Merge tag 'soc-drivers-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / tools / testing / selftests / kvm / lib / x86_64 / processor.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #include "linux/bitmap.h"
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19
20 #define MAX_NR_CPUID_ENTRIES 100
21
22 vm_vaddr_t exception_handlers;
23 bool host_cpu_is_amd;
24 bool host_cpu_is_intel;
25
26 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
27 {
28         fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
29                 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
30                 indent, "",
31                 regs->rax, regs->rbx, regs->rcx, regs->rdx);
32         fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
33                 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
34                 indent, "",
35                 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
36         fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
37                 "r10: 0x%.16llx r11: 0x%.16llx\n",
38                 indent, "",
39                 regs->r8, regs->r9, regs->r10, regs->r11);
40         fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
41                 "r14: 0x%.16llx r15: 0x%.16llx\n",
42                 indent, "",
43                 regs->r12, regs->r13, regs->r14, regs->r15);
44         fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
45                 indent, "",
46                 regs->rip, regs->rflags);
47 }
48
49 static void segment_dump(FILE *stream, struct kvm_segment *segment,
50                          uint8_t indent)
51 {
52         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
53                 "selector: 0x%.4x type: 0x%.2x\n",
54                 indent, "", segment->base, segment->limit,
55                 segment->selector, segment->type);
56         fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
57                 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
58                 indent, "", segment->present, segment->dpl,
59                 segment->db, segment->s, segment->l);
60         fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
61                 "unusable: 0x%.2x padding: 0x%.2x\n",
62                 indent, "", segment->g, segment->avl,
63                 segment->unusable, segment->padding);
64 }
65
66 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
67                         uint8_t indent)
68 {
69         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
70                 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
71                 indent, "", dtable->base, dtable->limit,
72                 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
73 }
74
75 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
76 {
77         unsigned int i;
78
79         fprintf(stream, "%*scs:\n", indent, "");
80         segment_dump(stream, &sregs->cs, indent + 2);
81         fprintf(stream, "%*sds:\n", indent, "");
82         segment_dump(stream, &sregs->ds, indent + 2);
83         fprintf(stream, "%*ses:\n", indent, "");
84         segment_dump(stream, &sregs->es, indent + 2);
85         fprintf(stream, "%*sfs:\n", indent, "");
86         segment_dump(stream, &sregs->fs, indent + 2);
87         fprintf(stream, "%*sgs:\n", indent, "");
88         segment_dump(stream, &sregs->gs, indent + 2);
89         fprintf(stream, "%*sss:\n", indent, "");
90         segment_dump(stream, &sregs->ss, indent + 2);
91         fprintf(stream, "%*str:\n", indent, "");
92         segment_dump(stream, &sregs->tr, indent + 2);
93         fprintf(stream, "%*sldt:\n", indent, "");
94         segment_dump(stream, &sregs->ldt, indent + 2);
95
96         fprintf(stream, "%*sgdt:\n", indent, "");
97         dtable_dump(stream, &sregs->gdt, indent + 2);
98         fprintf(stream, "%*sidt:\n", indent, "");
99         dtable_dump(stream, &sregs->idt, indent + 2);
100
101         fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
102                 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
103                 indent, "",
104                 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
105         fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
106                 "apic_base: 0x%.16llx\n",
107                 indent, "",
108                 sregs->cr8, sregs->efer, sregs->apic_base);
109
110         fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
111         for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
112                 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
113                         sregs->interrupt_bitmap[i]);
114         }
115 }
116
117 bool kvm_is_tdp_enabled(void)
118 {
119         if (host_cpu_is_intel)
120                 return get_kvm_intel_param_bool("ept");
121         else
122                 return get_kvm_amd_param_bool("npt");
123 }
124
125 void virt_arch_pgd_alloc(struct kvm_vm *vm)
126 {
127         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
128                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
129
130         /* If needed, create page map l4 table. */
131         if (!vm->pgd_created) {
132                 vm->pgd = vm_alloc_page_table(vm);
133                 vm->pgd_created = true;
134         }
135 }
136
137 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
138                           uint64_t vaddr, int level)
139 {
140         uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
141         uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
142         int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
143
144         TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
145                     "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
146                     level + 1, vaddr);
147
148         return &page_table[index];
149 }
150
151 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
152                                        uint64_t *parent_pte,
153                                        uint64_t vaddr,
154                                        uint64_t paddr,
155                                        int current_level,
156                                        int target_level)
157 {
158         uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
159
160         if (!(*pte & PTE_PRESENT_MASK)) {
161                 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
162                 if (current_level == target_level)
163                         *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
164                 else
165                         *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
166         } else {
167                 /*
168                  * Entry already present.  Assert that the caller doesn't want
169                  * a hugepage at this level, and that there isn't a hugepage at
170                  * this level.
171                  */
172                 TEST_ASSERT(current_level != target_level,
173                             "Cannot create hugepage at level: %u, vaddr: 0x%lx",
174                             current_level, vaddr);
175                 TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
176                             "Cannot create page table at level: %u, vaddr: 0x%lx",
177                             current_level, vaddr);
178         }
179         return pte;
180 }
181
182 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
183 {
184         const uint64_t pg_size = PG_LEVEL_SIZE(level);
185         uint64_t *pml4e, *pdpe, *pde;
186         uint64_t *pte;
187
188         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
189                     "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
190
191         TEST_ASSERT((vaddr % pg_size) == 0,
192                     "Virtual address not aligned,\n"
193                     "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
194         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
195                     "Invalid virtual address, vaddr: 0x%lx", vaddr);
196         TEST_ASSERT((paddr % pg_size) == 0,
197                     "Physical address not aligned,\n"
198                     "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
199         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
200                     "Physical address beyond maximum supported,\n"
201                     "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
202                     paddr, vm->max_gfn, vm->page_size);
203
204         /*
205          * Allocate upper level page tables, if not already present.  Return
206          * early if a hugepage was created.
207          */
208         pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
209         if (*pml4e & PTE_LARGE_MASK)
210                 return;
211
212         pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
213         if (*pdpe & PTE_LARGE_MASK)
214                 return;
215
216         pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
217         if (*pde & PTE_LARGE_MASK)
218                 return;
219
220         /* Fill in page table entry. */
221         pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
222         TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
223                     "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
224         *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
225 }
226
227 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
228 {
229         __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
230 }
231
232 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
233                     uint64_t nr_bytes, int level)
234 {
235         uint64_t pg_size = PG_LEVEL_SIZE(level);
236         uint64_t nr_pages = nr_bytes / pg_size;
237         int i;
238
239         TEST_ASSERT(nr_bytes % pg_size == 0,
240                     "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
241                     nr_bytes, pg_size);
242
243         for (i = 0; i < nr_pages; i++) {
244                 __virt_pg_map(vm, vaddr, paddr, level);
245
246                 vaddr += pg_size;
247                 paddr += pg_size;
248         }
249 }
250
251 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
252 {
253         if (*pte & PTE_LARGE_MASK) {
254                 TEST_ASSERT(*level == PG_LEVEL_NONE ||
255                             *level == current_level,
256                             "Unexpected hugepage at level %d", current_level);
257                 *level = current_level;
258         }
259
260         return *level == current_level;
261 }
262
263 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
264                                     int *level)
265 {
266         uint64_t *pml4e, *pdpe, *pde;
267
268         TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
269                     "Invalid PG_LEVEL_* '%d'", *level);
270
271         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
272                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
273         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
274                 (vaddr >> vm->page_shift)),
275                 "Invalid virtual address, vaddr: 0x%lx",
276                 vaddr);
277         /*
278          * Based on the mode check above there are 48 bits in the vaddr, so
279          * shift 16 to sign extend the last bit (bit-47),
280          */
281         TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
282                 "Canonical check failed.  The virtual address is invalid.");
283
284         pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
285         if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
286                 return pml4e;
287
288         pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
289         if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
290                 return pdpe;
291
292         pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
293         if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
294                 return pde;
295
296         return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
297 }
298
299 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
300 {
301         int level = PG_LEVEL_4K;
302
303         return __vm_get_page_table_entry(vm, vaddr, &level);
304 }
305
306 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
307 {
308         uint64_t *pml4e, *pml4e_start;
309         uint64_t *pdpe, *pdpe_start;
310         uint64_t *pde, *pde_start;
311         uint64_t *pte, *pte_start;
312
313         if (!vm->pgd_created)
314                 return;
315
316         fprintf(stream, "%*s                                          "
317                 "                no\n", indent, "");
318         fprintf(stream, "%*s      index hvaddr         gpaddr         "
319                 "addr         w exec dirty\n",
320                 indent, "");
321         pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
322         for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
323                 pml4e = &pml4e_start[n1];
324                 if (!(*pml4e & PTE_PRESENT_MASK))
325                         continue;
326                 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
327                         " %u\n",
328                         indent, "",
329                         pml4e - pml4e_start, pml4e,
330                         addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
331                         !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
332
333                 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
334                 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
335                         pdpe = &pdpe_start[n2];
336                         if (!(*pdpe & PTE_PRESENT_MASK))
337                                 continue;
338                         fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
339                                 "%u  %u\n",
340                                 indent, "",
341                                 pdpe - pdpe_start, pdpe,
342                                 addr_hva2gpa(vm, pdpe),
343                                 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
344                                 !!(*pdpe & PTE_NX_MASK));
345
346                         pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
347                         for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
348                                 pde = &pde_start[n3];
349                                 if (!(*pde & PTE_PRESENT_MASK))
350                                         continue;
351                                 fprintf(stream, "%*spde   0x%-3zx %p "
352                                         "0x%-12lx 0x%-10llx %u  %u\n",
353                                         indent, "", pde - pde_start, pde,
354                                         addr_hva2gpa(vm, pde),
355                                         PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
356                                         !!(*pde & PTE_NX_MASK));
357
358                                 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
359                                 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
360                                         pte = &pte_start[n4];
361                                         if (!(*pte & PTE_PRESENT_MASK))
362                                                 continue;
363                                         fprintf(stream, "%*spte   0x%-3zx %p "
364                                                 "0x%-12lx 0x%-10llx %u  %u "
365                                                 "    %u    0x%-10lx\n",
366                                                 indent, "",
367                                                 pte - pte_start, pte,
368                                                 addr_hva2gpa(vm, pte),
369                                                 PTE_GET_PFN(*pte),
370                                                 !!(*pte & PTE_WRITABLE_MASK),
371                                                 !!(*pte & PTE_NX_MASK),
372                                                 !!(*pte & PTE_DIRTY_MASK),
373                                                 ((uint64_t) n1 << 27)
374                                                         | ((uint64_t) n2 << 18)
375                                                         | ((uint64_t) n3 << 9)
376                                                         | ((uint64_t) n4));
377                                 }
378                         }
379                 }
380         }
381 }
382
383 /*
384  * Set Unusable Segment
385  *
386  * Input Args: None
387  *
388  * Output Args:
389  *   segp - Pointer to segment register
390  *
391  * Return: None
392  *
393  * Sets the segment register pointed to by @segp to an unusable state.
394  */
395 static void kvm_seg_set_unusable(struct kvm_segment *segp)
396 {
397         memset(segp, 0, sizeof(*segp));
398         segp->unusable = true;
399 }
400
401 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
402 {
403         void *gdt = addr_gva2hva(vm, vm->gdt);
404         struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
405
406         desc->limit0 = segp->limit & 0xFFFF;
407         desc->base0 = segp->base & 0xFFFF;
408         desc->base1 = segp->base >> 16;
409         desc->type = segp->type;
410         desc->s = segp->s;
411         desc->dpl = segp->dpl;
412         desc->p = segp->present;
413         desc->limit1 = segp->limit >> 16;
414         desc->avl = segp->avl;
415         desc->l = segp->l;
416         desc->db = segp->db;
417         desc->g = segp->g;
418         desc->base2 = segp->base >> 24;
419         if (!segp->s)
420                 desc->base3 = segp->base >> 32;
421 }
422
423
424 /*
425  * Set Long Mode Flat Kernel Code Segment
426  *
427  * Input Args:
428  *   vm - VM whose GDT is being filled, or NULL to only write segp
429  *   selector - selector value
430  *
431  * Output Args:
432  *   segp - Pointer to KVM segment
433  *
434  * Return: None
435  *
436  * Sets up the KVM segment pointed to by @segp, to be a code segment
437  * with the selector value given by @selector.
438  */
439 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
440         struct kvm_segment *segp)
441 {
442         memset(segp, 0, sizeof(*segp));
443         segp->selector = selector;
444         segp->limit = 0xFFFFFFFFu;
445         segp->s = 0x1; /* kTypeCodeData */
446         segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
447                                           * | kFlagCodeReadable
448                                           */
449         segp->g = true;
450         segp->l = true;
451         segp->present = 1;
452         if (vm)
453                 kvm_seg_fill_gdt_64bit(vm, segp);
454 }
455
456 /*
457  * Set Long Mode Flat Kernel Data Segment
458  *
459  * Input Args:
460  *   vm - VM whose GDT is being filled, or NULL to only write segp
461  *   selector - selector value
462  *
463  * Output Args:
464  *   segp - Pointer to KVM segment
465  *
466  * Return: None
467  *
468  * Sets up the KVM segment pointed to by @segp, to be a data segment
469  * with the selector value given by @selector.
470  */
471 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
472         struct kvm_segment *segp)
473 {
474         memset(segp, 0, sizeof(*segp));
475         segp->selector = selector;
476         segp->limit = 0xFFFFFFFFu;
477         segp->s = 0x1; /* kTypeCodeData */
478         segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
479                                           * | kFlagDataWritable
480                                           */
481         segp->g = true;
482         segp->present = true;
483         if (vm)
484                 kvm_seg_fill_gdt_64bit(vm, segp);
485 }
486
487 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
488 {
489         int level = PG_LEVEL_NONE;
490         uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
491
492         TEST_ASSERT(*pte & PTE_PRESENT_MASK,
493                     "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
494
495         /*
496          * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
497          * address bits to be zero.
498          */
499         return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level));
500 }
501
502 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
503 {
504         if (!vm->gdt)
505                 vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
506
507         dt->base = vm->gdt;
508         dt->limit = getpagesize();
509 }
510
511 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
512                                 int selector)
513 {
514         if (!vm->tss)
515                 vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
516
517         memset(segp, 0, sizeof(*segp));
518         segp->base = vm->tss;
519         segp->limit = 0x67;
520         segp->selector = selector;
521         segp->type = 0xb;
522         segp->present = 1;
523         kvm_seg_fill_gdt_64bit(vm, segp);
524 }
525
526 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
527 {
528         struct kvm_sregs sregs;
529
530         /* Set mode specific system register values. */
531         vcpu_sregs_get(vcpu, &sregs);
532
533         sregs.idt.limit = 0;
534
535         kvm_setup_gdt(vm, &sregs.gdt);
536
537         switch (vm->mode) {
538         case VM_MODE_PXXV48_4K:
539                 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
540                 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
541                 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
542
543                 kvm_seg_set_unusable(&sregs.ldt);
544                 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
545                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
546                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
547                 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
548                 break;
549
550         default:
551                 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
552         }
553
554         sregs.cr3 = vm->pgd;
555         vcpu_sregs_set(vcpu, &sregs);
556 }
557
558 void kvm_arch_vm_post_create(struct kvm_vm *vm)
559 {
560         vm_create_irqchip(vm);
561         sync_global_to_guest(vm, host_cpu_is_intel);
562         sync_global_to_guest(vm, host_cpu_is_amd);
563 }
564
565 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
566                                   void *guest_code)
567 {
568         struct kvm_mp_state mp_state;
569         struct kvm_regs regs;
570         vm_vaddr_t stack_vaddr;
571         struct kvm_vcpu *vcpu;
572
573         stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
574                                        DEFAULT_GUEST_STACK_VADDR_MIN,
575                                        MEM_REGION_DATA);
576
577         stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
578
579         /*
580          * Align stack to match calling sequence requirements in section "The
581          * Stack Frame" of the System V ABI AMD64 Architecture Processor
582          * Supplement, which requires the value (%rsp + 8) to be a multiple of
583          * 16 when control is transferred to the function entry point.
584          *
585          * If this code is ever used to launch a vCPU with 32-bit entry point it
586          * may need to subtract 4 bytes instead of 8 bytes.
587          */
588         TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
589                     "__vm_vaddr_alloc() did not provide a page-aligned address");
590         stack_vaddr -= 8;
591
592         vcpu = __vm_vcpu_add(vm, vcpu_id);
593         vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
594         vcpu_setup(vm, vcpu);
595
596         /* Setup guest general purpose registers */
597         vcpu_regs_get(vcpu, &regs);
598         regs.rflags = regs.rflags | 0x2;
599         regs.rsp = stack_vaddr;
600         regs.rip = (unsigned long) guest_code;
601         vcpu_regs_set(vcpu, &regs);
602
603         /* Setup the MP state */
604         mp_state.mp_state = 0;
605         vcpu_mp_state_set(vcpu, &mp_state);
606
607         return vcpu;
608 }
609
610 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
611 {
612         struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
613
614         vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
615
616         return vcpu;
617 }
618
619 void vcpu_arch_free(struct kvm_vcpu *vcpu)
620 {
621         if (vcpu->cpuid)
622                 free(vcpu->cpuid);
623 }
624
625 /* Do not use kvm_supported_cpuid directly except for validity checks. */
626 static void *kvm_supported_cpuid;
627
628 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
629 {
630         int kvm_fd;
631
632         if (kvm_supported_cpuid)
633                 return kvm_supported_cpuid;
634
635         kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
636         kvm_fd = open_kvm_dev_path_or_exit();
637
638         kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
639                   (struct kvm_cpuid2 *)kvm_supported_cpuid);
640
641         close(kvm_fd);
642         return kvm_supported_cpuid;
643 }
644
645 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
646                               uint32_t function, uint32_t index,
647                               uint8_t reg, uint8_t lo, uint8_t hi)
648 {
649         const struct kvm_cpuid_entry2 *entry;
650         int i;
651
652         for (i = 0; i < cpuid->nent; i++) {
653                 entry = &cpuid->entries[i];
654
655                 /*
656                  * The output registers in kvm_cpuid_entry2 are in alphabetical
657                  * order, but kvm_x86_cpu_feature matches that mess, so yay
658                  * pointer shenanigans!
659                  */
660                 if (entry->function == function && entry->index == index)
661                         return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
662         }
663
664         return 0;
665 }
666
667 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
668                    struct kvm_x86_cpu_feature feature)
669 {
670         return __kvm_cpu_has(cpuid, feature.function, feature.index,
671                              feature.reg, feature.bit, feature.bit);
672 }
673
674 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
675                             struct kvm_x86_cpu_property property)
676 {
677         return __kvm_cpu_has(cpuid, property.function, property.index,
678                              property.reg, property.lo_bit, property.hi_bit);
679 }
680
681 uint64_t kvm_get_feature_msr(uint64_t msr_index)
682 {
683         struct {
684                 struct kvm_msrs header;
685                 struct kvm_msr_entry entry;
686         } buffer = {};
687         int r, kvm_fd;
688
689         buffer.header.nmsrs = 1;
690         buffer.entry.index = msr_index;
691         kvm_fd = open_kvm_dev_path_or_exit();
692
693         r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
694         TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
695
696         close(kvm_fd);
697         return buffer.entry.data;
698 }
699
700 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
701 {
702         int kvm_fd;
703         u64 bitmask;
704         long rc;
705         struct kvm_device_attr attr = {
706                 .group = 0,
707                 .attr = KVM_X86_XCOMP_GUEST_SUPP,
708                 .addr = (unsigned long) &bitmask,
709         };
710
711         TEST_ASSERT(!kvm_supported_cpuid,
712                     "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
713
714         TEST_ASSERT(is_power_of_2(xfeature),
715                     "Dynamic XFeatures must be enabled one at a time");
716
717         kvm_fd = open_kvm_dev_path_or_exit();
718         rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
719         close(kvm_fd);
720
721         if (rc == -1 && (errno == ENXIO || errno == EINVAL))
722                 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
723
724         TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
725
726         __TEST_REQUIRE(bitmask & xfeature,
727                        "Required XSAVE feature '%s' not supported", name);
728
729         TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
730
731         rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
732         TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
733         TEST_ASSERT(bitmask & xfeature,
734                     "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
735                     name, xfeature, bitmask);
736 }
737
738 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
739 {
740         TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
741
742         /* Allow overriding the default CPUID. */
743         if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
744                 free(vcpu->cpuid);
745                 vcpu->cpuid = NULL;
746         }
747
748         if (!vcpu->cpuid)
749                 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
750
751         memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
752         vcpu_set_cpuid(vcpu);
753 }
754
755 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
756 {
757         struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);
758
759         entry->eax = (entry->eax & ~0xff) | maxphyaddr;
760         vcpu_set_cpuid(vcpu);
761 }
762
763 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
764 {
765         struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
766
767         entry->eax = 0;
768         entry->ebx = 0;
769         entry->ecx = 0;
770         entry->edx = 0;
771         vcpu_set_cpuid(vcpu);
772 }
773
774 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
775                                      struct kvm_x86_cpu_feature feature,
776                                      bool set)
777 {
778         struct kvm_cpuid_entry2 *entry;
779         u32 *reg;
780
781         entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
782         reg = (&entry->eax) + feature.reg;
783
784         if (set)
785                 *reg |= BIT(feature.bit);
786         else
787                 *reg &= ~BIT(feature.bit);
788
789         vcpu_set_cpuid(vcpu);
790 }
791
792 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
793 {
794         struct {
795                 struct kvm_msrs header;
796                 struct kvm_msr_entry entry;
797         } buffer = {};
798
799         buffer.header.nmsrs = 1;
800         buffer.entry.index = msr_index;
801
802         vcpu_msrs_get(vcpu, &buffer.header);
803
804         return buffer.entry.data;
805 }
806
807 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
808 {
809         struct {
810                 struct kvm_msrs header;
811                 struct kvm_msr_entry entry;
812         } buffer = {};
813
814         memset(&buffer, 0, sizeof(buffer));
815         buffer.header.nmsrs = 1;
816         buffer.entry.index = msr_index;
817         buffer.entry.data = msr_value;
818
819         return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
820 }
821
822 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
823 {
824         va_list ap;
825         struct kvm_regs regs;
826
827         TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
828                     "  num: %u",
829                     num);
830
831         va_start(ap, num);
832         vcpu_regs_get(vcpu, &regs);
833
834         if (num >= 1)
835                 regs.rdi = va_arg(ap, uint64_t);
836
837         if (num >= 2)
838                 regs.rsi = va_arg(ap, uint64_t);
839
840         if (num >= 3)
841                 regs.rdx = va_arg(ap, uint64_t);
842
843         if (num >= 4)
844                 regs.rcx = va_arg(ap, uint64_t);
845
846         if (num >= 5)
847                 regs.r8 = va_arg(ap, uint64_t);
848
849         if (num >= 6)
850                 regs.r9 = va_arg(ap, uint64_t);
851
852         vcpu_regs_set(vcpu, &regs);
853         va_end(ap);
854 }
855
856 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
857 {
858         struct kvm_regs regs;
859         struct kvm_sregs sregs;
860
861         fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
862
863         fprintf(stream, "%*sregs:\n", indent + 2, "");
864         vcpu_regs_get(vcpu, &regs);
865         regs_dump(stream, &regs, indent + 4);
866
867         fprintf(stream, "%*ssregs:\n", indent + 2, "");
868         vcpu_sregs_get(vcpu, &sregs);
869         sregs_dump(stream, &sregs, indent + 4);
870 }
871
872 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
873 {
874         struct kvm_msr_list *list;
875         struct kvm_msr_list nmsrs;
876         int kvm_fd, r;
877
878         kvm_fd = open_kvm_dev_path_or_exit();
879
880         nmsrs.nmsrs = 0;
881         if (!feature_msrs)
882                 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
883         else
884                 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
885
886         TEST_ASSERT(r == -1 && errno == E2BIG,
887                     "Expected -E2BIG, got rc: %i errno: %i (%s)",
888                     r, errno, strerror(errno));
889
890         list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
891         TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
892         list->nmsrs = nmsrs.nmsrs;
893
894         if (!feature_msrs)
895                 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
896         else
897                 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
898         close(kvm_fd);
899
900         TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
901                     "Number of MSRs in list changed, was %d, now %d",
902                     nmsrs.nmsrs, list->nmsrs);
903         return list;
904 }
905
906 const struct kvm_msr_list *kvm_get_msr_index_list(void)
907 {
908         static const struct kvm_msr_list *list;
909
910         if (!list)
911                 list = __kvm_get_msr_index_list(false);
912         return list;
913 }
914
915
916 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
917 {
918         static const struct kvm_msr_list *list;
919
920         if (!list)
921                 list = __kvm_get_msr_index_list(true);
922         return list;
923 }
924
925 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
926 {
927         const struct kvm_msr_list *list = kvm_get_msr_index_list();
928         int i;
929
930         for (i = 0; i < list->nmsrs; ++i) {
931                 if (list->indices[i] == msr_index)
932                         return true;
933         }
934
935         return false;
936 }
937
938 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
939                                   struct kvm_x86_state *state)
940 {
941         int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
942
943         if (size) {
944                 state->xsave = malloc(size);
945                 vcpu_xsave2_get(vcpu, state->xsave);
946         } else {
947                 state->xsave = malloc(sizeof(struct kvm_xsave));
948                 vcpu_xsave_get(vcpu, state->xsave);
949         }
950 }
951
952 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
953 {
954         const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
955         struct kvm_x86_state *state;
956         int i;
957
958         static int nested_size = -1;
959
960         if (nested_size == -1) {
961                 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
962                 TEST_ASSERT(nested_size <= sizeof(state->nested_),
963                             "Nested state size too big, %i > %zi",
964                             nested_size, sizeof(state->nested_));
965         }
966
967         /*
968          * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
969          * guest state is consistent only after userspace re-enters the
970          * kernel with KVM_RUN.  Complete IO prior to migrating state
971          * to a new VM.
972          */
973         vcpu_run_complete_io(vcpu);
974
975         state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
976         TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
977
978         vcpu_events_get(vcpu, &state->events);
979         vcpu_mp_state_get(vcpu, &state->mp_state);
980         vcpu_regs_get(vcpu, &state->regs);
981         vcpu_save_xsave_state(vcpu, state);
982
983         if (kvm_has_cap(KVM_CAP_XCRS))
984                 vcpu_xcrs_get(vcpu, &state->xcrs);
985
986         vcpu_sregs_get(vcpu, &state->sregs);
987
988         if (nested_size) {
989                 state->nested.size = sizeof(state->nested_);
990
991                 vcpu_nested_state_get(vcpu, &state->nested);
992                 TEST_ASSERT(state->nested.size <= nested_size,
993                             "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
994                             state->nested.size, nested_size);
995         } else {
996                 state->nested.size = 0;
997         }
998
999         state->msrs.nmsrs = msr_list->nmsrs;
1000         for (i = 0; i < msr_list->nmsrs; i++)
1001                 state->msrs.entries[i].index = msr_list->indices[i];
1002         vcpu_msrs_get(vcpu, &state->msrs);
1003
1004         vcpu_debugregs_get(vcpu, &state->debugregs);
1005
1006         return state;
1007 }
1008
1009 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1010 {
1011         vcpu_sregs_set(vcpu, &state->sregs);
1012         vcpu_msrs_set(vcpu, &state->msrs);
1013
1014         if (kvm_has_cap(KVM_CAP_XCRS))
1015                 vcpu_xcrs_set(vcpu, &state->xcrs);
1016
1017         vcpu_xsave_set(vcpu,  state->xsave);
1018         vcpu_events_set(vcpu, &state->events);
1019         vcpu_mp_state_set(vcpu, &state->mp_state);
1020         vcpu_debugregs_set(vcpu, &state->debugregs);
1021         vcpu_regs_set(vcpu, &state->regs);
1022
1023         if (state->nested.size)
1024                 vcpu_nested_state_set(vcpu, &state->nested);
1025 }
1026
1027 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1028 {
1029         free(state->xsave);
1030         free(state);
1031 }
1032
1033 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1034 {
1035         if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1036                 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1037                 *va_bits = 32;
1038         } else {
1039                 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1040                 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1041         }
1042 }
1043
1044 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1045                           int dpl, unsigned short selector)
1046 {
1047         struct idt_entry *base =
1048                 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1049         struct idt_entry *e = &base[vector];
1050
1051         memset(e, 0, sizeof(*e));
1052         e->offset0 = addr;
1053         e->selector = selector;
1054         e->ist = 0;
1055         e->type = 14;
1056         e->dpl = dpl;
1057         e->p = 1;
1058         e->offset1 = addr >> 16;
1059         e->offset2 = addr >> 32;
1060 }
1061
1062
1063 static bool kvm_fixup_exception(struct ex_regs *regs)
1064 {
1065         if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
1066                 return false;
1067
1068         if (regs->vector == DE_VECTOR)
1069                 return false;
1070
1071         regs->rip = regs->r11;
1072         regs->r9 = regs->vector;
1073         regs->r10 = regs->error_code;
1074         return true;
1075 }
1076
1077 void route_exception(struct ex_regs *regs)
1078 {
1079         typedef void(*handler)(struct ex_regs *);
1080         handler *handlers = (handler *)exception_handlers;
1081
1082         if (handlers && handlers[regs->vector]) {
1083                 handlers[regs->vector](regs);
1084                 return;
1085         }
1086
1087         if (kvm_fixup_exception(regs))
1088                 return;
1089
1090         ucall_assert(UCALL_UNHANDLED,
1091                      "Unhandled exception in guest", __FILE__, __LINE__,
1092                      "Unhandled exception '0x%lx' at guest RIP '0x%lx'",
1093                      regs->vector, regs->rip);
1094 }
1095
1096 void vm_init_descriptor_tables(struct kvm_vm *vm)
1097 {
1098         extern void *idt_handlers;
1099         int i;
1100
1101         vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1102         vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1103         /* Handlers have the same address in both address spaces.*/
1104         for (i = 0; i < NUM_INTERRUPTS; i++)
1105                 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1106                         DEFAULT_CODE_SELECTOR);
1107 }
1108
1109 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
1110 {
1111         struct kvm_vm *vm = vcpu->vm;
1112         struct kvm_sregs sregs;
1113
1114         vcpu_sregs_get(vcpu, &sregs);
1115         sregs.idt.base = vm->idt;
1116         sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1117         sregs.gdt.base = vm->gdt;
1118         sregs.gdt.limit = getpagesize() - 1;
1119         kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1120         vcpu_sregs_set(vcpu, &sregs);
1121         *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1122 }
1123
1124 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1125                                void (*handler)(struct ex_regs *))
1126 {
1127         vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1128
1129         handlers[vector] = (vm_vaddr_t)handler;
1130 }
1131
1132 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
1133 {
1134         struct ucall uc;
1135
1136         if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED)
1137                 REPORT_GUEST_ASSERT(uc);
1138 }
1139
1140 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1141                                                uint32_t function, uint32_t index)
1142 {
1143         int i;
1144
1145         for (i = 0; i < cpuid->nent; i++) {
1146                 if (cpuid->entries[i].function == function &&
1147                     cpuid->entries[i].index == index)
1148                         return &cpuid->entries[i];
1149         }
1150
1151         TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1152
1153         return NULL;
1154 }
1155
1156 #define X86_HYPERCALL(inputs...)                                        \
1157 ({                                                                      \
1158         uint64_t r;                                                     \
1159                                                                         \
1160         asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"          \
1161                      "jnz 1f\n\t"                                       \
1162                      "vmcall\n\t"                                       \
1163                      "jmp 2f\n\t"                                       \
1164                      "1: vmmcall\n\t"                                   \
1165                      "2:"                                               \
1166                      : "=a"(r)                                          \
1167                      : [use_vmmcall] "r" (host_cpu_is_amd), inputs);    \
1168                                                                         \
1169         r;                                                              \
1170 })
1171
1172 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1173                        uint64_t a3)
1174 {
1175         return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1176 }
1177
1178 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1179 {
1180         return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1181 }
1182
1183 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1184 {
1185         GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1186 }
1187
1188 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1189 {
1190         static struct kvm_cpuid2 *cpuid;
1191         int kvm_fd;
1192
1193         if (cpuid)
1194                 return cpuid;
1195
1196         cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1197         kvm_fd = open_kvm_dev_path_or_exit();
1198
1199         kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1200
1201         close(kvm_fd);
1202         return cpuid;
1203 }
1204
1205 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1206 {
1207         static struct kvm_cpuid2 *cpuid_full;
1208         const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1209         int i, nent = 0;
1210
1211         if (!cpuid_full) {
1212                 cpuid_sys = kvm_get_supported_cpuid();
1213                 cpuid_hv = kvm_get_supported_hv_cpuid();
1214
1215                 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1216                 if (!cpuid_full) {
1217                         perror("malloc");
1218                         abort();
1219                 }
1220
1221                 /* Need to skip KVM CPUID leaves 0x400000xx */
1222                 for (i = 0; i < cpuid_sys->nent; i++) {
1223                         if (cpuid_sys->entries[i].function >= 0x40000000 &&
1224                             cpuid_sys->entries[i].function < 0x40000100)
1225                                 continue;
1226                         cpuid_full->entries[nent] = cpuid_sys->entries[i];
1227                         nent++;
1228                 }
1229
1230                 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1231                        cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1232                 cpuid_full->nent = nent + cpuid_hv->nent;
1233         }
1234
1235         vcpu_init_cpuid(vcpu, cpuid_full);
1236 }
1237
1238 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1239 {
1240         struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1241
1242         vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1243
1244         return cpuid;
1245 }
1246
1247 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1248 {
1249         const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1250         unsigned long ht_gfn, max_gfn, max_pfn;
1251         uint8_t maxphyaddr;
1252
1253         max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1254
1255         /* Avoid reserved HyperTransport region on AMD processors.  */
1256         if (!host_cpu_is_amd)
1257                 return max_gfn;
1258
1259         /* On parts with <40 physical address bits, the area is fully hidden */
1260         if (vm->pa_bits < 40)
1261                 return max_gfn;
1262
1263         /* Before family 17h, the HyperTransport area is just below 1T.  */
1264         ht_gfn = (1 << 28) - num_ht_pages;
1265         if (this_cpu_family() < 0x17)
1266                 goto done;
1267
1268         /*
1269          * Otherwise it's at the top of the physical address space, possibly
1270          * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1271          * the old conservative value if MAXPHYADDR is not enumerated.
1272          */
1273         if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1274                 goto done;
1275
1276         maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1277         max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1278
1279         if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1280                 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1281
1282         ht_gfn = max_pfn - num_ht_pages;
1283 done:
1284         return min(max_gfn, ht_gfn - 1);
1285 }
1286
1287 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
1288 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1289 {
1290         /* Ensure that a KVM vendor-specific module is loaded. */
1291         if (vm == NULL)
1292                 close(open_kvm_dev_path_or_exit());
1293
1294         return get_kvm_intel_param_bool("unrestricted_guest");
1295 }
1296
1297 void kvm_selftest_arch_init(void)
1298 {
1299         host_cpu_is_intel = this_cpu_is_intel();
1300         host_cpu_is_amd = this_cpu_is_amd();
1301 }
1302
1303 bool sys_clocksource_is_based_on_tsc(void)
1304 {
1305         char *clk_name = sys_get_cur_clocksource();
1306         bool ret = !strcmp(clk_name, "tsc\n") ||
1307                    !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1308
1309         free(clk_name);
1310
1311         return ret;
1312 }