ff901cb47ffcab3fe7e1d2c3eacfd94cc789e325
[linux-block.git] / tools / testing / selftests / kvm / lib / x86_64 / processor.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "processor.h"
11
12 #ifndef NUM_INTERRUPTS
13 #define NUM_INTERRUPTS 256
14 #endif
15
16 #define DEFAULT_CODE_SELECTOR 0x8
17 #define DEFAULT_DATA_SELECTOR 0x10
18
19 #define MAX_NR_CPUID_ENTRIES 100
20
21 vm_vaddr_t exception_handlers;
22 bool host_cpu_is_amd;
23 bool host_cpu_is_intel;
24
25 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
26 {
27         fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
28                 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
29                 indent, "",
30                 regs->rax, regs->rbx, regs->rcx, regs->rdx);
31         fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
32                 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
33                 indent, "",
34                 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
35         fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
36                 "r10: 0x%.16llx r11: 0x%.16llx\n",
37                 indent, "",
38                 regs->r8, regs->r9, regs->r10, regs->r11);
39         fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
40                 "r14: 0x%.16llx r15: 0x%.16llx\n",
41                 indent, "",
42                 regs->r12, regs->r13, regs->r14, regs->r15);
43         fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
44                 indent, "",
45                 regs->rip, regs->rflags);
46 }
47
48 static void segment_dump(FILE *stream, struct kvm_segment *segment,
49                          uint8_t indent)
50 {
51         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
52                 "selector: 0x%.4x type: 0x%.2x\n",
53                 indent, "", segment->base, segment->limit,
54                 segment->selector, segment->type);
55         fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
56                 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
57                 indent, "", segment->present, segment->dpl,
58                 segment->db, segment->s, segment->l);
59         fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
60                 "unusable: 0x%.2x padding: 0x%.2x\n",
61                 indent, "", segment->g, segment->avl,
62                 segment->unusable, segment->padding);
63 }
64
65 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
66                         uint8_t indent)
67 {
68         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
69                 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
70                 indent, "", dtable->base, dtable->limit,
71                 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
72 }
73
74 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
75 {
76         unsigned int i;
77
78         fprintf(stream, "%*scs:\n", indent, "");
79         segment_dump(stream, &sregs->cs, indent + 2);
80         fprintf(stream, "%*sds:\n", indent, "");
81         segment_dump(stream, &sregs->ds, indent + 2);
82         fprintf(stream, "%*ses:\n", indent, "");
83         segment_dump(stream, &sregs->es, indent + 2);
84         fprintf(stream, "%*sfs:\n", indent, "");
85         segment_dump(stream, &sregs->fs, indent + 2);
86         fprintf(stream, "%*sgs:\n", indent, "");
87         segment_dump(stream, &sregs->gs, indent + 2);
88         fprintf(stream, "%*sss:\n", indent, "");
89         segment_dump(stream, &sregs->ss, indent + 2);
90         fprintf(stream, "%*str:\n", indent, "");
91         segment_dump(stream, &sregs->tr, indent + 2);
92         fprintf(stream, "%*sldt:\n", indent, "");
93         segment_dump(stream, &sregs->ldt, indent + 2);
94
95         fprintf(stream, "%*sgdt:\n", indent, "");
96         dtable_dump(stream, &sregs->gdt, indent + 2);
97         fprintf(stream, "%*sidt:\n", indent, "");
98         dtable_dump(stream, &sregs->idt, indent + 2);
99
100         fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
101                 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
102                 indent, "",
103                 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
104         fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
105                 "apic_base: 0x%.16llx\n",
106                 indent, "",
107                 sregs->cr8, sregs->efer, sregs->apic_base);
108
109         fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
110         for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
111                 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
112                         sregs->interrupt_bitmap[i]);
113         }
114 }
115
116 bool kvm_is_tdp_enabled(void)
117 {
118         if (host_cpu_is_intel)
119                 return get_kvm_intel_param_bool("ept");
120         else
121                 return get_kvm_amd_param_bool("npt");
122 }
123
124 void virt_arch_pgd_alloc(struct kvm_vm *vm)
125 {
126         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
127                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
128
129         /* If needed, create page map l4 table. */
130         if (!vm->pgd_created) {
131                 vm->pgd = vm_alloc_page_table(vm);
132                 vm->pgd_created = true;
133         }
134 }
135
136 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
137                           uint64_t vaddr, int level)
138 {
139         uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
140         uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
141         int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
142
143         TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
144                     "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
145                     level + 1, vaddr);
146
147         return &page_table[index];
148 }
149
150 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
151                                        uint64_t *parent_pte,
152                                        uint64_t vaddr,
153                                        uint64_t paddr,
154                                        int current_level,
155                                        int target_level)
156 {
157         uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
158
159         if (!(*pte & PTE_PRESENT_MASK)) {
160                 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
161                 if (current_level == target_level)
162                         *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
163                 else
164                         *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
165         } else {
166                 /*
167                  * Entry already present.  Assert that the caller doesn't want
168                  * a hugepage at this level, and that there isn't a hugepage at
169                  * this level.
170                  */
171                 TEST_ASSERT(current_level != target_level,
172                             "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
173                             current_level, vaddr);
174                 TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
175                             "Cannot create page table at level: %u, vaddr: 0x%lx\n",
176                             current_level, vaddr);
177         }
178         return pte;
179 }
180
181 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
182 {
183         const uint64_t pg_size = PG_LEVEL_SIZE(level);
184         uint64_t *pml4e, *pdpe, *pde;
185         uint64_t *pte;
186
187         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
188                     "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
189
190         TEST_ASSERT((vaddr % pg_size) == 0,
191                     "Virtual address not aligned,\n"
192                     "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
193         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
194                     "Invalid virtual address, vaddr: 0x%lx", vaddr);
195         TEST_ASSERT((paddr % pg_size) == 0,
196                     "Physical address not aligned,\n"
197                     "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
198         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
199                     "Physical address beyond maximum supported,\n"
200                     "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
201                     paddr, vm->max_gfn, vm->page_size);
202
203         /*
204          * Allocate upper level page tables, if not already present.  Return
205          * early if a hugepage was created.
206          */
207         pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
208         if (*pml4e & PTE_LARGE_MASK)
209                 return;
210
211         pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
212         if (*pdpe & PTE_LARGE_MASK)
213                 return;
214
215         pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
216         if (*pde & PTE_LARGE_MASK)
217                 return;
218
219         /* Fill in page table entry. */
220         pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
221         TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
222                     "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
223         *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
224 }
225
226 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
227 {
228         __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
229 }
230
231 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
232                     uint64_t nr_bytes, int level)
233 {
234         uint64_t pg_size = PG_LEVEL_SIZE(level);
235         uint64_t nr_pages = nr_bytes / pg_size;
236         int i;
237
238         TEST_ASSERT(nr_bytes % pg_size == 0,
239                     "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
240                     nr_bytes, pg_size);
241
242         for (i = 0; i < nr_pages; i++) {
243                 __virt_pg_map(vm, vaddr, paddr, level);
244
245                 vaddr += pg_size;
246                 paddr += pg_size;
247         }
248 }
249
250 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
251 {
252         if (*pte & PTE_LARGE_MASK) {
253                 TEST_ASSERT(*level == PG_LEVEL_NONE ||
254                             *level == current_level,
255                             "Unexpected hugepage at level %d\n", current_level);
256                 *level = current_level;
257         }
258
259         return *level == current_level;
260 }
261
262 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
263                                     int *level)
264 {
265         uint64_t *pml4e, *pdpe, *pde;
266
267         TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
268                     "Invalid PG_LEVEL_* '%d'", *level);
269
270         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
271                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
272         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
273                 (vaddr >> vm->page_shift)),
274                 "Invalid virtual address, vaddr: 0x%lx",
275                 vaddr);
276         /*
277          * Based on the mode check above there are 48 bits in the vaddr, so
278          * shift 16 to sign extend the last bit (bit-47),
279          */
280         TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
281                 "Canonical check failed.  The virtual address is invalid.");
282
283         pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
284         if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
285                 return pml4e;
286
287         pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
288         if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
289                 return pdpe;
290
291         pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
292         if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
293                 return pde;
294
295         return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
296 }
297
298 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
299 {
300         int level = PG_LEVEL_4K;
301
302         return __vm_get_page_table_entry(vm, vaddr, &level);
303 }
304
305 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
306 {
307         uint64_t *pml4e, *pml4e_start;
308         uint64_t *pdpe, *pdpe_start;
309         uint64_t *pde, *pde_start;
310         uint64_t *pte, *pte_start;
311
312         if (!vm->pgd_created)
313                 return;
314
315         fprintf(stream, "%*s                                          "
316                 "                no\n", indent, "");
317         fprintf(stream, "%*s      index hvaddr         gpaddr         "
318                 "addr         w exec dirty\n",
319                 indent, "");
320         pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
321         for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
322                 pml4e = &pml4e_start[n1];
323                 if (!(*pml4e & PTE_PRESENT_MASK))
324                         continue;
325                 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
326                         " %u\n",
327                         indent, "",
328                         pml4e - pml4e_start, pml4e,
329                         addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
330                         !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
331
332                 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
333                 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
334                         pdpe = &pdpe_start[n2];
335                         if (!(*pdpe & PTE_PRESENT_MASK))
336                                 continue;
337                         fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
338                                 "%u  %u\n",
339                                 indent, "",
340                                 pdpe - pdpe_start, pdpe,
341                                 addr_hva2gpa(vm, pdpe),
342                                 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
343                                 !!(*pdpe & PTE_NX_MASK));
344
345                         pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
346                         for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
347                                 pde = &pde_start[n3];
348                                 if (!(*pde & PTE_PRESENT_MASK))
349                                         continue;
350                                 fprintf(stream, "%*spde   0x%-3zx %p "
351                                         "0x%-12lx 0x%-10llx %u  %u\n",
352                                         indent, "", pde - pde_start, pde,
353                                         addr_hva2gpa(vm, pde),
354                                         PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
355                                         !!(*pde & PTE_NX_MASK));
356
357                                 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
358                                 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
359                                         pte = &pte_start[n4];
360                                         if (!(*pte & PTE_PRESENT_MASK))
361                                                 continue;
362                                         fprintf(stream, "%*spte   0x%-3zx %p "
363                                                 "0x%-12lx 0x%-10llx %u  %u "
364                                                 "    %u    0x%-10lx\n",
365                                                 indent, "",
366                                                 pte - pte_start, pte,
367                                                 addr_hva2gpa(vm, pte),
368                                                 PTE_GET_PFN(*pte),
369                                                 !!(*pte & PTE_WRITABLE_MASK),
370                                                 !!(*pte & PTE_NX_MASK),
371                                                 !!(*pte & PTE_DIRTY_MASK),
372                                                 ((uint64_t) n1 << 27)
373                                                         | ((uint64_t) n2 << 18)
374                                                         | ((uint64_t) n3 << 9)
375                                                         | ((uint64_t) n4));
376                                 }
377                         }
378                 }
379         }
380 }
381
382 /*
383  * Set Unusable Segment
384  *
385  * Input Args: None
386  *
387  * Output Args:
388  *   segp - Pointer to segment register
389  *
390  * Return: None
391  *
392  * Sets the segment register pointed to by @segp to an unusable state.
393  */
394 static void kvm_seg_set_unusable(struct kvm_segment *segp)
395 {
396         memset(segp, 0, sizeof(*segp));
397         segp->unusable = true;
398 }
399
400 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
401 {
402         void *gdt = addr_gva2hva(vm, vm->gdt);
403         struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
404
405         desc->limit0 = segp->limit & 0xFFFF;
406         desc->base0 = segp->base & 0xFFFF;
407         desc->base1 = segp->base >> 16;
408         desc->type = segp->type;
409         desc->s = segp->s;
410         desc->dpl = segp->dpl;
411         desc->p = segp->present;
412         desc->limit1 = segp->limit >> 16;
413         desc->avl = segp->avl;
414         desc->l = segp->l;
415         desc->db = segp->db;
416         desc->g = segp->g;
417         desc->base2 = segp->base >> 24;
418         if (!segp->s)
419                 desc->base3 = segp->base >> 32;
420 }
421
422
423 /*
424  * Set Long Mode Flat Kernel Code Segment
425  *
426  * Input Args:
427  *   vm - VM whose GDT is being filled, or NULL to only write segp
428  *   selector - selector value
429  *
430  * Output Args:
431  *   segp - Pointer to KVM segment
432  *
433  * Return: None
434  *
435  * Sets up the KVM segment pointed to by @segp, to be a code segment
436  * with the selector value given by @selector.
437  */
438 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
439         struct kvm_segment *segp)
440 {
441         memset(segp, 0, sizeof(*segp));
442         segp->selector = selector;
443         segp->limit = 0xFFFFFFFFu;
444         segp->s = 0x1; /* kTypeCodeData */
445         segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
446                                           * | kFlagCodeReadable
447                                           */
448         segp->g = true;
449         segp->l = true;
450         segp->present = 1;
451         if (vm)
452                 kvm_seg_fill_gdt_64bit(vm, segp);
453 }
454
455 /*
456  * Set Long Mode Flat Kernel Data Segment
457  *
458  * Input Args:
459  *   vm - VM whose GDT is being filled, or NULL to only write segp
460  *   selector - selector value
461  *
462  * Output Args:
463  *   segp - Pointer to KVM segment
464  *
465  * Return: None
466  *
467  * Sets up the KVM segment pointed to by @segp, to be a data segment
468  * with the selector value given by @selector.
469  */
470 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
471         struct kvm_segment *segp)
472 {
473         memset(segp, 0, sizeof(*segp));
474         segp->selector = selector;
475         segp->limit = 0xFFFFFFFFu;
476         segp->s = 0x1; /* kTypeCodeData */
477         segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
478                                           * | kFlagDataWritable
479                                           */
480         segp->g = true;
481         segp->present = true;
482         if (vm)
483                 kvm_seg_fill_gdt_64bit(vm, segp);
484 }
485
486 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
487 {
488         int level = PG_LEVEL_NONE;
489         uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
490
491         TEST_ASSERT(*pte & PTE_PRESENT_MASK,
492                     "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
493
494         /*
495          * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
496          * address bits to be zero.
497          */
498         return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level));
499 }
500
501 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
502 {
503         if (!vm->gdt)
504                 vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
505
506         dt->base = vm->gdt;
507         dt->limit = getpagesize();
508 }
509
510 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
511                                 int selector)
512 {
513         if (!vm->tss)
514                 vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
515
516         memset(segp, 0, sizeof(*segp));
517         segp->base = vm->tss;
518         segp->limit = 0x67;
519         segp->selector = selector;
520         segp->type = 0xb;
521         segp->present = 1;
522         kvm_seg_fill_gdt_64bit(vm, segp);
523 }
524
525 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
526 {
527         struct kvm_sregs sregs;
528
529         /* Set mode specific system register values. */
530         vcpu_sregs_get(vcpu, &sregs);
531
532         sregs.idt.limit = 0;
533
534         kvm_setup_gdt(vm, &sregs.gdt);
535
536         switch (vm->mode) {
537         case VM_MODE_PXXV48_4K:
538                 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
539                 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
540                 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
541
542                 kvm_seg_set_unusable(&sregs.ldt);
543                 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
544                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
545                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
546                 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
547                 break;
548
549         default:
550                 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
551         }
552
553         sregs.cr3 = vm->pgd;
554         vcpu_sregs_set(vcpu, &sregs);
555 }
556
557 void kvm_arch_vm_post_create(struct kvm_vm *vm)
558 {
559         vm_create_irqchip(vm);
560         sync_global_to_guest(vm, host_cpu_is_intel);
561         sync_global_to_guest(vm, host_cpu_is_amd);
562 }
563
564 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
565                                   void *guest_code)
566 {
567         struct kvm_mp_state mp_state;
568         struct kvm_regs regs;
569         vm_vaddr_t stack_vaddr;
570         struct kvm_vcpu *vcpu;
571
572         stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
573                                        DEFAULT_GUEST_STACK_VADDR_MIN,
574                                        MEM_REGION_DATA);
575
576         vcpu = __vm_vcpu_add(vm, vcpu_id);
577         vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
578         vcpu_setup(vm, vcpu);
579
580         /* Setup guest general purpose registers */
581         vcpu_regs_get(vcpu, &regs);
582         regs.rflags = regs.rflags | 0x2;
583         regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
584         regs.rip = (unsigned long) guest_code;
585         vcpu_regs_set(vcpu, &regs);
586
587         /* Setup the MP state */
588         mp_state.mp_state = 0;
589         vcpu_mp_state_set(vcpu, &mp_state);
590
591         return vcpu;
592 }
593
594 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
595 {
596         struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
597
598         vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
599
600         return vcpu;
601 }
602
603 void vcpu_arch_free(struct kvm_vcpu *vcpu)
604 {
605         if (vcpu->cpuid)
606                 free(vcpu->cpuid);
607 }
608
609 /* Do not use kvm_supported_cpuid directly except for validity checks. */
610 static void *kvm_supported_cpuid;
611
612 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
613 {
614         int kvm_fd;
615
616         if (kvm_supported_cpuid)
617                 return kvm_supported_cpuid;
618
619         kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
620         kvm_fd = open_kvm_dev_path_or_exit();
621
622         kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
623                   (struct kvm_cpuid2 *)kvm_supported_cpuid);
624
625         close(kvm_fd);
626         return kvm_supported_cpuid;
627 }
628
629 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
630                               uint32_t function, uint32_t index,
631                               uint8_t reg, uint8_t lo, uint8_t hi)
632 {
633         const struct kvm_cpuid_entry2 *entry;
634         int i;
635
636         for (i = 0; i < cpuid->nent; i++) {
637                 entry = &cpuid->entries[i];
638
639                 /*
640                  * The output registers in kvm_cpuid_entry2 are in alphabetical
641                  * order, but kvm_x86_cpu_feature matches that mess, so yay
642                  * pointer shenanigans!
643                  */
644                 if (entry->function == function && entry->index == index)
645                         return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
646         }
647
648         return 0;
649 }
650
651 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
652                    struct kvm_x86_cpu_feature feature)
653 {
654         return __kvm_cpu_has(cpuid, feature.function, feature.index,
655                              feature.reg, feature.bit, feature.bit);
656 }
657
658 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
659                             struct kvm_x86_cpu_property property)
660 {
661         return __kvm_cpu_has(cpuid, property.function, property.index,
662                              property.reg, property.lo_bit, property.hi_bit);
663 }
664
665 uint64_t kvm_get_feature_msr(uint64_t msr_index)
666 {
667         struct {
668                 struct kvm_msrs header;
669                 struct kvm_msr_entry entry;
670         } buffer = {};
671         int r, kvm_fd;
672
673         buffer.header.nmsrs = 1;
674         buffer.entry.index = msr_index;
675         kvm_fd = open_kvm_dev_path_or_exit();
676
677         r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
678         TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
679
680         close(kvm_fd);
681         return buffer.entry.data;
682 }
683
684 void __vm_xsave_require_permission(int bit, const char *name)
685 {
686         int kvm_fd;
687         u64 bitmask;
688         long rc;
689         struct kvm_device_attr attr = {
690                 .group = 0,
691                 .attr = KVM_X86_XCOMP_GUEST_SUPP,
692                 .addr = (unsigned long) &bitmask
693         };
694
695         TEST_ASSERT(!kvm_supported_cpuid,
696                     "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
697
698         kvm_fd = open_kvm_dev_path_or_exit();
699         rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
700         close(kvm_fd);
701
702         if (rc == -1 && (errno == ENXIO || errno == EINVAL))
703                 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
704
705         TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
706
707         __TEST_REQUIRE(bitmask & (1ULL << bit),
708                        "Required XSAVE feature '%s' not supported", name);
709
710         TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit));
711
712         rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
713         TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
714         TEST_ASSERT(bitmask & (1ULL << bit),
715                     "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
716                     bitmask);
717 }
718
719 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
720 {
721         TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
722
723         /* Allow overriding the default CPUID. */
724         if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
725                 free(vcpu->cpuid);
726                 vcpu->cpuid = NULL;
727         }
728
729         if (!vcpu->cpuid)
730                 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
731
732         memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
733         vcpu_set_cpuid(vcpu);
734 }
735
736 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
737 {
738         struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);
739
740         entry->eax = (entry->eax & ~0xff) | maxphyaddr;
741         vcpu_set_cpuid(vcpu);
742 }
743
744 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
745 {
746         struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
747
748         entry->eax = 0;
749         entry->ebx = 0;
750         entry->ecx = 0;
751         entry->edx = 0;
752         vcpu_set_cpuid(vcpu);
753 }
754
755 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
756                                      struct kvm_x86_cpu_feature feature,
757                                      bool set)
758 {
759         struct kvm_cpuid_entry2 *entry;
760         u32 *reg;
761
762         entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
763         reg = (&entry->eax) + feature.reg;
764
765         if (set)
766                 *reg |= BIT(feature.bit);
767         else
768                 *reg &= ~BIT(feature.bit);
769
770         vcpu_set_cpuid(vcpu);
771 }
772
773 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
774 {
775         struct {
776                 struct kvm_msrs header;
777                 struct kvm_msr_entry entry;
778         } buffer = {};
779
780         buffer.header.nmsrs = 1;
781         buffer.entry.index = msr_index;
782
783         vcpu_msrs_get(vcpu, &buffer.header);
784
785         return buffer.entry.data;
786 }
787
788 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
789 {
790         struct {
791                 struct kvm_msrs header;
792                 struct kvm_msr_entry entry;
793         } buffer = {};
794
795         memset(&buffer, 0, sizeof(buffer));
796         buffer.header.nmsrs = 1;
797         buffer.entry.index = msr_index;
798         buffer.entry.data = msr_value;
799
800         return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
801 }
802
803 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
804 {
805         va_list ap;
806         struct kvm_regs regs;
807
808         TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
809                     "  num: %u\n",
810                     num);
811
812         va_start(ap, num);
813         vcpu_regs_get(vcpu, &regs);
814
815         if (num >= 1)
816                 regs.rdi = va_arg(ap, uint64_t);
817
818         if (num >= 2)
819                 regs.rsi = va_arg(ap, uint64_t);
820
821         if (num >= 3)
822                 regs.rdx = va_arg(ap, uint64_t);
823
824         if (num >= 4)
825                 regs.rcx = va_arg(ap, uint64_t);
826
827         if (num >= 5)
828                 regs.r8 = va_arg(ap, uint64_t);
829
830         if (num >= 6)
831                 regs.r9 = va_arg(ap, uint64_t);
832
833         vcpu_regs_set(vcpu, &regs);
834         va_end(ap);
835 }
836
837 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
838 {
839         struct kvm_regs regs;
840         struct kvm_sregs sregs;
841
842         fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
843
844         fprintf(stream, "%*sregs:\n", indent + 2, "");
845         vcpu_regs_get(vcpu, &regs);
846         regs_dump(stream, &regs, indent + 4);
847
848         fprintf(stream, "%*ssregs:\n", indent + 2, "");
849         vcpu_sregs_get(vcpu, &sregs);
850         sregs_dump(stream, &sregs, indent + 4);
851 }
852
853 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
854 {
855         struct kvm_msr_list *list;
856         struct kvm_msr_list nmsrs;
857         int kvm_fd, r;
858
859         kvm_fd = open_kvm_dev_path_or_exit();
860
861         nmsrs.nmsrs = 0;
862         if (!feature_msrs)
863                 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
864         else
865                 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
866
867         TEST_ASSERT(r == -1 && errno == E2BIG,
868                     "Expected -E2BIG, got rc: %i errno: %i (%s)",
869                     r, errno, strerror(errno));
870
871         list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
872         TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
873         list->nmsrs = nmsrs.nmsrs;
874
875         if (!feature_msrs)
876                 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
877         else
878                 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
879         close(kvm_fd);
880
881         TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
882                     "Number of MSRs in list changed, was %d, now %d",
883                     nmsrs.nmsrs, list->nmsrs);
884         return list;
885 }
886
887 const struct kvm_msr_list *kvm_get_msr_index_list(void)
888 {
889         static const struct kvm_msr_list *list;
890
891         if (!list)
892                 list = __kvm_get_msr_index_list(false);
893         return list;
894 }
895
896
897 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
898 {
899         static const struct kvm_msr_list *list;
900
901         if (!list)
902                 list = __kvm_get_msr_index_list(true);
903         return list;
904 }
905
906 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
907 {
908         const struct kvm_msr_list *list = kvm_get_msr_index_list();
909         int i;
910
911         for (i = 0; i < list->nmsrs; ++i) {
912                 if (list->indices[i] == msr_index)
913                         return true;
914         }
915
916         return false;
917 }
918
919 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
920                                   struct kvm_x86_state *state)
921 {
922         int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
923
924         if (size) {
925                 state->xsave = malloc(size);
926                 vcpu_xsave2_get(vcpu, state->xsave);
927         } else {
928                 state->xsave = malloc(sizeof(struct kvm_xsave));
929                 vcpu_xsave_get(vcpu, state->xsave);
930         }
931 }
932
933 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
934 {
935         const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
936         struct kvm_x86_state *state;
937         int i;
938
939         static int nested_size = -1;
940
941         if (nested_size == -1) {
942                 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
943                 TEST_ASSERT(nested_size <= sizeof(state->nested_),
944                             "Nested state size too big, %i > %zi",
945                             nested_size, sizeof(state->nested_));
946         }
947
948         /*
949          * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
950          * guest state is consistent only after userspace re-enters the
951          * kernel with KVM_RUN.  Complete IO prior to migrating state
952          * to a new VM.
953          */
954         vcpu_run_complete_io(vcpu);
955
956         state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
957
958         vcpu_events_get(vcpu, &state->events);
959         vcpu_mp_state_get(vcpu, &state->mp_state);
960         vcpu_regs_get(vcpu, &state->regs);
961         vcpu_save_xsave_state(vcpu, state);
962
963         if (kvm_has_cap(KVM_CAP_XCRS))
964                 vcpu_xcrs_get(vcpu, &state->xcrs);
965
966         vcpu_sregs_get(vcpu, &state->sregs);
967
968         if (nested_size) {
969                 state->nested.size = sizeof(state->nested_);
970
971                 vcpu_nested_state_get(vcpu, &state->nested);
972                 TEST_ASSERT(state->nested.size <= nested_size,
973                             "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
974                             state->nested.size, nested_size);
975         } else {
976                 state->nested.size = 0;
977         }
978
979         state->msrs.nmsrs = msr_list->nmsrs;
980         for (i = 0; i < msr_list->nmsrs; i++)
981                 state->msrs.entries[i].index = msr_list->indices[i];
982         vcpu_msrs_get(vcpu, &state->msrs);
983
984         vcpu_debugregs_get(vcpu, &state->debugregs);
985
986         return state;
987 }
988
989 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
990 {
991         vcpu_sregs_set(vcpu, &state->sregs);
992         vcpu_msrs_set(vcpu, &state->msrs);
993
994         if (kvm_has_cap(KVM_CAP_XCRS))
995                 vcpu_xcrs_set(vcpu, &state->xcrs);
996
997         vcpu_xsave_set(vcpu,  state->xsave);
998         vcpu_events_set(vcpu, &state->events);
999         vcpu_mp_state_set(vcpu, &state->mp_state);
1000         vcpu_debugregs_set(vcpu, &state->debugregs);
1001         vcpu_regs_set(vcpu, &state->regs);
1002
1003         if (state->nested.size)
1004                 vcpu_nested_state_set(vcpu, &state->nested);
1005 }
1006
1007 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1008 {
1009         free(state->xsave);
1010         free(state);
1011 }
1012
1013 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1014 {
1015         if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1016                 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1017                 *va_bits = 32;
1018         } else {
1019                 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1020                 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1021         }
1022 }
1023
1024 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1025                           int dpl, unsigned short selector)
1026 {
1027         struct idt_entry *base =
1028                 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1029         struct idt_entry *e = &base[vector];
1030
1031         memset(e, 0, sizeof(*e));
1032         e->offset0 = addr;
1033         e->selector = selector;
1034         e->ist = 0;
1035         e->type = 14;
1036         e->dpl = dpl;
1037         e->p = 1;
1038         e->offset1 = addr >> 16;
1039         e->offset2 = addr >> 32;
1040 }
1041
1042
1043 static bool kvm_fixup_exception(struct ex_regs *regs)
1044 {
1045         if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
1046                 return false;
1047
1048         if (regs->vector == DE_VECTOR)
1049                 return false;
1050
1051         regs->rip = regs->r11;
1052         regs->r9 = regs->vector;
1053         regs->r10 = regs->error_code;
1054         return true;
1055 }
1056
1057 void kvm_exit_unexpected_vector(uint32_t value)
1058 {
1059         ucall(UCALL_UNHANDLED, 1, value);
1060 }
1061
1062 void route_exception(struct ex_regs *regs)
1063 {
1064         typedef void(*handler)(struct ex_regs *);
1065         handler *handlers = (handler *)exception_handlers;
1066
1067         if (handlers && handlers[regs->vector]) {
1068                 handlers[regs->vector](regs);
1069                 return;
1070         }
1071
1072         if (kvm_fixup_exception(regs))
1073                 return;
1074
1075         kvm_exit_unexpected_vector(regs->vector);
1076 }
1077
1078 void vm_init_descriptor_tables(struct kvm_vm *vm)
1079 {
1080         extern void *idt_handlers;
1081         int i;
1082
1083         vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1084         vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1085         /* Handlers have the same address in both address spaces.*/
1086         for (i = 0; i < NUM_INTERRUPTS; i++)
1087                 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1088                         DEFAULT_CODE_SELECTOR);
1089 }
1090
1091 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
1092 {
1093         struct kvm_vm *vm = vcpu->vm;
1094         struct kvm_sregs sregs;
1095
1096         vcpu_sregs_get(vcpu, &sregs);
1097         sregs.idt.base = vm->idt;
1098         sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1099         sregs.gdt.base = vm->gdt;
1100         sregs.gdt.limit = getpagesize() - 1;
1101         kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1102         vcpu_sregs_set(vcpu, &sregs);
1103         *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1104 }
1105
1106 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1107                                void (*handler)(struct ex_regs *))
1108 {
1109         vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1110
1111         handlers[vector] = (vm_vaddr_t)handler;
1112 }
1113
1114 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
1115 {
1116         struct ucall uc;
1117
1118         if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
1119                 uint64_t vector = uc.args[0];
1120
1121                 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1122                           vector);
1123         }
1124 }
1125
1126 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1127                                                uint32_t function, uint32_t index)
1128 {
1129         int i;
1130
1131         for (i = 0; i < cpuid->nent; i++) {
1132                 if (cpuid->entries[i].function == function &&
1133                     cpuid->entries[i].index == index)
1134                         return &cpuid->entries[i];
1135         }
1136
1137         TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1138
1139         return NULL;
1140 }
1141
1142 #define X86_HYPERCALL(inputs...)                                        \
1143 ({                                                                      \
1144         uint64_t r;                                                     \
1145                                                                         \
1146         asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"          \
1147                      "jnz 1f\n\t"                                       \
1148                      "vmcall\n\t"                                       \
1149                      "jmp 2f\n\t"                                       \
1150                      "1: vmmcall\n\t"                                   \
1151                      "2:"                                               \
1152                      : "=a"(r)                                          \
1153                      : [use_vmmcall] "r" (host_cpu_is_amd), inputs);    \
1154                                                                         \
1155         r;                                                              \
1156 })
1157
1158 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1159                        uint64_t a3)
1160 {
1161         return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1162 }
1163
1164 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1165 {
1166         static struct kvm_cpuid2 *cpuid;
1167         int kvm_fd;
1168
1169         if (cpuid)
1170                 return cpuid;
1171
1172         cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1173         kvm_fd = open_kvm_dev_path_or_exit();
1174
1175         kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1176
1177         close(kvm_fd);
1178         return cpuid;
1179 }
1180
1181 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1182 {
1183         static struct kvm_cpuid2 *cpuid_full;
1184         const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1185         int i, nent = 0;
1186
1187         if (!cpuid_full) {
1188                 cpuid_sys = kvm_get_supported_cpuid();
1189                 cpuid_hv = kvm_get_supported_hv_cpuid();
1190
1191                 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1192                 if (!cpuid_full) {
1193                         perror("malloc");
1194                         abort();
1195                 }
1196
1197                 /* Need to skip KVM CPUID leaves 0x400000xx */
1198                 for (i = 0; i < cpuid_sys->nent; i++) {
1199                         if (cpuid_sys->entries[i].function >= 0x40000000 &&
1200                             cpuid_sys->entries[i].function < 0x40000100)
1201                                 continue;
1202                         cpuid_full->entries[nent] = cpuid_sys->entries[i];
1203                         nent++;
1204                 }
1205
1206                 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1207                        cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1208                 cpuid_full->nent = nent + cpuid_hv->nent;
1209         }
1210
1211         vcpu_init_cpuid(vcpu, cpuid_full);
1212 }
1213
1214 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1215 {
1216         struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1217
1218         vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1219
1220         return cpuid;
1221 }
1222
1223 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1224 {
1225         const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1226         unsigned long ht_gfn, max_gfn, max_pfn;
1227         uint8_t maxphyaddr;
1228
1229         max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1230
1231         /* Avoid reserved HyperTransport region on AMD processors.  */
1232         if (!host_cpu_is_amd)
1233                 return max_gfn;
1234
1235         /* On parts with <40 physical address bits, the area is fully hidden */
1236         if (vm->pa_bits < 40)
1237                 return max_gfn;
1238
1239         /* Before family 17h, the HyperTransport area is just below 1T.  */
1240         ht_gfn = (1 << 28) - num_ht_pages;
1241         if (this_cpu_family() < 0x17)
1242                 goto done;
1243
1244         /*
1245          * Otherwise it's at the top of the physical address space, possibly
1246          * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1247          * the old conservative value if MAXPHYADDR is not enumerated.
1248          */
1249         if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1250                 goto done;
1251
1252         maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1253         max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1254
1255         if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1256                 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1257
1258         ht_gfn = max_pfn - num_ht_pages;
1259 done:
1260         return min(max_gfn, ht_gfn - 1);
1261 }
1262
1263 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
1264 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1265 {
1266         /* Ensure that a KVM vendor-specific module is loaded. */
1267         if (vm == NULL)
1268                 close(open_kvm_dev_path_or_exit());
1269
1270         return get_kvm_intel_param_bool("unrestricted_guest");
1271 }
1272
1273 void kvm_selftest_arch_init(void)
1274 {
1275         host_cpu_is_intel = this_cpu_is_intel();
1276         host_cpu_is_amd = this_cpu_is_amd();
1277 }