License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-2.6-block.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32         INIT_LIST_HEAD(&dsos->head);
33         dsos->root = RB_ROOT;
34         pthread_rwlock_init(&dsos->lock, NULL);
35 }
36
37 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
38 {
39         memset(machine, 0, sizeof(*machine));
40         map_groups__init(&machine->kmaps, machine);
41         RB_CLEAR_NODE(&machine->rb_node);
42         dsos__init(&machine->dsos);
43
44         machine->threads = RB_ROOT;
45         pthread_rwlock_init(&machine->threads_lock, NULL);
46         machine->nr_threads = 0;
47         INIT_LIST_HEAD(&machine->dead_threads);
48         machine->last_match = NULL;
49
50         machine->vdso_info = NULL;
51         machine->env = NULL;
52
53         machine->pid = pid;
54
55         machine->id_hdr_size = 0;
56         machine->kptr_restrict_warned = false;
57         machine->comm_exec = false;
58         machine->kernel_start = 0;
59
60         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
61
62         machine->root_dir = strdup(root_dir);
63         if (machine->root_dir == NULL)
64                 return -ENOMEM;
65
66         if (pid != HOST_KERNEL_ID) {
67                 struct thread *thread = machine__findnew_thread(machine, -1,
68                                                                 pid);
69                 char comm[64];
70
71                 if (thread == NULL)
72                         return -ENOMEM;
73
74                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
75                 thread__set_comm(thread, comm, 0);
76                 thread__put(thread);
77         }
78
79         machine->current_tid = NULL;
80
81         return 0;
82 }
83
84 struct machine *machine__new_host(void)
85 {
86         struct machine *machine = malloc(sizeof(*machine));
87
88         if (machine != NULL) {
89                 machine__init(machine, "", HOST_KERNEL_ID);
90
91                 if (machine__create_kernel_maps(machine) < 0)
92                         goto out_delete;
93         }
94
95         return machine;
96 out_delete:
97         free(machine);
98         return NULL;
99 }
100
101 struct machine *machine__new_kallsyms(void)
102 {
103         struct machine *machine = machine__new_host();
104         /*
105          * FIXME:
106          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
107          *    functions and data objects.
108          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
109          *    ask for not using the kcore parsing code, once this one is fixed
110          *    to create a map per module.
111          */
112         if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
113                 machine__delete(machine);
114                 machine = NULL;
115         }
116
117         return machine;
118 }
119
120 static void dsos__purge(struct dsos *dsos)
121 {
122         struct dso *pos, *n;
123
124         pthread_rwlock_wrlock(&dsos->lock);
125
126         list_for_each_entry_safe(pos, n, &dsos->head, node) {
127                 RB_CLEAR_NODE(&pos->rb_node);
128                 pos->root = NULL;
129                 list_del_init(&pos->node);
130                 dso__put(pos);
131         }
132
133         pthread_rwlock_unlock(&dsos->lock);
134 }
135
136 static void dsos__exit(struct dsos *dsos)
137 {
138         dsos__purge(dsos);
139         pthread_rwlock_destroy(&dsos->lock);
140 }
141
142 void machine__delete_threads(struct machine *machine)
143 {
144         struct rb_node *nd;
145
146         pthread_rwlock_wrlock(&machine->threads_lock);
147         nd = rb_first(&machine->threads);
148         while (nd) {
149                 struct thread *t = rb_entry(nd, struct thread, rb_node);
150
151                 nd = rb_next(nd);
152                 __machine__remove_thread(machine, t, false);
153         }
154         pthread_rwlock_unlock(&machine->threads_lock);
155 }
156
157 void machine__exit(struct machine *machine)
158 {
159         machine__destroy_kernel_maps(machine);
160         map_groups__exit(&machine->kmaps);
161         dsos__exit(&machine->dsos);
162         machine__exit_vdso(machine);
163         zfree(&machine->root_dir);
164         zfree(&machine->current_tid);
165         pthread_rwlock_destroy(&machine->threads_lock);
166 }
167
168 void machine__delete(struct machine *machine)
169 {
170         if (machine) {
171                 machine__exit(machine);
172                 free(machine);
173         }
174 }
175
176 void machines__init(struct machines *machines)
177 {
178         machine__init(&machines->host, "", HOST_KERNEL_ID);
179         machines->guests = RB_ROOT;
180 }
181
182 void machines__exit(struct machines *machines)
183 {
184         machine__exit(&machines->host);
185         /* XXX exit guest */
186 }
187
188 struct machine *machines__add(struct machines *machines, pid_t pid,
189                               const char *root_dir)
190 {
191         struct rb_node **p = &machines->guests.rb_node;
192         struct rb_node *parent = NULL;
193         struct machine *pos, *machine = malloc(sizeof(*machine));
194
195         if (machine == NULL)
196                 return NULL;
197
198         if (machine__init(machine, root_dir, pid) != 0) {
199                 free(machine);
200                 return NULL;
201         }
202
203         while (*p != NULL) {
204                 parent = *p;
205                 pos = rb_entry(parent, struct machine, rb_node);
206                 if (pid < pos->pid)
207                         p = &(*p)->rb_left;
208                 else
209                         p = &(*p)->rb_right;
210         }
211
212         rb_link_node(&machine->rb_node, parent, p);
213         rb_insert_color(&machine->rb_node, &machines->guests);
214
215         return machine;
216 }
217
218 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
219 {
220         struct rb_node *nd;
221
222         machines->host.comm_exec = comm_exec;
223
224         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
225                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
226
227                 machine->comm_exec = comm_exec;
228         }
229 }
230
231 struct machine *machines__find(struct machines *machines, pid_t pid)
232 {
233         struct rb_node **p = &machines->guests.rb_node;
234         struct rb_node *parent = NULL;
235         struct machine *machine;
236         struct machine *default_machine = NULL;
237
238         if (pid == HOST_KERNEL_ID)
239                 return &machines->host;
240
241         while (*p != NULL) {
242                 parent = *p;
243                 machine = rb_entry(parent, struct machine, rb_node);
244                 if (pid < machine->pid)
245                         p = &(*p)->rb_left;
246                 else if (pid > machine->pid)
247                         p = &(*p)->rb_right;
248                 else
249                         return machine;
250                 if (!machine->pid)
251                         default_machine = machine;
252         }
253
254         return default_machine;
255 }
256
257 struct machine *machines__findnew(struct machines *machines, pid_t pid)
258 {
259         char path[PATH_MAX];
260         const char *root_dir = "";
261         struct machine *machine = machines__find(machines, pid);
262
263         if (machine && (machine->pid == pid))
264                 goto out;
265
266         if ((pid != HOST_KERNEL_ID) &&
267             (pid != DEFAULT_GUEST_KERNEL_ID) &&
268             (symbol_conf.guestmount)) {
269                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
270                 if (access(path, R_OK)) {
271                         static struct strlist *seen;
272
273                         if (!seen)
274                                 seen = strlist__new(NULL, NULL);
275
276                         if (!strlist__has_entry(seen, path)) {
277                                 pr_err("Can't access file %s\n", path);
278                                 strlist__add(seen, path);
279                         }
280                         machine = NULL;
281                         goto out;
282                 }
283                 root_dir = path;
284         }
285
286         machine = machines__add(machines, pid, root_dir);
287 out:
288         return machine;
289 }
290
291 void machines__process_guests(struct machines *machines,
292                               machine__process_t process, void *data)
293 {
294         struct rb_node *nd;
295
296         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
297                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
298                 process(pos, data);
299         }
300 }
301
302 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
303 {
304         if (machine__is_host(machine))
305                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
306         else if (machine__is_default_guest(machine))
307                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
308         else {
309                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
310                          machine->pid);
311         }
312
313         return bf;
314 }
315
316 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
317 {
318         struct rb_node *node;
319         struct machine *machine;
320
321         machines->host.id_hdr_size = id_hdr_size;
322
323         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
324                 machine = rb_entry(node, struct machine, rb_node);
325                 machine->id_hdr_size = id_hdr_size;
326         }
327
328         return;
329 }
330
331 static void machine__update_thread_pid(struct machine *machine,
332                                        struct thread *th, pid_t pid)
333 {
334         struct thread *leader;
335
336         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
337                 return;
338
339         th->pid_ = pid;
340
341         if (th->pid_ == th->tid)
342                 return;
343
344         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
345         if (!leader)
346                 goto out_err;
347
348         if (!leader->mg)
349                 leader->mg = map_groups__new(machine);
350
351         if (!leader->mg)
352                 goto out_err;
353
354         if (th->mg == leader->mg)
355                 return;
356
357         if (th->mg) {
358                 /*
359                  * Maps are created from MMAP events which provide the pid and
360                  * tid.  Consequently there never should be any maps on a thread
361                  * with an unknown pid.  Just print an error if there are.
362                  */
363                 if (!map_groups__empty(th->mg))
364                         pr_err("Discarding thread maps for %d:%d\n",
365                                th->pid_, th->tid);
366                 map_groups__put(th->mg);
367         }
368
369         th->mg = map_groups__get(leader->mg);
370 out_put:
371         thread__put(leader);
372         return;
373 out_err:
374         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
375         goto out_put;
376 }
377
378 /*
379  * Caller must eventually drop thread->refcnt returned with a successful
380  * lookup/new thread inserted.
381  */
382 static struct thread *____machine__findnew_thread(struct machine *machine,
383                                                   pid_t pid, pid_t tid,
384                                                   bool create)
385 {
386         struct rb_node **p = &machine->threads.rb_node;
387         struct rb_node *parent = NULL;
388         struct thread *th;
389
390         /*
391          * Front-end cache - TID lookups come in blocks,
392          * so most of the time we dont have to look up
393          * the full rbtree:
394          */
395         th = machine->last_match;
396         if (th != NULL) {
397                 if (th->tid == tid) {
398                         machine__update_thread_pid(machine, th, pid);
399                         return thread__get(th);
400                 }
401
402                 machine->last_match = NULL;
403         }
404
405         while (*p != NULL) {
406                 parent = *p;
407                 th = rb_entry(parent, struct thread, rb_node);
408
409                 if (th->tid == tid) {
410                         machine->last_match = th;
411                         machine__update_thread_pid(machine, th, pid);
412                         return thread__get(th);
413                 }
414
415                 if (tid < th->tid)
416                         p = &(*p)->rb_left;
417                 else
418                         p = &(*p)->rb_right;
419         }
420
421         if (!create)
422                 return NULL;
423
424         th = thread__new(pid, tid);
425         if (th != NULL) {
426                 rb_link_node(&th->rb_node, parent, p);
427                 rb_insert_color(&th->rb_node, &machine->threads);
428
429                 /*
430                  * We have to initialize map_groups separately
431                  * after rb tree is updated.
432                  *
433                  * The reason is that we call machine__findnew_thread
434                  * within thread__init_map_groups to find the thread
435                  * leader and that would screwed the rb tree.
436                  */
437                 if (thread__init_map_groups(th, machine)) {
438                         rb_erase_init(&th->rb_node, &machine->threads);
439                         RB_CLEAR_NODE(&th->rb_node);
440                         thread__put(th);
441                         return NULL;
442                 }
443                 /*
444                  * It is now in the rbtree, get a ref
445                  */
446                 thread__get(th);
447                 machine->last_match = th;
448                 ++machine->nr_threads;
449         }
450
451         return th;
452 }
453
454 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
455 {
456         return ____machine__findnew_thread(machine, pid, tid, true);
457 }
458
459 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
460                                        pid_t tid)
461 {
462         struct thread *th;
463
464         pthread_rwlock_wrlock(&machine->threads_lock);
465         th = __machine__findnew_thread(machine, pid, tid);
466         pthread_rwlock_unlock(&machine->threads_lock);
467         return th;
468 }
469
470 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
471                                     pid_t tid)
472 {
473         struct thread *th;
474         pthread_rwlock_rdlock(&machine->threads_lock);
475         th =  ____machine__findnew_thread(machine, pid, tid, false);
476         pthread_rwlock_unlock(&machine->threads_lock);
477         return th;
478 }
479
480 struct comm *machine__thread_exec_comm(struct machine *machine,
481                                        struct thread *thread)
482 {
483         if (machine->comm_exec)
484                 return thread__exec_comm(thread);
485         else
486                 return thread__comm(thread);
487 }
488
489 int machine__process_comm_event(struct machine *machine, union perf_event *event,
490                                 struct perf_sample *sample)
491 {
492         struct thread *thread = machine__findnew_thread(machine,
493                                                         event->comm.pid,
494                                                         event->comm.tid);
495         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
496         int err = 0;
497
498         if (exec)
499                 machine->comm_exec = true;
500
501         if (dump_trace)
502                 perf_event__fprintf_comm(event, stdout);
503
504         if (thread == NULL ||
505             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
506                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
507                 err = -1;
508         }
509
510         thread__put(thread);
511
512         return err;
513 }
514
515 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
516                                       union perf_event *event,
517                                       struct perf_sample *sample __maybe_unused)
518 {
519         struct thread *thread = machine__findnew_thread(machine,
520                                                         event->namespaces.pid,
521                                                         event->namespaces.tid);
522         int err = 0;
523
524         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
525                   "\nWARNING: kernel seems to support more namespaces than perf"
526                   " tool.\nTry updating the perf tool..\n\n");
527
528         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
529                   "\nWARNING: perf tool seems to support more namespaces than"
530                   " the kernel.\nTry updating the kernel..\n\n");
531
532         if (dump_trace)
533                 perf_event__fprintf_namespaces(event, stdout);
534
535         if (thread == NULL ||
536             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
537                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
538                 err = -1;
539         }
540
541         thread__put(thread);
542
543         return err;
544 }
545
546 int machine__process_lost_event(struct machine *machine __maybe_unused,
547                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
548 {
549         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
550                     event->lost.id, event->lost.lost);
551         return 0;
552 }
553
554 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
555                                         union perf_event *event, struct perf_sample *sample)
556 {
557         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
558                     sample->id, event->lost_samples.lost);
559         return 0;
560 }
561
562 static struct dso *machine__findnew_module_dso(struct machine *machine,
563                                                struct kmod_path *m,
564                                                const char *filename)
565 {
566         struct dso *dso;
567
568         pthread_rwlock_wrlock(&machine->dsos.lock);
569
570         dso = __dsos__find(&machine->dsos, m->name, true);
571         if (!dso) {
572                 dso = __dsos__addnew(&machine->dsos, m->name);
573                 if (dso == NULL)
574                         goto out_unlock;
575
576                 dso__set_module_info(dso, m, machine);
577                 dso__set_long_name(dso, strdup(filename), true);
578         }
579
580         dso__get(dso);
581 out_unlock:
582         pthread_rwlock_unlock(&machine->dsos.lock);
583         return dso;
584 }
585
586 int machine__process_aux_event(struct machine *machine __maybe_unused,
587                                union perf_event *event)
588 {
589         if (dump_trace)
590                 perf_event__fprintf_aux(event, stdout);
591         return 0;
592 }
593
594 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
595                                         union perf_event *event)
596 {
597         if (dump_trace)
598                 perf_event__fprintf_itrace_start(event, stdout);
599         return 0;
600 }
601
602 int machine__process_switch_event(struct machine *machine __maybe_unused,
603                                   union perf_event *event)
604 {
605         if (dump_trace)
606                 perf_event__fprintf_switch(event, stdout);
607         return 0;
608 }
609
610 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
611 {
612         const char *dup_filename;
613
614         if (!filename || !dso || !dso->long_name)
615                 return;
616         if (dso->long_name[0] != '[')
617                 return;
618         if (!strchr(filename, '/'))
619                 return;
620
621         dup_filename = strdup(filename);
622         if (!dup_filename)
623                 return;
624
625         dso__set_long_name(dso, dup_filename, true);
626 }
627
628 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
629                                         const char *filename)
630 {
631         struct map *map = NULL;
632         struct dso *dso = NULL;
633         struct kmod_path m;
634
635         if (kmod_path__parse_name(&m, filename))
636                 return NULL;
637
638         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
639                                        m.name);
640         if (map) {
641                 /*
642                  * If the map's dso is an offline module, give dso__load()
643                  * a chance to find the file path of that module by fixing
644                  * long_name.
645                  */
646                 dso__adjust_kmod_long_name(map->dso, filename);
647                 goto out;
648         }
649
650         dso = machine__findnew_module_dso(machine, &m, filename);
651         if (dso == NULL)
652                 goto out;
653
654         map = map__new2(start, dso, MAP__FUNCTION);
655         if (map == NULL)
656                 goto out;
657
658         map_groups__insert(&machine->kmaps, map);
659
660         /* Put the map here because map_groups__insert alread got it */
661         map__put(map);
662 out:
663         /* put the dso here, corresponding to  machine__findnew_module_dso */
664         dso__put(dso);
665         free(m.name);
666         return map;
667 }
668
669 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
670 {
671         struct rb_node *nd;
672         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
673
674         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
675                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
676                 ret += __dsos__fprintf(&pos->dsos.head, fp);
677         }
678
679         return ret;
680 }
681
682 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
683                                      bool (skip)(struct dso *dso, int parm), int parm)
684 {
685         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
686 }
687
688 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
689                                      bool (skip)(struct dso *dso, int parm), int parm)
690 {
691         struct rb_node *nd;
692         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
693
694         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
695                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
696                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
697         }
698         return ret;
699 }
700
701 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
702 {
703         int i;
704         size_t printed = 0;
705         struct dso *kdso = machine__kernel_map(machine)->dso;
706
707         if (kdso->has_build_id) {
708                 char filename[PATH_MAX];
709                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
710                                            false))
711                         printed += fprintf(fp, "[0] %s\n", filename);
712         }
713
714         for (i = 0; i < vmlinux_path__nr_entries; ++i)
715                 printed += fprintf(fp, "[%d] %s\n",
716                                    i + kdso->has_build_id, vmlinux_path[i]);
717
718         return printed;
719 }
720
721 size_t machine__fprintf(struct machine *machine, FILE *fp)
722 {
723         size_t ret;
724         struct rb_node *nd;
725
726         pthread_rwlock_rdlock(&machine->threads_lock);
727
728         ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
729
730         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
731                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
732
733                 ret += thread__fprintf(pos, fp);
734         }
735
736         pthread_rwlock_unlock(&machine->threads_lock);
737
738         return ret;
739 }
740
741 static struct dso *machine__get_kernel(struct machine *machine)
742 {
743         const char *vmlinux_name = NULL;
744         struct dso *kernel;
745
746         if (machine__is_host(machine)) {
747                 vmlinux_name = symbol_conf.vmlinux_name;
748                 if (!vmlinux_name)
749                         vmlinux_name = DSO__NAME_KALLSYMS;
750
751                 kernel = machine__findnew_kernel(machine, vmlinux_name,
752                                                  "[kernel]", DSO_TYPE_KERNEL);
753         } else {
754                 char bf[PATH_MAX];
755
756                 if (machine__is_default_guest(machine))
757                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
758                 if (!vmlinux_name)
759                         vmlinux_name = machine__mmap_name(machine, bf,
760                                                           sizeof(bf));
761
762                 kernel = machine__findnew_kernel(machine, vmlinux_name,
763                                                  "[guest.kernel]",
764                                                  DSO_TYPE_GUEST_KERNEL);
765         }
766
767         if (kernel != NULL && (!kernel->has_build_id))
768                 dso__read_running_kernel_build_id(kernel, machine);
769
770         return kernel;
771 }
772
773 struct process_args {
774         u64 start;
775 };
776
777 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
778                                            size_t bufsz)
779 {
780         if (machine__is_default_guest(machine))
781                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
782         else
783                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
784 }
785
786 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
787
788 /* Figure out the start address of kernel map from /proc/kallsyms.
789  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
790  * symbol_name if it's not that important.
791  */
792 static int machine__get_running_kernel_start(struct machine *machine,
793                                              const char **symbol_name, u64 *start)
794 {
795         char filename[PATH_MAX];
796         int i, err = -1;
797         const char *name;
798         u64 addr = 0;
799
800         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
801
802         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
803                 return 0;
804
805         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
806                 err = kallsyms__get_function_start(filename, name, &addr);
807                 if (!err)
808                         break;
809         }
810
811         if (err)
812                 return -1;
813
814         if (symbol_name)
815                 *symbol_name = name;
816
817         *start = addr;
818         return 0;
819 }
820
821 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
822 {
823         int type;
824         u64 start = 0;
825
826         if (machine__get_running_kernel_start(machine, NULL, &start))
827                 return -1;
828
829         /* In case of renewal the kernel map, destroy previous one */
830         machine__destroy_kernel_maps(machine);
831
832         for (type = 0; type < MAP__NR_TYPES; ++type) {
833                 struct kmap *kmap;
834                 struct map *map;
835
836                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
837                 if (machine->vmlinux_maps[type] == NULL)
838                         return -1;
839
840                 machine->vmlinux_maps[type]->map_ip =
841                         machine->vmlinux_maps[type]->unmap_ip =
842                                 identity__map_ip;
843                 map = __machine__kernel_map(machine, type);
844                 kmap = map__kmap(map);
845                 if (!kmap)
846                         return -1;
847
848                 kmap->kmaps = &machine->kmaps;
849                 map_groups__insert(&machine->kmaps, map);
850         }
851
852         return 0;
853 }
854
855 void machine__destroy_kernel_maps(struct machine *machine)
856 {
857         int type;
858
859         for (type = 0; type < MAP__NR_TYPES; ++type) {
860                 struct kmap *kmap;
861                 struct map *map = __machine__kernel_map(machine, type);
862
863                 if (map == NULL)
864                         continue;
865
866                 kmap = map__kmap(map);
867                 map_groups__remove(&machine->kmaps, map);
868                 if (kmap && kmap->ref_reloc_sym) {
869                         /*
870                          * ref_reloc_sym is shared among all maps, so free just
871                          * on one of them.
872                          */
873                         if (type == MAP__FUNCTION) {
874                                 zfree((char **)&kmap->ref_reloc_sym->name);
875                                 zfree(&kmap->ref_reloc_sym);
876                         } else
877                                 kmap->ref_reloc_sym = NULL;
878                 }
879
880                 map__put(machine->vmlinux_maps[type]);
881                 machine->vmlinux_maps[type] = NULL;
882         }
883 }
884
885 int machines__create_guest_kernel_maps(struct machines *machines)
886 {
887         int ret = 0;
888         struct dirent **namelist = NULL;
889         int i, items = 0;
890         char path[PATH_MAX];
891         pid_t pid;
892         char *endp;
893
894         if (symbol_conf.default_guest_vmlinux_name ||
895             symbol_conf.default_guest_modules ||
896             symbol_conf.default_guest_kallsyms) {
897                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
898         }
899
900         if (symbol_conf.guestmount) {
901                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
902                 if (items <= 0)
903                         return -ENOENT;
904                 for (i = 0; i < items; i++) {
905                         if (!isdigit(namelist[i]->d_name[0])) {
906                                 /* Filter out . and .. */
907                                 continue;
908                         }
909                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
910                         if ((*endp != '\0') ||
911                             (endp == namelist[i]->d_name) ||
912                             (errno == ERANGE)) {
913                                 pr_debug("invalid directory (%s). Skipping.\n",
914                                          namelist[i]->d_name);
915                                 continue;
916                         }
917                         sprintf(path, "%s/%s/proc/kallsyms",
918                                 symbol_conf.guestmount,
919                                 namelist[i]->d_name);
920                         ret = access(path, R_OK);
921                         if (ret) {
922                                 pr_debug("Can't access file %s\n", path);
923                                 goto failure;
924                         }
925                         machines__create_kernel_maps(machines, pid);
926                 }
927 failure:
928                 free(namelist);
929         }
930
931         return ret;
932 }
933
934 void machines__destroy_kernel_maps(struct machines *machines)
935 {
936         struct rb_node *next = rb_first(&machines->guests);
937
938         machine__destroy_kernel_maps(&machines->host);
939
940         while (next) {
941                 struct machine *pos = rb_entry(next, struct machine, rb_node);
942
943                 next = rb_next(&pos->rb_node);
944                 rb_erase(&pos->rb_node, &machines->guests);
945                 machine__delete(pos);
946         }
947 }
948
949 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
950 {
951         struct machine *machine = machines__findnew(machines, pid);
952
953         if (machine == NULL)
954                 return -1;
955
956         return machine__create_kernel_maps(machine);
957 }
958
959 int __machine__load_kallsyms(struct machine *machine, const char *filename,
960                              enum map_type type, bool no_kcore)
961 {
962         struct map *map = machine__kernel_map(machine);
963         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
964
965         if (ret > 0) {
966                 dso__set_loaded(map->dso, type);
967                 /*
968                  * Since /proc/kallsyms will have multiple sessions for the
969                  * kernel, with modules between them, fixup the end of all
970                  * sections.
971                  */
972                 __map_groups__fixup_end(&machine->kmaps, type);
973         }
974
975         return ret;
976 }
977
978 int machine__load_kallsyms(struct machine *machine, const char *filename,
979                            enum map_type type)
980 {
981         return __machine__load_kallsyms(machine, filename, type, false);
982 }
983
984 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
985 {
986         struct map *map = machine__kernel_map(machine);
987         int ret = dso__load_vmlinux_path(map->dso, map);
988
989         if (ret > 0)
990                 dso__set_loaded(map->dso, type);
991
992         return ret;
993 }
994
995 static void map_groups__fixup_end(struct map_groups *mg)
996 {
997         int i;
998         for (i = 0; i < MAP__NR_TYPES; ++i)
999                 __map_groups__fixup_end(mg, i);
1000 }
1001
1002 static char *get_kernel_version(const char *root_dir)
1003 {
1004         char version[PATH_MAX];
1005         FILE *file;
1006         char *name, *tmp;
1007         const char *prefix = "Linux version ";
1008
1009         sprintf(version, "%s/proc/version", root_dir);
1010         file = fopen(version, "r");
1011         if (!file)
1012                 return NULL;
1013
1014         version[0] = '\0';
1015         tmp = fgets(version, sizeof(version), file);
1016         fclose(file);
1017
1018         name = strstr(version, prefix);
1019         if (!name)
1020                 return NULL;
1021         name += strlen(prefix);
1022         tmp = strchr(name, ' ');
1023         if (tmp)
1024                 *tmp = '\0';
1025
1026         return strdup(name);
1027 }
1028
1029 static bool is_kmod_dso(struct dso *dso)
1030 {
1031         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1032                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1033 }
1034
1035 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1036                                        struct kmod_path *m)
1037 {
1038         struct map *map;
1039         char *long_name;
1040
1041         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1042         if (map == NULL)
1043                 return 0;
1044
1045         long_name = strdup(path);
1046         if (long_name == NULL)
1047                 return -ENOMEM;
1048
1049         dso__set_long_name(map->dso, long_name, true);
1050         dso__kernel_module_get_build_id(map->dso, "");
1051
1052         /*
1053          * Full name could reveal us kmod compression, so
1054          * we need to update the symtab_type if needed.
1055          */
1056         if (m->comp && is_kmod_dso(map->dso))
1057                 map->dso->symtab_type++;
1058
1059         return 0;
1060 }
1061
1062 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1063                                 const char *dir_name, int depth)
1064 {
1065         struct dirent *dent;
1066         DIR *dir = opendir(dir_name);
1067         int ret = 0;
1068
1069         if (!dir) {
1070                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1071                 return -1;
1072         }
1073
1074         while ((dent = readdir(dir)) != NULL) {
1075                 char path[PATH_MAX];
1076                 struct stat st;
1077
1078                 /*sshfs might return bad dent->d_type, so we have to stat*/
1079                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1080                 if (stat(path, &st))
1081                         continue;
1082
1083                 if (S_ISDIR(st.st_mode)) {
1084                         if (!strcmp(dent->d_name, ".") ||
1085                             !strcmp(dent->d_name, ".."))
1086                                 continue;
1087
1088                         /* Do not follow top-level source and build symlinks */
1089                         if (depth == 0) {
1090                                 if (!strcmp(dent->d_name, "source") ||
1091                                     !strcmp(dent->d_name, "build"))
1092                                         continue;
1093                         }
1094
1095                         ret = map_groups__set_modules_path_dir(mg, path,
1096                                                                depth + 1);
1097                         if (ret < 0)
1098                                 goto out;
1099                 } else {
1100                         struct kmod_path m;
1101
1102                         ret = kmod_path__parse_name(&m, dent->d_name);
1103                         if (ret)
1104                                 goto out;
1105
1106                         if (m.kmod)
1107                                 ret = map_groups__set_module_path(mg, path, &m);
1108
1109                         free(m.name);
1110
1111                         if (ret)
1112                                 goto out;
1113                 }
1114         }
1115
1116 out:
1117         closedir(dir);
1118         return ret;
1119 }
1120
1121 static int machine__set_modules_path(struct machine *machine)
1122 {
1123         char *version;
1124         char modules_path[PATH_MAX];
1125
1126         version = get_kernel_version(machine->root_dir);
1127         if (!version)
1128                 return -1;
1129
1130         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1131                  machine->root_dir, version);
1132         free(version);
1133
1134         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1135 }
1136 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1137                                 const char *name __maybe_unused)
1138 {
1139         return 0;
1140 }
1141
1142 static int machine__create_module(void *arg, const char *name, u64 start,
1143                                   u64 size)
1144 {
1145         struct machine *machine = arg;
1146         struct map *map;
1147
1148         if (arch__fix_module_text_start(&start, name) < 0)
1149                 return -1;
1150
1151         map = machine__findnew_module_map(machine, start, name);
1152         if (map == NULL)
1153                 return -1;
1154         map->end = start + size;
1155
1156         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1157
1158         return 0;
1159 }
1160
1161 static int machine__create_modules(struct machine *machine)
1162 {
1163         const char *modules;
1164         char path[PATH_MAX];
1165
1166         if (machine__is_default_guest(machine)) {
1167                 modules = symbol_conf.default_guest_modules;
1168         } else {
1169                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1170                 modules = path;
1171         }
1172
1173         if (symbol__restricted_filename(modules, "/proc/modules"))
1174                 return -1;
1175
1176         if (modules__parse(modules, machine, machine__create_module))
1177                 return -1;
1178
1179         if (!machine__set_modules_path(machine))
1180                 return 0;
1181
1182         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1183
1184         return 0;
1185 }
1186
1187 int machine__create_kernel_maps(struct machine *machine)
1188 {
1189         struct dso *kernel = machine__get_kernel(machine);
1190         const char *name = NULL;
1191         u64 addr = 0;
1192         int ret;
1193
1194         if (kernel == NULL)
1195                 return -1;
1196
1197         ret = __machine__create_kernel_maps(machine, kernel);
1198         dso__put(kernel);
1199         if (ret < 0)
1200                 return -1;
1201
1202         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1203                 if (machine__is_host(machine))
1204                         pr_debug("Problems creating module maps, "
1205                                  "continuing anyway...\n");
1206                 else
1207                         pr_debug("Problems creating module maps for guest %d, "
1208                                  "continuing anyway...\n", machine->pid);
1209         }
1210
1211         /*
1212          * Now that we have all the maps created, just set the ->end of them:
1213          */
1214         map_groups__fixup_end(&machine->kmaps);
1215
1216         if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1217                 if (name &&
1218                     maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1219                         machine__destroy_kernel_maps(machine);
1220                         return -1;
1221                 }
1222         }
1223
1224         return 0;
1225 }
1226
1227 static void machine__set_kernel_mmap_len(struct machine *machine,
1228                                          union perf_event *event)
1229 {
1230         int i;
1231
1232         for (i = 0; i < MAP__NR_TYPES; i++) {
1233                 machine->vmlinux_maps[i]->start = event->mmap.start;
1234                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1235                                                    event->mmap.len);
1236                 /*
1237                  * Be a bit paranoid here, some perf.data file came with
1238                  * a zero sized synthesized MMAP event for the kernel.
1239                  */
1240                 if (machine->vmlinux_maps[i]->end == 0)
1241                         machine->vmlinux_maps[i]->end = ~0ULL;
1242         }
1243 }
1244
1245 static bool machine__uses_kcore(struct machine *machine)
1246 {
1247         struct dso *dso;
1248
1249         list_for_each_entry(dso, &machine->dsos.head, node) {
1250                 if (dso__is_kcore(dso))
1251                         return true;
1252         }
1253
1254         return false;
1255 }
1256
1257 static int machine__process_kernel_mmap_event(struct machine *machine,
1258                                               union perf_event *event)
1259 {
1260         struct map *map;
1261         char kmmap_prefix[PATH_MAX];
1262         enum dso_kernel_type kernel_type;
1263         bool is_kernel_mmap;
1264
1265         /* If we have maps from kcore then we do not need or want any others */
1266         if (machine__uses_kcore(machine))
1267                 return 0;
1268
1269         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1270         if (machine__is_host(machine))
1271                 kernel_type = DSO_TYPE_KERNEL;
1272         else
1273                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1274
1275         is_kernel_mmap = memcmp(event->mmap.filename,
1276                                 kmmap_prefix,
1277                                 strlen(kmmap_prefix) - 1) == 0;
1278         if (event->mmap.filename[0] == '/' ||
1279             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1280                 map = machine__findnew_module_map(machine, event->mmap.start,
1281                                                   event->mmap.filename);
1282                 if (map == NULL)
1283                         goto out_problem;
1284
1285                 map->end = map->start + event->mmap.len;
1286         } else if (is_kernel_mmap) {
1287                 const char *symbol_name = (event->mmap.filename +
1288                                 strlen(kmmap_prefix));
1289                 /*
1290                  * Should be there already, from the build-id table in
1291                  * the header.
1292                  */
1293                 struct dso *kernel = NULL;
1294                 struct dso *dso;
1295
1296                 pthread_rwlock_rdlock(&machine->dsos.lock);
1297
1298                 list_for_each_entry(dso, &machine->dsos.head, node) {
1299
1300                         /*
1301                          * The cpumode passed to is_kernel_module is not the
1302                          * cpumode of *this* event. If we insist on passing
1303                          * correct cpumode to is_kernel_module, we should
1304                          * record the cpumode when we adding this dso to the
1305                          * linked list.
1306                          *
1307                          * However we don't really need passing correct
1308                          * cpumode.  We know the correct cpumode must be kernel
1309                          * mode (if not, we should not link it onto kernel_dsos
1310                          * list).
1311                          *
1312                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1313                          * is_kernel_module() treats it as a kernel cpumode.
1314                          */
1315
1316                         if (!dso->kernel ||
1317                             is_kernel_module(dso->long_name,
1318                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1319                                 continue;
1320
1321
1322                         kernel = dso;
1323                         break;
1324                 }
1325
1326                 pthread_rwlock_unlock(&machine->dsos.lock);
1327
1328                 if (kernel == NULL)
1329                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1330                 if (kernel == NULL)
1331                         goto out_problem;
1332
1333                 kernel->kernel = kernel_type;
1334                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1335                         dso__put(kernel);
1336                         goto out_problem;
1337                 }
1338
1339                 if (strstr(kernel->long_name, "vmlinux"))
1340                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1341
1342                 machine__set_kernel_mmap_len(machine, event);
1343
1344                 /*
1345                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1346                  * symbol. Effectively having zero here means that at record
1347                  * time /proc/sys/kernel/kptr_restrict was non zero.
1348                  */
1349                 if (event->mmap.pgoff != 0) {
1350                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1351                                                          symbol_name,
1352                                                          event->mmap.pgoff);
1353                 }
1354
1355                 if (machine__is_default_guest(machine)) {
1356                         /*
1357                          * preload dso of guest kernel and modules
1358                          */
1359                         dso__load(kernel, machine__kernel_map(machine));
1360                 }
1361         }
1362         return 0;
1363 out_problem:
1364         return -1;
1365 }
1366
1367 int machine__process_mmap2_event(struct machine *machine,
1368                                  union perf_event *event,
1369                                  struct perf_sample *sample)
1370 {
1371         struct thread *thread;
1372         struct map *map;
1373         enum map_type type;
1374         int ret = 0;
1375
1376         if (dump_trace)
1377                 perf_event__fprintf_mmap2(event, stdout);
1378
1379         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1380             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1381                 ret = machine__process_kernel_mmap_event(machine, event);
1382                 if (ret < 0)
1383                         goto out_problem;
1384                 return 0;
1385         }
1386
1387         thread = machine__findnew_thread(machine, event->mmap2.pid,
1388                                         event->mmap2.tid);
1389         if (thread == NULL)
1390                 goto out_problem;
1391
1392         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1393                 type = MAP__VARIABLE;
1394         else
1395                 type = MAP__FUNCTION;
1396
1397         map = map__new(machine, event->mmap2.start,
1398                         event->mmap2.len, event->mmap2.pgoff,
1399                         event->mmap2.maj,
1400                         event->mmap2.min, event->mmap2.ino,
1401                         event->mmap2.ino_generation,
1402                         event->mmap2.prot,
1403                         event->mmap2.flags,
1404                         event->mmap2.filename, type, thread);
1405
1406         if (map == NULL)
1407                 goto out_problem_map;
1408
1409         ret = thread__insert_map(thread, map);
1410         if (ret)
1411                 goto out_problem_insert;
1412
1413         thread__put(thread);
1414         map__put(map);
1415         return 0;
1416
1417 out_problem_insert:
1418         map__put(map);
1419 out_problem_map:
1420         thread__put(thread);
1421 out_problem:
1422         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1423         return 0;
1424 }
1425
1426 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1427                                 struct perf_sample *sample)
1428 {
1429         struct thread *thread;
1430         struct map *map;
1431         enum map_type type;
1432         int ret = 0;
1433
1434         if (dump_trace)
1435                 perf_event__fprintf_mmap(event, stdout);
1436
1437         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1438             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1439                 ret = machine__process_kernel_mmap_event(machine, event);
1440                 if (ret < 0)
1441                         goto out_problem;
1442                 return 0;
1443         }
1444
1445         thread = machine__findnew_thread(machine, event->mmap.pid,
1446                                          event->mmap.tid);
1447         if (thread == NULL)
1448                 goto out_problem;
1449
1450         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1451                 type = MAP__VARIABLE;
1452         else
1453                 type = MAP__FUNCTION;
1454
1455         map = map__new(machine, event->mmap.start,
1456                         event->mmap.len, event->mmap.pgoff,
1457                         0, 0, 0, 0, 0, 0,
1458                         event->mmap.filename,
1459                         type, thread);
1460
1461         if (map == NULL)
1462                 goto out_problem_map;
1463
1464         ret = thread__insert_map(thread, map);
1465         if (ret)
1466                 goto out_problem_insert;
1467
1468         thread__put(thread);
1469         map__put(map);
1470         return 0;
1471
1472 out_problem_insert:
1473         map__put(map);
1474 out_problem_map:
1475         thread__put(thread);
1476 out_problem:
1477         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1478         return 0;
1479 }
1480
1481 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1482 {
1483         if (machine->last_match == th)
1484                 machine->last_match = NULL;
1485
1486         BUG_ON(refcount_read(&th->refcnt) == 0);
1487         if (lock)
1488                 pthread_rwlock_wrlock(&machine->threads_lock);
1489         rb_erase_init(&th->rb_node, &machine->threads);
1490         RB_CLEAR_NODE(&th->rb_node);
1491         --machine->nr_threads;
1492         /*
1493          * Move it first to the dead_threads list, then drop the reference,
1494          * if this is the last reference, then the thread__delete destructor
1495          * will be called and we will remove it from the dead_threads list.
1496          */
1497         list_add_tail(&th->node, &machine->dead_threads);
1498         if (lock)
1499                 pthread_rwlock_unlock(&machine->threads_lock);
1500         thread__put(th);
1501 }
1502
1503 void machine__remove_thread(struct machine *machine, struct thread *th)
1504 {
1505         return __machine__remove_thread(machine, th, true);
1506 }
1507
1508 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1509                                 struct perf_sample *sample)
1510 {
1511         struct thread *thread = machine__find_thread(machine,
1512                                                      event->fork.pid,
1513                                                      event->fork.tid);
1514         struct thread *parent = machine__findnew_thread(machine,
1515                                                         event->fork.ppid,
1516                                                         event->fork.ptid);
1517         int err = 0;
1518
1519         if (dump_trace)
1520                 perf_event__fprintf_task(event, stdout);
1521
1522         /*
1523          * There may be an existing thread that is not actually the parent,
1524          * either because we are processing events out of order, or because the
1525          * (fork) event that would have removed the thread was lost. Assume the
1526          * latter case and continue on as best we can.
1527          */
1528         if (parent->pid_ != (pid_t)event->fork.ppid) {
1529                 dump_printf("removing erroneous parent thread %d/%d\n",
1530                             parent->pid_, parent->tid);
1531                 machine__remove_thread(machine, parent);
1532                 thread__put(parent);
1533                 parent = machine__findnew_thread(machine, event->fork.ppid,
1534                                                  event->fork.ptid);
1535         }
1536
1537         /* if a thread currently exists for the thread id remove it */
1538         if (thread != NULL) {
1539                 machine__remove_thread(machine, thread);
1540                 thread__put(thread);
1541         }
1542
1543         thread = machine__findnew_thread(machine, event->fork.pid,
1544                                          event->fork.tid);
1545
1546         if (thread == NULL || parent == NULL ||
1547             thread__fork(thread, parent, sample->time) < 0) {
1548                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1549                 err = -1;
1550         }
1551         thread__put(thread);
1552         thread__put(parent);
1553
1554         return err;
1555 }
1556
1557 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1558                                 struct perf_sample *sample __maybe_unused)
1559 {
1560         struct thread *thread = machine__find_thread(machine,
1561                                                      event->fork.pid,
1562                                                      event->fork.tid);
1563
1564         if (dump_trace)
1565                 perf_event__fprintf_task(event, stdout);
1566
1567         if (thread != NULL) {
1568                 thread__exited(thread);
1569                 thread__put(thread);
1570         }
1571
1572         return 0;
1573 }
1574
1575 int machine__process_event(struct machine *machine, union perf_event *event,
1576                            struct perf_sample *sample)
1577 {
1578         int ret;
1579
1580         switch (event->header.type) {
1581         case PERF_RECORD_COMM:
1582                 ret = machine__process_comm_event(machine, event, sample); break;
1583         case PERF_RECORD_MMAP:
1584                 ret = machine__process_mmap_event(machine, event, sample); break;
1585         case PERF_RECORD_NAMESPACES:
1586                 ret = machine__process_namespaces_event(machine, event, sample); break;
1587         case PERF_RECORD_MMAP2:
1588                 ret = machine__process_mmap2_event(machine, event, sample); break;
1589         case PERF_RECORD_FORK:
1590                 ret = machine__process_fork_event(machine, event, sample); break;
1591         case PERF_RECORD_EXIT:
1592                 ret = machine__process_exit_event(machine, event, sample); break;
1593         case PERF_RECORD_LOST:
1594                 ret = machine__process_lost_event(machine, event, sample); break;
1595         case PERF_RECORD_AUX:
1596                 ret = machine__process_aux_event(machine, event); break;
1597         case PERF_RECORD_ITRACE_START:
1598                 ret = machine__process_itrace_start_event(machine, event); break;
1599         case PERF_RECORD_LOST_SAMPLES:
1600                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1601         case PERF_RECORD_SWITCH:
1602         case PERF_RECORD_SWITCH_CPU_WIDE:
1603                 ret = machine__process_switch_event(machine, event); break;
1604         default:
1605                 ret = -1;
1606                 break;
1607         }
1608
1609         return ret;
1610 }
1611
1612 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1613 {
1614         if (!regexec(regex, sym->name, 0, NULL, 0))
1615                 return 1;
1616         return 0;
1617 }
1618
1619 static void ip__resolve_ams(struct thread *thread,
1620                             struct addr_map_symbol *ams,
1621                             u64 ip)
1622 {
1623         struct addr_location al;
1624
1625         memset(&al, 0, sizeof(al));
1626         /*
1627          * We cannot use the header.misc hint to determine whether a
1628          * branch stack address is user, kernel, guest, hypervisor.
1629          * Branches may straddle the kernel/user/hypervisor boundaries.
1630          * Thus, we have to try consecutively until we find a match
1631          * or else, the symbol is unknown
1632          */
1633         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1634
1635         ams->addr = ip;
1636         ams->al_addr = al.addr;
1637         ams->sym = al.sym;
1638         ams->map = al.map;
1639         ams->phys_addr = 0;
1640 }
1641
1642 static void ip__resolve_data(struct thread *thread,
1643                              u8 m, struct addr_map_symbol *ams,
1644                              u64 addr, u64 phys_addr)
1645 {
1646         struct addr_location al;
1647
1648         memset(&al, 0, sizeof(al));
1649
1650         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1651         if (al.map == NULL) {
1652                 /*
1653                  * some shared data regions have execute bit set which puts
1654                  * their mapping in the MAP__FUNCTION type array.
1655                  * Check there as a fallback option before dropping the sample.
1656                  */
1657                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1658         }
1659
1660         ams->addr = addr;
1661         ams->al_addr = al.addr;
1662         ams->sym = al.sym;
1663         ams->map = al.map;
1664         ams->phys_addr = phys_addr;
1665 }
1666
1667 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1668                                      struct addr_location *al)
1669 {
1670         struct mem_info *mi = zalloc(sizeof(*mi));
1671
1672         if (!mi)
1673                 return NULL;
1674
1675         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1676         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1677                          sample->addr, sample->phys_addr);
1678         mi->data_src.val = sample->data_src;
1679
1680         return mi;
1681 }
1682
1683 struct iterations {
1684         int nr_loop_iter;
1685         u64 cycles;
1686 };
1687
1688 static int add_callchain_ip(struct thread *thread,
1689                             struct callchain_cursor *cursor,
1690                             struct symbol **parent,
1691                             struct addr_location *root_al,
1692                             u8 *cpumode,
1693                             u64 ip,
1694                             bool branch,
1695                             struct branch_flags *flags,
1696                             struct iterations *iter,
1697                             u64 branch_from)
1698 {
1699         struct addr_location al;
1700         int nr_loop_iter = 0;
1701         u64 iter_cycles = 0;
1702
1703         al.filtered = 0;
1704         al.sym = NULL;
1705         if (!cpumode) {
1706                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1707                                                    ip, &al);
1708         } else {
1709                 if (ip >= PERF_CONTEXT_MAX) {
1710                         switch (ip) {
1711                         case PERF_CONTEXT_HV:
1712                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1713                                 break;
1714                         case PERF_CONTEXT_KERNEL:
1715                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1716                                 break;
1717                         case PERF_CONTEXT_USER:
1718                                 *cpumode = PERF_RECORD_MISC_USER;
1719                                 break;
1720                         default:
1721                                 pr_debug("invalid callchain context: "
1722                                          "%"PRId64"\n", (s64) ip);
1723                                 /*
1724                                  * It seems the callchain is corrupted.
1725                                  * Discard all.
1726                                  */
1727                                 callchain_cursor_reset(cursor);
1728                                 return 1;
1729                         }
1730                         return 0;
1731                 }
1732                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1733                                            ip, &al);
1734         }
1735
1736         if (al.sym != NULL) {
1737                 if (perf_hpp_list.parent && !*parent &&
1738                     symbol__match_regex(al.sym, &parent_regex))
1739                         *parent = al.sym;
1740                 else if (have_ignore_callees && root_al &&
1741                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1742                         /* Treat this symbol as the root,
1743                            forgetting its callees. */
1744                         *root_al = al;
1745                         callchain_cursor_reset(cursor);
1746                 }
1747         }
1748
1749         if (symbol_conf.hide_unresolved && al.sym == NULL)
1750                 return 0;
1751
1752         if (iter) {
1753                 nr_loop_iter = iter->nr_loop_iter;
1754                 iter_cycles = iter->cycles;
1755         }
1756
1757         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1758                                        branch, flags, nr_loop_iter,
1759                                        iter_cycles, branch_from);
1760 }
1761
1762 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1763                                            struct addr_location *al)
1764 {
1765         unsigned int i;
1766         const struct branch_stack *bs = sample->branch_stack;
1767         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1768
1769         if (!bi)
1770                 return NULL;
1771
1772         for (i = 0; i < bs->nr; i++) {
1773                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1774                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1775                 bi[i].flags = bs->entries[i].flags;
1776         }
1777         return bi;
1778 }
1779
1780 static void save_iterations(struct iterations *iter,
1781                             struct branch_entry *be, int nr)
1782 {
1783         int i;
1784
1785         iter->nr_loop_iter = nr;
1786         iter->cycles = 0;
1787
1788         for (i = 0; i < nr; i++)
1789                 iter->cycles += be[i].flags.cycles;
1790 }
1791
1792 #define CHASHSZ 127
1793 #define CHASHBITS 7
1794 #define NO_ENTRY 0xff
1795
1796 #define PERF_MAX_BRANCH_DEPTH 127
1797
1798 /* Remove loops. */
1799 static int remove_loops(struct branch_entry *l, int nr,
1800                         struct iterations *iter)
1801 {
1802         int i, j, off;
1803         unsigned char chash[CHASHSZ];
1804
1805         memset(chash, NO_ENTRY, sizeof(chash));
1806
1807         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1808
1809         for (i = 0; i < nr; i++) {
1810                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1811
1812                 /* no collision handling for now */
1813                 if (chash[h] == NO_ENTRY) {
1814                         chash[h] = i;
1815                 } else if (l[chash[h]].from == l[i].from) {
1816                         bool is_loop = true;
1817                         /* check if it is a real loop */
1818                         off = 0;
1819                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1820                                 if (l[j].from != l[i + off].from) {
1821                                         is_loop = false;
1822                                         break;
1823                                 }
1824                         if (is_loop) {
1825                                 j = nr - (i + off);
1826                                 if (j > 0) {
1827                                         save_iterations(iter + i + off,
1828                                                 l + i, off);
1829
1830                                         memmove(iter + i, iter + i + off,
1831                                                 j * sizeof(*iter));
1832
1833                                         memmove(l + i, l + i + off,
1834                                                 j * sizeof(*l));
1835                                 }
1836
1837                                 nr -= off;
1838                         }
1839                 }
1840         }
1841         return nr;
1842 }
1843
1844 /*
1845  * Recolve LBR callstack chain sample
1846  * Return:
1847  * 1 on success get LBR callchain information
1848  * 0 no available LBR callchain information, should try fp
1849  * negative error code on other errors.
1850  */
1851 static int resolve_lbr_callchain_sample(struct thread *thread,
1852                                         struct callchain_cursor *cursor,
1853                                         struct perf_sample *sample,
1854                                         struct symbol **parent,
1855                                         struct addr_location *root_al,
1856                                         int max_stack)
1857 {
1858         struct ip_callchain *chain = sample->callchain;
1859         int chain_nr = min(max_stack, (int)chain->nr), i;
1860         u8 cpumode = PERF_RECORD_MISC_USER;
1861         u64 ip, branch_from = 0;
1862
1863         for (i = 0; i < chain_nr; i++) {
1864                 if (chain->ips[i] == PERF_CONTEXT_USER)
1865                         break;
1866         }
1867
1868         /* LBR only affects the user callchain */
1869         if (i != chain_nr) {
1870                 struct branch_stack *lbr_stack = sample->branch_stack;
1871                 int lbr_nr = lbr_stack->nr, j, k;
1872                 bool branch;
1873                 struct branch_flags *flags;
1874                 /*
1875                  * LBR callstack can only get user call chain.
1876                  * The mix_chain_nr is kernel call chain
1877                  * number plus LBR user call chain number.
1878                  * i is kernel call chain number,
1879                  * 1 is PERF_CONTEXT_USER,
1880                  * lbr_nr + 1 is the user call chain number.
1881                  * For details, please refer to the comments
1882                  * in callchain__printf
1883                  */
1884                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1885
1886                 for (j = 0; j < mix_chain_nr; j++) {
1887                         int err;
1888                         branch = false;
1889                         flags = NULL;
1890
1891                         if (callchain_param.order == ORDER_CALLEE) {
1892                                 if (j < i + 1)
1893                                         ip = chain->ips[j];
1894                                 else if (j > i + 1) {
1895                                         k = j - i - 2;
1896                                         ip = lbr_stack->entries[k].from;
1897                                         branch = true;
1898                                         flags = &lbr_stack->entries[k].flags;
1899                                 } else {
1900                                         ip = lbr_stack->entries[0].to;
1901                                         branch = true;
1902                                         flags = &lbr_stack->entries[0].flags;
1903                                         branch_from =
1904                                                 lbr_stack->entries[0].from;
1905                                 }
1906                         } else {
1907                                 if (j < lbr_nr) {
1908                                         k = lbr_nr - j - 1;
1909                                         ip = lbr_stack->entries[k].from;
1910                                         branch = true;
1911                                         flags = &lbr_stack->entries[k].flags;
1912                                 }
1913                                 else if (j > lbr_nr)
1914                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1915                                 else {
1916                                         ip = lbr_stack->entries[0].to;
1917                                         branch = true;
1918                                         flags = &lbr_stack->entries[0].flags;
1919                                         branch_from =
1920                                                 lbr_stack->entries[0].from;
1921                                 }
1922                         }
1923
1924                         err = add_callchain_ip(thread, cursor, parent,
1925                                                root_al, &cpumode, ip,
1926                                                branch, flags, NULL,
1927                                                branch_from);
1928                         if (err)
1929                                 return (err < 0) ? err : 0;
1930                 }
1931                 return 1;
1932         }
1933
1934         return 0;
1935 }
1936
1937 static int thread__resolve_callchain_sample(struct thread *thread,
1938                                             struct callchain_cursor *cursor,
1939                                             struct perf_evsel *evsel,
1940                                             struct perf_sample *sample,
1941                                             struct symbol **parent,
1942                                             struct addr_location *root_al,
1943                                             int max_stack)
1944 {
1945         struct branch_stack *branch = sample->branch_stack;
1946         struct ip_callchain *chain = sample->callchain;
1947         int chain_nr = 0;
1948         u8 cpumode = PERF_RECORD_MISC_USER;
1949         int i, j, err, nr_entries;
1950         int skip_idx = -1;
1951         int first_call = 0;
1952
1953         if (chain)
1954                 chain_nr = chain->nr;
1955
1956         if (perf_evsel__has_branch_callstack(evsel)) {
1957                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1958                                                    root_al, max_stack);
1959                 if (err)
1960                         return (err < 0) ? err : 0;
1961         }
1962
1963         /*
1964          * Based on DWARF debug information, some architectures skip
1965          * a callchain entry saved by the kernel.
1966          */
1967         skip_idx = arch_skip_callchain_idx(thread, chain);
1968
1969         /*
1970          * Add branches to call stack for easier browsing. This gives
1971          * more context for a sample than just the callers.
1972          *
1973          * This uses individual histograms of paths compared to the
1974          * aggregated histograms the normal LBR mode uses.
1975          *
1976          * Limitations for now:
1977          * - No extra filters
1978          * - No annotations (should annotate somehow)
1979          */
1980
1981         if (branch && callchain_param.branch_callstack) {
1982                 int nr = min(max_stack, (int)branch->nr);
1983                 struct branch_entry be[nr];
1984                 struct iterations iter[nr];
1985
1986                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1987                         pr_warning("corrupted branch chain. skipping...\n");
1988                         goto check_calls;
1989                 }
1990
1991                 for (i = 0; i < nr; i++) {
1992                         if (callchain_param.order == ORDER_CALLEE) {
1993                                 be[i] = branch->entries[i];
1994
1995                                 if (chain == NULL)
1996                                         continue;
1997
1998                                 /*
1999                                  * Check for overlap into the callchain.
2000                                  * The return address is one off compared to
2001                                  * the branch entry. To adjust for this
2002                                  * assume the calling instruction is not longer
2003                                  * than 8 bytes.
2004                                  */
2005                                 if (i == skip_idx ||
2006                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2007                                         first_call++;
2008                                 else if (be[i].from < chain->ips[first_call] &&
2009                                     be[i].from >= chain->ips[first_call] - 8)
2010                                         first_call++;
2011                         } else
2012                                 be[i] = branch->entries[branch->nr - i - 1];
2013                 }
2014
2015                 memset(iter, 0, sizeof(struct iterations) * nr);
2016                 nr = remove_loops(be, nr, iter);
2017
2018                 for (i = 0; i < nr; i++) {
2019                         err = add_callchain_ip(thread, cursor, parent,
2020                                                root_al,
2021                                                NULL, be[i].to,
2022                                                true, &be[i].flags,
2023                                                NULL, be[i].from);
2024
2025                         if (!err)
2026                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2027                                                        NULL, be[i].from,
2028                                                        true, &be[i].flags,
2029                                                        &iter[i], 0);
2030                         if (err == -EINVAL)
2031                                 break;
2032                         if (err)
2033                                 return err;
2034                 }
2035
2036                 if (chain_nr == 0)
2037                         return 0;
2038
2039                 chain_nr -= nr;
2040         }
2041
2042 check_calls:
2043         for (i = first_call, nr_entries = 0;
2044              i < chain_nr && nr_entries < max_stack; i++) {
2045                 u64 ip;
2046
2047                 if (callchain_param.order == ORDER_CALLEE)
2048                         j = i;
2049                 else
2050                         j = chain->nr - i - 1;
2051
2052 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2053                 if (j == skip_idx)
2054                         continue;
2055 #endif
2056                 ip = chain->ips[j];
2057
2058                 if (ip < PERF_CONTEXT_MAX)
2059                        ++nr_entries;
2060
2061                 err = add_callchain_ip(thread, cursor, parent,
2062                                        root_al, &cpumode, ip,
2063                                        false, NULL, NULL, 0);
2064
2065                 if (err)
2066                         return (err < 0) ? err : 0;
2067         }
2068
2069         return 0;
2070 }
2071
2072 static int unwind_entry(struct unwind_entry *entry, void *arg)
2073 {
2074         struct callchain_cursor *cursor = arg;
2075
2076         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2077                 return 0;
2078         return callchain_cursor_append(cursor, entry->ip,
2079                                        entry->map, entry->sym,
2080                                        false, NULL, 0, 0, 0);
2081 }
2082
2083 static int thread__resolve_callchain_unwind(struct thread *thread,
2084                                             struct callchain_cursor *cursor,
2085                                             struct perf_evsel *evsel,
2086                                             struct perf_sample *sample,
2087                                             int max_stack)
2088 {
2089         /* Can we do dwarf post unwind? */
2090         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2091               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2092                 return 0;
2093
2094         /* Bail out if nothing was captured. */
2095         if ((!sample->user_regs.regs) ||
2096             (!sample->user_stack.size))
2097                 return 0;
2098
2099         return unwind__get_entries(unwind_entry, cursor,
2100                                    thread, sample, max_stack);
2101 }
2102
2103 int thread__resolve_callchain(struct thread *thread,
2104                               struct callchain_cursor *cursor,
2105                               struct perf_evsel *evsel,
2106                               struct perf_sample *sample,
2107                               struct symbol **parent,
2108                               struct addr_location *root_al,
2109                               int max_stack)
2110 {
2111         int ret = 0;
2112
2113         callchain_cursor_reset(&callchain_cursor);
2114
2115         if (callchain_param.order == ORDER_CALLEE) {
2116                 ret = thread__resolve_callchain_sample(thread, cursor,
2117                                                        evsel, sample,
2118                                                        parent, root_al,
2119                                                        max_stack);
2120                 if (ret)
2121                         return ret;
2122                 ret = thread__resolve_callchain_unwind(thread, cursor,
2123                                                        evsel, sample,
2124                                                        max_stack);
2125         } else {
2126                 ret = thread__resolve_callchain_unwind(thread, cursor,
2127                                                        evsel, sample,
2128                                                        max_stack);
2129                 if (ret)
2130                         return ret;
2131                 ret = thread__resolve_callchain_sample(thread, cursor,
2132                                                        evsel, sample,
2133                                                        parent, root_al,
2134                                                        max_stack);
2135         }
2136
2137         return ret;
2138 }
2139
2140 int machine__for_each_thread(struct machine *machine,
2141                              int (*fn)(struct thread *thread, void *p),
2142                              void *priv)
2143 {
2144         struct rb_node *nd;
2145         struct thread *thread;
2146         int rc = 0;
2147
2148         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2149                 thread = rb_entry(nd, struct thread, rb_node);
2150                 rc = fn(thread, priv);
2151                 if (rc != 0)
2152                         return rc;
2153         }
2154
2155         list_for_each_entry(thread, &machine->dead_threads, node) {
2156                 rc = fn(thread, priv);
2157                 if (rc != 0)
2158                         return rc;
2159         }
2160         return rc;
2161 }
2162
2163 int machines__for_each_thread(struct machines *machines,
2164                               int (*fn)(struct thread *thread, void *p),
2165                               void *priv)
2166 {
2167         struct rb_node *nd;
2168         int rc = 0;
2169
2170         rc = machine__for_each_thread(&machines->host, fn, priv);
2171         if (rc != 0)
2172                 return rc;
2173
2174         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2175                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2176
2177                 rc = machine__for_each_thread(machine, fn, priv);
2178                 if (rc != 0)
2179                         return rc;
2180         }
2181         return rc;
2182 }
2183
2184 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2185                                   struct target *target, struct thread_map *threads,
2186                                   perf_event__handler_t process, bool data_mmap,
2187                                   unsigned int proc_map_timeout)
2188 {
2189         if (target__has_task(target))
2190                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2191         else if (target__has_cpu(target))
2192                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2193         /* command specified */
2194         return 0;
2195 }
2196
2197 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2198 {
2199         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2200                 return -1;
2201
2202         return machine->current_tid[cpu];
2203 }
2204
2205 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2206                              pid_t tid)
2207 {
2208         struct thread *thread;
2209
2210         if (cpu < 0)
2211                 return -EINVAL;
2212
2213         if (!machine->current_tid) {
2214                 int i;
2215
2216                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2217                 if (!machine->current_tid)
2218                         return -ENOMEM;
2219                 for (i = 0; i < MAX_NR_CPUS; i++)
2220                         machine->current_tid[i] = -1;
2221         }
2222
2223         if (cpu >= MAX_NR_CPUS) {
2224                 pr_err("Requested CPU %d too large. ", cpu);
2225                 pr_err("Consider raising MAX_NR_CPUS\n");
2226                 return -EINVAL;
2227         }
2228
2229         machine->current_tid[cpu] = tid;
2230
2231         thread = machine__findnew_thread(machine, pid, tid);
2232         if (!thread)
2233                 return -ENOMEM;
2234
2235         thread->cpu = cpu;
2236         thread__put(thread);
2237
2238         return 0;
2239 }
2240
2241 int machine__get_kernel_start(struct machine *machine)
2242 {
2243         struct map *map = machine__kernel_map(machine);
2244         int err = 0;
2245
2246         /*
2247          * The only addresses above 2^63 are kernel addresses of a 64-bit
2248          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2249          * all addresses including kernel addresses are less than 2^32.  In
2250          * that case (32-bit system), if the kernel mapping is unknown, all
2251          * addresses will be assumed to be in user space - see
2252          * machine__kernel_ip().
2253          */
2254         machine->kernel_start = 1ULL << 63;
2255         if (map) {
2256                 err = map__load(map);
2257                 if (!err)
2258                         machine->kernel_start = map->start;
2259         }
2260         return err;
2261 }
2262
2263 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2264 {
2265         return dsos__findnew(&machine->dsos, filename);
2266 }
2267
2268 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2269 {
2270         struct machine *machine = vmachine;
2271         struct map *map;
2272         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2273
2274         if (sym == NULL)
2275                 return NULL;
2276
2277         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2278         *addrp = map->unmap_ip(map, sym->start);
2279         return sym->name;
2280 }