, get_es());
268         vmwrite(HOST_CS_SELECTOR, get_cs());
269         vmwrite(HOST_SS_SELECTOR, get_ss());
270         vmwrite(HOST_DS_SELECTOR, get_ds());
271         vmwrite(HOST_FS_SELECTOR, get_fs());
272         vmwrite(HOST_GS_SELECTOR, get_gs());
273         vmwrite(HOST_TR_SELECTOR, get_tr());
274
275         if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
276                 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
277         if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
278                 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
279         if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
280                 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
281                         rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
282
283         vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
284
285         vmwrite(HOST_CR0, get_cr0());
286         vmwrite(HOST_CR3, get_cr3());
287         vmwrite(HOST_CR4, get_cr4());
288         vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
289         vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
290         vmwrite(HOST_TR_BASE,
291                 get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr())));
292         vmwrite(HOST_GDTR_BASE, get_gdt_base());
293         vmwrite(HOST_IDTR_BASE, get_idt_base());
294         vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
295         vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
296 }
297
298 /*
299  * Initialize the guest state fields essentially as a clone of
300  * the host state fields. Some host state fields have fixed
301  * values, and we set the corresponding guest state fields accordingly.
302  */
303 static inline void init_vmcs_guest_state(void *rip, void *rsp)
304 {
305         vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
306         vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
307         vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
308         vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
309         vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
310         vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
311         vmwrite(GUEST_LDTR_SELECTOR, 0);
312         vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
313         vmwrite(GUEST_INTR_STATUS, 0);
314         vmwrite(GUEST_PML_INDEX, 0);
315
316         vmwrite(VMCS_LINK_POINTER, -1ll);
317         vmwrite(GUEST_IA32_DEBUGCTL, 0);
318         vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
319         vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
320         vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
321                 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
322
323         vmwrite(GUEST_ES_LIMIT, -1);
324         vmwrite(GUEST_CS_LIMIT, -1);
325         vmwrite(GUEST_SS_LIMIT, -1);
326         vmwrite(GUEST_DS_LIMIT, -1);
327         vmwrite(GUEST_FS_LIMIT, -1);
328         vmwrite(GUEST_GS_LIMIT, -1);
329         vmwrite(GUEST_LDTR_LIMIT, -1);
330         vmwrite(GUEST_TR_LIMIT, 0x67);
331         vmwrite(GUEST_GDTR_LIMIT, 0xffff);
332         vmwrite(GUEST_IDTR_LIMIT, 0xffff);
333         vmwrite(GUEST_ES_AR_BYTES,
334                 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
335         vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
336         vmwrite(GUEST_SS_AR_BYTES, 0xc093);
337         vmwrite(GUEST_DS_AR_BYTES,
338                 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
339         vmwrite(GUEST_FS_AR_BYTES,
340                 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
341         vmwrite(GUEST_GS_AR_BYTES,
342                 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
343         vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
344         vmwrite(GUEST_TR_AR_BYTES, 0x8b);
345         vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
346         vmwrite(GUEST_ACTIVITY_STATE, 0);
347         vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
348         vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
349
350         vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
351         vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
352         vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
353         vmwrite(GUEST_ES_BASE, 0);
354         vmwrite(GUEST_CS_BASE, 0);
355         vmwrite(GUEST_SS_BASE, 0);
356         vmwrite(GUEST_DS_BASE, 0);
357         vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
358         vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
359         vmwrite(GUEST_LDTR_BASE, 0);
360         vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
361         vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
362         vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
363         vmwrite(GUEST_DR7, 0x400);
364         vmwrite(GUEST_RSP, (uint64_t)rsp);
365         vmwrite(GUEST_RIP, (uint64_t)rip);
366         vmwrite(GUEST_RFLAGS, 2);
367         vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
368         vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
369         vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
370 }
371
372 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
373 {
374         init_vmcs_control_fields(vmx);
375         init_vmcs_host_state();
376         init_vmcs_guest_state(guest_rip, guest_rsp);
377 }
378
379 void nested_vmx_check_supported(void)
380 {
381         struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);
382
383         if (!(entry->ecx & CPUID_VMX)) {
384                 fprintf(stderr, "nested VMX not enabled, skipping test\n");
385                 exit(KSFT_SKIP);
386         }
387 }
388
389 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
390                    uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot)
391 {
392         uint16_t index[4];
393         struct eptPageTableEntry *pml4e;
394
395         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
396                     "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
397
398         TEST_ASSERT((nested_paddr % vm->page_size) == 0,
399                     "Nested physical address not on page boundary,\n"
400                     "  nested_paddr: 0x%lx vm->page_size: 0x%x",
401                     nested_paddr, vm->page_size);
402         TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
403                     "Physical address beyond beyond maximum supported,\n"
404                     "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
405                     paddr, vm->max_gfn, vm->page_size);
406         TEST_ASSERT((paddr % vm->page_size) == 0,
407                     "Physical address not on page boundary,\n"
408                     "  paddr: 0x%lx vm->page_size: 0x%x",
409                     paddr, vm->page_size);
410         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
411                     "Physical address beyond beyond maximum supported,\n"
412                     "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
413                     paddr, vm->max_gfn, vm->page_size);
414
415         index[0] = (nested_paddr >> 12) & 0x1ffu;
416         index[1] = (nested_paddr >> 21) & 0x1ffu;
417         index[2] = (nested_paddr >> 30) & 0x1ffu;
418         index[3] = (nested_paddr >> 39) & 0x1ffu;
419
420         /* Allocate page directory pointer table if not present. */
421         pml4e = vmx->eptp_hva;
422         if (!pml4e[index[3]].readable) {
423                 pml4e[index[3]].address = vm_phy_page_alloc(vm,
424                           KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
425                         >> vm->page_shift;
426                 pml4e[index[3]].writable = true;
427                 pml4e[index[3]].readable = true;
428                 pml4e[index[3]].executable = true;
429         }
430
431         /* Allocate page directory table if not present. */
432         struct eptPageTableEntry *pdpe;
433         pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
434         if (!pdpe[index[2]].readable) {
435                 pdpe[index[2]].address = vm_phy_page_alloc(vm,
436                           KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
437                         >> vm->page_shift;
438                 pdpe[index[2]].writable = true;
439                 pdpe[index[2]].readable = true;
440                 pdpe[index[2]].executable = true;
441         }
442
443         /* Allocate page table if not present. */
444         struct eptPageTableEntry *pde;
445         pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
446         if (!pde[index[1]].readable) {
447                 pde[index[1]].address = vm_phy_page_alloc(vm,
448                           KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
449                         >> vm->page_shift;
450                 pde[index[1]].writable = true;
451                 pde[index[1]].readable = true;
452                 pde[index[1]].executable = true;
453         }
454
455         /* Fill in page table entry. */
456         struct eptPageTableEntry *pte;
457         pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
458         pte[index[0]].address = paddr >> vm->page_shift;
459         pte[index[0]].writable = true;
460         pte[index[0]].readable = true;
461         pte[index[0]].executable = true;
462
463         /*
464          * For now mark these as accessed and dirty because the only
465          * testcase we have needs that.  Can be reconsidered later.
466          */
467         pte[index[0]].accessed = true;
468         pte[index[0]].dirty = true;
469 }
470
471 /*
472  * Map a range of EPT guest physical addresses to the VM's physical address
473  *
474  * Input Args:
475  *   vm - Virtual Machine
476  *   nested_paddr - Nested guest physical address to map
477  *   paddr - VM Physical Address
478  *   size - The size of the range to map
479  *   eptp_memslot - Memory region slot for new virtual translation tables
480  *
481  * Output Args: None
482  *
483  * Return: None
484  *
485  * Within the VM given by vm, creates a nested guest translation for the
486  * page range starting at nested_paddr to the page range starting at paddr.
487  */
488 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
489                 uint64_t nested_paddr, uint64_t paddr, uint64_t size,
490                 uint32_t eptp_memslot)
491 {
492         size_t page_size = vm->page_size;
493         size_t npages = size / page_size;
494
495         TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
496         TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
497
498         while (npages--) {
499                 nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot);
500                 nested_paddr += page_size;
501                 paddr += page_size;
502         }
503 }
504
505 /* Prepare an identity extended page table that maps all the
506  * physical pages in VM.
507  */
508 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
509                         uint32_t memslot, uint32_t eptp_memslot)
510 {
511         sparsebit_idx_t i, last;
512         struct userspace_mem_region *region =
513                 memslot2region(vm, memslot);
514
515         i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
516         last = i + (region->region.memory_size >> vm->page_shift);
517         for (;;) {
518                 i = sparsebit_next_clear(region->unused_phy_pages, i);
519                 if (i > last)
520                         break;
521
522                 nested_map(vmx, vm,
523                            (uint64_t)i << vm->page_shift,
524                            (uint64_t)i << vm->page_shift,
525                            1 << vm->page_shift,
526                            eptp_memslot);
527         }
528 }
529
530 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
531                   uint32_t eptp_memslot)
532 {
533         vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
534         vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
535         vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
536 }