Merge remote-tracking branch 'tip/perf/core' into perf/urgent
[linux-2.6-block.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "symbol.h"
14 #include "sort.h"
15 #include "strlist.h"
16 #include "thread.h"
17 #include "vdso.h"
18 #include "util.h"
19 #include <stdbool.h>
20 #include <sys/types.h>
21 #include <sys/stat.h>
22 #include <unistd.h>
23 #include "unwind.h"
24 #include "linux/hash.h"
25 #include "asm/bug.h"
26 #include "bpf-event.h"
27
28 #include <linux/ctype.h>
29 #include <symbol/kallsyms.h>
30 #include <linux/mman.h>
31
32 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
33
34 static void dsos__init(struct dsos *dsos)
35 {
36         INIT_LIST_HEAD(&dsos->head);
37         dsos->root = RB_ROOT;
38         init_rwsem(&dsos->lock);
39 }
40
41 static void machine__threads_init(struct machine *machine)
42 {
43         int i;
44
45         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
46                 struct threads *threads = &machine->threads[i];
47                 threads->entries = RB_ROOT_CACHED;
48                 init_rwsem(&threads->lock);
49                 threads->nr = 0;
50                 INIT_LIST_HEAD(&threads->dead);
51                 threads->last_match = NULL;
52         }
53 }
54
55 static int machine__set_mmap_name(struct machine *machine)
56 {
57         if (machine__is_host(machine))
58                 machine->mmap_name = strdup("[kernel.kallsyms]");
59         else if (machine__is_default_guest(machine))
60                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
61         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
62                           machine->pid) < 0)
63                 machine->mmap_name = NULL;
64
65         return machine->mmap_name ? 0 : -ENOMEM;
66 }
67
68 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
69 {
70         int err = -ENOMEM;
71
72         memset(machine, 0, sizeof(*machine));
73         map_groups__init(&machine->kmaps, machine);
74         RB_CLEAR_NODE(&machine->rb_node);
75         dsos__init(&machine->dsos);
76
77         machine__threads_init(machine);
78
79         machine->vdso_info = NULL;
80         machine->env = NULL;
81
82         machine->pid = pid;
83
84         machine->id_hdr_size = 0;
85         machine->kptr_restrict_warned = false;
86         machine->comm_exec = false;
87         machine->kernel_start = 0;
88         machine->vmlinux_map = NULL;
89
90         machine->root_dir = strdup(root_dir);
91         if (machine->root_dir == NULL)
92                 return -ENOMEM;
93
94         if (machine__set_mmap_name(machine))
95                 goto out;
96
97         if (pid != HOST_KERNEL_ID) {
98                 struct thread *thread = machine__findnew_thread(machine, -1,
99                                                                 pid);
100                 char comm[64];
101
102                 if (thread == NULL)
103                         goto out;
104
105                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
106                 thread__set_comm(thread, comm, 0);
107                 thread__put(thread);
108         }
109
110         machine->current_tid = NULL;
111         err = 0;
112
113 out:
114         if (err) {
115                 zfree(&machine->root_dir);
116                 zfree(&machine->mmap_name);
117         }
118         return 0;
119 }
120
121 struct machine *machine__new_host(void)
122 {
123         struct machine *machine = malloc(sizeof(*machine));
124
125         if (machine != NULL) {
126                 machine__init(machine, "", HOST_KERNEL_ID);
127
128                 if (machine__create_kernel_maps(machine) < 0)
129                         goto out_delete;
130         }
131
132         return machine;
133 out_delete:
134         free(machine);
135         return NULL;
136 }
137
138 struct machine *machine__new_kallsyms(void)
139 {
140         struct machine *machine = machine__new_host();
141         /*
142          * FIXME:
143          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
144          *    ask for not using the kcore parsing code, once this one is fixed
145          *    to create a map per module.
146          */
147         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
148                 machine__delete(machine);
149                 machine = NULL;
150         }
151
152         return machine;
153 }
154
155 static void dsos__purge(struct dsos *dsos)
156 {
157         struct dso *pos, *n;
158
159         down_write(&dsos->lock);
160
161         list_for_each_entry_safe(pos, n, &dsos->head, node) {
162                 RB_CLEAR_NODE(&pos->rb_node);
163                 pos->root = NULL;
164                 list_del_init(&pos->node);
165                 dso__put(pos);
166         }
167
168         up_write(&dsos->lock);
169 }
170
171 static void dsos__exit(struct dsos *dsos)
172 {
173         dsos__purge(dsos);
174         exit_rwsem(&dsos->lock);
175 }
176
177 void machine__delete_threads(struct machine *machine)
178 {
179         struct rb_node *nd;
180         int i;
181
182         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
183                 struct threads *threads = &machine->threads[i];
184                 down_write(&threads->lock);
185                 nd = rb_first_cached(&threads->entries);
186                 while (nd) {
187                         struct thread *t = rb_entry(nd, struct thread, rb_node);
188
189                         nd = rb_next(nd);
190                         __machine__remove_thread(machine, t, false);
191                 }
192                 up_write(&threads->lock);
193         }
194 }
195
196 void machine__exit(struct machine *machine)
197 {
198         int i;
199
200         if (machine == NULL)
201                 return;
202
203         machine__destroy_kernel_maps(machine);
204         map_groups__exit(&machine->kmaps);
205         dsos__exit(&machine->dsos);
206         machine__exit_vdso(machine);
207         zfree(&machine->root_dir);
208         zfree(&machine->mmap_name);
209         zfree(&machine->current_tid);
210
211         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212                 struct threads *threads = &machine->threads[i];
213                 struct thread *thread, *n;
214                 /*
215                  * Forget about the dead, at this point whatever threads were
216                  * left in the dead lists better have a reference count taken
217                  * by who is using them, and then, when they drop those references
218                  * and it finally hits zero, thread__put() will check and see that
219                  * its not in the dead threads list and will not try to remove it
220                  * from there, just calling thread__delete() straight away.
221                  */
222                 list_for_each_entry_safe(thread, n, &threads->dead, node)
223                         list_del_init(&thread->node);
224
225                 exit_rwsem(&threads->lock);
226         }
227 }
228
229 void machine__delete(struct machine *machine)
230 {
231         if (machine) {
232                 machine__exit(machine);
233                 free(machine);
234         }
235 }
236
237 void machines__init(struct machines *machines)
238 {
239         machine__init(&machines->host, "", HOST_KERNEL_ID);
240         machines->guests = RB_ROOT_CACHED;
241 }
242
243 void machines__exit(struct machines *machines)
244 {
245         machine__exit(&machines->host);
246         /* XXX exit guest */
247 }
248
249 struct machine *machines__add(struct machines *machines, pid_t pid,
250                               const char *root_dir)
251 {
252         struct rb_node **p = &machines->guests.rb_root.rb_node;
253         struct rb_node *parent = NULL;
254         struct machine *pos, *machine = malloc(sizeof(*machine));
255         bool leftmost = true;
256
257         if (machine == NULL)
258                 return NULL;
259
260         if (machine__init(machine, root_dir, pid) != 0) {
261                 free(machine);
262                 return NULL;
263         }
264
265         while (*p != NULL) {
266                 parent = *p;
267                 pos = rb_entry(parent, struct machine, rb_node);
268                 if (pid < pos->pid)
269                         p = &(*p)->rb_left;
270                 else {
271                         p = &(*p)->rb_right;
272                         leftmost = false;
273                 }
274         }
275
276         rb_link_node(&machine->rb_node, parent, p);
277         rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
278
279         return machine;
280 }
281
282 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
283 {
284         struct rb_node *nd;
285
286         machines->host.comm_exec = comm_exec;
287
288         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
289                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
290
291                 machine->comm_exec = comm_exec;
292         }
293 }
294
295 struct machine *machines__find(struct machines *machines, pid_t pid)
296 {
297         struct rb_node **p = &machines->guests.rb_root.rb_node;
298         struct rb_node *parent = NULL;
299         struct machine *machine;
300         struct machine *default_machine = NULL;
301
302         if (pid == HOST_KERNEL_ID)
303                 return &machines->host;
304
305         while (*p != NULL) {
306                 parent = *p;
307                 machine = rb_entry(parent, struct machine, rb_node);
308                 if (pid < machine->pid)
309                         p = &(*p)->rb_left;
310                 else if (pid > machine->pid)
311                         p = &(*p)->rb_right;
312                 else
313                         return machine;
314                 if (!machine->pid)
315                         default_machine = machine;
316         }
317
318         return default_machine;
319 }
320
321 struct machine *machines__findnew(struct machines *machines, pid_t pid)
322 {
323         char path[PATH_MAX];
324         const char *root_dir = "";
325         struct machine *machine = machines__find(machines, pid);
326
327         if (machine && (machine->pid == pid))
328                 goto out;
329
330         if ((pid != HOST_KERNEL_ID) &&
331             (pid != DEFAULT_GUEST_KERNEL_ID) &&
332             (symbol_conf.guestmount)) {
333                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
334                 if (access(path, R_OK)) {
335                         static struct strlist *seen;
336
337                         if (!seen)
338                                 seen = strlist__new(NULL, NULL);
339
340                         if (!strlist__has_entry(seen, path)) {
341                                 pr_err("Can't access file %s\n", path);
342                                 strlist__add(seen, path);
343                         }
344                         machine = NULL;
345                         goto out;
346                 }
347                 root_dir = path;
348         }
349
350         machine = machines__add(machines, pid, root_dir);
351 out:
352         return machine;
353 }
354
355 void machines__process_guests(struct machines *machines,
356                               machine__process_t process, void *data)
357 {
358         struct rb_node *nd;
359
360         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
361                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
362                 process(pos, data);
363         }
364 }
365
366 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
367 {
368         struct rb_node *node;
369         struct machine *machine;
370
371         machines->host.id_hdr_size = id_hdr_size;
372
373         for (node = rb_first_cached(&machines->guests); node;
374              node = rb_next(node)) {
375                 machine = rb_entry(node, struct machine, rb_node);
376                 machine->id_hdr_size = id_hdr_size;
377         }
378
379         return;
380 }
381
382 static void machine__update_thread_pid(struct machine *machine,
383                                        struct thread *th, pid_t pid)
384 {
385         struct thread *leader;
386
387         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
388                 return;
389
390         th->pid_ = pid;
391
392         if (th->pid_ == th->tid)
393                 return;
394
395         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
396         if (!leader)
397                 goto out_err;
398
399         if (!leader->mg)
400                 leader->mg = map_groups__new(machine);
401
402         if (!leader->mg)
403                 goto out_err;
404
405         if (th->mg == leader->mg)
406                 return;
407
408         if (th->mg) {
409                 /*
410                  * Maps are created from MMAP events which provide the pid and
411                  * tid.  Consequently there never should be any maps on a thread
412                  * with an unknown pid.  Just print an error if there are.
413                  */
414                 if (!map_groups__empty(th->mg))
415                         pr_err("Discarding thread maps for %d:%d\n",
416                                th->pid_, th->tid);
417                 map_groups__put(th->mg);
418         }
419
420         th->mg = map_groups__get(leader->mg);
421 out_put:
422         thread__put(leader);
423         return;
424 out_err:
425         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
426         goto out_put;
427 }
428
429 /*
430  * Front-end cache - TID lookups come in blocks,
431  * so most of the time we dont have to look up
432  * the full rbtree:
433  */
434 static struct thread*
435 __threads__get_last_match(struct threads *threads, struct machine *machine,
436                           int pid, int tid)
437 {
438         struct thread *th;
439
440         th = threads->last_match;
441         if (th != NULL) {
442                 if (th->tid == tid) {
443                         machine__update_thread_pid(machine, th, pid);
444                         return thread__get(th);
445                 }
446
447                 threads->last_match = NULL;
448         }
449
450         return NULL;
451 }
452
453 static struct thread*
454 threads__get_last_match(struct threads *threads, struct machine *machine,
455                         int pid, int tid)
456 {
457         struct thread *th = NULL;
458
459         if (perf_singlethreaded)
460                 th = __threads__get_last_match(threads, machine, pid, tid);
461
462         return th;
463 }
464
465 static void
466 __threads__set_last_match(struct threads *threads, struct thread *th)
467 {
468         threads->last_match = th;
469 }
470
471 static void
472 threads__set_last_match(struct threads *threads, struct thread *th)
473 {
474         if (perf_singlethreaded)
475                 __threads__set_last_match(threads, th);
476 }
477
478 /*
479  * Caller must eventually drop thread->refcnt returned with a successful
480  * lookup/new thread inserted.
481  */
482 static struct thread *____machine__findnew_thread(struct machine *machine,
483                                                   struct threads *threads,
484                                                   pid_t pid, pid_t tid,
485                                                   bool create)
486 {
487         struct rb_node **p = &threads->entries.rb_root.rb_node;
488         struct rb_node *parent = NULL;
489         struct thread *th;
490         bool leftmost = true;
491
492         th = threads__get_last_match(threads, machine, pid, tid);
493         if (th)
494                 return th;
495
496         while (*p != NULL) {
497                 parent = *p;
498                 th = rb_entry(parent, struct thread, rb_node);
499
500                 if (th->tid == tid) {
501                         threads__set_last_match(threads, th);
502                         machine__update_thread_pid(machine, th, pid);
503                         return thread__get(th);
504                 }
505
506                 if (tid < th->tid)
507                         p = &(*p)->rb_left;
508                 else {
509                         p = &(*p)->rb_right;
510                         leftmost = false;
511                 }
512         }
513
514         if (!create)
515                 return NULL;
516
517         th = thread__new(pid, tid);
518         if (th != NULL) {
519                 rb_link_node(&th->rb_node, parent, p);
520                 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
521
522                 /*
523                  * We have to initialize map_groups separately
524                  * after rb tree is updated.
525                  *
526                  * The reason is that we call machine__findnew_thread
527                  * within thread__init_map_groups to find the thread
528                  * leader and that would screwed the rb tree.
529                  */
530                 if (thread__init_map_groups(th, machine)) {
531                         rb_erase_cached(&th->rb_node, &threads->entries);
532                         RB_CLEAR_NODE(&th->rb_node);
533                         thread__put(th);
534                         return NULL;
535                 }
536                 /*
537                  * It is now in the rbtree, get a ref
538                  */
539                 thread__get(th);
540                 threads__set_last_match(threads, th);
541                 ++threads->nr;
542         }
543
544         return th;
545 }
546
547 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
548 {
549         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
550 }
551
552 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
553                                        pid_t tid)
554 {
555         struct threads *threads = machine__threads(machine, tid);
556         struct thread *th;
557
558         down_write(&threads->lock);
559         th = __machine__findnew_thread(machine, pid, tid);
560         up_write(&threads->lock);
561         return th;
562 }
563
564 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
565                                     pid_t tid)
566 {
567         struct threads *threads = machine__threads(machine, tid);
568         struct thread *th;
569
570         down_read(&threads->lock);
571         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
572         up_read(&threads->lock);
573         return th;
574 }
575
576 struct comm *machine__thread_exec_comm(struct machine *machine,
577                                        struct thread *thread)
578 {
579         if (machine->comm_exec)
580                 return thread__exec_comm(thread);
581         else
582                 return thread__comm(thread);
583 }
584
585 int machine__process_comm_event(struct machine *machine, union perf_event *event,
586                                 struct perf_sample *sample)
587 {
588         struct thread *thread = machine__findnew_thread(machine,
589                                                         event->comm.pid,
590                                                         event->comm.tid);
591         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
592         int err = 0;
593
594         if (exec)
595                 machine->comm_exec = true;
596
597         if (dump_trace)
598                 perf_event__fprintf_comm(event, stdout);
599
600         if (thread == NULL ||
601             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
602                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
603                 err = -1;
604         }
605
606         thread__put(thread);
607
608         return err;
609 }
610
611 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
612                                       union perf_event *event,
613                                       struct perf_sample *sample __maybe_unused)
614 {
615         struct thread *thread = machine__findnew_thread(machine,
616                                                         event->namespaces.pid,
617                                                         event->namespaces.tid);
618         int err = 0;
619
620         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
621                   "\nWARNING: kernel seems to support more namespaces than perf"
622                   " tool.\nTry updating the perf tool..\n\n");
623
624         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
625                   "\nWARNING: perf tool seems to support more namespaces than"
626                   " the kernel.\nTry updating the kernel..\n\n");
627
628         if (dump_trace)
629                 perf_event__fprintf_namespaces(event, stdout);
630
631         if (thread == NULL ||
632             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
633                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
634                 err = -1;
635         }
636
637         thread__put(thread);
638
639         return err;
640 }
641
642 int machine__process_lost_event(struct machine *machine __maybe_unused,
643                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
644 {
645         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
646                     event->lost.id, event->lost.lost);
647         return 0;
648 }
649
650 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
651                                         union perf_event *event, struct perf_sample *sample)
652 {
653         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
654                     sample->id, event->lost_samples.lost);
655         return 0;
656 }
657
658 static struct dso *machine__findnew_module_dso(struct machine *machine,
659                                                struct kmod_path *m,
660                                                const char *filename)
661 {
662         struct dso *dso;
663
664         down_write(&machine->dsos.lock);
665
666         dso = __dsos__find(&machine->dsos, m->name, true);
667         if (!dso) {
668                 dso = __dsos__addnew(&machine->dsos, m->name);
669                 if (dso == NULL)
670                         goto out_unlock;
671
672                 dso__set_module_info(dso, m, machine);
673                 dso__set_long_name(dso, strdup(filename), true);
674         }
675
676         dso__get(dso);
677 out_unlock:
678         up_write(&machine->dsos.lock);
679         return dso;
680 }
681
682 int machine__process_aux_event(struct machine *machine __maybe_unused,
683                                union perf_event *event)
684 {
685         if (dump_trace)
686                 perf_event__fprintf_aux(event, stdout);
687         return 0;
688 }
689
690 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
691                                         union perf_event *event)
692 {
693         if (dump_trace)
694                 perf_event__fprintf_itrace_start(event, stdout);
695         return 0;
696 }
697
698 int machine__process_switch_event(struct machine *machine __maybe_unused,
699                                   union perf_event *event)
700 {
701         if (dump_trace)
702                 perf_event__fprintf_switch(event, stdout);
703         return 0;
704 }
705
706 static int machine__process_ksymbol_register(struct machine *machine,
707                                              union perf_event *event,
708                                              struct perf_sample *sample __maybe_unused)
709 {
710         struct symbol *sym;
711         struct map *map;
712
713         map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
714         if (!map) {
715                 map = dso__new_map(event->ksymbol_event.name);
716                 if (!map)
717                         return -ENOMEM;
718
719                 map->start = event->ksymbol_event.addr;
720                 map->end = map->start + event->ksymbol_event.len;
721                 map_groups__insert(&machine->kmaps, map);
722         }
723
724         sym = symbol__new(map->map_ip(map, map->start),
725                           event->ksymbol_event.len,
726                           0, 0, event->ksymbol_event.name);
727         if (!sym)
728                 return -ENOMEM;
729         dso__insert_symbol(map->dso, sym);
730         return 0;
731 }
732
733 static int machine__process_ksymbol_unregister(struct machine *machine,
734                                                union perf_event *event,
735                                                struct perf_sample *sample __maybe_unused)
736 {
737         struct map *map;
738
739         map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
740         if (map)
741                 map_groups__remove(&machine->kmaps, map);
742
743         return 0;
744 }
745
746 int machine__process_ksymbol(struct machine *machine __maybe_unused,
747                              union perf_event *event,
748                              struct perf_sample *sample)
749 {
750         if (dump_trace)
751                 perf_event__fprintf_ksymbol(event, stdout);
752
753         if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
754                 return machine__process_ksymbol_unregister(machine, event,
755                                                            sample);
756         return machine__process_ksymbol_register(machine, event, sample);
757 }
758
759 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
760 {
761         const char *dup_filename;
762
763         if (!filename || !dso || !dso->long_name)
764                 return;
765         if (dso->long_name[0] != '[')
766                 return;
767         if (!strchr(filename, '/'))
768                 return;
769
770         dup_filename = strdup(filename);
771         if (!dup_filename)
772                 return;
773
774         dso__set_long_name(dso, dup_filename, true);
775 }
776
777 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
778                                         const char *filename)
779 {
780         struct map *map = NULL;
781         struct dso *dso = NULL;
782         struct kmod_path m;
783
784         if (kmod_path__parse_name(&m, filename))
785                 return NULL;
786
787         map = map_groups__find_by_name(&machine->kmaps, m.name);
788         if (map) {
789                 /*
790                  * If the map's dso is an offline module, give dso__load()
791                  * a chance to find the file path of that module by fixing
792                  * long_name.
793                  */
794                 dso__adjust_kmod_long_name(map->dso, filename);
795                 goto out;
796         }
797
798         dso = machine__findnew_module_dso(machine, &m, filename);
799         if (dso == NULL)
800                 goto out;
801
802         map = map__new2(start, dso);
803         if (map == NULL)
804                 goto out;
805
806         map_groups__insert(&machine->kmaps, map);
807
808         /* Put the map here because map_groups__insert alread got it */
809         map__put(map);
810 out:
811         /* put the dso here, corresponding to  machine__findnew_module_dso */
812         dso__put(dso);
813         free(m.name);
814         return map;
815 }
816
817 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
818 {
819         struct rb_node *nd;
820         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
821
822         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
823                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
824                 ret += __dsos__fprintf(&pos->dsos.head, fp);
825         }
826
827         return ret;
828 }
829
830 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
831                                      bool (skip)(struct dso *dso, int parm), int parm)
832 {
833         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
834 }
835
836 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
837                                      bool (skip)(struct dso *dso, int parm), int parm)
838 {
839         struct rb_node *nd;
840         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
841
842         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
843                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
844                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
845         }
846         return ret;
847 }
848
849 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
850 {
851         int i;
852         size_t printed = 0;
853         struct dso *kdso = machine__kernel_map(machine)->dso;
854
855         if (kdso->has_build_id) {
856                 char filename[PATH_MAX];
857                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
858                                            false))
859                         printed += fprintf(fp, "[0] %s\n", filename);
860         }
861
862         for (i = 0; i < vmlinux_path__nr_entries; ++i)
863                 printed += fprintf(fp, "[%d] %s\n",
864                                    i + kdso->has_build_id, vmlinux_path[i]);
865
866         return printed;
867 }
868
869 size_t machine__fprintf(struct machine *machine, FILE *fp)
870 {
871         struct rb_node *nd;
872         size_t ret;
873         int i;
874
875         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
876                 struct threads *threads = &machine->threads[i];
877
878                 down_read(&threads->lock);
879
880                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
881
882                 for (nd = rb_first_cached(&threads->entries); nd;
883                      nd = rb_next(nd)) {
884                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
885
886                         ret += thread__fprintf(pos, fp);
887                 }
888
889                 up_read(&threads->lock);
890         }
891         return ret;
892 }
893
894 static struct dso *machine__get_kernel(struct machine *machine)
895 {
896         const char *vmlinux_name = machine->mmap_name;
897         struct dso *kernel;
898
899         if (machine__is_host(machine)) {
900                 if (symbol_conf.vmlinux_name)
901                         vmlinux_name = symbol_conf.vmlinux_name;
902
903                 kernel = machine__findnew_kernel(machine, vmlinux_name,
904                                                  "[kernel]", DSO_TYPE_KERNEL);
905         } else {
906                 if (symbol_conf.default_guest_vmlinux_name)
907                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
908
909                 kernel = machine__findnew_kernel(machine, vmlinux_name,
910                                                  "[guest.kernel]",
911                                                  DSO_TYPE_GUEST_KERNEL);
912         }
913
914         if (kernel != NULL && (!kernel->has_build_id))
915                 dso__read_running_kernel_build_id(kernel, machine);
916
917         return kernel;
918 }
919
920 struct process_args {
921         u64 start;
922 };
923
924 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
925                                     size_t bufsz)
926 {
927         if (machine__is_default_guest(machine))
928                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
929         else
930                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
931 }
932
933 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
934
935 /* Figure out the start address of kernel map from /proc/kallsyms.
936  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
937  * symbol_name if it's not that important.
938  */
939 static int machine__get_running_kernel_start(struct machine *machine,
940                                              const char **symbol_name,
941                                              u64 *start, u64 *end)
942 {
943         char filename[PATH_MAX];
944         int i, err = -1;
945         const char *name;
946         u64 addr = 0;
947
948         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
949
950         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
951                 return 0;
952
953         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
954                 err = kallsyms__get_function_start(filename, name, &addr);
955                 if (!err)
956                         break;
957         }
958
959         if (err)
960                 return -1;
961
962         if (symbol_name)
963                 *symbol_name = name;
964
965         *start = addr;
966
967         err = kallsyms__get_function_start(filename, "_etext", &addr);
968         if (!err)
969                 *end = addr;
970
971         return 0;
972 }
973
974 int machine__create_extra_kernel_map(struct machine *machine,
975                                      struct dso *kernel,
976                                      struct extra_kernel_map *xm)
977 {
978         struct kmap *kmap;
979         struct map *map;
980
981         map = map__new2(xm->start, kernel);
982         if (!map)
983                 return -1;
984
985         map->end   = xm->end;
986         map->pgoff = xm->pgoff;
987
988         kmap = map__kmap(map);
989
990         kmap->kmaps = &machine->kmaps;
991         strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
992
993         map_groups__insert(&machine->kmaps, map);
994
995         pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
996                   kmap->name, map->start, map->end);
997
998         map__put(map);
999
1000         return 0;
1001 }
1002
1003 static u64 find_entry_trampoline(struct dso *dso)
1004 {
1005         /* Duplicates are removed so lookup all aliases */
1006         const char *syms[] = {
1007                 "_entry_trampoline",
1008                 "__entry_trampoline_start",
1009                 "entry_SYSCALL_64_trampoline",
1010         };
1011         struct symbol *sym = dso__first_symbol(dso);
1012         unsigned int i;
1013
1014         for (; sym; sym = dso__next_symbol(sym)) {
1015                 if (sym->binding != STB_GLOBAL)
1016                         continue;
1017                 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1018                         if (!strcmp(sym->name, syms[i]))
1019                                 return sym->start;
1020                 }
1021         }
1022
1023         return 0;
1024 }
1025
1026 /*
1027  * These values can be used for kernels that do not have symbols for the entry
1028  * trampolines in kallsyms.
1029  */
1030 #define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1031 #define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1032 #define X86_64_ENTRY_TRAMPOLINE         0x6000
1033
1034 /* Map x86_64 PTI entry trampolines */
1035 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1036                                           struct dso *kernel)
1037 {
1038         struct map_groups *kmaps = &machine->kmaps;
1039         struct maps *maps = &kmaps->maps;
1040         int nr_cpus_avail, cpu;
1041         bool found = false;
1042         struct map *map;
1043         u64 pgoff;
1044
1045         /*
1046          * In the vmlinux case, pgoff is a virtual address which must now be
1047          * mapped to a vmlinux offset.
1048          */
1049         for (map = maps__first(maps); map; map = map__next(map)) {
1050                 struct kmap *kmap = __map__kmap(map);
1051                 struct map *dest_map;
1052
1053                 if (!kmap || !is_entry_trampoline(kmap->name))
1054                         continue;
1055
1056                 dest_map = map_groups__find(kmaps, map->pgoff);
1057                 if (dest_map != map)
1058                         map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1059                 found = true;
1060         }
1061         if (found || machine->trampolines_mapped)
1062                 return 0;
1063
1064         pgoff = find_entry_trampoline(kernel);
1065         if (!pgoff)
1066                 return 0;
1067
1068         nr_cpus_avail = machine__nr_cpus_avail(machine);
1069
1070         /* Add a 1 page map for each CPU's entry trampoline */
1071         for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1072                 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1073                          cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1074                          X86_64_ENTRY_TRAMPOLINE;
1075                 struct extra_kernel_map xm = {
1076                         .start = va,
1077                         .end   = va + page_size,
1078                         .pgoff = pgoff,
1079                 };
1080
1081                 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1082
1083                 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1084                         return -1;
1085         }
1086
1087         machine->trampolines_mapped = nr_cpus_avail;
1088
1089         return 0;
1090 }
1091
1092 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1093                                              struct dso *kernel __maybe_unused)
1094 {
1095         return 0;
1096 }
1097
1098 static int
1099 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1100 {
1101         struct kmap *kmap;
1102         struct map *map;
1103
1104         /* In case of renewal the kernel map, destroy previous one */
1105         machine__destroy_kernel_maps(machine);
1106
1107         machine->vmlinux_map = map__new2(0, kernel);
1108         if (machine->vmlinux_map == NULL)
1109                 return -1;
1110
1111         machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1112         map = machine__kernel_map(machine);
1113         kmap = map__kmap(map);
1114         if (!kmap)
1115                 return -1;
1116
1117         kmap->kmaps = &machine->kmaps;
1118         map_groups__insert(&machine->kmaps, map);
1119
1120         return 0;
1121 }
1122
1123 void machine__destroy_kernel_maps(struct machine *machine)
1124 {
1125         struct kmap *kmap;
1126         struct map *map = machine__kernel_map(machine);
1127
1128         if (map == NULL)
1129                 return;
1130
1131         kmap = map__kmap(map);
1132         map_groups__remove(&machine->kmaps, map);
1133         if (kmap && kmap->ref_reloc_sym) {
1134                 zfree((char **)&kmap->ref_reloc_sym->name);
1135                 zfree(&kmap->ref_reloc_sym);
1136         }
1137
1138         map__zput(machine->vmlinux_map);
1139 }
1140
1141 int machines__create_guest_kernel_maps(struct machines *machines)
1142 {
1143         int ret = 0;
1144         struct dirent **namelist = NULL;
1145         int i, items = 0;
1146         char path[PATH_MAX];
1147         pid_t pid;
1148         char *endp;
1149
1150         if (symbol_conf.default_guest_vmlinux_name ||
1151             symbol_conf.default_guest_modules ||
1152             symbol_conf.default_guest_kallsyms) {
1153                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1154         }
1155
1156         if (symbol_conf.guestmount) {
1157                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1158                 if (items <= 0)
1159                         return -ENOENT;
1160                 for (i = 0; i < items; i++) {
1161                         if (!isdigit(namelist[i]->d_name[0])) {
1162                                 /* Filter out . and .. */
1163                                 continue;
1164                         }
1165                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1166                         if ((*endp != '\0') ||
1167                             (endp == namelist[i]->d_name) ||
1168                             (errno == ERANGE)) {
1169                                 pr_debug("invalid directory (%s). Skipping.\n",
1170                                          namelist[i]->d_name);
1171                                 continue;
1172                         }
1173                         sprintf(path, "%s/%s/proc/kallsyms",
1174                                 symbol_conf.guestmount,
1175                                 namelist[i]->d_name);
1176                         ret = access(path, R_OK);
1177                         if (ret) {
1178                                 pr_debug("Can't access file %s\n", path);
1179                                 goto failure;
1180                         }
1181                         machines__create_kernel_maps(machines, pid);
1182                 }
1183 failure:
1184                 free(namelist);
1185         }
1186
1187         return ret;
1188 }
1189
1190 void machines__destroy_kernel_maps(struct machines *machines)
1191 {
1192         struct rb_node *next = rb_first_cached(&machines->guests);
1193
1194         machine__destroy_kernel_maps(&machines->host);
1195
1196         while (next) {
1197                 struct machine *pos = rb_entry(next, struct machine, rb_node);
1198
1199                 next = rb_next(&pos->rb_node);
1200                 rb_erase_cached(&pos->rb_node, &machines->guests);
1201                 machine__delete(pos);
1202         }
1203 }
1204
1205 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1206 {
1207         struct machine *machine = machines__findnew(machines, pid);
1208
1209         if (machine == NULL)
1210                 return -1;
1211
1212         return machine__create_kernel_maps(machine);
1213 }
1214
1215 int machine__load_kallsyms(struct machine *machine, const char *filename)
1216 {
1217         struct map *map = machine__kernel_map(machine);
1218         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1219
1220         if (ret > 0) {
1221                 dso__set_loaded(map->dso);
1222                 /*
1223                  * Since /proc/kallsyms will have multiple sessions for the
1224                  * kernel, with modules between them, fixup the end of all
1225                  * sections.
1226                  */
1227                 map_groups__fixup_end(&machine->kmaps);
1228         }
1229
1230         return ret;
1231 }
1232
1233 int machine__load_vmlinux_path(struct machine *machine)
1234 {
1235         struct map *map = machine__kernel_map(machine);
1236         int ret = dso__load_vmlinux_path(map->dso, map);
1237
1238         if (ret > 0)
1239                 dso__set_loaded(map->dso);
1240
1241         return ret;
1242 }
1243
1244 static char *get_kernel_version(const char *root_dir)
1245 {
1246         char version[PATH_MAX];
1247         FILE *file;
1248         char *name, *tmp;
1249         const char *prefix = "Linux version ";
1250
1251         sprintf(version, "%s/proc/version", root_dir);
1252         file = fopen(version, "r");
1253         if (!file)
1254                 return NULL;
1255
1256         tmp = fgets(version, sizeof(version), file);
1257         fclose(file);
1258         if (!tmp)
1259                 return NULL;
1260
1261         name = strstr(version, prefix);
1262         if (!name)
1263                 return NULL;
1264         name += strlen(prefix);
1265         tmp = strchr(name, ' ');
1266         if (tmp)
1267                 *tmp = '\0';
1268
1269         return strdup(name);
1270 }
1271
1272 static bool is_kmod_dso(struct dso *dso)
1273 {
1274         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1275                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1276 }
1277
1278 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1279                                        struct kmod_path *m)
1280 {
1281         char *long_name;
1282         struct map *map = map_groups__find_by_name(mg, m->name);
1283
1284         if (map == NULL)
1285                 return 0;
1286
1287         long_name = strdup(path);
1288         if (long_name == NULL)
1289                 return -ENOMEM;
1290
1291         dso__set_long_name(map->dso, long_name, true);
1292         dso__kernel_module_get_build_id(map->dso, "");
1293
1294         /*
1295          * Full name could reveal us kmod compression, so
1296          * we need to update the symtab_type if needed.
1297          */
1298         if (m->comp && is_kmod_dso(map->dso)) {
1299                 map->dso->symtab_type++;
1300                 map->dso->comp = m->comp;
1301         }
1302
1303         return 0;
1304 }
1305
1306 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1307                                 const char *dir_name, int depth)
1308 {
1309         struct dirent *dent;
1310         DIR *dir = opendir(dir_name);
1311         int ret = 0;
1312
1313         if (!dir) {
1314                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1315                 return -1;
1316         }
1317
1318         while ((dent = readdir(dir)) != NULL) {
1319                 char path[PATH_MAX];
1320                 struct stat st;
1321
1322                 /*sshfs might return bad dent->d_type, so we have to stat*/
1323                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1324                 if (stat(path, &st))
1325                         continue;
1326
1327                 if (S_ISDIR(st.st_mode)) {
1328                         if (!strcmp(dent->d_name, ".") ||
1329                             !strcmp(dent->d_name, ".."))
1330                                 continue;
1331
1332                         /* Do not follow top-level source and build symlinks */
1333                         if (depth == 0) {
1334                                 if (!strcmp(dent->d_name, "source") ||
1335                                     !strcmp(dent->d_name, "build"))
1336                                         continue;
1337                         }
1338
1339                         ret = map_groups__set_modules_path_dir(mg, path,
1340                                                                depth + 1);
1341                         if (ret < 0)
1342                                 goto out;
1343                 } else {
1344                         struct kmod_path m;
1345
1346                         ret = kmod_path__parse_name(&m, dent->d_name);
1347                         if (ret)
1348                                 goto out;
1349
1350                         if (m.kmod)
1351                                 ret = map_groups__set_module_path(mg, path, &m);
1352
1353                         free(m.name);
1354
1355                         if (ret)
1356                                 goto out;
1357                 }
1358         }
1359
1360 out:
1361         closedir(dir);
1362         return ret;
1363 }
1364
1365 static int machine__set_modules_path(struct machine *machine)
1366 {
1367         char *version;
1368         char modules_path[PATH_MAX];
1369
1370         version = get_kernel_version(machine->root_dir);
1371         if (!version)
1372                 return -1;
1373
1374         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1375                  machine->root_dir, version);
1376         free(version);
1377
1378         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1379 }
1380 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1381                                 const char *name __maybe_unused)
1382 {
1383         return 0;
1384 }
1385
1386 static int machine__create_module(void *arg, const char *name, u64 start,
1387                                   u64 size)
1388 {
1389         struct machine *machine = arg;
1390         struct map *map;
1391
1392         if (arch__fix_module_text_start(&start, name) < 0)
1393                 return -1;
1394
1395         map = machine__findnew_module_map(machine, start, name);
1396         if (map == NULL)
1397                 return -1;
1398         map->end = start + size;
1399
1400         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1401
1402         return 0;
1403 }
1404
1405 static int machine__create_modules(struct machine *machine)
1406 {
1407         const char *modules;
1408         char path[PATH_MAX];
1409
1410         if (machine__is_default_guest(machine)) {
1411                 modules = symbol_conf.default_guest_modules;
1412         } else {
1413                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1414                 modules = path;
1415         }
1416
1417         if (symbol__restricted_filename(modules, "/proc/modules"))
1418                 return -1;
1419
1420         if (modules__parse(modules, machine, machine__create_module))
1421                 return -1;
1422
1423         if (!machine__set_modules_path(machine))
1424                 return 0;
1425
1426         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1427
1428         return 0;
1429 }
1430
1431 static void machine__set_kernel_mmap(struct machine *machine,
1432                                      u64 start, u64 end)
1433 {
1434         machine->vmlinux_map->start = start;
1435         machine->vmlinux_map->end   = end;
1436         /*
1437          * Be a bit paranoid here, some perf.data file came with
1438          * a zero sized synthesized MMAP event for the kernel.
1439          */
1440         if (start == 0 && end == 0)
1441                 machine->vmlinux_map->end = ~0ULL;
1442 }
1443
1444 static void machine__update_kernel_mmap(struct machine *machine,
1445                                      u64 start, u64 end)
1446 {
1447         struct map *map = machine__kernel_map(machine);
1448
1449         map__get(map);
1450         map_groups__remove(&machine->kmaps, map);
1451
1452         machine__set_kernel_mmap(machine, start, end);
1453
1454         map_groups__insert(&machine->kmaps, map);
1455         map__put(map);
1456 }
1457
1458 int machine__create_kernel_maps(struct machine *machine)
1459 {
1460         struct dso *kernel = machine__get_kernel(machine);
1461         const char *name = NULL;
1462         struct map *map;
1463         u64 start = 0, end = ~0ULL;
1464         int ret;
1465
1466         if (kernel == NULL)
1467                 return -1;
1468
1469         ret = __machine__create_kernel_maps(machine, kernel);
1470         if (ret < 0)
1471                 goto out_put;
1472
1473         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1474                 if (machine__is_host(machine))
1475                         pr_debug("Problems creating module maps, "
1476                                  "continuing anyway...\n");
1477                 else
1478                         pr_debug("Problems creating module maps for guest %d, "
1479                                  "continuing anyway...\n", machine->pid);
1480         }
1481
1482         if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1483                 if (name &&
1484                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1485                         machine__destroy_kernel_maps(machine);
1486                         ret = -1;
1487                         goto out_put;
1488                 }
1489
1490                 /*
1491                  * we have a real start address now, so re-order the kmaps
1492                  * assume it's the last in the kmaps
1493                  */
1494                 machine__update_kernel_mmap(machine, start, end);
1495         }
1496
1497         if (machine__create_extra_kernel_maps(machine, kernel))
1498                 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1499
1500         if (end == ~0ULL) {
1501                 /* update end address of the kernel map using adjacent module address */
1502                 map = map__next(machine__kernel_map(machine));
1503                 if (map)
1504                         machine__set_kernel_mmap(machine, start, map->start);
1505         }
1506
1507 out_put:
1508         dso__put(kernel);
1509         return ret;
1510 }
1511
1512 static bool machine__uses_kcore(struct machine *machine)
1513 {
1514         struct dso *dso;
1515
1516         list_for_each_entry(dso, &machine->dsos.head, node) {
1517                 if (dso__is_kcore(dso))
1518                         return true;
1519         }
1520
1521         return false;
1522 }
1523
1524 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1525                                              union perf_event *event)
1526 {
1527         return machine__is(machine, "x86_64") &&
1528                is_entry_trampoline(event->mmap.filename);
1529 }
1530
1531 static int machine__process_extra_kernel_map(struct machine *machine,
1532                                              union perf_event *event)
1533 {
1534         struct map *kernel_map = machine__kernel_map(machine);
1535         struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1536         struct extra_kernel_map xm = {
1537                 .start = event->mmap.start,
1538                 .end   = event->mmap.start + event->mmap.len,
1539                 .pgoff = event->mmap.pgoff,
1540         };
1541
1542         if (kernel == NULL)
1543                 return -1;
1544
1545         strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1546
1547         return machine__create_extra_kernel_map(machine, kernel, &xm);
1548 }
1549
1550 static int machine__process_kernel_mmap_event(struct machine *machine,
1551                                               union perf_event *event)
1552 {
1553         struct map *map;
1554         enum dso_kernel_type kernel_type;
1555         bool is_kernel_mmap;
1556
1557         /* If we have maps from kcore then we do not need or want any others */
1558         if (machine__uses_kcore(machine))
1559                 return 0;
1560
1561         if (machine__is_host(machine))
1562                 kernel_type = DSO_TYPE_KERNEL;
1563         else
1564                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1565
1566         is_kernel_mmap = memcmp(event->mmap.filename,
1567                                 machine->mmap_name,
1568                                 strlen(machine->mmap_name) - 1) == 0;
1569         if (event->mmap.filename[0] == '/' ||
1570             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1571                 map = machine__findnew_module_map(machine, event->mmap.start,
1572                                                   event->mmap.filename);
1573                 if (map == NULL)
1574                         goto out_problem;
1575
1576                 map->end = map->start + event->mmap.len;
1577         } else if (is_kernel_mmap) {
1578                 const char *symbol_name = (event->mmap.filename +
1579                                 strlen(machine->mmap_name));
1580                 /*
1581                  * Should be there already, from the build-id table in
1582                  * the header.
1583                  */
1584                 struct dso *kernel = NULL;
1585                 struct dso *dso;
1586
1587                 down_read(&machine->dsos.lock);
1588
1589                 list_for_each_entry(dso, &machine->dsos.head, node) {
1590
1591                         /*
1592                          * The cpumode passed to is_kernel_module is not the
1593                          * cpumode of *this* event. If we insist on passing
1594                          * correct cpumode to is_kernel_module, we should
1595                          * record the cpumode when we adding this dso to the
1596                          * linked list.
1597                          *
1598                          * However we don't really need passing correct
1599                          * cpumode.  We know the correct cpumode must be kernel
1600                          * mode (if not, we should not link it onto kernel_dsos
1601                          * list).
1602                          *
1603                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1604                          * is_kernel_module() treats it as a kernel cpumode.
1605                          */
1606
1607                         if (!dso->kernel ||
1608                             is_kernel_module(dso->long_name,
1609                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1610                                 continue;
1611
1612
1613                         kernel = dso;
1614                         break;
1615                 }
1616
1617                 up_read(&machine->dsos.lock);
1618
1619                 if (kernel == NULL)
1620                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1621                 if (kernel == NULL)
1622                         goto out_problem;
1623
1624                 kernel->kernel = kernel_type;
1625                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1626                         dso__put(kernel);
1627                         goto out_problem;
1628                 }
1629
1630                 if (strstr(kernel->long_name, "vmlinux"))
1631                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1632
1633                 machine__update_kernel_mmap(machine, event->mmap.start,
1634                                          event->mmap.start + event->mmap.len);
1635
1636                 /*
1637                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1638                  * symbol. Effectively having zero here means that at record
1639                  * time /proc/sys/kernel/kptr_restrict was non zero.
1640                  */
1641                 if (event->mmap.pgoff != 0) {
1642                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1643                                                         symbol_name,
1644                                                         event->mmap.pgoff);
1645                 }
1646
1647                 if (machine__is_default_guest(machine)) {
1648                         /*
1649                          * preload dso of guest kernel and modules
1650                          */
1651                         dso__load(kernel, machine__kernel_map(machine));
1652                 }
1653         } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1654                 return machine__process_extra_kernel_map(machine, event);
1655         }
1656         return 0;
1657 out_problem:
1658         return -1;
1659 }
1660
1661 int machine__process_mmap2_event(struct machine *machine,
1662                                  union perf_event *event,
1663                                  struct perf_sample *sample)
1664 {
1665         struct thread *thread;
1666         struct map *map;
1667         int ret = 0;
1668
1669         if (dump_trace)
1670                 perf_event__fprintf_mmap2(event, stdout);
1671
1672         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1673             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1674                 ret = machine__process_kernel_mmap_event(machine, event);
1675                 if (ret < 0)
1676                         goto out_problem;
1677                 return 0;
1678         }
1679
1680         thread = machine__findnew_thread(machine, event->mmap2.pid,
1681                                         event->mmap2.tid);
1682         if (thread == NULL)
1683                 goto out_problem;
1684
1685         map = map__new(machine, event->mmap2.start,
1686                         event->mmap2.len, event->mmap2.pgoff,
1687                         event->mmap2.maj,
1688                         event->mmap2.min, event->mmap2.ino,
1689                         event->mmap2.ino_generation,
1690                         event->mmap2.prot,
1691                         event->mmap2.flags,
1692                         event->mmap2.filename, thread);
1693
1694         if (map == NULL)
1695                 goto out_problem_map;
1696
1697         ret = thread__insert_map(thread, map);
1698         if (ret)
1699                 goto out_problem_insert;
1700
1701         thread__put(thread);
1702         map__put(map);
1703         return 0;
1704
1705 out_problem_insert:
1706         map__put(map);
1707 out_problem_map:
1708         thread__put(thread);
1709 out_problem:
1710         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1711         return 0;
1712 }
1713
1714 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1715                                 struct perf_sample *sample)
1716 {
1717         struct thread *thread;
1718         struct map *map;
1719         u32 prot = 0;
1720         int ret = 0;
1721
1722         if (dump_trace)
1723                 perf_event__fprintf_mmap(event, stdout);
1724
1725         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1726             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1727                 ret = machine__process_kernel_mmap_event(machine, event);
1728                 if (ret < 0)
1729                         goto out_problem;
1730                 return 0;
1731         }
1732
1733         thread = machine__findnew_thread(machine, event->mmap.pid,
1734                                          event->mmap.tid);
1735         if (thread == NULL)
1736                 goto out_problem;
1737
1738         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1739                 prot = PROT_EXEC;
1740
1741         map = map__new(machine, event->mmap.start,
1742                         event->mmap.len, event->mmap.pgoff,
1743                         0, 0, 0, 0, prot, 0,
1744                         event->mmap.filename,
1745                         thread);
1746
1747         if (map == NULL)
1748                 goto out_problem_map;
1749
1750         ret = thread__insert_map(thread, map);
1751         if (ret)
1752                 goto out_problem_insert;
1753
1754         thread__put(thread);
1755         map__put(map);
1756         return 0;
1757
1758 out_problem_insert:
1759         map__put(map);
1760 out_problem_map:
1761         thread__put(thread);
1762 out_problem:
1763         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1764         return 0;
1765 }
1766
1767 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1768 {
1769         struct threads *threads = machine__threads(machine, th->tid);
1770
1771         if (threads->last_match == th)
1772                 threads__set_last_match(threads, NULL);
1773
1774         if (lock)
1775                 down_write(&threads->lock);
1776
1777         BUG_ON(refcount_read(&th->refcnt) == 0);
1778
1779         rb_erase_cached(&th->rb_node, &threads->entries);
1780         RB_CLEAR_NODE(&th->rb_node);
1781         --threads->nr;
1782         /*
1783          * Move it first to the dead_threads list, then drop the reference,
1784          * if this is the last reference, then the thread__delete destructor
1785          * will be called and we will remove it from the dead_threads list.
1786          */
1787         list_add_tail(&th->node, &threads->dead);
1788
1789         /*
1790          * We need to do the put here because if this is the last refcount,
1791          * then we will be touching the threads->dead head when removing the
1792          * thread.
1793          */
1794         thread__put(th);
1795
1796         if (lock)
1797                 up_write(&threads->lock);
1798 }
1799
1800 void machine__remove_thread(struct machine *machine, struct thread *th)
1801 {
1802         return __machine__remove_thread(machine, th, true);
1803 }
1804
1805 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1806                                 struct perf_sample *sample)
1807 {
1808         struct thread *thread = machine__find_thread(machine,
1809                                                      event->fork.pid,
1810                                                      event->fork.tid);
1811         struct thread *parent = machine__findnew_thread(machine,
1812                                                         event->fork.ppid,
1813                                                         event->fork.ptid);
1814         bool do_maps_clone = true;
1815         int err = 0;
1816
1817         if (dump_trace)
1818                 perf_event__fprintf_task(event, stdout);
1819
1820         /*
1821          * There may be an existing thread that is not actually the parent,
1822          * either because we are processing events out of order, or because the
1823          * (fork) event that would have removed the thread was lost. Assume the
1824          * latter case and continue on as best we can.
1825          */
1826         if (parent->pid_ != (pid_t)event->fork.ppid) {
1827                 dump_printf("removing erroneous parent thread %d/%d\n",
1828                             parent->pid_, parent->tid);
1829                 machine__remove_thread(machine, parent);
1830                 thread__put(parent);
1831                 parent = machine__findnew_thread(machine, event->fork.ppid,
1832                                                  event->fork.ptid);
1833         }
1834
1835         /* if a thread currently exists for the thread id remove it */
1836         if (thread != NULL) {
1837                 machine__remove_thread(machine, thread);
1838                 thread__put(thread);
1839         }
1840
1841         thread = machine__findnew_thread(machine, event->fork.pid,
1842                                          event->fork.tid);
1843         /*
1844          * When synthesizing FORK events, we are trying to create thread
1845          * objects for the already running tasks on the machine.
1846          *
1847          * Normally, for a kernel FORK event, we want to clone the parent's
1848          * maps because that is what the kernel just did.
1849          *
1850          * But when synthesizing, this should not be done.  If we do, we end up
1851          * with overlapping maps as we process the sythesized MMAP2 events that
1852          * get delivered shortly thereafter.
1853          *
1854          * Use the FORK event misc flags in an internal way to signal this
1855          * situation, so we can elide the map clone when appropriate.
1856          */
1857         if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1858                 do_maps_clone = false;
1859
1860         if (thread == NULL || parent == NULL ||
1861             thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1862                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1863                 err = -1;
1864         }
1865         thread__put(thread);
1866         thread__put(parent);
1867
1868         return err;
1869 }
1870
1871 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1872                                 struct perf_sample *sample __maybe_unused)
1873 {
1874         struct thread *thread = machine__find_thread(machine,
1875                                                      event->fork.pid,
1876                                                      event->fork.tid);
1877
1878         if (dump_trace)
1879                 perf_event__fprintf_task(event, stdout);
1880
1881         if (thread != NULL) {
1882                 thread__exited(thread);
1883                 thread__put(thread);
1884         }
1885
1886         return 0;
1887 }
1888
1889 int machine__process_event(struct machine *machine, union perf_event *event,
1890                            struct perf_sample *sample)
1891 {
1892         int ret;
1893
1894         switch (event->header.type) {
1895         case PERF_RECORD_COMM:
1896                 ret = machine__process_comm_event(machine, event, sample); break;
1897         case PERF_RECORD_MMAP:
1898                 ret = machine__process_mmap_event(machine, event, sample); break;
1899         case PERF_RECORD_NAMESPACES:
1900                 ret = machine__process_namespaces_event(machine, event, sample); break;
1901         case PERF_RECORD_MMAP2:
1902                 ret = machine__process_mmap2_event(machine, event, sample); break;
1903         case PERF_RECORD_FORK:
1904                 ret = machine__process_fork_event(machine, event, sample); break;
1905         case PERF_RECORD_EXIT:
1906                 ret = machine__process_exit_event(machine, event, sample); break;
1907         case PERF_RECORD_LOST:
1908                 ret = machine__process_lost_event(machine, event, sample); break;
1909         case PERF_RECORD_AUX:
1910                 ret = machine__process_aux_event(machine, event); break;
1911         case PERF_RECORD_ITRACE_START:
1912                 ret = machine__process_itrace_start_event(machine, event); break;
1913         case PERF_RECORD_LOST_SAMPLES:
1914                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1915         case PERF_RECORD_SWITCH:
1916         case PERF_RECORD_SWITCH_CPU_WIDE:
1917                 ret = machine__process_switch_event(machine, event); break;
1918         case PERF_RECORD_KSYMBOL:
1919                 ret = machine__process_ksymbol(machine, event, sample); break;
1920         case PERF_RECORD_BPF_EVENT:
1921                 ret = machine__process_bpf_event(machine, event, sample); break;
1922         default:
1923                 ret = -1;
1924                 break;
1925         }
1926
1927         return ret;
1928 }
1929
1930 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1931 {
1932         if (!regexec(regex, sym->name, 0, NULL, 0))
1933                 return 1;
1934         return 0;
1935 }
1936
1937 static void ip__resolve_ams(struct thread *thread,
1938                             struct addr_map_symbol *ams,
1939                             u64 ip)
1940 {
1941         struct addr_location al;
1942
1943         memset(&al, 0, sizeof(al));
1944         /*
1945          * We cannot use the header.misc hint to determine whether a
1946          * branch stack address is user, kernel, guest, hypervisor.
1947          * Branches may straddle the kernel/user/hypervisor boundaries.
1948          * Thus, we have to try consecutively until we find a match
1949          * or else, the symbol is unknown
1950          */
1951         thread__find_cpumode_addr_location(thread, ip, &al);
1952
1953         ams->addr = ip;
1954         ams->al_addr = al.addr;
1955         ams->sym = al.sym;
1956         ams->map = al.map;
1957         ams->phys_addr = 0;
1958 }
1959
1960 static void ip__resolve_data(struct thread *thread,
1961                              u8 m, struct addr_map_symbol *ams,
1962                              u64 addr, u64 phys_addr)
1963 {
1964         struct addr_location al;
1965
1966         memset(&al, 0, sizeof(al));
1967
1968         thread__find_symbol(thread, m, addr, &al);
1969
1970         ams->addr = addr;
1971         ams->al_addr = al.addr;
1972         ams->sym = al.sym;
1973         ams->map = al.map;
1974         ams->phys_addr = phys_addr;
1975 }
1976
1977 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1978                                      struct addr_location *al)
1979 {
1980         struct mem_info *mi = mem_info__new();
1981
1982         if (!mi)
1983                 return NULL;
1984
1985         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1986         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1987                          sample->addr, sample->phys_addr);
1988         mi->data_src.val = sample->data_src;
1989
1990         return mi;
1991 }
1992
1993 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1994 {
1995         char *srcline = NULL;
1996
1997         if (!map || callchain_param.key == CCKEY_FUNCTION)
1998                 return srcline;
1999
2000         srcline = srcline__tree_find(&map->dso->srclines, ip);
2001         if (!srcline) {
2002                 bool show_sym = false;
2003                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2004
2005                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2006                                       sym, show_sym, show_addr, ip);
2007                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2008         }
2009
2010         return srcline;
2011 }
2012
2013 struct iterations {
2014         int nr_loop_iter;
2015         u64 cycles;
2016 };
2017
2018 static int add_callchain_ip(struct thread *thread,
2019                             struct callchain_cursor *cursor,
2020                             struct symbol **parent,
2021                             struct addr_location *root_al,
2022                             u8 *cpumode,
2023                             u64 ip,
2024                             bool branch,
2025                             struct branch_flags *flags,
2026                             struct iterations *iter,
2027                             u64 branch_from)
2028 {
2029         struct addr_location al;
2030         int nr_loop_iter = 0;
2031         u64 iter_cycles = 0;
2032         const char *srcline = NULL;
2033
2034         al.filtered = 0;
2035         al.sym = NULL;
2036         if (!cpumode) {
2037                 thread__find_cpumode_addr_location(thread, ip, &al);
2038         } else {
2039                 if (ip >= PERF_CONTEXT_MAX) {
2040                         switch (ip) {
2041                         case PERF_CONTEXT_HV:
2042                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2043                                 break;
2044                         case PERF_CONTEXT_KERNEL:
2045                                 *cpumode = PERF_RECORD_MISC_KERNEL;
2046                                 break;
2047                         case PERF_CONTEXT_USER:
2048                                 *cpumode = PERF_RECORD_MISC_USER;
2049                                 break;
2050                         default:
2051                                 pr_debug("invalid callchain context: "
2052                                          "%"PRId64"\n", (s64) ip);
2053                                 /*
2054                                  * It seems the callchain is corrupted.
2055                                  * Discard all.
2056                                  */
2057                                 callchain_cursor_reset(cursor);
2058                                 return 1;
2059                         }
2060                         return 0;
2061                 }
2062                 thread__find_symbol(thread, *cpumode, ip, &al);
2063         }
2064
2065         if (al.sym != NULL) {
2066                 if (perf_hpp_list.parent && !*parent &&
2067                     symbol__match_regex(al.sym, &parent_regex))
2068                         *parent = al.sym;
2069                 else if (have_ignore_callees && root_al &&
2070                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2071                         /* Treat this symbol as the root,
2072                            forgetting its callees. */
2073                         *root_al = al;
2074                         callchain_cursor_reset(cursor);
2075                 }
2076         }
2077
2078         if (symbol_conf.hide_unresolved && al.sym == NULL)
2079                 return 0;
2080
2081         if (iter) {
2082                 nr_loop_iter = iter->nr_loop_iter;
2083                 iter_cycles = iter->cycles;
2084         }
2085
2086         srcline = callchain_srcline(al.map, al.sym, al.addr);
2087         return callchain_cursor_append(cursor, ip, al.map, al.sym,
2088                                        branch, flags, nr_loop_iter,
2089                                        iter_cycles, branch_from, srcline);
2090 }
2091
2092 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2093                                            struct addr_location *al)
2094 {
2095         unsigned int i;
2096         const struct branch_stack *bs = sample->branch_stack;
2097         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2098
2099         if (!bi)
2100                 return NULL;
2101
2102         for (i = 0; i < bs->nr; i++) {
2103                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2104                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2105                 bi[i].flags = bs->entries[i].flags;
2106         }
2107         return bi;
2108 }
2109
2110 static void save_iterations(struct iterations *iter,
2111                             struct branch_entry *be, int nr)
2112 {
2113         int i;
2114
2115         iter->nr_loop_iter++;
2116         iter->cycles = 0;
2117
2118         for (i = 0; i < nr; i++)
2119                 iter->cycles += be[i].flags.cycles;
2120 }
2121
2122 #define CHASHSZ 127
2123 #define CHASHBITS 7
2124 #define NO_ENTRY 0xff
2125
2126 #define PERF_MAX_BRANCH_DEPTH 127
2127
2128 /* Remove loops. */
2129 static int remove_loops(struct branch_entry *l, int nr,
2130                         struct iterations *iter)
2131 {
2132         int i, j, off;
2133         unsigned char chash[CHASHSZ];
2134
2135         memset(chash, NO_ENTRY, sizeof(chash));
2136
2137         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2138
2139         for (i = 0; i < nr; i++) {
2140                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2141
2142                 /* no collision handling for now */
2143                 if (chash[h] == NO_ENTRY) {
2144                         chash[h] = i;
2145                 } else if (l[chash[h]].from == l[i].from) {
2146                         bool is_loop = true;
2147                         /* check if it is a real loop */
2148                         off = 0;
2149                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
2150                                 if (l[j].from != l[i + off].from) {
2151                                         is_loop = false;
2152                                         break;
2153                                 }
2154                         if (is_loop) {
2155                                 j = nr - (i + off);
2156                                 if (j > 0) {
2157                                         save_iterations(iter + i + off,
2158                                                 l + i, off);
2159
2160                                         memmove(iter + i, iter + i + off,
2161                                                 j * sizeof(*iter));
2162
2163                                         memmove(l + i, l + i + off,
2164                                                 j * sizeof(*l));
2165                                 }
2166
2167                                 nr -= off;
2168                         }
2169                 }
2170         }
2171         return nr;
2172 }
2173
2174 /*
2175  * Recolve LBR callstack chain sample
2176  * Return:
2177  * 1 on success get LBR callchain information
2178  * 0 no available LBR callchain information, should try fp
2179  * negative error code on other errors.
2180  */
2181 static int resolve_lbr_callchain_sample(struct thread *thread,
2182                                         struct callchain_cursor *cursor,
2183                                         struct perf_sample *sample,
2184                                         struct symbol **parent,
2185                                         struct addr_location *root_al,
2186                                         int max_stack)
2187 {
2188         struct ip_callchain *chain = sample->callchain;
2189         int chain_nr = min(max_stack, (int)chain->nr), i;
2190         u8 cpumode = PERF_RECORD_MISC_USER;
2191         u64 ip, branch_from = 0;
2192
2193         for (i = 0; i < chain_nr; i++) {
2194                 if (chain->ips[i] == PERF_CONTEXT_USER)
2195                         break;
2196         }
2197
2198         /* LBR only affects the user callchain */
2199         if (i != chain_nr) {
2200                 struct branch_stack *lbr_stack = sample->branch_stack;
2201                 int lbr_nr = lbr_stack->nr, j, k;
2202                 bool branch;
2203                 struct branch_flags *flags;
2204                 /*
2205                  * LBR callstack can only get user call chain.
2206                  * The mix_chain_nr is kernel call chain
2207                  * number plus LBR user call chain number.
2208                  * i is kernel call chain number,
2209                  * 1 is PERF_CONTEXT_USER,
2210                  * lbr_nr + 1 is the user call chain number.
2211                  * For details, please refer to the comments
2212                  * in callchain__printf
2213                  */
2214                 int mix_chain_nr = i + 1 + lbr_nr + 1;
2215
2216                 for (j = 0; j < mix_chain_nr; j++) {
2217                         int err;
2218                         branch = false;
2219                         flags = NULL;
2220
2221                         if (callchain_param.order == ORDER_CALLEE) {
2222                                 if (j < i + 1)
2223                                         ip = chain->ips[j];
2224                                 else if (j > i + 1) {
2225                                         k = j - i - 2;
2226                                         ip = lbr_stack->entries[k].from;
2227                                         branch = true;
2228                                         flags = &lbr_stack->entries[k].flags;
2229                                 } else {
2230                                         ip = lbr_stack->entries[0].to;
2231                                         branch = true;
2232                                         flags = &lbr_stack->entries[0].flags;
2233                                         branch_from =
2234                                                 lbr_stack->entries[0].from;
2235                                 }
2236                         } else {
2237                                 if (j < lbr_nr) {
2238                                         k = lbr_nr - j - 1;
2239                                         ip = lbr_stack->entries[k].from;
2240                                         branch = true;
2241                                         flags = &lbr_stack->entries[k].flags;
2242                                 }
2243                                 else if (j > lbr_nr)
2244                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
2245                                 else {
2246                                         ip = lbr_stack->entries[0].to;
2247                                         branch = true;
2248                                         flags = &lbr_stack->entries[0].flags;
2249                                         branch_from =
2250                                                 lbr_stack->entries[0].from;
2251                                 }
2252                         }
2253
2254                         err = add_callchain_ip(thread, cursor, parent,
2255                                                root_al, &cpumode, ip,
2256                                                branch, flags, NULL,
2257                                                branch_from);
2258                         if (err)
2259                                 return (err < 0) ? err : 0;
2260                 }
2261                 return 1;
2262         }
2263
2264         return 0;
2265 }
2266
2267 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2268                              struct callchain_cursor *cursor,
2269                              struct symbol **parent,
2270                              struct addr_location *root_al,
2271                              u8 *cpumode, int ent)
2272 {
2273         int err = 0;
2274
2275         while (--ent >= 0) {
2276                 u64 ip = chain->ips[ent];
2277
2278                 if (ip >= PERF_CONTEXT_MAX) {
2279                         err = add_callchain_ip(thread, cursor, parent,
2280                                                root_al, cpumode, ip,
2281                                                false, NULL, NULL, 0);
2282                         break;
2283                 }
2284         }
2285         return err;
2286 }
2287
2288 static int thread__resolve_callchain_sample(struct thread *thread,
2289                                             struct callchain_cursor *cursor,
2290                                             struct perf_evsel *evsel,
2291                                             struct perf_sample *sample,
2292                                             struct symbol **parent,
2293                                             struct addr_location *root_al,
2294                                             int max_stack)
2295 {
2296         struct branch_stack *branch = sample->branch_stack;
2297         struct ip_callchain *chain = sample->callchain;
2298         int chain_nr = 0;
2299         u8 cpumode = PERF_RECORD_MISC_USER;
2300         int i, j, err, nr_entries;
2301         int skip_idx = -1;
2302         int first_call = 0;
2303
2304         if (chain)
2305                 chain_nr = chain->nr;
2306
2307         if (perf_evsel__has_branch_callstack(evsel)) {
2308                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2309                                                    root_al, max_stack);
2310                 if (err)
2311                         return (err < 0) ? err : 0;
2312         }
2313
2314         /*
2315          * Based on DWARF debug information, some architectures skip
2316          * a callchain entry saved by the kernel.
2317          */
2318         skip_idx = arch_skip_callchain_idx(thread, chain);
2319
2320         /*
2321          * Add branches to call stack for easier browsing. This gives
2322          * more context for a sample than just the callers.
2323          *
2324          * This uses individual histograms of paths compared to the
2325          * aggregated histograms the normal LBR mode uses.
2326          *
2327          * Limitations for now:
2328          * - No extra filters
2329          * - No annotations (should annotate somehow)
2330          */
2331
2332         if (branch && callchain_param.branch_callstack) {
2333                 int nr = min(max_stack, (int)branch->nr);
2334                 struct branch_entry be[nr];
2335                 struct iterations iter[nr];
2336
2337                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2338                         pr_warning("corrupted branch chain. skipping...\n");
2339                         goto check_calls;
2340                 }
2341
2342                 for (i = 0; i < nr; i++) {
2343                         if (callchain_param.order == ORDER_CALLEE) {
2344                                 be[i] = branch->entries[i];
2345
2346                                 if (chain == NULL)
2347                                         continue;
2348
2349                                 /*
2350                                  * Check for overlap into the callchain.
2351                                  * The return address is one off compared to
2352                                  * the branch entry. To adjust for this
2353                                  * assume the calling instruction is not longer
2354                                  * than 8 bytes.
2355                                  */
2356                                 if (i == skip_idx ||
2357                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2358                                         first_call++;
2359                                 else if (be[i].from < chain->ips[first_call] &&
2360                                     be[i].from >= chain->ips[first_call] - 8)
2361                                         first_call++;
2362                         } else
2363                                 be[i] = branch->entries[branch->nr - i - 1];
2364                 }
2365
2366                 memset(iter, 0, sizeof(struct iterations) * nr);
2367                 nr = remove_loops(be, nr, iter);
2368
2369                 for (i = 0; i < nr; i++) {
2370                         err = add_callchain_ip(thread, cursor, parent,
2371                                                root_al,
2372                                                NULL, be[i].to,
2373                                                true, &be[i].flags,
2374                                                NULL, be[i].from);
2375
2376                         if (!err)
2377                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2378                                                        NULL, be[i].from,
2379                                                        true, &be[i].flags,
2380                                                        &iter[i], 0);
2381                         if (err == -EINVAL)
2382                                 break;
2383                         if (err)
2384                                 return err;
2385                 }
2386
2387                 if (chain_nr == 0)
2388                         return 0;
2389
2390                 chain_nr -= nr;
2391         }
2392
2393 check_calls:
2394         if (callchain_param.order != ORDER_CALLEE) {
2395                 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2396                                         &cpumode, chain->nr - first_call);
2397                 if (err)
2398                         return (err < 0) ? err : 0;
2399         }
2400         for (i = first_call, nr_entries = 0;
2401              i < chain_nr && nr_entries < max_stack; i++) {
2402                 u64 ip;
2403
2404                 if (callchain_param.order == ORDER_CALLEE)
2405                         j = i;
2406                 else
2407                         j = chain->nr - i - 1;
2408
2409 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2410                 if (j == skip_idx)
2411                         continue;
2412 #endif
2413                 ip = chain->ips[j];
2414                 if (ip < PERF_CONTEXT_MAX)
2415                        ++nr_entries;
2416                 else if (callchain_param.order != ORDER_CALLEE) {
2417                         err = find_prev_cpumode(chain, thread, cursor, parent,
2418                                                 root_al, &cpumode, j);
2419                         if (err)
2420                                 return (err < 0) ? err : 0;
2421                         continue;
2422                 }
2423
2424                 err = add_callchain_ip(thread, cursor, parent,
2425                                        root_al, &cpumode, ip,
2426                                        false, NULL, NULL, 0);
2427
2428                 if (err)
2429                         return (err < 0) ? err : 0;
2430         }
2431
2432         return 0;
2433 }
2434
2435 static int append_inlines(struct callchain_cursor *cursor,
2436                           struct map *map, struct symbol *sym, u64 ip)
2437 {
2438         struct inline_node *inline_node;
2439         struct inline_list *ilist;
2440         u64 addr;
2441         int ret = 1;
2442
2443         if (!symbol_conf.inline_name || !map || !sym)
2444                 return ret;
2445
2446         addr = map__map_ip(map, ip);
2447         addr = map__rip_2objdump(map, addr);
2448
2449         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2450         if (!inline_node) {
2451                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2452                 if (!inline_node)
2453                         return ret;
2454                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2455         }
2456
2457         list_for_each_entry(ilist, &inline_node->val, list) {
2458                 ret = callchain_cursor_append(cursor, ip, map,
2459                                               ilist->symbol, false,
2460                                               NULL, 0, 0, 0, ilist->srcline);
2461
2462                 if (ret != 0)
2463                         return ret;
2464         }
2465
2466         return ret;
2467 }
2468
2469 static int unwind_entry(struct unwind_entry *entry, void *arg)
2470 {
2471         struct callchain_cursor *cursor = arg;
2472         const char *srcline = NULL;
2473         u64 addr = entry->ip;
2474
2475         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2476                 return 0;
2477
2478         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2479                 return 0;
2480
2481         /*
2482          * Convert entry->ip from a virtual address to an offset in
2483          * its corresponding binary.
2484          */
2485         if (entry->map)
2486                 addr = map__map_ip(entry->map, entry->ip);
2487
2488         srcline = callchain_srcline(entry->map, entry->sym, addr);
2489         return callchain_cursor_append(cursor, entry->ip,
2490                                        entry->map, entry->sym,
2491                                        false, NULL, 0, 0, 0, srcline);
2492 }
2493
2494 static int thread__resolve_callchain_unwind(struct thread *thread,
2495                                             struct callchain_cursor *cursor,
2496                                             struct perf_evsel *evsel,
2497                                             struct perf_sample *sample,
2498                                             int max_stack)
2499 {
2500         /* Can we do dwarf post unwind? */
2501         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2502               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2503                 return 0;
2504
2505         /* Bail out if nothing was captured. */
2506         if ((!sample->user_regs.regs) ||
2507             (!sample->user_stack.size))
2508                 return 0;
2509
2510         return unwind__get_entries(unwind_entry, cursor,
2511                                    thread, sample, max_stack);
2512 }
2513
2514 int thread__resolve_callchain(struct thread *thread,
2515                               struct callchain_cursor *cursor,
2516                               struct perf_evsel *evsel,
2517                               struct perf_sample *sample,
2518                               struct symbol **parent,
2519                               struct addr_location *root_al,
2520                               int max_stack)
2521 {
2522         int ret = 0;
2523
2524         callchain_cursor_reset(cursor);
2525
2526         if (callchain_param.order == ORDER_CALLEE) {
2527                 ret = thread__resolve_callchain_sample(thread, cursor,
2528                                                        evsel, sample,
2529                                                        parent, root_al,
2530                                                        max_stack);
2531                 if (ret)
2532                         return ret;
2533                 ret = thread__resolve_callchain_unwind(thread, cursor,
2534                                                        evsel, sample,
2535                                                        max_stack);
2536         } else {
2537                 ret = thread__resolve_callchain_unwind(thread, cursor,
2538                                                        evsel, sample,
2539                                                        max_stack);
2540                 if (ret)
2541                         return ret;
2542                 ret = thread__resolve_callchain_sample(thread, cursor,
2543                                                        evsel, sample,
2544                                                        parent, root_al,
2545                                                        max_stack);
2546         }
2547
2548         return ret;
2549 }
2550
2551 int machine__for_each_thread(struct machine *machine,
2552                              int (*fn)(struct thread *thread, void *p),
2553                              void *priv)
2554 {
2555         struct threads *threads;
2556         struct rb_node *nd;
2557         struct thread *thread;
2558         int rc = 0;
2559         int i;
2560
2561         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2562                 threads = &machine->threads[i];
2563                 for (nd = rb_first_cached(&threads->entries); nd;
2564                      nd = rb_next(nd)) {
2565                         thread = rb_entry(nd, struct thread, rb_node);
2566                         rc = fn(thread, priv);
2567                         if (rc != 0)
2568                                 return rc;
2569                 }
2570
2571                 list_for_each_entry(thread, &threads->dead, node) {
2572                         rc = fn(thread, priv);
2573                         if (rc != 0)
2574                                 return rc;
2575                 }
2576         }
2577         return rc;
2578 }
2579
2580 int machines__for_each_thread(struct machines *machines,
2581                               int (*fn)(struct thread *thread, void *p),
2582                               void *priv)
2583 {
2584         struct rb_node *nd;
2585         int rc = 0;
2586
2587         rc = machine__for_each_thread(&machines->host, fn, priv);
2588         if (rc != 0)
2589                 return rc;
2590
2591         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2592                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2593
2594                 rc = machine__for_each_thread(machine, fn, priv);
2595                 if (rc != 0)
2596                         return rc;
2597         }
2598         return rc;
2599 }
2600
2601 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2602                                   struct target *target, struct thread_map *threads,
2603                                   perf_event__handler_t process, bool data_mmap,
2604                                   unsigned int nr_threads_synthesize)
2605 {
2606         if (target__has_task(target))
2607                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2608         else if (target__has_cpu(target))
2609                 return perf_event__synthesize_threads(tool, process,
2610                                                       machine, data_mmap,
2611                                                       nr_threads_synthesize);
2612         /* command specified */
2613         return 0;
2614 }
2615
2616 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2617 {
2618         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2619                 return -1;
2620
2621         return machine->current_tid[cpu];
2622 }
2623
2624 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2625                              pid_t tid)
2626 {
2627         struct thread *thread;
2628
2629         if (cpu < 0)
2630                 return -EINVAL;
2631
2632         if (!machine->current_tid) {
2633                 int i;
2634
2635                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2636                 if (!machine->current_tid)
2637                         return -ENOMEM;
2638                 for (i = 0; i < MAX_NR_CPUS; i++)
2639                         machine->current_tid[i] = -1;
2640         }
2641
2642         if (cpu >= MAX_NR_CPUS) {
2643                 pr_err("Requested CPU %d too large. ", cpu);
2644                 pr_err("Consider raising MAX_NR_CPUS\n");
2645                 return -EINVAL;
2646         }
2647
2648         machine->current_tid[cpu] = tid;
2649
2650         thread = machine__findnew_thread(machine, pid, tid);
2651         if (!thread)
2652                 return -ENOMEM;
2653
2654         thread->cpu = cpu;
2655         thread__put(thread);
2656
2657         return 0;
2658 }
2659
2660 /*
2661  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662  * normalized arch is needed.
2663  */
2664 bool machine__is(struct machine *machine, const char *arch)
2665 {
2666         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667 }
2668
2669 int machine__nr_cpus_avail(struct machine *machine)
2670 {
2671         return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672 }
2673
2674 int machine__get_kernel_start(struct machine *machine)
2675 {
2676         struct map *map = machine__kernel_map(machine);
2677         int err = 0;
2678
2679         /*
2680          * The only addresses above 2^63 are kernel addresses of a 64-bit
2681          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682          * all addresses including kernel addresses are less than 2^32.  In
2683          * that case (32-bit system), if the kernel mapping is unknown, all
2684          * addresses will be assumed to be in user space - see
2685          * machine__kernel_ip().
2686          */
2687         machine->kernel_start = 1ULL << 63;
2688         if (map) {
2689                 err = map__load(map);
2690                 /*
2691                  * On x86_64, PTI entry trampolines are less than the
2692                  * start of kernel text, but still above 2^63. So leave
2693                  * kernel_start = 1ULL << 63 for x86_64.
2694                  */
2695                 if (!err && !machine__is(machine, "x86_64"))
2696                         machine->kernel_start = map->start;
2697         }
2698         return err;
2699 }
2700
2701 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702 {
2703         u8 addr_cpumode = cpumode;
2704         bool kernel_ip;
2705
2706         if (!machine->single_address_space)
2707                 goto out;
2708
2709         kernel_ip = machine__kernel_ip(machine, addr);
2710         switch (cpumode) {
2711         case PERF_RECORD_MISC_KERNEL:
2712         case PERF_RECORD_MISC_USER:
2713                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714                                            PERF_RECORD_MISC_USER;
2715                 break;
2716         case PERF_RECORD_MISC_GUEST_KERNEL:
2717         case PERF_RECORD_MISC_GUEST_USER:
2718                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719                                            PERF_RECORD_MISC_GUEST_USER;
2720                 break;
2721         default:
2722                 break;
2723         }
2724 out:
2725         return addr_cpumode;
2726 }
2727
2728 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729 {
2730         return dsos__findnew(&machine->dsos, filename);
2731 }
2732
2733 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734 {
2735         struct machine *machine = vmachine;
2736         struct map *map;
2737         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739         if (sym == NULL)
2740                 return NULL;
2741
2742         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743         *addrp = map->unmap_ip(map, sym->start);
2744         return sym->name;
2745 }