Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32         INIT_LIST_HEAD(&dsos->head);
33         dsos->root = RB_ROOT;
34         init_rwsem(&dsos->lock);
35 }
36
37 static void machine__threads_init(struct machine *machine)
38 {
39         int i;
40
41         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42                 struct threads *threads = &machine->threads[i];
43                 threads->entries = RB_ROOT;
44                 init_rwsem(&threads->lock);
45                 threads->nr = 0;
46                 INIT_LIST_HEAD(&threads->dead);
47                 threads->last_match = NULL;
48         }
49 }
50
51 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
52 {
53         memset(machine, 0, sizeof(*machine));
54         map_groups__init(&machine->kmaps, machine);
55         RB_CLEAR_NODE(&machine->rb_node);
56         dsos__init(&machine->dsos);
57
58         machine__threads_init(machine);
59
60         machine->vdso_info = NULL;
61         machine->env = NULL;
62
63         machine->pid = pid;
64
65         machine->id_hdr_size = 0;
66         machine->kptr_restrict_warned = false;
67         machine->comm_exec = false;
68         machine->kernel_start = 0;
69
70         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
71
72         machine->root_dir = strdup(root_dir);
73         if (machine->root_dir == NULL)
74                 return -ENOMEM;
75
76         if (pid != HOST_KERNEL_ID) {
77                 struct thread *thread = machine__findnew_thread(machine, -1,
78                                                                 pid);
79                 char comm[64];
80
81                 if (thread == NULL)
82                         return -ENOMEM;
83
84                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
85                 thread__set_comm(thread, comm, 0);
86                 thread__put(thread);
87         }
88
89         machine->current_tid = NULL;
90
91         return 0;
92 }
93
94 struct machine *machine__new_host(void)
95 {
96         struct machine *machine = malloc(sizeof(*machine));
97
98         if (machine != NULL) {
99                 machine__init(machine, "", HOST_KERNEL_ID);
100
101                 if (machine__create_kernel_maps(machine) < 0)
102                         goto out_delete;
103         }
104
105         return machine;
106 out_delete:
107         free(machine);
108         return NULL;
109 }
110
111 struct machine *machine__new_kallsyms(void)
112 {
113         struct machine *machine = machine__new_host();
114         /*
115          * FIXME:
116          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
117          *    functions and data objects.
118          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
119          *    ask for not using the kcore parsing code, once this one is fixed
120          *    to create a map per module.
121          */
122         if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
123                 machine__delete(machine);
124                 machine = NULL;
125         }
126
127         return machine;
128 }
129
130 static void dsos__purge(struct dsos *dsos)
131 {
132         struct dso *pos, *n;
133
134         down_write(&dsos->lock);
135
136         list_for_each_entry_safe(pos, n, &dsos->head, node) {
137                 RB_CLEAR_NODE(&pos->rb_node);
138                 pos->root = NULL;
139                 list_del_init(&pos->node);
140                 dso__put(pos);
141         }
142
143         up_write(&dsos->lock);
144 }
145
146 static void dsos__exit(struct dsos *dsos)
147 {
148         dsos__purge(dsos);
149         exit_rwsem(&dsos->lock);
150 }
151
152 void machine__delete_threads(struct machine *machine)
153 {
154         struct rb_node *nd;
155         int i;
156
157         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
158                 struct threads *threads = &machine->threads[i];
159                 down_write(&threads->lock);
160                 nd = rb_first(&threads->entries);
161                 while (nd) {
162                         struct thread *t = rb_entry(nd, struct thread, rb_node);
163
164                         nd = rb_next(nd);
165                         __machine__remove_thread(machine, t, false);
166                 }
167                 up_write(&threads->lock);
168         }
169 }
170
171 void machine__exit(struct machine *machine)
172 {
173         int i;
174
175         if (machine == NULL)
176                 return;
177
178         machine__destroy_kernel_maps(machine);
179         map_groups__exit(&machine->kmaps);
180         dsos__exit(&machine->dsos);
181         machine__exit_vdso(machine);
182         zfree(&machine->root_dir);
183         zfree(&machine->current_tid);
184
185         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
186                 struct threads *threads = &machine->threads[i];
187                 exit_rwsem(&threads->lock);
188         }
189 }
190
191 void machine__delete(struct machine *machine)
192 {
193         if (machine) {
194                 machine__exit(machine);
195                 free(machine);
196         }
197 }
198
199 void machines__init(struct machines *machines)
200 {
201         machine__init(&machines->host, "", HOST_KERNEL_ID);
202         machines->guests = RB_ROOT;
203 }
204
205 void machines__exit(struct machines *machines)
206 {
207         machine__exit(&machines->host);
208         /* XXX exit guest */
209 }
210
211 struct machine *machines__add(struct machines *machines, pid_t pid,
212                               const char *root_dir)
213 {
214         struct rb_node **p = &machines->guests.rb_node;
215         struct rb_node *parent = NULL;
216         struct machine *pos, *machine = malloc(sizeof(*machine));
217
218         if (machine == NULL)
219                 return NULL;
220
221         if (machine__init(machine, root_dir, pid) != 0) {
222                 free(machine);
223                 return NULL;
224         }
225
226         while (*p != NULL) {
227                 parent = *p;
228                 pos = rb_entry(parent, struct machine, rb_node);
229                 if (pid < pos->pid)
230                         p = &(*p)->rb_left;
231                 else
232                         p = &(*p)->rb_right;
233         }
234
235         rb_link_node(&machine->rb_node, parent, p);
236         rb_insert_color(&machine->rb_node, &machines->guests);
237
238         return machine;
239 }
240
241 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
242 {
243         struct rb_node *nd;
244
245         machines->host.comm_exec = comm_exec;
246
247         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
248                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
249
250                 machine->comm_exec = comm_exec;
251         }
252 }
253
254 struct machine *machines__find(struct machines *machines, pid_t pid)
255 {
256         struct rb_node **p = &machines->guests.rb_node;
257         struct rb_node *parent = NULL;
258         struct machine *machine;
259         struct machine *default_machine = NULL;
260
261         if (pid == HOST_KERNEL_ID)
262                 return &machines->host;
263
264         while (*p != NULL) {
265                 parent = *p;
266                 machine = rb_entry(parent, struct machine, rb_node);
267                 if (pid < machine->pid)
268                         p = &(*p)->rb_left;
269                 else if (pid > machine->pid)
270                         p = &(*p)->rb_right;
271                 else
272                         return machine;
273                 if (!machine->pid)
274                         default_machine = machine;
275         }
276
277         return default_machine;
278 }
279
280 struct machine *machines__findnew(struct machines *machines, pid_t pid)
281 {
282         char path[PATH_MAX];
283         const char *root_dir = "";
284         struct machine *machine = machines__find(machines, pid);
285
286         if (machine && (machine->pid == pid))
287                 goto out;
288
289         if ((pid != HOST_KERNEL_ID) &&
290             (pid != DEFAULT_GUEST_KERNEL_ID) &&
291             (symbol_conf.guestmount)) {
292                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
293                 if (access(path, R_OK)) {
294                         static struct strlist *seen;
295
296                         if (!seen)
297                                 seen = strlist__new(NULL, NULL);
298
299                         if (!strlist__has_entry(seen, path)) {
300                                 pr_err("Can't access file %s\n", path);
301                                 strlist__add(seen, path);
302                         }
303                         machine = NULL;
304                         goto out;
305                 }
306                 root_dir = path;
307         }
308
309         machine = machines__add(machines, pid, root_dir);
310 out:
311         return machine;
312 }
313
314 void machines__process_guests(struct machines *machines,
315                               machine__process_t process, void *data)
316 {
317         struct rb_node *nd;
318
319         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
320                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
321                 process(pos, data);
322         }
323 }
324
325 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
326 {
327         if (machine__is_host(machine))
328                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
329         else if (machine__is_default_guest(machine))
330                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
331         else {
332                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
333                          machine->pid);
334         }
335
336         return bf;
337 }
338
339 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
340 {
341         struct rb_node *node;
342         struct machine *machine;
343
344         machines->host.id_hdr_size = id_hdr_size;
345
346         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
347                 machine = rb_entry(node, struct machine, rb_node);
348                 machine->id_hdr_size = id_hdr_size;
349         }
350
351         return;
352 }
353
354 static void machine__update_thread_pid(struct machine *machine,
355                                        struct thread *th, pid_t pid)
356 {
357         struct thread *leader;
358
359         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
360                 return;
361
362         th->pid_ = pid;
363
364         if (th->pid_ == th->tid)
365                 return;
366
367         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
368         if (!leader)
369                 goto out_err;
370
371         if (!leader->mg)
372                 leader->mg = map_groups__new(machine);
373
374         if (!leader->mg)
375                 goto out_err;
376
377         if (th->mg == leader->mg)
378                 return;
379
380         if (th->mg) {
381                 /*
382                  * Maps are created from MMAP events which provide the pid and
383                  * tid.  Consequently there never should be any maps on a thread
384                  * with an unknown pid.  Just print an error if there are.
385                  */
386                 if (!map_groups__empty(th->mg))
387                         pr_err("Discarding thread maps for %d:%d\n",
388                                th->pid_, th->tid);
389                 map_groups__put(th->mg);
390         }
391
392         th->mg = map_groups__get(leader->mg);
393 out_put:
394         thread__put(leader);
395         return;
396 out_err:
397         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
398         goto out_put;
399 }
400
401 /*
402  * Caller must eventually drop thread->refcnt returned with a successful
403  * lookup/new thread inserted.
404  */
405 static struct thread *____machine__findnew_thread(struct machine *machine,
406                                                   struct threads *threads,
407                                                   pid_t pid, pid_t tid,
408                                                   bool create)
409 {
410         struct rb_node **p = &threads->entries.rb_node;
411         struct rb_node *parent = NULL;
412         struct thread *th;
413
414         /*
415          * Front-end cache - TID lookups come in blocks,
416          * so most of the time we dont have to look up
417          * the full rbtree:
418          */
419         th = threads->last_match;
420         if (th != NULL) {
421                 if (th->tid == tid) {
422                         machine__update_thread_pid(machine, th, pid);
423                         return thread__get(th);
424                 }
425
426                 threads->last_match = NULL;
427         }
428
429         while (*p != NULL) {
430                 parent = *p;
431                 th = rb_entry(parent, struct thread, rb_node);
432
433                 if (th->tid == tid) {
434                         threads->last_match = th;
435                         machine__update_thread_pid(machine, th, pid);
436                         return thread__get(th);
437                 }
438
439                 if (tid < th->tid)
440                         p = &(*p)->rb_left;
441                 else
442                         p = &(*p)->rb_right;
443         }
444
445         if (!create)
446                 return NULL;
447
448         th = thread__new(pid, tid);
449         if (th != NULL) {
450                 rb_link_node(&th->rb_node, parent, p);
451                 rb_insert_color(&th->rb_node, &threads->entries);
452
453                 /*
454                  * We have to initialize map_groups separately
455                  * after rb tree is updated.
456                  *
457                  * The reason is that we call machine__findnew_thread
458                  * within thread__init_map_groups to find the thread
459                  * leader and that would screwed the rb tree.
460                  */
461                 if (thread__init_map_groups(th, machine)) {
462                         rb_erase_init(&th->rb_node, &threads->entries);
463                         RB_CLEAR_NODE(&th->rb_node);
464                         thread__put(th);
465                         return NULL;
466                 }
467                 /*
468                  * It is now in the rbtree, get a ref
469                  */
470                 thread__get(th);
471                 threads->last_match = th;
472                 ++threads->nr;
473         }
474
475         return th;
476 }
477
478 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
479 {
480         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
481 }
482
483 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
484                                        pid_t tid)
485 {
486         struct threads *threads = machine__threads(machine, tid);
487         struct thread *th;
488
489         down_write(&threads->lock);
490         th = __machine__findnew_thread(machine, pid, tid);
491         up_write(&threads->lock);
492         return th;
493 }
494
495 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
496                                     pid_t tid)
497 {
498         struct threads *threads = machine__threads(machine, tid);
499         struct thread *th;
500
501         down_read(&threads->lock);
502         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
503         up_read(&threads->lock);
504         return th;
505 }
506
507 struct comm *machine__thread_exec_comm(struct machine *machine,
508                                        struct thread *thread)
509 {
510         if (machine->comm_exec)
511                 return thread__exec_comm(thread);
512         else
513                 return thread__comm(thread);
514 }
515
516 int machine__process_comm_event(struct machine *machine, union perf_event *event,
517                                 struct perf_sample *sample)
518 {
519         struct thread *thread = machine__findnew_thread(machine,
520                                                         event->comm.pid,
521                                                         event->comm.tid);
522         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
523         int err = 0;
524
525         if (exec)
526                 machine->comm_exec = true;
527
528         if (dump_trace)
529                 perf_event__fprintf_comm(event, stdout);
530
531         if (thread == NULL ||
532             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
533                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
534                 err = -1;
535         }
536
537         thread__put(thread);
538
539         return err;
540 }
541
542 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
543                                       union perf_event *event,
544                                       struct perf_sample *sample __maybe_unused)
545 {
546         struct thread *thread = machine__findnew_thread(machine,
547                                                         event->namespaces.pid,
548                                                         event->namespaces.tid);
549         int err = 0;
550
551         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
552                   "\nWARNING: kernel seems to support more namespaces than perf"
553                   " tool.\nTry updating the perf tool..\n\n");
554
555         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
556                   "\nWARNING: perf tool seems to support more namespaces than"
557                   " the kernel.\nTry updating the kernel..\n\n");
558
559         if (dump_trace)
560                 perf_event__fprintf_namespaces(event, stdout);
561
562         if (thread == NULL ||
563             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
564                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
565                 err = -1;
566         }
567
568         thread__put(thread);
569
570         return err;
571 }
572
573 int machine__process_lost_event(struct machine *machine __maybe_unused,
574                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
575 {
576         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
577                     event->lost.id, event->lost.lost);
578         return 0;
579 }
580
581 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
582                                         union perf_event *event, struct perf_sample *sample)
583 {
584         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
585                     sample->id, event->lost_samples.lost);
586         return 0;
587 }
588
589 static struct dso *machine__findnew_module_dso(struct machine *machine,
590                                                struct kmod_path *m,
591                                                const char *filename)
592 {
593         struct dso *dso;
594
595         down_write(&machine->dsos.lock);
596
597         dso = __dsos__find(&machine->dsos, m->name, true);
598         if (!dso) {
599                 dso = __dsos__addnew(&machine->dsos, m->name);
600                 if (dso == NULL)
601                         goto out_unlock;
602
603                 dso__set_module_info(dso, m, machine);
604                 dso__set_long_name(dso, strdup(filename), true);
605         }
606
607         dso__get(dso);
608 out_unlock:
609         up_write(&machine->dsos.lock);
610         return dso;
611 }
612
613 int machine__process_aux_event(struct machine *machine __maybe_unused,
614                                union perf_event *event)
615 {
616         if (dump_trace)
617                 perf_event__fprintf_aux(event, stdout);
618         return 0;
619 }
620
621 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
622                                         union perf_event *event)
623 {
624         if (dump_trace)
625                 perf_event__fprintf_itrace_start(event, stdout);
626         return 0;
627 }
628
629 int machine__process_switch_event(struct machine *machine __maybe_unused,
630                                   union perf_event *event)
631 {
632         if (dump_trace)
633                 perf_event__fprintf_switch(event, stdout);
634         return 0;
635 }
636
637 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
638 {
639         const char *dup_filename;
640
641         if (!filename || !dso || !dso->long_name)
642                 return;
643         if (dso->long_name[0] != '[')
644                 return;
645         if (!strchr(filename, '/'))
646                 return;
647
648         dup_filename = strdup(filename);
649         if (!dup_filename)
650                 return;
651
652         dso__set_long_name(dso, dup_filename, true);
653 }
654
655 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
656                                         const char *filename)
657 {
658         struct map *map = NULL;
659         struct dso *dso = NULL;
660         struct kmod_path m;
661
662         if (kmod_path__parse_name(&m, filename))
663                 return NULL;
664
665         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
666                                        m.name);
667         if (map) {
668                 /*
669                  * If the map's dso is an offline module, give dso__load()
670                  * a chance to find the file path of that module by fixing
671                  * long_name.
672                  */
673                 dso__adjust_kmod_long_name(map->dso, filename);
674                 goto out;
675         }
676
677         dso = machine__findnew_module_dso(machine, &m, filename);
678         if (dso == NULL)
679                 goto out;
680
681         map = map__new2(start, dso, MAP__FUNCTION);
682         if (map == NULL)
683                 goto out;
684
685         map_groups__insert(&machine->kmaps, map);
686
687         /* Put the map here because map_groups__insert alread got it */
688         map__put(map);
689 out:
690         /* put the dso here, corresponding to  machine__findnew_module_dso */
691         dso__put(dso);
692         free(m.name);
693         return map;
694 }
695
696 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
697 {
698         struct rb_node *nd;
699         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
700
701         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
702                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
703                 ret += __dsos__fprintf(&pos->dsos.head, fp);
704         }
705
706         return ret;
707 }
708
709 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
710                                      bool (skip)(struct dso *dso, int parm), int parm)
711 {
712         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
713 }
714
715 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
716                                      bool (skip)(struct dso *dso, int parm), int parm)
717 {
718         struct rb_node *nd;
719         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
720
721         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
722                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
723                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
724         }
725         return ret;
726 }
727
728 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
729 {
730         int i;
731         size_t printed = 0;
732         struct dso *kdso = machine__kernel_map(machine)->dso;
733
734         if (kdso->has_build_id) {
735                 char filename[PATH_MAX];
736                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
737                                            false))
738                         printed += fprintf(fp, "[0] %s\n", filename);
739         }
740
741         for (i = 0; i < vmlinux_path__nr_entries; ++i)
742                 printed += fprintf(fp, "[%d] %s\n",
743                                    i + kdso->has_build_id, vmlinux_path[i]);
744
745         return printed;
746 }
747
748 size_t machine__fprintf(struct machine *machine, FILE *fp)
749 {
750         struct rb_node *nd;
751         size_t ret;
752         int i;
753
754         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
755                 struct threads *threads = &machine->threads[i];
756
757                 down_read(&threads->lock);
758
759                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
760
761                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
762                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
763
764                         ret += thread__fprintf(pos, fp);
765                 }
766
767                 up_read(&threads->lock);
768         }
769         return ret;
770 }
771
772 static struct dso *machine__get_kernel(struct machine *machine)
773 {
774         const char *vmlinux_name = NULL;
775         struct dso *kernel;
776
777         if (machine__is_host(machine)) {
778                 vmlinux_name = symbol_conf.vmlinux_name;
779                 if (!vmlinux_name)
780                         vmlinux_name = DSO__NAME_KALLSYMS;
781
782                 kernel = machine__findnew_kernel(machine, vmlinux_name,
783                                                  "[kernel]", DSO_TYPE_KERNEL);
784         } else {
785                 char bf[PATH_MAX];
786
787                 if (machine__is_default_guest(machine))
788                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
789                 if (!vmlinux_name)
790                         vmlinux_name = machine__mmap_name(machine, bf,
791                                                           sizeof(bf));
792
793                 kernel = machine__findnew_kernel(machine, vmlinux_name,
794                                                  "[guest.kernel]",
795                                                  DSO_TYPE_GUEST_KERNEL);
796         }
797
798         if (kernel != NULL && (!kernel->has_build_id))
799                 dso__read_running_kernel_build_id(kernel, machine);
800
801         return kernel;
802 }
803
804 struct process_args {
805         u64 start;
806 };
807
808 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
809                                            size_t bufsz)
810 {
811         if (machine__is_default_guest(machine))
812                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
813         else
814                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
815 }
816
817 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
818
819 /* Figure out the start address of kernel map from /proc/kallsyms.
820  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
821  * symbol_name if it's not that important.
822  */
823 static int machine__get_running_kernel_start(struct machine *machine,
824                                              const char **symbol_name, u64 *start)
825 {
826         char filename[PATH_MAX];
827         int i, err = -1;
828         const char *name;
829         u64 addr = 0;
830
831         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
832
833         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
834                 return 0;
835
836         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
837                 err = kallsyms__get_function_start(filename, name, &addr);
838                 if (!err)
839                         break;
840         }
841
842         if (err)
843                 return -1;
844
845         if (symbol_name)
846                 *symbol_name = name;
847
848         *start = addr;
849         return 0;
850 }
851
852 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
853 {
854         int type;
855         u64 start = 0;
856
857         if (machine__get_running_kernel_start(machine, NULL, &start))
858                 return -1;
859
860         /* In case of renewal the kernel map, destroy previous one */
861         machine__destroy_kernel_maps(machine);
862
863         for (type = 0; type < MAP__NR_TYPES; ++type) {
864                 struct kmap *kmap;
865                 struct map *map;
866
867                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
868                 if (machine->vmlinux_maps[type] == NULL)
869                         return -1;
870
871                 machine->vmlinux_maps[type]->map_ip =
872                         machine->vmlinux_maps[type]->unmap_ip =
873                                 identity__map_ip;
874                 map = __machine__kernel_map(machine, type);
875                 kmap = map__kmap(map);
876                 if (!kmap)
877                         return -1;
878
879                 kmap->kmaps = &machine->kmaps;
880                 map_groups__insert(&machine->kmaps, map);
881         }
882
883         return 0;
884 }
885
886 void machine__destroy_kernel_maps(struct machine *machine)
887 {
888         int type;
889
890         for (type = 0; type < MAP__NR_TYPES; ++type) {
891                 struct kmap *kmap;
892                 struct map *map = __machine__kernel_map(machine, type);
893
894                 if (map == NULL)
895                         continue;
896
897                 kmap = map__kmap(map);
898                 map_groups__remove(&machine->kmaps, map);
899                 if (kmap && kmap->ref_reloc_sym) {
900                         /*
901                          * ref_reloc_sym is shared among all maps, so free just
902                          * on one of them.
903                          */
904                         if (type == MAP__FUNCTION) {
905                                 zfree((char **)&kmap->ref_reloc_sym->name);
906                                 zfree(&kmap->ref_reloc_sym);
907                         } else
908                                 kmap->ref_reloc_sym = NULL;
909                 }
910
911                 map__put(machine->vmlinux_maps[type]);
912                 machine->vmlinux_maps[type] = NULL;
913         }
914 }
915
916 int machines__create_guest_kernel_maps(struct machines *machines)
917 {
918         int ret = 0;
919         struct dirent **namelist = NULL;
920         int i, items = 0;
921         char path[PATH_MAX];
922         pid_t pid;
923         char *endp;
924
925         if (symbol_conf.default_guest_vmlinux_name ||
926             symbol_conf.default_guest_modules ||
927             symbol_conf.default_guest_kallsyms) {
928                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
929         }
930
931         if (symbol_conf.guestmount) {
932                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
933                 if (items <= 0)
934                         return -ENOENT;
935                 for (i = 0; i < items; i++) {
936                         if (!isdigit(namelist[i]->d_name[0])) {
937                                 /* Filter out . and .. */
938                                 continue;
939                         }
940                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
941                         if ((*endp != '\0') ||
942                             (endp == namelist[i]->d_name) ||
943                             (errno == ERANGE)) {
944                                 pr_debug("invalid directory (%s). Skipping.\n",
945                                          namelist[i]->d_name);
946                                 continue;
947                         }
948                         sprintf(path, "%s/%s/proc/kallsyms",
949                                 symbol_conf.guestmount,
950                                 namelist[i]->d_name);
951                         ret = access(path, R_OK);
952                         if (ret) {
953                                 pr_debug("Can't access file %s\n", path);
954                                 goto failure;
955                         }
956                         machines__create_kernel_maps(machines, pid);
957                 }
958 failure:
959                 free(namelist);
960         }
961
962         return ret;
963 }
964
965 void machines__destroy_kernel_maps(struct machines *machines)
966 {
967         struct rb_node *next = rb_first(&machines->guests);
968
969         machine__destroy_kernel_maps(&machines->host);
970
971         while (next) {
972                 struct machine *pos = rb_entry(next, struct machine, rb_node);
973
974                 next = rb_next(&pos->rb_node);
975                 rb_erase(&pos->rb_node, &machines->guests);
976                 machine__delete(pos);
977         }
978 }
979
980 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
981 {
982         struct machine *machine = machines__findnew(machines, pid);
983
984         if (machine == NULL)
985                 return -1;
986
987         return machine__create_kernel_maps(machine);
988 }
989
990 int __machine__load_kallsyms(struct machine *machine, const char *filename,
991                              enum map_type type, bool no_kcore)
992 {
993         struct map *map = machine__kernel_map(machine);
994         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
995
996         if (ret > 0) {
997                 dso__set_loaded(map->dso, type);
998                 /*
999                  * Since /proc/kallsyms will have multiple sessions for the
1000                  * kernel, with modules between them, fixup the end of all
1001                  * sections.
1002                  */
1003                 __map_groups__fixup_end(&machine->kmaps, type);
1004         }
1005
1006         return ret;
1007 }
1008
1009 int machine__load_kallsyms(struct machine *machine, const char *filename,
1010                            enum map_type type)
1011 {
1012         return __machine__load_kallsyms(machine, filename, type, false);
1013 }
1014
1015 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1016 {
1017         struct map *map = machine__kernel_map(machine);
1018         int ret = dso__load_vmlinux_path(map->dso, map);
1019
1020         if (ret > 0)
1021                 dso__set_loaded(map->dso, type);
1022
1023         return ret;
1024 }
1025
1026 static void map_groups__fixup_end(struct map_groups *mg)
1027 {
1028         int i;
1029         for (i = 0; i < MAP__NR_TYPES; ++i)
1030                 __map_groups__fixup_end(mg, i);
1031 }
1032
1033 static char *get_kernel_version(const char *root_dir)
1034 {
1035         char version[PATH_MAX];
1036         FILE *file;
1037         char *name, *tmp;
1038         const char *prefix = "Linux version ";
1039
1040         sprintf(version, "%s/proc/version", root_dir);
1041         file = fopen(version, "r");
1042         if (!file)
1043                 return NULL;
1044
1045         version[0] = '\0';
1046         tmp = fgets(version, sizeof(version), file);
1047         fclose(file);
1048
1049         name = strstr(version, prefix);
1050         if (!name)
1051                 return NULL;
1052         name += strlen(prefix);
1053         tmp = strchr(name, ' ');
1054         if (tmp)
1055                 *tmp = '\0';
1056
1057         return strdup(name);
1058 }
1059
1060 static bool is_kmod_dso(struct dso *dso)
1061 {
1062         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1063                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1064 }
1065
1066 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1067                                        struct kmod_path *m)
1068 {
1069         struct map *map;
1070         char *long_name;
1071
1072         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1073         if (map == NULL)
1074                 return 0;
1075
1076         long_name = strdup(path);
1077         if (long_name == NULL)
1078                 return -ENOMEM;
1079
1080         dso__set_long_name(map->dso, long_name, true);
1081         dso__kernel_module_get_build_id(map->dso, "");
1082
1083         /*
1084          * Full name could reveal us kmod compression, so
1085          * we need to update the symtab_type if needed.
1086          */
1087         if (m->comp && is_kmod_dso(map->dso))
1088                 map->dso->symtab_type++;
1089
1090         return 0;
1091 }
1092
1093 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1094                                 const char *dir_name, int depth)
1095 {
1096         struct dirent *dent;
1097         DIR *dir = opendir(dir_name);
1098         int ret = 0;
1099
1100         if (!dir) {
1101                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1102                 return -1;
1103         }
1104
1105         while ((dent = readdir(dir)) != NULL) {
1106                 char path[PATH_MAX];
1107                 struct stat st;
1108
1109                 /*sshfs might return bad dent->d_type, so we have to stat*/
1110                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1111                 if (stat(path, &st))
1112                         continue;
1113
1114                 if (S_ISDIR(st.st_mode)) {
1115                         if (!strcmp(dent->d_name, ".") ||
1116                             !strcmp(dent->d_name, ".."))
1117                                 continue;
1118
1119                         /* Do not follow top-level source and build symlinks */
1120                         if (depth == 0) {
1121                                 if (!strcmp(dent->d_name, "source") ||
1122                                     !strcmp(dent->d_name, "build"))
1123                                         continue;
1124                         }
1125
1126                         ret = map_groups__set_modules_path_dir(mg, path,
1127                                                                depth + 1);
1128                         if (ret < 0)
1129                                 goto out;
1130                 } else {
1131                         struct kmod_path m;
1132
1133                         ret = kmod_path__parse_name(&m, dent->d_name);
1134                         if (ret)
1135                                 goto out;
1136
1137                         if (m.kmod)
1138                                 ret = map_groups__set_module_path(mg, path, &m);
1139
1140                         free(m.name);
1141
1142                         if (ret)
1143                                 goto out;
1144                 }
1145         }
1146
1147 out:
1148         closedir(dir);
1149         return ret;
1150 }
1151
1152 static int machine__set_modules_path(struct machine *machine)
1153 {
1154         char *version;
1155         char modules_path[PATH_MAX];
1156
1157         version = get_kernel_version(machine->root_dir);
1158         if (!version)
1159                 return -1;
1160
1161         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1162                  machine->root_dir, version);
1163         free(version);
1164
1165         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1166 }
1167 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1168                                 const char *name __maybe_unused)
1169 {
1170         return 0;
1171 }
1172
1173 static int machine__create_module(void *arg, const char *name, u64 start,
1174                                   u64 size)
1175 {
1176         struct machine *machine = arg;
1177         struct map *map;
1178
1179         if (arch__fix_module_text_start(&start, name) < 0)
1180                 return -1;
1181
1182         map = machine__findnew_module_map(machine, start, name);
1183         if (map == NULL)
1184                 return -1;
1185         map->end = start + size;
1186
1187         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1188
1189         return 0;
1190 }
1191
1192 static int machine__create_modules(struct machine *machine)
1193 {
1194         const char *modules;
1195         char path[PATH_MAX];
1196
1197         if (machine__is_default_guest(machine)) {
1198                 modules = symbol_conf.default_guest_modules;
1199         } else {
1200                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1201                 modules = path;
1202         }
1203
1204         if (symbol__restricted_filename(modules, "/proc/modules"))
1205                 return -1;
1206
1207         if (modules__parse(modules, machine, machine__create_module))
1208                 return -1;
1209
1210         if (!machine__set_modules_path(machine))
1211                 return 0;
1212
1213         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1214
1215         return 0;
1216 }
1217
1218 int machine__create_kernel_maps(struct machine *machine)
1219 {
1220         struct dso *kernel = machine__get_kernel(machine);
1221         const char *name = NULL;
1222         u64 addr = 0;
1223         int ret;
1224
1225         if (kernel == NULL)
1226                 return -1;
1227
1228         ret = __machine__create_kernel_maps(machine, kernel);
1229         dso__put(kernel);
1230         if (ret < 0)
1231                 return -1;
1232
1233         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1234                 if (machine__is_host(machine))
1235                         pr_debug("Problems creating module maps, "
1236                                  "continuing anyway...\n");
1237                 else
1238                         pr_debug("Problems creating module maps for guest %d, "
1239                                  "continuing anyway...\n", machine->pid);
1240         }
1241
1242         /*
1243          * Now that we have all the maps created, just set the ->end of them:
1244          */
1245         map_groups__fixup_end(&machine->kmaps);
1246
1247         if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1248                 if (name &&
1249                     maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1250                         machine__destroy_kernel_maps(machine);
1251                         return -1;
1252                 }
1253         }
1254
1255         return 0;
1256 }
1257
1258 static void machine__set_kernel_mmap_len(struct machine *machine,
1259                                          union perf_event *event)
1260 {
1261         int i;
1262
1263         for (i = 0; i < MAP__NR_TYPES; i++) {
1264                 machine->vmlinux_maps[i]->start = event->mmap.start;
1265                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1266                                                    event->mmap.len);
1267                 /*
1268                  * Be a bit paranoid here, some perf.data file came with
1269                  * a zero sized synthesized MMAP event for the kernel.
1270                  */
1271                 if (machine->vmlinux_maps[i]->end == 0)
1272                         machine->vmlinux_maps[i]->end = ~0ULL;
1273         }
1274 }
1275
1276 static bool machine__uses_kcore(struct machine *machine)
1277 {
1278         struct dso *dso;
1279
1280         list_for_each_entry(dso, &machine->dsos.head, node) {
1281                 if (dso__is_kcore(dso))
1282                         return true;
1283         }
1284
1285         return false;
1286 }
1287
1288 static int machine__process_kernel_mmap_event(struct machine *machine,
1289                                               union perf_event *event)
1290 {
1291         struct map *map;
1292         char kmmap_prefix[PATH_MAX];
1293         enum dso_kernel_type kernel_type;
1294         bool is_kernel_mmap;
1295
1296         /* If we have maps from kcore then we do not need or want any others */
1297         if (machine__uses_kcore(machine))
1298                 return 0;
1299
1300         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1301         if (machine__is_host(machine))
1302                 kernel_type = DSO_TYPE_KERNEL;
1303         else
1304                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1305
1306         is_kernel_mmap = memcmp(event->mmap.filename,
1307                                 kmmap_prefix,
1308                                 strlen(kmmap_prefix) - 1) == 0;
1309         if (event->mmap.filename[0] == '/' ||
1310             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311                 map = machine__findnew_module_map(machine, event->mmap.start,
1312                                                   event->mmap.filename);
1313                 if (map == NULL)
1314                         goto out_problem;
1315
1316                 map->end = map->start + event->mmap.len;
1317         } else if (is_kernel_mmap) {
1318                 const char *symbol_name = (event->mmap.filename +
1319                                 strlen(kmmap_prefix));
1320                 /*
1321                  * Should be there already, from the build-id table in
1322                  * the header.
1323                  */
1324                 struct dso *kernel = NULL;
1325                 struct dso *dso;
1326
1327                 down_read(&machine->dsos.lock);
1328
1329                 list_for_each_entry(dso, &machine->dsos.head, node) {
1330
1331                         /*
1332                          * The cpumode passed to is_kernel_module is not the
1333                          * cpumode of *this* event. If we insist on passing
1334                          * correct cpumode to is_kernel_module, we should
1335                          * record the cpumode when we adding this dso to the
1336                          * linked list.
1337                          *
1338                          * However we don't really need passing correct
1339                          * cpumode.  We know the correct cpumode must be kernel
1340                          * mode (if not, we should not link it onto kernel_dsos
1341                          * list).
1342                          *
1343                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344                          * is_kernel_module() treats it as a kernel cpumode.
1345                          */
1346
1347                         if (!dso->kernel ||
1348                             is_kernel_module(dso->long_name,
1349                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350                                 continue;
1351
1352
1353                         kernel = dso;
1354                         break;
1355                 }
1356
1357                 up_read(&machine->dsos.lock);
1358
1359                 if (kernel == NULL)
1360                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1361                 if (kernel == NULL)
1362                         goto out_problem;
1363
1364                 kernel->kernel = kernel_type;
1365                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366                         dso__put(kernel);
1367                         goto out_problem;
1368                 }
1369
1370                 if (strstr(kernel->long_name, "vmlinux"))
1371                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372
1373                 machine__set_kernel_mmap_len(machine, event);
1374
1375                 /*
1376                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1377                  * symbol. Effectively having zero here means that at record
1378                  * time /proc/sys/kernel/kptr_restrict was non zero.
1379                  */
1380                 if (event->mmap.pgoff != 0) {
1381                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1382                                                          symbol_name,
1383                                                          event->mmap.pgoff);
1384                 }
1385
1386                 if (machine__is_default_guest(machine)) {
1387                         /*
1388                          * preload dso of guest kernel and modules
1389                          */
1390                         dso__load(kernel, machine__kernel_map(machine));
1391                 }
1392         }
1393         return 0;
1394 out_problem:
1395         return -1;
1396 }
1397
1398 int machine__process_mmap2_event(struct machine *machine,
1399                                  union perf_event *event,
1400                                  struct perf_sample *sample)
1401 {
1402         struct thread *thread;
1403         struct map *map;
1404         enum map_type type;
1405         int ret = 0;
1406
1407         if (dump_trace)
1408                 perf_event__fprintf_mmap2(event, stdout);
1409
1410         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1411             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1412                 ret = machine__process_kernel_mmap_event(machine, event);
1413                 if (ret < 0)
1414                         goto out_problem;
1415                 return 0;
1416         }
1417
1418         thread = machine__findnew_thread(machine, event->mmap2.pid,
1419                                         event->mmap2.tid);
1420         if (thread == NULL)
1421                 goto out_problem;
1422
1423         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1424                 type = MAP__VARIABLE;
1425         else
1426                 type = MAP__FUNCTION;
1427
1428         map = map__new(machine, event->mmap2.start,
1429                         event->mmap2.len, event->mmap2.pgoff,
1430                         event->mmap2.maj,
1431                         event->mmap2.min, event->mmap2.ino,
1432                         event->mmap2.ino_generation,
1433                         event->mmap2.prot,
1434                         event->mmap2.flags,
1435                         event->mmap2.filename, type, thread);
1436
1437         if (map == NULL)
1438                 goto out_problem_map;
1439
1440         ret = thread__insert_map(thread, map);
1441         if (ret)
1442                 goto out_problem_insert;
1443
1444         thread__put(thread);
1445         map__put(map);
1446         return 0;
1447
1448 out_problem_insert:
1449         map__put(map);
1450 out_problem_map:
1451         thread__put(thread);
1452 out_problem:
1453         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1454         return 0;
1455 }
1456
1457 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1458                                 struct perf_sample *sample)
1459 {
1460         struct thread *thread;
1461         struct map *map;
1462         enum map_type type;
1463         int ret = 0;
1464
1465         if (dump_trace)
1466                 perf_event__fprintf_mmap(event, stdout);
1467
1468         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1469             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1470                 ret = machine__process_kernel_mmap_event(machine, event);
1471                 if (ret < 0)
1472                         goto out_problem;
1473                 return 0;
1474         }
1475
1476         thread = machine__findnew_thread(machine, event->mmap.pid,
1477                                          event->mmap.tid);
1478         if (thread == NULL)
1479                 goto out_problem;
1480
1481         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1482                 type = MAP__VARIABLE;
1483         else
1484                 type = MAP__FUNCTION;
1485
1486         map = map__new(machine, event->mmap.start,
1487                         event->mmap.len, event->mmap.pgoff,
1488                         0, 0, 0, 0, 0, 0,
1489                         event->mmap.filename,
1490                         type, thread);
1491
1492         if (map == NULL)
1493                 goto out_problem_map;
1494
1495         ret = thread__insert_map(thread, map);
1496         if (ret)
1497                 goto out_problem_insert;
1498
1499         thread__put(thread);
1500         map__put(map);
1501         return 0;
1502
1503 out_problem_insert:
1504         map__put(map);
1505 out_problem_map:
1506         thread__put(thread);
1507 out_problem:
1508         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1509         return 0;
1510 }
1511
1512 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1513 {
1514         struct threads *threads = machine__threads(machine, th->tid);
1515
1516         if (threads->last_match == th)
1517                 threads->last_match = NULL;
1518
1519         BUG_ON(refcount_read(&th->refcnt) == 0);
1520         if (lock)
1521                 down_write(&threads->lock);
1522         rb_erase_init(&th->rb_node, &threads->entries);
1523         RB_CLEAR_NODE(&th->rb_node);
1524         --threads->nr;
1525         /*
1526          * Move it first to the dead_threads list, then drop the reference,
1527          * if this is the last reference, then the thread__delete destructor
1528          * will be called and we will remove it from the dead_threads list.
1529          */
1530         list_add_tail(&th->node, &threads->dead);
1531         if (lock)
1532                 up_write(&threads->lock);
1533         thread__put(th);
1534 }
1535
1536 void machine__remove_thread(struct machine *machine, struct thread *th)
1537 {
1538         return __machine__remove_thread(machine, th, true);
1539 }
1540
1541 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1542                                 struct perf_sample *sample)
1543 {
1544         struct thread *thread = machine__find_thread(machine,
1545                                                      event->fork.pid,
1546                                                      event->fork.tid);
1547         struct thread *parent = machine__findnew_thread(machine,
1548                                                         event->fork.ppid,
1549                                                         event->fork.ptid);
1550         int err = 0;
1551
1552         if (dump_trace)
1553                 perf_event__fprintf_task(event, stdout);
1554
1555         /*
1556          * There may be an existing thread that is not actually the parent,
1557          * either because we are processing events out of order, or because the
1558          * (fork) event that would have removed the thread was lost. Assume the
1559          * latter case and continue on as best we can.
1560          */
1561         if (parent->pid_ != (pid_t)event->fork.ppid) {
1562                 dump_printf("removing erroneous parent thread %d/%d\n",
1563                             parent->pid_, parent->tid);
1564                 machine__remove_thread(machine, parent);
1565                 thread__put(parent);
1566                 parent = machine__findnew_thread(machine, event->fork.ppid,
1567                                                  event->fork.ptid);
1568         }
1569
1570         /* if a thread currently exists for the thread id remove it */
1571         if (thread != NULL) {
1572                 machine__remove_thread(machine, thread);
1573                 thread__put(thread);
1574         }
1575
1576         thread = machine__findnew_thread(machine, event->fork.pid,
1577                                          event->fork.tid);
1578
1579         if (thread == NULL || parent == NULL ||
1580             thread__fork(thread, parent, sample->time) < 0) {
1581                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1582                 err = -1;
1583         }
1584         thread__put(thread);
1585         thread__put(parent);
1586
1587         return err;
1588 }
1589
1590 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1591                                 struct perf_sample *sample __maybe_unused)
1592 {
1593         struct thread *thread = machine__find_thread(machine,
1594                                                      event->fork.pid,
1595                                                      event->fork.tid);
1596
1597         if (dump_trace)
1598                 perf_event__fprintf_task(event, stdout);
1599
1600         if (thread != NULL) {
1601                 thread__exited(thread);
1602                 thread__put(thread);
1603         }
1604
1605         return 0;
1606 }
1607
1608 int machine__process_event(struct machine *machine, union perf_event *event,
1609                            struct perf_sample *sample)
1610 {
1611         int ret;
1612
1613         switch (event->header.type) {
1614         case PERF_RECORD_COMM:
1615                 ret = machine__process_comm_event(machine, event, sample); break;
1616         case PERF_RECORD_MMAP:
1617                 ret = machine__process_mmap_event(machine, event, sample); break;
1618         case PERF_RECORD_NAMESPACES:
1619                 ret = machine__process_namespaces_event(machine, event, sample); break;
1620         case PERF_RECORD_MMAP2:
1621                 ret = machine__process_mmap2_event(machine, event, sample); break;
1622         case PERF_RECORD_FORK:
1623                 ret = machine__process_fork_event(machine, event, sample); break;
1624         case PERF_RECORD_EXIT:
1625                 ret = machine__process_exit_event(machine, event, sample); break;
1626         case PERF_RECORD_LOST:
1627                 ret = machine__process_lost_event(machine, event, sample); break;
1628         case PERF_RECORD_AUX:
1629                 ret = machine__process_aux_event(machine, event); break;
1630         case PERF_RECORD_ITRACE_START:
1631                 ret = machine__process_itrace_start_event(machine, event); break;
1632         case PERF_RECORD_LOST_SAMPLES:
1633                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1634         case PERF_RECORD_SWITCH:
1635         case PERF_RECORD_SWITCH_CPU_WIDE:
1636                 ret = machine__process_switch_event(machine, event); break;
1637         default:
1638                 ret = -1;
1639                 break;
1640         }
1641
1642         return ret;
1643 }
1644
1645 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1646 {
1647         if (!regexec(regex, sym->name, 0, NULL, 0))
1648                 return 1;
1649         return 0;
1650 }
1651
1652 static void ip__resolve_ams(struct thread *thread,
1653                             struct addr_map_symbol *ams,
1654                             u64 ip)
1655 {
1656         struct addr_location al;
1657
1658         memset(&al, 0, sizeof(al));
1659         /*
1660          * We cannot use the header.misc hint to determine whether a
1661          * branch stack address is user, kernel, guest, hypervisor.
1662          * Branches may straddle the kernel/user/hypervisor boundaries.
1663          * Thus, we have to try consecutively until we find a match
1664          * or else, the symbol is unknown
1665          */
1666         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1667
1668         ams->addr = ip;
1669         ams->al_addr = al.addr;
1670         ams->sym = al.sym;
1671         ams->map = al.map;
1672         ams->phys_addr = 0;
1673 }
1674
1675 static void ip__resolve_data(struct thread *thread,
1676                              u8 m, struct addr_map_symbol *ams,
1677                              u64 addr, u64 phys_addr)
1678 {
1679         struct addr_location al;
1680
1681         memset(&al, 0, sizeof(al));
1682
1683         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1684         if (al.map == NULL) {
1685                 /*
1686                  * some shared data regions have execute bit set which puts
1687                  * their mapping in the MAP__FUNCTION type array.
1688                  * Check there as a fallback option before dropping the sample.
1689                  */
1690                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1691         }
1692
1693         ams->addr = addr;
1694         ams->al_addr = al.addr;
1695         ams->sym = al.sym;
1696         ams->map = al.map;
1697         ams->phys_addr = phys_addr;
1698 }
1699
1700 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1701                                      struct addr_location *al)
1702 {
1703         struct mem_info *mi = zalloc(sizeof(*mi));
1704
1705         if (!mi)
1706                 return NULL;
1707
1708         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1709         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1710                          sample->addr, sample->phys_addr);
1711         mi->data_src.val = sample->data_src;
1712
1713         return mi;
1714 }
1715
1716 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1717 {
1718         char *srcline = NULL;
1719
1720         if (!map || callchain_param.key == CCKEY_FUNCTION)
1721                 return srcline;
1722
1723         srcline = srcline__tree_find(&map->dso->srclines, ip);
1724         if (!srcline) {
1725                 bool show_sym = false;
1726                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1727
1728                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1729                                       sym, show_sym, show_addr);
1730                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1731         }
1732
1733         return srcline;
1734 }
1735
1736 struct iterations {
1737         int nr_loop_iter;
1738         u64 cycles;
1739 };
1740
1741 static int add_callchain_ip(struct thread *thread,
1742                             struct callchain_cursor *cursor,
1743                             struct symbol **parent,
1744                             struct addr_location *root_al,
1745                             u8 *cpumode,
1746                             u64 ip,
1747                             bool branch,
1748                             struct branch_flags *flags,
1749                             struct iterations *iter,
1750                             u64 branch_from)
1751 {
1752         struct addr_location al;
1753         int nr_loop_iter = 0;
1754         u64 iter_cycles = 0;
1755         const char *srcline = NULL;
1756
1757         al.filtered = 0;
1758         al.sym = NULL;
1759         if (!cpumode) {
1760                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1761                                                    ip, &al);
1762         } else {
1763                 if (ip >= PERF_CONTEXT_MAX) {
1764                         switch (ip) {
1765                         case PERF_CONTEXT_HV:
1766                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1767                                 break;
1768                         case PERF_CONTEXT_KERNEL:
1769                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1770                                 break;
1771                         case PERF_CONTEXT_USER:
1772                                 *cpumode = PERF_RECORD_MISC_USER;
1773                                 break;
1774                         default:
1775                                 pr_debug("invalid callchain context: "
1776                                          "%"PRId64"\n", (s64) ip);
1777                                 /*
1778                                  * It seems the callchain is corrupted.
1779                                  * Discard all.
1780                                  */
1781                                 callchain_cursor_reset(cursor);
1782                                 return 1;
1783                         }
1784                         return 0;
1785                 }
1786                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1787                                            ip, &al);
1788         }
1789
1790         if (al.sym != NULL) {
1791                 if (perf_hpp_list.parent && !*parent &&
1792                     symbol__match_regex(al.sym, &parent_regex))
1793                         *parent = al.sym;
1794                 else if (have_ignore_callees && root_al &&
1795                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1796                         /* Treat this symbol as the root,
1797                            forgetting its callees. */
1798                         *root_al = al;
1799                         callchain_cursor_reset(cursor);
1800                 }
1801         }
1802
1803         if (symbol_conf.hide_unresolved && al.sym == NULL)
1804                 return 0;
1805
1806         if (iter) {
1807                 nr_loop_iter = iter->nr_loop_iter;
1808                 iter_cycles = iter->cycles;
1809         }
1810
1811         srcline = callchain_srcline(al.map, al.sym, al.addr);
1812         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1813                                        branch, flags, nr_loop_iter,
1814                                        iter_cycles, branch_from, srcline);
1815 }
1816
1817 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1818                                            struct addr_location *al)
1819 {
1820         unsigned int i;
1821         const struct branch_stack *bs = sample->branch_stack;
1822         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1823
1824         if (!bi)
1825                 return NULL;
1826
1827         for (i = 0; i < bs->nr; i++) {
1828                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1829                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1830                 bi[i].flags = bs->entries[i].flags;
1831         }
1832         return bi;
1833 }
1834
1835 static void save_iterations(struct iterations *iter,
1836                             struct branch_entry *be, int nr)
1837 {
1838         int i;
1839
1840         iter->nr_loop_iter = nr;
1841         iter->cycles = 0;
1842
1843         for (i = 0; i < nr; i++)
1844                 iter->cycles += be[i].flags.cycles;
1845 }
1846
1847 #define CHASHSZ 127
1848 #define CHASHBITS 7
1849 #define NO_ENTRY 0xff
1850
1851 #define PERF_MAX_BRANCH_DEPTH 127
1852
1853 /* Remove loops. */
1854 static int remove_loops(struct branch_entry *l, int nr,
1855                         struct iterations *iter)
1856 {
1857         int i, j, off;
1858         unsigned char chash[CHASHSZ];
1859
1860         memset(chash, NO_ENTRY, sizeof(chash));
1861
1862         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1863
1864         for (i = 0; i < nr; i++) {
1865                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1866
1867                 /* no collision handling for now */
1868                 if (chash[h] == NO_ENTRY) {
1869                         chash[h] = i;
1870                 } else if (l[chash[h]].from == l[i].from) {
1871                         bool is_loop = true;
1872                         /* check if it is a real loop */
1873                         off = 0;
1874                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1875                                 if (l[j].from != l[i + off].from) {
1876                                         is_loop = false;
1877                                         break;
1878                                 }
1879                         if (is_loop) {
1880                                 j = nr - (i + off);
1881                                 if (j > 0) {
1882                                         save_iterations(iter + i + off,
1883                                                 l + i, off);
1884
1885                                         memmove(iter + i, iter + i + off,
1886                                                 j * sizeof(*iter));
1887
1888                                         memmove(l + i, l + i + off,
1889                                                 j * sizeof(*l));
1890                                 }
1891
1892                                 nr -= off;
1893                         }
1894                 }
1895         }
1896         return nr;
1897 }
1898
1899 /*
1900  * Recolve LBR callstack chain sample
1901  * Return:
1902  * 1 on success get LBR callchain information
1903  * 0 no available LBR callchain information, should try fp
1904  * negative error code on other errors.
1905  */
1906 static int resolve_lbr_callchain_sample(struct thread *thread,
1907                                         struct callchain_cursor *cursor,
1908                                         struct perf_sample *sample,
1909                                         struct symbol **parent,
1910                                         struct addr_location *root_al,
1911                                         int max_stack)
1912 {
1913         struct ip_callchain *chain = sample->callchain;
1914         int chain_nr = min(max_stack, (int)chain->nr), i;
1915         u8 cpumode = PERF_RECORD_MISC_USER;
1916         u64 ip, branch_from = 0;
1917
1918         for (i = 0; i < chain_nr; i++) {
1919                 if (chain->ips[i] == PERF_CONTEXT_USER)
1920                         break;
1921         }
1922
1923         /* LBR only affects the user callchain */
1924         if (i != chain_nr) {
1925                 struct branch_stack *lbr_stack = sample->branch_stack;
1926                 int lbr_nr = lbr_stack->nr, j, k;
1927                 bool branch;
1928                 struct branch_flags *flags;
1929                 /*
1930                  * LBR callstack can only get user call chain.
1931                  * The mix_chain_nr is kernel call chain
1932                  * number plus LBR user call chain number.
1933                  * i is kernel call chain number,
1934                  * 1 is PERF_CONTEXT_USER,
1935                  * lbr_nr + 1 is the user call chain number.
1936                  * For details, please refer to the comments
1937                  * in callchain__printf
1938                  */
1939                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1940
1941                 for (j = 0; j < mix_chain_nr; j++) {
1942                         int err;
1943                         branch = false;
1944                         flags = NULL;
1945
1946                         if (callchain_param.order == ORDER_CALLEE) {
1947                                 if (j < i + 1)
1948                                         ip = chain->ips[j];
1949                                 else if (j > i + 1) {
1950                                         k = j - i - 2;
1951                                         ip = lbr_stack->entries[k].from;
1952                                         branch = true;
1953                                         flags = &lbr_stack->entries[k].flags;
1954                                 } else {
1955                                         ip = lbr_stack->entries[0].to;
1956                                         branch = true;
1957                                         flags = &lbr_stack->entries[0].flags;
1958                                         branch_from =
1959                                                 lbr_stack->entries[0].from;
1960                                 }
1961                         } else {
1962                                 if (j < lbr_nr) {
1963                                         k = lbr_nr - j - 1;
1964                                         ip = lbr_stack->entries[k].from;
1965                                         branch = true;
1966                                         flags = &lbr_stack->entries[k].flags;
1967                                 }
1968                                 else if (j > lbr_nr)
1969                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1970                                 else {
1971                                         ip = lbr_stack->entries[0].to;
1972                                         branch = true;
1973                                         flags = &lbr_stack->entries[0].flags;
1974                                         branch_from =
1975                                                 lbr_stack->entries[0].from;
1976                                 }
1977                         }
1978
1979                         err = add_callchain_ip(thread, cursor, parent,
1980                                                root_al, &cpumode, ip,
1981                                                branch, flags, NULL,
1982                                                branch_from);
1983                         if (err)
1984                                 return (err < 0) ? err : 0;
1985                 }
1986                 return 1;
1987         }
1988
1989         return 0;
1990 }
1991
1992 static int thread__resolve_callchain_sample(struct thread *thread,
1993                                             struct callchain_cursor *cursor,
1994                                             struct perf_evsel *evsel,
1995                                             struct perf_sample *sample,
1996                                             struct symbol **parent,
1997                                             struct addr_location *root_al,
1998                                             int max_stack)
1999 {
2000         struct branch_stack *branch = sample->branch_stack;
2001         struct ip_callchain *chain = sample->callchain;
2002         int chain_nr = 0;
2003         u8 cpumode = PERF_RECORD_MISC_USER;
2004         int i, j, err, nr_entries;
2005         int skip_idx = -1;
2006         int first_call = 0;
2007
2008         if (chain)
2009                 chain_nr = chain->nr;
2010
2011         if (perf_evsel__has_branch_callstack(evsel)) {
2012                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2013                                                    root_al, max_stack);
2014                 if (err)
2015                         return (err < 0) ? err : 0;
2016         }
2017
2018         /*
2019          * Based on DWARF debug information, some architectures skip
2020          * a callchain entry saved by the kernel.
2021          */
2022         skip_idx = arch_skip_callchain_idx(thread, chain);
2023
2024         /*
2025          * Add branches to call stack for easier browsing. This gives
2026          * more context for a sample than just the callers.
2027          *
2028          * This uses individual histograms of paths compared to the
2029          * aggregated histograms the normal LBR mode uses.
2030          *
2031          * Limitations for now:
2032          * - No extra filters
2033          * - No annotations (should annotate somehow)
2034          */
2035
2036         if (branch && callchain_param.branch_callstack) {
2037                 int nr = min(max_stack, (int)branch->nr);
2038                 struct branch_entry be[nr];
2039                 struct iterations iter[nr];
2040
2041                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2042                         pr_warning("corrupted branch chain. skipping...\n");
2043                         goto check_calls;
2044                 }
2045
2046                 for (i = 0; i < nr; i++) {
2047                         if (callchain_param.order == ORDER_CALLEE) {
2048                                 be[i] = branch->entries[i];
2049
2050                                 if (chain == NULL)
2051                                         continue;
2052
2053                                 /*
2054                                  * Check for overlap into the callchain.
2055                                  * The return address is one off compared to
2056                                  * the branch entry. To adjust for this
2057                                  * assume the calling instruction is not longer
2058                                  * than 8 bytes.
2059                                  */
2060                                 if (i == skip_idx ||
2061                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2062                                         first_call++;
2063                                 else if (be[i].from < chain->ips[first_call] &&
2064                                     be[i].from >= chain->ips[first_call] - 8)
2065                                         first_call++;
2066                         } else
2067                                 be[i] = branch->entries[branch->nr - i - 1];
2068                 }
2069
2070                 memset(iter, 0, sizeof(struct iterations) * nr);
2071                 nr = remove_loops(be, nr, iter);
2072
2073                 for (i = 0; i < nr; i++) {
2074                         err = add_callchain_ip(thread, cursor, parent,
2075                                                root_al,
2076                                                NULL, be[i].to,
2077                                                true, &be[i].flags,
2078                                                NULL, be[i].from);
2079
2080                         if (!err)
2081                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2082                                                        NULL, be[i].from,
2083                                                        true, &be[i].flags,
2084                                                        &iter[i], 0);
2085                         if (err == -EINVAL)
2086                                 break;
2087                         if (err)
2088                                 return err;
2089                 }
2090
2091                 if (chain_nr == 0)
2092                         return 0;
2093
2094                 chain_nr -= nr;
2095         }
2096
2097 check_calls:
2098         for (i = first_call, nr_entries = 0;
2099              i < chain_nr && nr_entries < max_stack; i++) {
2100                 u64 ip;
2101
2102                 if (callchain_param.order == ORDER_CALLEE)
2103                         j = i;
2104                 else
2105                         j = chain->nr - i - 1;
2106
2107 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2108                 if (j == skip_idx)
2109                         continue;
2110 #endif
2111                 ip = chain->ips[j];
2112
2113                 if (ip < PERF_CONTEXT_MAX)
2114                        ++nr_entries;
2115
2116                 err = add_callchain_ip(thread, cursor, parent,
2117                                        root_al, &cpumode, ip,
2118                                        false, NULL, NULL, 0);
2119
2120                 if (err)
2121                         return (err < 0) ? err : 0;
2122         }
2123
2124         return 0;
2125 }
2126
2127 static int append_inlines(struct callchain_cursor *cursor,
2128                           struct map *map, struct symbol *sym, u64 ip)
2129 {
2130         struct inline_node *inline_node;
2131         struct inline_list *ilist;
2132         u64 addr;
2133         int ret = 1;
2134
2135         if (!symbol_conf.inline_name || !map || !sym)
2136                 return ret;
2137
2138         addr = map__rip_2objdump(map, ip);
2139
2140         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2141         if (!inline_node) {
2142                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2143                 if (!inline_node)
2144                         return ret;
2145                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2146         }
2147
2148         list_for_each_entry(ilist, &inline_node->val, list) {
2149                 ret = callchain_cursor_append(cursor, ip, map,
2150                                               ilist->symbol, false,
2151                                               NULL, 0, 0, 0, ilist->srcline);
2152
2153                 if (ret != 0)
2154                         return ret;
2155         }
2156
2157         return ret;
2158 }
2159
2160 static int unwind_entry(struct unwind_entry *entry, void *arg)
2161 {
2162         struct callchain_cursor *cursor = arg;
2163         const char *srcline = NULL;
2164
2165         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2166                 return 0;
2167
2168         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2169                 return 0;
2170
2171         srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2172         return callchain_cursor_append(cursor, entry->ip,
2173                                        entry->map, entry->sym,
2174                                        false, NULL, 0, 0, 0, srcline);
2175 }
2176
2177 static int thread__resolve_callchain_unwind(struct thread *thread,
2178                                             struct callchain_cursor *cursor,
2179                                             struct perf_evsel *evsel,
2180                                             struct perf_sample *sample,
2181                                             int max_stack)
2182 {
2183         /* Can we do dwarf post unwind? */
2184         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2185               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2186                 return 0;
2187
2188         /* Bail out if nothing was captured. */
2189         if ((!sample->user_regs.regs) ||
2190             (!sample->user_stack.size))
2191                 return 0;
2192
2193         return unwind__get_entries(unwind_entry, cursor,
2194                                    thread, sample, max_stack);
2195 }
2196
2197 int thread__resolve_callchain(struct thread *thread,
2198                               struct callchain_cursor *cursor,
2199                               struct perf_evsel *evsel,
2200                               struct perf_sample *sample,
2201                               struct symbol **parent,
2202                               struct addr_location *root_al,
2203                               int max_stack)
2204 {
2205         int ret = 0;
2206
2207         callchain_cursor_reset(&callchain_cursor);
2208
2209         if (callchain_param.order == ORDER_CALLEE) {
2210                 ret = thread__resolve_callchain_sample(thread, cursor,
2211                                                        evsel, sample,
2212                                                        parent, root_al,
2213                                                        max_stack);
2214                 if (ret)
2215                         return ret;
2216                 ret = thread__resolve_callchain_unwind(thread, cursor,
2217                                                        evsel, sample,
2218                                                        max_stack);
2219         } else {
2220                 ret = thread__resolve_callchain_unwind(thread, cursor,
2221                                                        evsel, sample,
2222                                                        max_stack);
2223                 if (ret)
2224                         return ret;
2225                 ret = thread__resolve_callchain_sample(thread, cursor,
2226                                                        evsel, sample,
2227                                                        parent, root_al,
2228                                                        max_stack);
2229         }
2230
2231         return ret;
2232 }
2233
2234 int machine__for_each_thread(struct machine *machine,
2235                              int (*fn)(struct thread *thread, void *p),
2236                              void *priv)
2237 {
2238         struct threads *threads;
2239         struct rb_node *nd;
2240         struct thread *thread;
2241         int rc = 0;
2242         int i;
2243
2244         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2245                 threads = &machine->threads[i];
2246                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2247                         thread = rb_entry(nd, struct thread, rb_node);
2248                         rc = fn(thread, priv);
2249                         if (rc != 0)
2250                                 return rc;
2251                 }
2252
2253                 list_for_each_entry(thread, &threads->dead, node) {
2254                         rc = fn(thread, priv);
2255                         if (rc != 0)
2256                                 return rc;
2257                 }
2258         }
2259         return rc;
2260 }
2261
2262 int machines__for_each_thread(struct machines *machines,
2263                               int (*fn)(struct thread *thread, void *p),
2264                               void *priv)
2265 {
2266         struct rb_node *nd;
2267         int rc = 0;
2268
2269         rc = machine__for_each_thread(&machines->host, fn, priv);
2270         if (rc != 0)
2271                 return rc;
2272
2273         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2274                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2275
2276                 rc = machine__for_each_thread(machine, fn, priv);
2277                 if (rc != 0)
2278                         return rc;
2279         }
2280         return rc;
2281 }
2282
2283 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2284                                   struct target *target, struct thread_map *threads,
2285                                   perf_event__handler_t process, bool data_mmap,
2286                                   unsigned int proc_map_timeout,
2287                                   unsigned int nr_threads_synthesize)
2288 {
2289         if (target__has_task(target))
2290                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2291         else if (target__has_cpu(target))
2292                 return perf_event__synthesize_threads(tool, process,
2293                                                       machine, data_mmap,
2294                                                       proc_map_timeout,
2295                                                       nr_threads_synthesize);
2296         /* command specified */
2297         return 0;
2298 }
2299
2300 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2301 {
2302         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2303                 return -1;
2304
2305         return machine->current_tid[cpu];
2306 }
2307
2308 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2309                              pid_t tid)
2310 {
2311         struct thread *thread;
2312
2313         if (cpu < 0)
2314                 return -EINVAL;
2315
2316         if (!machine->current_tid) {
2317                 int i;
2318
2319                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2320                 if (!machine->current_tid)
2321                         return -ENOMEM;
2322                 for (i = 0; i < MAX_NR_CPUS; i++)
2323                         machine->current_tid[i] = -1;
2324         }
2325
2326         if (cpu >= MAX_NR_CPUS) {
2327                 pr_err("Requested CPU %d too large. ", cpu);
2328                 pr_err("Consider raising MAX_NR_CPUS\n");
2329                 return -EINVAL;
2330         }
2331
2332         machine->current_tid[cpu] = tid;
2333
2334         thread = machine__findnew_thread(machine, pid, tid);
2335         if (!thread)
2336                 return -ENOMEM;
2337
2338         thread->cpu = cpu;
2339         thread__put(thread);
2340
2341         return 0;
2342 }
2343
2344 int machine__get_kernel_start(struct machine *machine)
2345 {
2346         struct map *map = machine__kernel_map(machine);
2347         int err = 0;
2348
2349         /*
2350          * The only addresses above 2^63 are kernel addresses of a 64-bit
2351          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2352          * all addresses including kernel addresses are less than 2^32.  In
2353          * that case (32-bit system), if the kernel mapping is unknown, all
2354          * addresses will be assumed to be in user space - see
2355          * machine__kernel_ip().
2356          */
2357         machine->kernel_start = 1ULL << 63;
2358         if (map) {
2359                 err = map__load(map);
2360                 if (!err)
2361                         machine->kernel_start = map->start;
2362         }
2363         return err;
2364 }
2365
2366 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2367 {
2368         return dsos__findnew(&machine->dsos, filename);
2369 }
2370
2371 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2372 {
2373         struct machine *machine = vmachine;
2374         struct map *map;
2375         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2376
2377         if (sym == NULL)
2378                 return NULL;
2379
2380         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2381         *addrp = map->unmap_ip(map, sym->start);
2382         return sym->name;
2383 }