9b1011fe48267106b58c9e094b715430497608c3
[linux-block.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47
48 #define MAX_TIMESTAMP (~0ULL)
49
50 #define INTEL_PT_CFG_PASS_THRU  BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN  BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN     BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS    BIT_ULL(55)
55
56 struct range {
57         u64 start;
58         u64 end;
59 };
60
61 struct intel_pt {
62         struct auxtrace auxtrace;
63         struct auxtrace_queues queues;
64         struct auxtrace_heap heap;
65         u32 auxtrace_type;
66         struct perf_session *session;
67         struct machine *machine;
68         struct evsel *switch_evsel;
69         struct thread *unknown_thread;
70         bool timeless_decoding;
71         bool sampling_mode;
72         bool snapshot_mode;
73         bool per_cpu_mmaps;
74         bool have_tsc;
75         bool data_queued;
76         bool est_tsc;
77         bool sync_switch;
78         bool sync_switch_not_supported;
79         bool mispred_all;
80         bool use_thread_stack;
81         bool callstack;
82         bool cap_event_trace;
83         bool have_guest_sideband;
84         unsigned int br_stack_sz;
85         unsigned int br_stack_sz_plus;
86         int have_sched_switch;
87         u32 pmu_type;
88         u64 kernel_start;
89         u64 switch_ip;
90         u64 ptss_ip;
91         u64 first_timestamp;
92
93         struct perf_tsc_conversion tc;
94         bool cap_user_time_zero;
95
96         struct itrace_synth_opts synth_opts;
97
98         bool sample_instructions;
99         u64 instructions_sample_type;
100         u64 instructions_id;
101
102         bool sample_cycles;
103         u64 cycles_sample_type;
104         u64 cycles_id;
105
106         bool sample_branches;
107         u32 branches_filter;
108         u64 branches_sample_type;
109         u64 branches_id;
110
111         bool sample_transactions;
112         u64 transactions_sample_type;
113         u64 transactions_id;
114
115         bool sample_ptwrites;
116         u64 ptwrites_sample_type;
117         u64 ptwrites_id;
118
119         bool sample_pwr_events;
120         u64 pwr_events_sample_type;
121         u64 mwait_id;
122         u64 pwre_id;
123         u64 exstop_id;
124         u64 pwrx_id;
125         u64 cbr_id;
126         u64 psb_id;
127
128         bool single_pebs;
129         bool sample_pebs;
130         int pebs_data_src_fmt;
131         struct evsel *pebs_evsel;
132
133         u64 evt_sample_type;
134         u64 evt_id;
135
136         u64 iflag_chg_sample_type;
137         u64 iflag_chg_id;
138
139         u64 tsc_bit;
140         u64 mtc_bit;
141         u64 mtc_freq_bits;
142         u32 tsc_ctc_ratio_n;
143         u32 tsc_ctc_ratio_d;
144         u64 cyc_bit;
145         u64 noretcomp_bit;
146         unsigned max_non_turbo_ratio;
147         unsigned cbr2khz;
148         int max_loops;
149
150         unsigned long num_events;
151
152         char *filter;
153         struct addr_filters filts;
154
155         struct range *time_ranges;
156         unsigned int range_cnt;
157
158         struct ip_callchain *chain;
159         struct branch_stack *br_stack;
160
161         u64 dflt_tsc_offset;
162         struct rb_root vmcs_info;
163 };
164
165 enum switch_state {
166         INTEL_PT_SS_NOT_TRACING,
167         INTEL_PT_SS_UNKNOWN,
168         INTEL_PT_SS_TRACING,
169         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
170         INTEL_PT_SS_EXPECTING_SWITCH_IP,
171 };
172
173 /* applicable_counters is 64-bits */
174 #define INTEL_PT_MAX_PEBS 64
175
176 struct intel_pt_pebs_event {
177         struct evsel *evsel;
178         u64 id;
179         int data_src_fmt;
180 };
181
182 struct intel_pt_queue {
183         struct intel_pt *pt;
184         unsigned int queue_nr;
185         struct auxtrace_buffer *buffer;
186         struct auxtrace_buffer *old_buffer;
187         void *decoder;
188         const struct intel_pt_state *state;
189         struct ip_callchain *chain;
190         struct branch_stack *last_branch;
191         union perf_event *event_buf;
192         bool on_heap;
193         bool stop;
194         bool step_through_buffers;
195         bool use_buffer_pid_tid;
196         bool sync_switch;
197         bool sample_ipc;
198         pid_t pid, tid;
199         int cpu;
200         int switch_state;
201         pid_t next_tid;
202         struct thread *thread;
203         struct machine *guest_machine;
204         struct thread *guest_thread;
205         struct thread *unknown_guest_thread;
206         pid_t guest_machine_pid;
207         pid_t guest_pid;
208         pid_t guest_tid;
209         int vcpu;
210         bool exclude_kernel;
211         bool have_sample;
212         u64 time;
213         u64 timestamp;
214         u64 sel_timestamp;
215         bool sel_start;
216         unsigned int sel_idx;
217         u32 flags;
218         u16 insn_len;
219         u64 last_insn_cnt;
220         u64 ipc_insn_cnt;
221         u64 ipc_cyc_cnt;
222         u64 last_in_insn_cnt;
223         u64 last_in_cyc_cnt;
224         u64 last_cy_insn_cnt;
225         u64 last_cy_cyc_cnt;
226         u64 last_br_insn_cnt;
227         u64 last_br_cyc_cnt;
228         unsigned int cbr_seen;
229         char insn[INTEL_PT_INSN_BUF_SZ];
230         struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
231 };
232
233 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
234                           unsigned char *buf, size_t len)
235 {
236         struct intel_pt_pkt packet;
237         size_t pos = 0;
238         int ret, pkt_len, i;
239         char desc[INTEL_PT_PKT_DESC_MAX];
240         const char *color = PERF_COLOR_BLUE;
241         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
242
243         color_fprintf(stdout, color,
244                       ". ... Intel Processor Trace data: size %zu bytes\n",
245                       len);
246
247         while (len) {
248                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
249                 if (ret > 0)
250                         pkt_len = ret;
251                 else
252                         pkt_len = 1;
253                 printf(".");
254                 color_fprintf(stdout, color, "  %08zx: ", pos);
255                 for (i = 0; i < pkt_len; i++)
256                         color_fprintf(stdout, color, " %02x", buf[i]);
257                 for (; i < 16; i++)
258                         color_fprintf(stdout, color, "   ");
259                 if (ret > 0) {
260                         ret = intel_pt_pkt_desc(&packet, desc,
261                                                 INTEL_PT_PKT_DESC_MAX);
262                         if (ret > 0)
263                                 color_fprintf(stdout, color, " %s\n", desc);
264                 } else {
265                         color_fprintf(stdout, color, " Bad packet!\n");
266                 }
267                 pos += pkt_len;
268                 buf += pkt_len;
269                 len -= pkt_len;
270         }
271 }
272
273 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
274                                 size_t len)
275 {
276         printf(".\n");
277         intel_pt_dump(pt, buf, len);
278 }
279
280 static void intel_pt_log_event(union perf_event *event)
281 {
282         FILE *f = intel_pt_log_fp();
283
284         if (!intel_pt_enable_logging || !f)
285                 return;
286
287         perf_event__fprintf(event, NULL, f);
288 }
289
290 static void intel_pt_dump_sample(struct perf_session *session,
291                                  struct perf_sample *sample)
292 {
293         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
294                                            auxtrace);
295
296         printf("\n");
297         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
298 }
299
300 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
301 {
302         struct perf_time_interval *range = pt->synth_opts.ptime_range;
303         int n = pt->synth_opts.range_num;
304
305         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
306                 return true;
307
308         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
309                 return false;
310
311         /* perf_time__ranges_skip_sample does not work if time is zero */
312         if (!tm)
313                 tm = 1;
314
315         return !n || !perf_time__ranges_skip_sample(range, n, tm);
316 }
317
318 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
319                                                         u64 vmcs,
320                                                         u64 dflt_tsc_offset)
321 {
322         struct rb_node **p = &rb_root->rb_node;
323         struct rb_node *parent = NULL;
324         struct intel_pt_vmcs_info *v;
325
326         while (*p) {
327                 parent = *p;
328                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
329
330                 if (v->vmcs == vmcs)
331                         return v;
332
333                 if (vmcs < v->vmcs)
334                         p = &(*p)->rb_left;
335                 else
336                         p = &(*p)->rb_right;
337         }
338
339         v = zalloc(sizeof(*v));
340         if (v) {
341                 v->vmcs = vmcs;
342                 v->tsc_offset = dflt_tsc_offset;
343                 v->reliable = dflt_tsc_offset;
344
345                 rb_link_node(&v->rb_node, parent, p);
346                 rb_insert_color(&v->rb_node, rb_root);
347         }
348
349         return v;
350 }
351
352 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
353 {
354         struct intel_pt_queue *ptq = data;
355         struct intel_pt *pt = ptq->pt;
356
357         if (!vmcs && !pt->dflt_tsc_offset)
358                 return NULL;
359
360         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
361 }
362
363 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
364 {
365         struct intel_pt_vmcs_info *v;
366         struct rb_node *n;
367
368         n = rb_first(&pt->vmcs_info);
369         while (n) {
370                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
371                 n = rb_next(n);
372                 rb_erase(&v->rb_node, &pt->vmcs_info);
373                 free(v);
374         }
375 }
376
377 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
378                                    struct auxtrace_buffer *b)
379 {
380         bool consecutive = false;
381         void *start;
382
383         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
384                                       pt->have_tsc, &consecutive,
385                                       pt->synth_opts.vm_time_correlation);
386         if (!start)
387                 return -EINVAL;
388         /*
389          * In the case of vm_time_correlation, the overlap might contain TSC
390          * packets that will not be fixed, and that will then no longer work for
391          * overlap detection. Avoid that by zeroing out the overlap.
392          */
393         if (pt->synth_opts.vm_time_correlation)
394                 memset(b->data, 0, start - b->data);
395         b->use_size = b->data + b->size - start;
396         b->use_data = start;
397         if (b->use_size && consecutive)
398                 b->consecutive = true;
399         return 0;
400 }
401
402 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
403                                struct auxtrace_buffer *buffer,
404                                struct auxtrace_buffer *old_buffer,
405                                struct intel_pt_buffer *b)
406 {
407         bool might_overlap;
408
409         if (!buffer->data) {
410                 int fd = perf_data__fd(ptq->pt->session->data);
411
412                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
413                 if (!buffer->data)
414                         return -ENOMEM;
415         }
416
417         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
418         if (might_overlap && !buffer->consecutive && old_buffer &&
419             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
420                 return -ENOMEM;
421
422         if (buffer->use_data) {
423                 b->len = buffer->use_size;
424                 b->buf = buffer->use_data;
425         } else {
426                 b->len = buffer->size;
427                 b->buf = buffer->data;
428         }
429         b->ref_timestamp = buffer->reference;
430
431         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
432                 b->consecutive = false;
433                 b->trace_nr = buffer->buffer_nr + 1;
434         } else {
435                 b->consecutive = true;
436         }
437
438         return 0;
439 }
440
441 /* Do not drop buffers with references - refer intel_pt_get_trace() */
442 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
443                                            struct auxtrace_buffer *buffer)
444 {
445         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
446                 return;
447
448         auxtrace_buffer__drop_data(buffer);
449 }
450
451 /* Must be serialized with respect to intel_pt_get_trace() */
452 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
453                               void *cb_data)
454 {
455         struct intel_pt_queue *ptq = data;
456         struct auxtrace_buffer *buffer = ptq->buffer;
457         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
458         struct auxtrace_queue *queue;
459         int err = 0;
460
461         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
462
463         while (1) {
464                 struct intel_pt_buffer b = { .len = 0 };
465
466                 buffer = auxtrace_buffer__next(queue, buffer);
467                 if (!buffer)
468                         break;
469
470                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
471                 if (err)
472                         break;
473
474                 if (b.len) {
475                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
476                         old_buffer = buffer;
477                 } else {
478                         intel_pt_lookahead_drop_buffer(ptq, buffer);
479                         continue;
480                 }
481
482                 err = cb(&b, cb_data);
483                 if (err)
484                         break;
485         }
486
487         if (buffer != old_buffer)
488                 intel_pt_lookahead_drop_buffer(ptq, buffer);
489         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
490
491         return err;
492 }
493
494 /*
495  * This function assumes data is processed sequentially only.
496  * Must be serialized with respect to intel_pt_lookahead()
497  */
498 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
499 {
500         struct intel_pt_queue *ptq = data;
501         struct auxtrace_buffer *buffer = ptq->buffer;
502         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
503         struct auxtrace_queue *queue;
504         int err;
505
506         if (ptq->stop) {
507                 b->len = 0;
508                 return 0;
509         }
510
511         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
512
513         buffer = auxtrace_buffer__next(queue, buffer);
514         if (!buffer) {
515                 if (old_buffer)
516                         auxtrace_buffer__drop_data(old_buffer);
517                 b->len = 0;
518                 return 0;
519         }
520
521         ptq->buffer = buffer;
522
523         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
524         if (err)
525                 return err;
526
527         if (ptq->step_through_buffers)
528                 ptq->stop = true;
529
530         if (b->len) {
531                 if (old_buffer)
532                         auxtrace_buffer__drop_data(old_buffer);
533                 ptq->old_buffer = buffer;
534         } else {
535                 auxtrace_buffer__drop_data(buffer);
536                 return intel_pt_get_trace(b, data);
537         }
538
539         return 0;
540 }
541
542 struct intel_pt_cache_entry {
543         struct auxtrace_cache_entry     entry;
544         u64                             insn_cnt;
545         u64                             byte_cnt;
546         enum intel_pt_insn_op           op;
547         enum intel_pt_insn_branch       branch;
548         bool                            emulated_ptwrite;
549         int                             length;
550         int32_t                         rel;
551         char                            insn[INTEL_PT_INSN_BUF_SZ];
552 };
553
554 static int intel_pt_config_div(const char *var, const char *value, void *data)
555 {
556         int *d = data;
557         long val;
558
559         if (!strcmp(var, "intel-pt.cache-divisor")) {
560                 val = strtol(value, NULL, 0);
561                 if (val > 0 && val <= INT_MAX)
562                         *d = val;
563         }
564
565         return 0;
566 }
567
568 static int intel_pt_cache_divisor(void)
569 {
570         static int d;
571
572         if (d)
573                 return d;
574
575         perf_config(intel_pt_config_div, &d);
576
577         if (!d)
578                 d = 64;
579
580         return d;
581 }
582
583 static unsigned int intel_pt_cache_size(struct dso *dso,
584                                         struct machine *machine)
585 {
586         off_t size;
587
588         size = dso__data_size(dso, machine);
589         size /= intel_pt_cache_divisor();
590         if (size < 1000)
591                 return 10;
592         if (size > (1 << 21))
593                 return 21;
594         return 32 - __builtin_clz(size);
595 }
596
597 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
598                                              struct machine *machine)
599 {
600         struct auxtrace_cache *c;
601         unsigned int bits;
602
603         if (dso__auxtrace_cache(dso))
604                 return dso__auxtrace_cache(dso);
605
606         bits = intel_pt_cache_size(dso, machine);
607
608         /* Ignoring cache creation failure */
609         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
610
611         dso__set_auxtrace_cache(dso, c);
612
613         return c;
614 }
615
616 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
617                               u64 offset, u64 insn_cnt, u64 byte_cnt,
618                               struct intel_pt_insn *intel_pt_insn)
619 {
620         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621         struct intel_pt_cache_entry *e;
622         int err;
623
624         if (!c)
625                 return -ENOMEM;
626
627         e = auxtrace_cache__alloc_entry(c);
628         if (!e)
629                 return -ENOMEM;
630
631         e->insn_cnt = insn_cnt;
632         e->byte_cnt = byte_cnt;
633         e->op = intel_pt_insn->op;
634         e->branch = intel_pt_insn->branch;
635         e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
636         e->length = intel_pt_insn->length;
637         e->rel = intel_pt_insn->rel;
638         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
639
640         err = auxtrace_cache__add(c, offset, &e->entry);
641         if (err)
642                 auxtrace_cache__free_entry(c, e);
643
644         return err;
645 }
646
647 static struct intel_pt_cache_entry *
648 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
649 {
650         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
651
652         if (!c)
653                 return NULL;
654
655         return auxtrace_cache__lookup(dso__auxtrace_cache(dso), offset);
656 }
657
658 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
659                                       u64 offset)
660 {
661         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
662
663         if (!c)
664                 return;
665
666         auxtrace_cache__remove(dso__auxtrace_cache(dso), offset);
667 }
668
669 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
670 {
671         /* Assumes 64-bit kernel */
672         return ip & (1ULL << 63);
673 }
674
675 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
676 {
677         if (nr) {
678                 return intel_pt_guest_kernel_ip(ip) ?
679                        PERF_RECORD_MISC_GUEST_KERNEL :
680                        PERF_RECORD_MISC_GUEST_USER;
681         }
682
683         return ip >= ptq->pt->kernel_start ?
684                PERF_RECORD_MISC_KERNEL :
685                PERF_RECORD_MISC_USER;
686 }
687
688 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
689 {
690         /* No support for non-zero CS base */
691         if (from_ip)
692                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
693         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
694 }
695
696 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
697 {
698         struct machines *machines = &ptq->pt->session->machines;
699         struct machine *machine;
700         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
701
702         if (ptq->guest_machine && pid == ptq->guest_machine->pid)
703                 return 0;
704
705         ptq->guest_machine = NULL;
706         thread__zput(ptq->unknown_guest_thread);
707
708         if (symbol_conf.guest_code) {
709                 thread__zput(ptq->guest_thread);
710                 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
711         }
712
713         machine = machines__find_guest(machines, pid);
714         if (!machine)
715                 return -1;
716
717         ptq->unknown_guest_thread = machine__idle_thread(machine);
718         if (!ptq->unknown_guest_thread)
719                 return -1;
720
721         ptq->guest_machine = machine;
722
723         return 0;
724 }
725
726 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
727 {
728         return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
729 }
730
731 #define PTWRITE_MAGIC           "\x0f\x0bperf,ptwrite  "
732 #define PTWRITE_MAGIC_LEN       16
733
734 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
735 {
736         unsigned char buf[PTWRITE_MAGIC_LEN];
737         ssize_t len;
738
739         len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
740         if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
741                 intel_pt_log("Emulated ptwrite signature found\n");
742                 return true;
743         }
744         intel_pt_log("Emulated ptwrite signature not found\n");
745         return false;
746 }
747
748 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
749                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
750                                    uint64_t to_ip, uint64_t max_insn_cnt,
751                                    void *data)
752 {
753         struct intel_pt_queue *ptq = data;
754         struct machine *machine = ptq->pt->machine;
755         struct thread *thread;
756         struct addr_location al;
757         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
758         ssize_t len;
759         int x86_64, ret = 0;
760         u8 cpumode;
761         u64 offset, start_offset, start_ip;
762         u64 insn_cnt = 0;
763         bool one_map = true;
764         bool nr;
765
766
767         addr_location__init(&al);
768         intel_pt_insn->length = 0;
769         intel_pt_insn->op = INTEL_PT_OP_OTHER;
770
771         if (to_ip && *ip == to_ip)
772                 goto out_no_cache;
773
774         nr = ptq->state->to_nr;
775         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
776
777         if (nr) {
778                 if (ptq->pt->have_guest_sideband) {
779                         if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
780                                 intel_pt_log("ERROR: guest sideband but no guest machine\n");
781                                 ret = -EINVAL;
782                                 goto out_ret;
783                         }
784                 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
785                            intel_pt_get_guest(ptq)) {
786                         intel_pt_log("ERROR: no guest machine\n");
787                         ret = -EINVAL;
788                         goto out_ret;
789                 }
790                 machine = ptq->guest_machine;
791                 thread = ptq->guest_thread;
792                 if (!thread) {
793                         if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
794                                 intel_pt_log("ERROR: no guest thread\n");
795                                 ret = -EINVAL;
796                                 goto out_ret;
797                         }
798                         thread = ptq->unknown_guest_thread;
799                 }
800         } else {
801                 thread = ptq->thread;
802                 if (!thread) {
803                         if (cpumode != PERF_RECORD_MISC_KERNEL) {
804                                 intel_pt_log("ERROR: no thread\n");
805                                 ret = -EINVAL;
806                                 goto out_ret;
807                         }
808                         thread = ptq->pt->unknown_thread;
809                 }
810         }
811
812         while (1) {
813                 struct dso *dso;
814
815                 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
816                         if (al.map)
817                                 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
818                         else
819                                 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
820                         addr_location__exit(&al);
821                         ret = -EINVAL;
822                         goto out_ret;
823                 }
824                 dso = map__dso(al.map);
825
826                 if (dso__data(dso)->status == DSO_DATA_STATUS_ERROR &&
827                     dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
828                         ret = -ENOENT;
829                         goto out_ret;
830                 }
831
832                 offset = map__map_ip(al.map, *ip);
833
834                 if (!to_ip && one_map) {
835                         struct intel_pt_cache_entry *e;
836
837                         e = intel_pt_cache_lookup(dso, machine, offset);
838                         if (e &&
839                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
840                                 *insn_cnt_ptr = e->insn_cnt;
841                                 *ip += e->byte_cnt;
842                                 intel_pt_insn->op = e->op;
843                                 intel_pt_insn->branch = e->branch;
844                                 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
845                                 intel_pt_insn->length = e->length;
846                                 intel_pt_insn->rel = e->rel;
847                                 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
848                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
849                                 ret = 0;
850                                 goto out_ret;
851                         }
852                 }
853
854                 start_offset = offset;
855                 start_ip = *ip;
856
857                 /* Load maps to ensure dso->is_64_bit has been updated */
858                 map__load(al.map);
859
860                 x86_64 = dso__is_64_bit(dso);
861
862                 while (1) {
863                         len = dso__data_read_offset(dso, machine,
864                                                     offset, buf,
865                                                     INTEL_PT_INSN_BUF_SZ);
866                         if (len <= 0) {
867                                 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
868                                              offset);
869                                 if (intel_pt_enable_logging)
870                                         dso__fprintf(dso, intel_pt_log_fp());
871                                 ret = -EINVAL;
872                                 goto out_ret;
873                         }
874
875                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
876                                 ret = -EINVAL;
877                                 goto out_ret;
878                         }
879
880                         intel_pt_log_insn(intel_pt_insn, *ip);
881
882                         insn_cnt += 1;
883
884                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
885                                 bool eptw;
886                                 u64 offs;
887
888                                 if (!intel_pt_jmp_16(intel_pt_insn))
889                                         goto out;
890                                 /* Check for emulated ptwrite */
891                                 offs = offset + intel_pt_insn->length;
892                                 eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
893                                 intel_pt_insn->emulated_ptwrite = eptw;
894                                 goto out;
895                         }
896
897                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
898                                 goto out_no_cache;
899
900                         *ip += intel_pt_insn->length;
901
902                         if (to_ip && *ip == to_ip) {
903                                 intel_pt_insn->length = 0;
904                                 intel_pt_insn->op = INTEL_PT_OP_OTHER;
905                                 goto out_no_cache;
906                         }
907
908                         if (*ip >= map__end(al.map))
909                                 break;
910
911                         offset += intel_pt_insn->length;
912                 }
913                 one_map = false;
914         }
915 out:
916         *insn_cnt_ptr = insn_cnt;
917
918         if (!one_map)
919                 goto out_no_cache;
920
921         /*
922          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
923          * entries.
924          */
925         if (to_ip) {
926                 struct intel_pt_cache_entry *e;
927
928                 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
929                 if (e)
930                         goto out_ret;
931         }
932
933         /* Ignore cache errors */
934         intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
935                            *ip - start_ip, intel_pt_insn);
936
937 out_ret:
938         addr_location__exit(&al);
939         return ret;
940
941 out_no_cache:
942         *insn_cnt_ptr = insn_cnt;
943         addr_location__exit(&al);
944         return 0;
945 }
946
947 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
948                                   uint64_t offset, const char *filename)
949 {
950         struct addr_filter *filt;
951         bool have_filter   = false;
952         bool hit_tracestop = false;
953         bool hit_filter    = false;
954
955         list_for_each_entry(filt, &pt->filts.head, list) {
956                 if (filt->start)
957                         have_filter = true;
958
959                 if ((filename && !filt->filename) ||
960                     (!filename && filt->filename) ||
961                     (filename && strcmp(filename, filt->filename)))
962                         continue;
963
964                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
965                         continue;
966
967                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
968                              ip, offset, filename ? filename : "[kernel]",
969                              filt->start ? "filter" : "stop",
970                              filt->addr, filt->size);
971
972                 if (filt->start)
973                         hit_filter = true;
974                 else
975                         hit_tracestop = true;
976         }
977
978         if (!hit_tracestop && !hit_filter)
979                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
980                              ip, offset, filename ? filename : "[kernel]");
981
982         return hit_tracestop || (have_filter && !hit_filter);
983 }
984
985 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
986 {
987         struct intel_pt_queue *ptq = data;
988         struct thread *thread;
989         struct addr_location al;
990         u8 cpumode;
991         u64 offset;
992         int res;
993
994         if (ptq->state->to_nr) {
995                 if (intel_pt_guest_kernel_ip(ip))
996                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
997                 /* No support for decoding guest user space */
998                 return -EINVAL;
999         } else if (ip >= ptq->pt->kernel_start) {
1000                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
1001         }
1002
1003         cpumode = PERF_RECORD_MISC_USER;
1004
1005         thread = ptq->thread;
1006         if (!thread)
1007                 return -EINVAL;
1008
1009         addr_location__init(&al);
1010         if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1011                 return -EINVAL;
1012
1013         offset = map__map_ip(al.map, ip);
1014
1015         res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, dso__long_name(map__dso(al.map)));
1016         addr_location__exit(&al);
1017         return res;
1018 }
1019
1020 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1021 {
1022         return __intel_pt_pgd_ip(ip, data) > 0;
1023 }
1024
1025 static bool intel_pt_get_config(struct intel_pt *pt,
1026                                 struct perf_event_attr *attr, u64 *config)
1027 {
1028         if (attr->type == pt->pmu_type) {
1029                 if (config)
1030                         *config = attr->config;
1031                 return true;
1032         }
1033
1034         return false;
1035 }
1036
1037 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1038 {
1039         struct evsel *evsel;
1040
1041         evlist__for_each_entry(pt->session->evlist, evsel) {
1042                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1043                     !evsel->core.attr.exclude_kernel)
1044                         return false;
1045         }
1046         return true;
1047 }
1048
1049 static bool intel_pt_return_compression(struct intel_pt *pt)
1050 {
1051         struct evsel *evsel;
1052         u64 config;
1053
1054         if (!pt->noretcomp_bit)
1055                 return true;
1056
1057         evlist__for_each_entry(pt->session->evlist, evsel) {
1058                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1059                     (config & pt->noretcomp_bit))
1060                         return false;
1061         }
1062         return true;
1063 }
1064
1065 static bool intel_pt_branch_enable(struct intel_pt *pt)
1066 {
1067         struct evsel *evsel;
1068         u64 config;
1069
1070         evlist__for_each_entry(pt->session->evlist, evsel) {
1071                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1072                     (config & INTEL_PT_CFG_PASS_THRU) &&
1073                     !(config & INTEL_PT_CFG_BRANCH_EN))
1074                         return false;
1075         }
1076         return true;
1077 }
1078
1079 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1080 {
1081         struct evsel *evsel;
1082         u64 config;
1083
1084         evlist__for_each_entry(pt->session->evlist, evsel) {
1085                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1086                     config & INTEL_PT_CFG_TNT_DIS)
1087                         return true;
1088         }
1089         return false;
1090 }
1091
1092 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1093 {
1094         struct evsel *evsel;
1095         unsigned int shift;
1096         u64 config;
1097
1098         if (!pt->mtc_freq_bits)
1099                 return 0;
1100
1101         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1102                 config >>= 1;
1103
1104         evlist__for_each_entry(pt->session->evlist, evsel) {
1105                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1106                         return (config & pt->mtc_freq_bits) >> shift;
1107         }
1108         return 0;
1109 }
1110
1111 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1112 {
1113         struct evsel *evsel;
1114         bool timeless_decoding = true;
1115         u64 config;
1116
1117         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1118                 return true;
1119
1120         evlist__for_each_entry(pt->session->evlist, evsel) {
1121                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1122                         return true;
1123                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1124                         if (config & pt->tsc_bit)
1125                                 timeless_decoding = false;
1126                         else
1127                                 return true;
1128                 }
1129         }
1130         return timeless_decoding;
1131 }
1132
1133 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1134 {
1135         struct evsel *evsel;
1136
1137         evlist__for_each_entry(pt->session->evlist, evsel) {
1138                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1139                     !evsel->core.attr.exclude_kernel)
1140                         return true;
1141         }
1142         return false;
1143 }
1144
1145 static bool intel_pt_have_tsc(struct intel_pt *pt)
1146 {
1147         struct evsel *evsel;
1148         bool have_tsc = false;
1149         u64 config;
1150
1151         if (!pt->tsc_bit)
1152                 return false;
1153
1154         evlist__for_each_entry(pt->session->evlist, evsel) {
1155                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1156                         if (config & pt->tsc_bit)
1157                                 have_tsc = true;
1158                         else
1159                                 return false;
1160                 }
1161         }
1162         return have_tsc;
1163 }
1164
1165 static bool intel_pt_have_mtc(struct intel_pt *pt)
1166 {
1167         struct evsel *evsel;
1168         u64 config;
1169
1170         evlist__for_each_entry(pt->session->evlist, evsel) {
1171                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1172                     (config & pt->mtc_bit))
1173                         return true;
1174         }
1175         return false;
1176 }
1177
1178 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1179 {
1180         struct evsel *evsel;
1181
1182         evlist__for_each_entry(pt->session->evlist, evsel) {
1183                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1184                     evsel->core.attr.aux_sample_size)
1185                         return true;
1186         }
1187         return false;
1188 }
1189
1190 static u64 intel_pt_ctl(struct intel_pt *pt)
1191 {
1192         struct evsel *evsel;
1193         u64 config;
1194
1195         evlist__for_each_entry(pt->session->evlist, evsel) {
1196                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1197                         return config;
1198         }
1199         return 0;
1200 }
1201
1202 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1203 {
1204         u64 quot, rem;
1205
1206         quot = ns / pt->tc.time_mult;
1207         rem  = ns % pt->tc.time_mult;
1208         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1209                 pt->tc.time_mult;
1210 }
1211
1212 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1213 {
1214         size_t sz = sizeof(struct ip_callchain);
1215
1216         /* Add 1 to callchain_sz for callchain context */
1217         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1218         return zalloc(sz);
1219 }
1220
1221 static int intel_pt_callchain_init(struct intel_pt *pt)
1222 {
1223         struct evsel *evsel;
1224
1225         evlist__for_each_entry(pt->session->evlist, evsel) {
1226                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1227                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1228         }
1229
1230         pt->chain = intel_pt_alloc_chain(pt);
1231         if (!pt->chain)
1232                 return -ENOMEM;
1233
1234         return 0;
1235 }
1236
1237 static void intel_pt_add_callchain(struct intel_pt *pt,
1238                                    struct perf_sample *sample)
1239 {
1240         struct thread *thread = machine__findnew_thread(pt->machine,
1241                                                         sample->pid,
1242                                                         sample->tid);
1243
1244         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1245                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1246                                   pt->kernel_start);
1247
1248         sample->callchain = pt->chain;
1249 }
1250
1251 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1252 {
1253         size_t sz = sizeof(struct branch_stack);
1254
1255         sz += entry_cnt * sizeof(struct branch_entry);
1256         return zalloc(sz);
1257 }
1258
1259 static int intel_pt_br_stack_init(struct intel_pt *pt)
1260 {
1261         struct evsel *evsel;
1262
1263         evlist__for_each_entry(pt->session->evlist, evsel) {
1264                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1265                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1266         }
1267
1268         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1269         if (!pt->br_stack)
1270                 return -ENOMEM;
1271
1272         return 0;
1273 }
1274
1275 static void intel_pt_add_br_stack(struct intel_pt *pt,
1276                                   struct perf_sample *sample)
1277 {
1278         struct thread *thread = machine__findnew_thread(pt->machine,
1279                                                         sample->pid,
1280                                                         sample->tid);
1281
1282         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1283                                      pt->br_stack_sz, sample->ip,
1284                                      pt->kernel_start);
1285
1286         sample->branch_stack = pt->br_stack;
1287         thread__put(thread);
1288 }
1289
1290 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1291 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1292
1293 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1294                                                    unsigned int queue_nr)
1295 {
1296         struct intel_pt_params params = { .get_trace = 0, };
1297         struct perf_env *env = pt->machine->env;
1298         struct intel_pt_queue *ptq;
1299
1300         ptq = zalloc(sizeof(struct intel_pt_queue));
1301         if (!ptq)
1302                 return NULL;
1303
1304         if (pt->synth_opts.callchain) {
1305                 ptq->chain = intel_pt_alloc_chain(pt);
1306                 if (!ptq->chain)
1307                         goto out_free;
1308         }
1309
1310         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1311                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1312
1313                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1314                 if (!ptq->last_branch)
1315                         goto out_free;
1316         }
1317
1318         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1319         if (!ptq->event_buf)
1320                 goto out_free;
1321
1322         ptq->pt = pt;
1323         ptq->queue_nr = queue_nr;
1324         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1325         ptq->pid = -1;
1326         ptq->tid = -1;
1327         ptq->cpu = -1;
1328         ptq->next_tid = -1;
1329
1330         params.get_trace = intel_pt_get_trace;
1331         params.walk_insn = intel_pt_walk_next_insn;
1332         params.lookahead = intel_pt_lookahead;
1333         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1334         params.data = ptq;
1335         params.return_compression = intel_pt_return_compression(pt);
1336         params.branch_enable = intel_pt_branch_enable(pt);
1337         params.ctl = intel_pt_ctl(pt);
1338         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1339         params.mtc_period = intel_pt_mtc_period(pt);
1340         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1341         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1342         params.quick = pt->synth_opts.quick;
1343         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1344         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1345         params.first_timestamp = pt->first_timestamp;
1346         params.max_loops = pt->max_loops;
1347
1348         /* Cannot walk code without TNT, so force 'quick' mode */
1349         if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1350                 params.quick = 1;
1351
1352         if (pt->filts.cnt > 0)
1353                 params.pgd_ip = intel_pt_pgd_ip;
1354
1355         if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1356                 if (pt->synth_opts.period) {
1357                         switch (pt->synth_opts.period_type) {
1358                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1359                                 params.period_type =
1360                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1361                                 params.period = pt->synth_opts.period;
1362                                 break;
1363                         case PERF_ITRACE_PERIOD_TICKS:
1364                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1365                                 params.period = pt->synth_opts.period;
1366                                 break;
1367                         case PERF_ITRACE_PERIOD_NANOSECS:
1368                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1369                                 params.period = intel_pt_ns_to_ticks(pt,
1370                                                         pt->synth_opts.period);
1371                                 break;
1372                         default:
1373                                 break;
1374                         }
1375                 }
1376
1377                 if (!params.period) {
1378                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1379                         params.period = 1;
1380                 }
1381         }
1382
1383         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1384                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1385
1386         ptq->decoder = intel_pt_decoder_new(&params);
1387         if (!ptq->decoder)
1388                 goto out_free;
1389
1390         return ptq;
1391
1392 out_free:
1393         zfree(&ptq->event_buf);
1394         zfree(&ptq->last_branch);
1395         zfree(&ptq->chain);
1396         free(ptq);
1397         return NULL;
1398 }
1399
1400 static void intel_pt_free_queue(void *priv)
1401 {
1402         struct intel_pt_queue *ptq = priv;
1403
1404         if (!ptq)
1405                 return;
1406         thread__zput(ptq->thread);
1407         thread__zput(ptq->guest_thread);
1408         thread__zput(ptq->unknown_guest_thread);
1409         intel_pt_decoder_free(ptq->decoder);
1410         zfree(&ptq->event_buf);
1411         zfree(&ptq->last_branch);
1412         zfree(&ptq->chain);
1413         free(ptq);
1414 }
1415
1416 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1417 {
1418         unsigned int i;
1419
1420         pt->first_timestamp = timestamp;
1421
1422         for (i = 0; i < pt->queues.nr_queues; i++) {
1423                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1424                 struct intel_pt_queue *ptq = queue->priv;
1425
1426                 if (ptq && ptq->decoder)
1427                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1428         }
1429 }
1430
1431 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1432 {
1433         struct machines *machines = &ptq->pt->session->machines;
1434         struct machine *machine;
1435         pid_t machine_pid = ptq->pid;
1436         pid_t tid;
1437         int vcpu;
1438
1439         if (machine_pid <= 0)
1440                 return 0; /* Not a guest machine */
1441
1442         machine = machines__find(machines, machine_pid);
1443         if (!machine)
1444                 return 0; /* Not a guest machine */
1445
1446         if (ptq->guest_machine != machine) {
1447                 ptq->guest_machine = NULL;
1448                 thread__zput(ptq->guest_thread);
1449                 thread__zput(ptq->unknown_guest_thread);
1450
1451                 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1452                 if (!ptq->unknown_guest_thread)
1453                         return -1;
1454                 ptq->guest_machine = machine;
1455         }
1456
1457         vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1458         if (vcpu < 0)
1459                 return -1;
1460
1461         tid = machine__get_current_tid(machine, vcpu);
1462
1463         if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1464                 thread__zput(ptq->guest_thread);
1465
1466         if (!ptq->guest_thread) {
1467                 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1468                 if (!ptq->guest_thread)
1469                         return -1;
1470         }
1471
1472         ptq->guest_machine_pid = machine_pid;
1473         ptq->guest_pid = thread__pid(ptq->guest_thread);
1474         ptq->guest_tid = tid;
1475         ptq->vcpu = vcpu;
1476
1477         return 0;
1478 }
1479
1480 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1481                                      struct auxtrace_queue *queue)
1482 {
1483         struct intel_pt_queue *ptq = queue->priv;
1484
1485         if (queue->tid == -1 || pt->have_sched_switch) {
1486                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1487                 if (ptq->tid == -1)
1488                         ptq->pid = -1;
1489                 thread__zput(ptq->thread);
1490         }
1491
1492         if (!ptq->thread && ptq->tid != -1)
1493                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1494
1495         if (ptq->thread) {
1496                 ptq->pid = thread__pid(ptq->thread);
1497                 if (queue->cpu == -1)
1498                         ptq->cpu = thread__cpu(ptq->thread);
1499         }
1500
1501         if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1502                 ptq->guest_machine_pid = 0;
1503                 ptq->guest_pid = -1;
1504                 ptq->guest_tid = -1;
1505                 ptq->vcpu = -1;
1506         }
1507 }
1508
1509 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1510 {
1511         struct intel_pt *pt = ptq->pt;
1512
1513         ptq->insn_len = 0;
1514         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1515                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1516         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1517                 if (!ptq->state->to_ip)
1518                         ptq->flags = PERF_IP_FLAG_BRANCH |
1519                                      PERF_IP_FLAG_ASYNC |
1520                                      PERF_IP_FLAG_TRACE_END;
1521                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1522                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1523                                      PERF_IP_FLAG_ASYNC |
1524                                      PERF_IP_FLAG_VMEXIT;
1525                 else
1526                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1527                                      PERF_IP_FLAG_ASYNC |
1528                                      PERF_IP_FLAG_INTERRUPT;
1529         } else {
1530                 if (ptq->state->from_ip)
1531                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1532                 else
1533                         ptq->flags = PERF_IP_FLAG_BRANCH |
1534                                      PERF_IP_FLAG_TRACE_BEGIN;
1535                 if (ptq->state->flags & INTEL_PT_IN_TX)
1536                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1537                 ptq->insn_len = ptq->state->insn_len;
1538                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1539         }
1540
1541         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1542                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1543         if (ptq->state->type & INTEL_PT_TRACE_END)
1544                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1545
1546         if (pt->cap_event_trace) {
1547                 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1548                         if (!ptq->state->from_iflag)
1549                                 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1550                         if (ptq->state->from_iflag != ptq->state->to_iflag)
1551                                 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1552                 } else if (!ptq->state->to_iflag) {
1553                         ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1554                 }
1555         }
1556 }
1557
1558 static void intel_pt_setup_time_range(struct intel_pt *pt,
1559                                       struct intel_pt_queue *ptq)
1560 {
1561         if (!pt->range_cnt)
1562                 return;
1563
1564         ptq->sel_timestamp = pt->time_ranges[0].start;
1565         ptq->sel_idx = 0;
1566
1567         if (ptq->sel_timestamp) {
1568                 ptq->sel_start = true;
1569         } else {
1570                 ptq->sel_timestamp = pt->time_ranges[0].end;
1571                 ptq->sel_start = false;
1572         }
1573 }
1574
1575 static int intel_pt_setup_queue(struct intel_pt *pt,
1576                                 struct auxtrace_queue *queue,
1577                                 unsigned int queue_nr)
1578 {
1579         struct intel_pt_queue *ptq = queue->priv;
1580
1581         if (list_empty(&queue->head))
1582                 return 0;
1583
1584         if (!ptq) {
1585                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1586                 if (!ptq)
1587                         return -ENOMEM;
1588                 queue->priv = ptq;
1589
1590                 if (queue->cpu != -1)
1591                         ptq->cpu = queue->cpu;
1592                 ptq->tid = queue->tid;
1593
1594                 ptq->cbr_seen = UINT_MAX;
1595
1596                 if (pt->sampling_mode && !pt->snapshot_mode &&
1597                     pt->timeless_decoding)
1598                         ptq->step_through_buffers = true;
1599
1600                 ptq->sync_switch = pt->sync_switch;
1601
1602                 intel_pt_setup_time_range(pt, ptq);
1603         }
1604
1605         if (!ptq->on_heap &&
1606             (!ptq->sync_switch ||
1607              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1608                 const struct intel_pt_state *state;
1609                 int ret;
1610
1611                 if (pt->timeless_decoding)
1612                         return 0;
1613
1614                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1615                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1616                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1617
1618                 if (ptq->sel_start && ptq->sel_timestamp) {
1619                         ret = intel_pt_fast_forward(ptq->decoder,
1620                                                     ptq->sel_timestamp);
1621                         if (ret)
1622                                 return ret;
1623                 }
1624
1625                 while (1) {
1626                         state = intel_pt_decode(ptq->decoder);
1627                         if (state->err) {
1628                                 if (state->err == INTEL_PT_ERR_NODATA) {
1629                                         intel_pt_log("queue %u has no timestamp\n",
1630                                                      queue_nr);
1631                                         return 0;
1632                                 }
1633                                 continue;
1634                         }
1635                         if (state->timestamp)
1636                                 break;
1637                 }
1638
1639                 ptq->timestamp = state->timestamp;
1640                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1641                              queue_nr, ptq->timestamp);
1642                 ptq->state = state;
1643                 ptq->have_sample = true;
1644                 if (ptq->sel_start && ptq->sel_timestamp &&
1645                     ptq->timestamp < ptq->sel_timestamp)
1646                         ptq->have_sample = false;
1647                 intel_pt_sample_flags(ptq);
1648                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1649                 if (ret)
1650                         return ret;
1651                 ptq->on_heap = true;
1652         }
1653
1654         return 0;
1655 }
1656
1657 static int intel_pt_setup_queues(struct intel_pt *pt)
1658 {
1659         unsigned int i;
1660         int ret;
1661
1662         for (i = 0; i < pt->queues.nr_queues; i++) {
1663                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1664                 if (ret)
1665                         return ret;
1666         }
1667         return 0;
1668 }
1669
1670 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1671 {
1672         return pt->synth_opts.initial_skip &&
1673                pt->num_events++ < pt->synth_opts.initial_skip;
1674 }
1675
1676 /*
1677  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1678  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1679  * from this decoder state.
1680  */
1681 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1682 {
1683         return pt->synth_opts.initial_skip &&
1684                pt->num_events + 4 < pt->synth_opts.initial_skip;
1685 }
1686
1687 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1688                                    union perf_event *event,
1689                                    struct perf_sample *sample)
1690 {
1691         event->sample.header.type = PERF_RECORD_SAMPLE;
1692         event->sample.header.size = sizeof(struct perf_event_header);
1693
1694         sample->pid = ptq->pid;
1695         sample->tid = ptq->tid;
1696
1697         if (ptq->pt->have_guest_sideband) {
1698                 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1699                     (ptq->state->to_ip && ptq->state->to_nr)) {
1700                         sample->pid = ptq->guest_pid;
1701                         sample->tid = ptq->guest_tid;
1702                         sample->machine_pid = ptq->guest_machine_pid;
1703                         sample->vcpu = ptq->vcpu;
1704                 }
1705         }
1706
1707         sample->cpu = ptq->cpu;
1708         sample->insn_len = ptq->insn_len;
1709         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1710 }
1711
1712 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1713                                    struct intel_pt_queue *ptq,
1714                                    union perf_event *event,
1715                                    struct perf_sample *sample)
1716 {
1717         intel_pt_prep_a_sample(ptq, event, sample);
1718
1719         if (!pt->timeless_decoding)
1720                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1721
1722         sample->ip = ptq->state->from_ip;
1723         sample->addr = ptq->state->to_ip;
1724         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1725         sample->period = 1;
1726         sample->flags = ptq->flags;
1727
1728         event->sample.header.misc = sample->cpumode;
1729 }
1730
1731 static int intel_pt_inject_event(union perf_event *event,
1732                                  struct perf_sample *sample, u64 type)
1733 {
1734         event->header.size = perf_event__sample_event_size(sample, type, 0);
1735         return perf_event__synthesize_sample(event, type, 0, sample);
1736 }
1737
1738 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1739                                       union perf_event *event,
1740                                       struct perf_sample *sample, u64 type)
1741 {
1742         if (!pt->synth_opts.inject)
1743                 return 0;
1744
1745         return intel_pt_inject_event(event, sample, type);
1746 }
1747
1748 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1749                                         union perf_event *event,
1750                                         struct perf_sample *sample, u64 type)
1751 {
1752         int ret;
1753
1754         ret = intel_pt_opt_inject(pt, event, sample, type);
1755         if (ret)
1756                 return ret;
1757
1758         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1759         if (ret)
1760                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1761
1762         return ret;
1763 }
1764
1765 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1766 {
1767         struct intel_pt *pt = ptq->pt;
1768         union perf_event *event = ptq->event_buf;
1769         struct perf_sample sample;
1770         struct dummy_branch_stack {
1771                 u64                     nr;
1772                 u64                     hw_idx;
1773                 struct branch_entry     entries;
1774         } dummy_bs;
1775         int ret;
1776
1777         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1778                 return 0;
1779
1780         if (intel_pt_skip_event(pt))
1781                 return 0;
1782
1783         perf_sample__init(&sample, /*all=*/true);
1784         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1785
1786         sample.id = ptq->pt->branches_id;
1787         sample.stream_id = ptq->pt->branches_id;
1788
1789         /*
1790          * perf report cannot handle events without a branch stack when using
1791          * SORT_MODE__BRANCH so make a dummy one.
1792          */
1793         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1794                 dummy_bs = (struct dummy_branch_stack){
1795                         .nr = 1,
1796                         .hw_idx = -1ULL,
1797                         .entries = {
1798                                 .from = sample.ip,
1799                                 .to = sample.addr,
1800                         },
1801                 };
1802                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1803         }
1804
1805         if (ptq->sample_ipc)
1806                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1807         if (sample.cyc_cnt) {
1808                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1809                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1810                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1811         }
1812
1813         perf_sample__exit(&sample);
1814         ret = intel_pt_deliver_synth_event(pt, event, &sample,
1815                                             pt->branches_sample_type);
1816         return ret;
1817 }
1818
1819 static void intel_pt_prep_sample(struct intel_pt *pt,
1820                                  struct intel_pt_queue *ptq,
1821                                  union perf_event *event,
1822                                  struct perf_sample *sample)
1823 {
1824         intel_pt_prep_b_sample(pt, ptq, event, sample);
1825
1826         if (pt->synth_opts.callchain) {
1827                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1828                                      pt->synth_opts.callchain_sz + 1,
1829                                      sample->ip, pt->kernel_start);
1830                 sample->callchain = ptq->chain;
1831         }
1832
1833         if (pt->synth_opts.last_branch) {
1834                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1835                                         pt->br_stack_sz);
1836                 sample->branch_stack = ptq->last_branch;
1837         }
1838 }
1839
1840 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1841 {
1842         struct intel_pt *pt = ptq->pt;
1843         union perf_event *event = ptq->event_buf;
1844         struct perf_sample sample;
1845         int ret;
1846
1847         if (intel_pt_skip_event(pt))
1848                 return 0;
1849
1850         perf_sample__init(&sample, /*all=*/true);
1851         intel_pt_prep_sample(pt, ptq, event, &sample);
1852
1853         sample.id = ptq->pt->instructions_id;
1854         sample.stream_id = ptq->pt->instructions_id;
1855         if (pt->synth_opts.quick)
1856                 sample.period = 1;
1857         else
1858                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1859
1860         if (ptq->sample_ipc)
1861                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1862         if (sample.cyc_cnt) {
1863                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1864                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1865                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1866         }
1867
1868         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1869
1870         ret = intel_pt_deliver_synth_event(pt, event, &sample,
1871                                            pt->instructions_sample_type);
1872         perf_sample__exit(&sample);
1873         return ret;
1874 }
1875
1876 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1877 {
1878         struct intel_pt *pt = ptq->pt;
1879         union perf_event *event = ptq->event_buf;
1880         struct perf_sample sample;
1881         u64 period = 0;
1882         int ret;
1883
1884         if (ptq->sample_ipc)
1885                 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1886
1887         if (!period || intel_pt_skip_event(pt))
1888                 return 0;
1889
1890         perf_sample__init(&sample, /*all=*/true);
1891         intel_pt_prep_sample(pt, ptq, event, &sample);
1892
1893         sample.id = ptq->pt->cycles_id;
1894         sample.stream_id = ptq->pt->cycles_id;
1895         sample.period = period;
1896
1897         sample.cyc_cnt = period;
1898         sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1899         ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1900         ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1901
1902         ret = intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1903         perf_sample__exit(&sample);
1904         return ret;
1905 }
1906
1907 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1908 {
1909         struct intel_pt *pt = ptq->pt;
1910         union perf_event *event = ptq->event_buf;
1911         struct perf_sample sample;
1912         int ret;
1913
1914         if (intel_pt_skip_event(pt))
1915                 return 0;
1916
1917         perf_sample__init(&sample, /*all=*/true);
1918         intel_pt_prep_sample(pt, ptq, event, &sample);
1919
1920         sample.id = ptq->pt->transactions_id;
1921         sample.stream_id = ptq->pt->transactions_id;
1922
1923         ret = intel_pt_deliver_synth_event(pt, event, &sample,
1924                                            pt->transactions_sample_type);
1925         perf_sample__exit(&sample);
1926         return ret;
1927 }
1928
1929 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1930                                    struct intel_pt_queue *ptq,
1931                                    union perf_event *event,
1932                                    struct perf_sample *sample)
1933 {
1934         intel_pt_prep_sample(pt, ptq, event, sample);
1935
1936         /*
1937          * Zero IP is used to mean "trace start" but that is not the case for
1938          * power or PTWRITE events with no IP, so clear the flags.
1939          */
1940         if (!sample->ip)
1941                 sample->flags = 0;
1942 }
1943
1944 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1945 {
1946         struct intel_pt *pt = ptq->pt;
1947         union perf_event *event = ptq->event_buf;
1948         struct perf_sample sample = { .ip = 0, };
1949         struct perf_synth_intel_ptwrite raw;
1950
1951         if (intel_pt_skip_event(pt))
1952                 return 0;
1953
1954         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1955
1956         sample.id = ptq->pt->ptwrites_id;
1957         sample.stream_id = ptq->pt->ptwrites_id;
1958
1959         raw.flags = 0;
1960         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1961         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1962
1963         sample.raw_size = perf_synth__raw_size(raw);
1964         sample.raw_data = perf_synth__raw_data(&raw);
1965
1966         return intel_pt_deliver_synth_event(pt, event, &sample,
1967                                             pt->ptwrites_sample_type);
1968 }
1969
1970 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1971 {
1972         struct intel_pt *pt = ptq->pt;
1973         union perf_event *event = ptq->event_buf;
1974         struct perf_sample sample;
1975         struct perf_synth_intel_cbr raw;
1976         u32 flags;
1977         int ret;
1978
1979         if (intel_pt_skip_cbr_event(pt))
1980                 return 0;
1981
1982         ptq->cbr_seen = ptq->state->cbr;
1983
1984         perf_sample__init(&sample, /*all=*/true);
1985         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1986
1987         sample.id = ptq->pt->cbr_id;
1988         sample.stream_id = ptq->pt->cbr_id;
1989
1990         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1991         raw.flags = cpu_to_le32(flags);
1992         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1993         raw.reserved3 = 0;
1994
1995         sample.raw_size = perf_synth__raw_size(raw);
1996         sample.raw_data = perf_synth__raw_data(&raw);
1997
1998         ret = intel_pt_deliver_synth_event(pt, event, &sample,
1999                                            pt->pwr_events_sample_type);
2000         perf_sample__exit(&sample);
2001         return ret;
2002 }
2003
2004 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
2005 {
2006         struct intel_pt *pt = ptq->pt;
2007         union perf_event *event = ptq->event_buf;
2008         struct perf_sample sample;
2009         struct perf_synth_intel_psb raw;
2010         int ret;
2011
2012         if (intel_pt_skip_event(pt))
2013                 return 0;
2014
2015         perf_sample__init(&sample, /*all=*/true);
2016         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2017
2018         sample.id = ptq->pt->psb_id;
2019         sample.stream_id = ptq->pt->psb_id;
2020         sample.flags = 0;
2021
2022         raw.reserved = 0;
2023         raw.offset = ptq->state->psb_offset;
2024
2025         sample.raw_size = perf_synth__raw_size(raw);
2026         sample.raw_data = perf_synth__raw_data(&raw);
2027
2028         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2029                                            pt->pwr_events_sample_type);
2030         perf_sample__exit(&sample);
2031         return ret;
2032 }
2033
2034 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2035 {
2036         struct intel_pt *pt = ptq->pt;
2037         union perf_event *event = ptq->event_buf;
2038         struct perf_sample sample;
2039         struct perf_synth_intel_mwait raw;
2040         int ret;
2041
2042         if (intel_pt_skip_event(pt))
2043                 return 0;
2044
2045         perf_sample__init(&sample, /*all=*/true);
2046         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2047
2048         sample.id = ptq->pt->mwait_id;
2049         sample.stream_id = ptq->pt->mwait_id;
2050
2051         raw.reserved = 0;
2052         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2053
2054         sample.raw_size = perf_synth__raw_size(raw);
2055         sample.raw_data = perf_synth__raw_data(&raw);
2056
2057         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2058                                            pt->pwr_events_sample_type);
2059         perf_sample__exit(&sample);
2060         return ret;
2061 }
2062
2063 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2064 {
2065         struct intel_pt *pt = ptq->pt;
2066         union perf_event *event = ptq->event_buf;
2067         struct perf_sample sample;
2068         struct perf_synth_intel_pwre raw;
2069         int ret;
2070
2071         if (intel_pt_skip_event(pt))
2072                 return 0;
2073
2074         perf_sample__init(&sample, /*all=*/true);
2075         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2076
2077         sample.id = ptq->pt->pwre_id;
2078         sample.stream_id = ptq->pt->pwre_id;
2079
2080         raw.reserved = 0;
2081         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2082
2083         sample.raw_size = perf_synth__raw_size(raw);
2084         sample.raw_data = perf_synth__raw_data(&raw);
2085
2086         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2087                                            pt->pwr_events_sample_type);
2088         perf_sample__exit(&sample);
2089         return ret;
2090 }
2091
2092 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2093 {
2094         struct intel_pt *pt = ptq->pt;
2095         union perf_event *event = ptq->event_buf;
2096         struct perf_sample sample;
2097         struct perf_synth_intel_exstop raw;
2098         int ret;
2099
2100         if (intel_pt_skip_event(pt))
2101                 return 0;
2102
2103         perf_sample__init(&sample, /*all=*/true);
2104         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2105
2106         sample.id = ptq->pt->exstop_id;
2107         sample.stream_id = ptq->pt->exstop_id;
2108
2109         raw.flags = 0;
2110         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2111
2112         sample.raw_size = perf_synth__raw_size(raw);
2113         sample.raw_data = perf_synth__raw_data(&raw);
2114
2115         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2116                                            pt->pwr_events_sample_type);
2117         perf_sample__exit(&sample);
2118         return ret;
2119 }
2120
2121 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2122 {
2123         struct intel_pt *pt = ptq->pt;
2124         union perf_event *event = ptq->event_buf;
2125         struct perf_sample sample;
2126         struct perf_synth_intel_pwrx raw;
2127         int ret;
2128
2129         if (intel_pt_skip_event(pt))
2130                 return 0;
2131
2132         perf_sample__init(&sample, /*all=*/true);
2133         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2134
2135         sample.id = ptq->pt->pwrx_id;
2136         sample.stream_id = ptq->pt->pwrx_id;
2137
2138         raw.reserved = 0;
2139         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2140
2141         sample.raw_size = perf_synth__raw_size(raw);
2142         sample.raw_data = perf_synth__raw_data(&raw);
2143
2144         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2145                                            pt->pwr_events_sample_type);
2146         perf_sample__exit(&sample);
2147         return ret;
2148 }
2149
2150 /*
2151  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2152  * intel_pt_add_gp_regs().
2153  */
2154 static const int pebs_gp_regs[] = {
2155         [PERF_REG_X86_FLAGS]    = 1,
2156         [PERF_REG_X86_IP]       = 2,
2157         [PERF_REG_X86_AX]       = 3,
2158         [PERF_REG_X86_CX]       = 4,
2159         [PERF_REG_X86_DX]       = 5,
2160         [PERF_REG_X86_BX]       = 6,
2161         [PERF_REG_X86_SP]       = 7,
2162         [PERF_REG_X86_BP]       = 8,
2163         [PERF_REG_X86_SI]       = 9,
2164         [PERF_REG_X86_DI]       = 10,
2165         [PERF_REG_X86_R8]       = 11,
2166         [PERF_REG_X86_R9]       = 12,
2167         [PERF_REG_X86_R10]      = 13,
2168         [PERF_REG_X86_R11]      = 14,
2169         [PERF_REG_X86_R12]      = 15,
2170         [PERF_REG_X86_R13]      = 16,
2171         [PERF_REG_X86_R14]      = 17,
2172         [PERF_REG_X86_R15]      = 18,
2173 };
2174
2175 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2176                                  const struct intel_pt_blk_items *items,
2177                                  u64 regs_mask)
2178 {
2179         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2180         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2181         u32 bit;
2182         int i;
2183
2184         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2185                 /* Get the PEBS gp_regs array index */
2186                 int n = pebs_gp_regs[i] - 1;
2187
2188                 if (n < 0)
2189                         continue;
2190                 /*
2191                  * Add only registers that were requested (i.e. 'regs_mask') and
2192                  * that were provided (i.e. 'mask'), and update the resulting
2193                  * mask (i.e. 'intr_regs->mask') accordingly.
2194                  */
2195                 if (mask & 1 << n && regs_mask & bit) {
2196                         intr_regs->mask |= bit;
2197                         *pos++ = gp_regs[n];
2198                 }
2199         }
2200
2201         return pos;
2202 }
2203
2204 #ifndef PERF_REG_X86_XMM0
2205 #define PERF_REG_X86_XMM0 32
2206 #endif
2207
2208 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2209                              const struct intel_pt_blk_items *items,
2210                              u64 regs_mask)
2211 {
2212         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2213         const u64 *xmm = items->xmm;
2214
2215         /*
2216          * If there are any XMM registers, then there should be all of them.
2217          * Nevertheless, follow the logic to add only registers that were
2218          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2219          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2220          */
2221         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2222
2223         for (; mask; mask >>= 1, xmm++) {
2224                 if (mask & 1)
2225                         *pos++ = *xmm;
2226         }
2227 }
2228
2229 #define LBR_INFO_MISPRED        (1ULL << 63)
2230 #define LBR_INFO_IN_TX          (1ULL << 62)
2231 #define LBR_INFO_ABORT          (1ULL << 61)
2232 #define LBR_INFO_CYCLES         0xffff
2233
2234 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2235 static u64 intel_pt_lbr_flags(u64 info)
2236 {
2237         union {
2238                 struct branch_flags flags;
2239                 u64 result;
2240         } u;
2241
2242         u.result          = 0;
2243         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
2244         u.flags.predicted = !(info & LBR_INFO_MISPRED);
2245         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
2246         u.flags.abort     = !!(info & LBR_INFO_ABORT);
2247         u.flags.cycles    = info & LBR_INFO_CYCLES;
2248
2249         return u.result;
2250 }
2251
2252 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2253                               const struct intel_pt_blk_items *items)
2254 {
2255         u64 *to;
2256         int i;
2257
2258         br_stack->nr = 0;
2259
2260         to = &br_stack->entries[0].from;
2261
2262         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2263                 u32 mask = items->mask[i];
2264                 const u64 *from = items->val[i];
2265
2266                 for (; mask; mask >>= 3, from += 3) {
2267                         if ((mask & 7) == 7) {
2268                                 *to++ = from[0];
2269                                 *to++ = from[1];
2270                                 *to++ = intel_pt_lbr_flags(from[2]);
2271                                 br_stack->nr += 1;
2272                         }
2273                 }
2274         }
2275 }
2276
2277 #define P(a, b) PERF_MEM_S(a, b)
2278 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
2279 #define LEVEL(x) P(LVLNUM, x)
2280 #define REM P(REMOTE, REMOTE)
2281 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
2282
2283 #define PERF_PEBS_DATA_SOURCE_GRT_MAX   0x10
2284 #define PERF_PEBS_DATA_SOURCE_GRT_MASK  (PERF_PEBS_DATA_SOURCE_GRT_MAX - 1)
2285
2286 /* Based on kernel __intel_pmu_pebs_data_source_grt() and pebs_data_source */
2287 static const u64 pebs_data_source_grt[PERF_PEBS_DATA_SOURCE_GRT_MAX] = {
2288         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),         /* L3 miss|SNP N/A */
2289         OP_LH | P(LVL, L1)  | LEVEL(L1)  | P(SNOOP, NONE),             /* L1 hit|SNP None */
2290         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),             /* LFB/MAB hit|SNP None */
2291         OP_LH | P(LVL, L2)  | LEVEL(L2)  | P(SNOOP, NONE),             /* L2 hit|SNP None */
2292         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, NONE),             /* L3 hit|SNP None */
2293         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HIT),              /* L3 hit|SNP Hit */
2294         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HITM),             /* L3 hit|SNP HitM */
2295         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HITM),             /* L3 hit|SNP HitM */
2296         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOPX, FWD),             /* L3 hit|SNP Fwd */
2297         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM),   /* Remote L3 hit|SNP HitM */
2298         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),         /* RAM hit|SNP Hit */
2299         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),    /* Remote L3 hit|SNP Hit */
2300         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,       /* RAM hit|SNP None or Miss */
2301         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* Remote RAM hit|SNP None or Miss */
2302         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE),              /* I/O hit|SNP None */
2303         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE),              /* Uncached hit|SNP None */
2304 };
2305
2306 /* Based on kernel __intel_pmu_pebs_data_source_cmt() and pebs_data_source */
2307 static const u64 pebs_data_source_cmt[PERF_PEBS_DATA_SOURCE_GRT_MAX] = {
2308         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),       /* L3 miss|SNP N/A */
2309         OP_LH | P(LVL, L1)  | LEVEL(L1)  | P(SNOOP, NONE),           /* L1 hit|SNP None */
2310         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),           /* LFB/MAB hit|SNP None */
2311         OP_LH | P(LVL, L2)  | LEVEL(L2)  | P(SNOOP, NONE),           /* L2 hit|SNP None */
2312         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, NONE),           /* L3 hit|SNP None */
2313         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, MISS),           /* L3 hit|SNP Hit */
2314         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HIT),            /* L3 hit|SNP HitM */
2315         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOPX, FWD),           /* L3 hit|SNP HitM */
2316         OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HITM),           /* L3 hit|SNP Fwd */
2317         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* Remote L3 hit|SNP HitM */
2318         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE),      /* RAM hit|SNP Hit */
2319         OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE),                   /* Remote L3 hit|SNP Hit */
2320         OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD),                   /* RAM hit|SNP None or Miss */
2321         OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM),                   /* Remote RAM hit|SNP None or Miss */
2322         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE),            /* I/O hit|SNP None */
2323         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE),            /* Uncached hit|SNP None */
2324 };
2325
2326 /* Based on kernel pebs_set_tlb_lock() */
2327 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
2328 {
2329         /*
2330          * TLB access
2331          * 0 = did not miss 2nd level TLB
2332          * 1 = missed 2nd level TLB
2333          */
2334         if (tlb)
2335                 *val |= P(TLB, MISS) | P(TLB, L2);
2336         else
2337                 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
2338
2339         /* locked prefix */
2340         if (lock)
2341                 *val |= P(LOCK, LOCKED);
2342 }
2343
2344 /* Based on kernel __grt_latency_data() */
2345 static u64 intel_pt_grt_latency_data(u8 dse, bool tlb, bool lock, bool blk,
2346                                      const u64 *pebs_data_source)
2347 {
2348         u64 val;
2349
2350         dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
2351         val = pebs_data_source[dse];
2352
2353         pebs_set_tlb_lock(&val, tlb, lock);
2354
2355         if (blk)
2356                 val |= P(BLK, DATA);
2357         else
2358                 val |= P(BLK, NA);
2359
2360         return val;
2361 }
2362
2363 /* Default value for data source */
2364 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)    |\
2365                      PERF_MEM_S(LVL, NA)   |\
2366                      PERF_MEM_S(SNOOP, NA) |\
2367                      PERF_MEM_S(LOCK, NA)  |\
2368                      PERF_MEM_S(TLB, NA)   |\
2369                      PERF_MEM_S(LVLNUM, NA))
2370
2371 enum DATA_SRC_FORMAT {
2372         DATA_SRC_FORMAT_ERR  = -1,
2373         DATA_SRC_FORMAT_NA   =  0,
2374         DATA_SRC_FORMAT_GRT  =  1,
2375         DATA_SRC_FORMAT_CMT  =  2,
2376 };
2377
2378 /* Based on kernel grt_latency_data() and cmt_latency_data */
2379 static u64 intel_pt_get_data_src(u64 mem_aux_info, int data_src_fmt)
2380 {
2381         switch (data_src_fmt) {
2382         case DATA_SRC_FORMAT_GRT: {
2383                 union {
2384                         u64 val;
2385                         struct {
2386                                 unsigned int dse:4;
2387                                 unsigned int locked:1;
2388                                 unsigned int stlb_miss:1;
2389                                 unsigned int fwd_blk:1;
2390                                 unsigned int reserved:25;
2391                         };
2392                 } x = {.val = mem_aux_info};
2393                 return intel_pt_grt_latency_data(x.dse, x.stlb_miss, x.locked, x.fwd_blk,
2394                                                  pebs_data_source_grt);
2395         }
2396         case DATA_SRC_FORMAT_CMT: {
2397                 union {
2398                         u64 val;
2399                         struct {
2400                                 unsigned int dse:5;
2401                                 unsigned int locked:1;
2402                                 unsigned int stlb_miss:1;
2403                                 unsigned int fwd_blk:1;
2404                                 unsigned int reserved:24;
2405                         };
2406                 } x = {.val = mem_aux_info};
2407                 return intel_pt_grt_latency_data(x.dse, x.stlb_miss, x.locked, x.fwd_blk,
2408                                                  pebs_data_source_cmt);
2409         }
2410         default:
2411                 return PERF_MEM_NA;
2412         }
2413 }
2414
2415 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel,
2416                                          u64 id, int data_src_fmt)
2417 {
2418         const struct intel_pt_blk_items *items = &ptq->state->items;
2419         struct perf_sample sample;
2420         union perf_event *event = ptq->event_buf;
2421         struct intel_pt *pt = ptq->pt;
2422         u64 sample_type = evsel->core.attr.sample_type;
2423         u8 cpumode;
2424         u64 regs[8 * sizeof(sample.intr_regs->mask)];
2425         int ret;
2426
2427         if (intel_pt_skip_event(pt))
2428                 return 0;
2429
2430         perf_sample__init(&sample, /*all=*/true);
2431         intel_pt_prep_a_sample(ptq, event, &sample);
2432
2433         sample.id = id;
2434         sample.stream_id = id;
2435
2436         if (!evsel->core.attr.freq)
2437                 sample.period = evsel->core.attr.sample_period;
2438
2439         /* No support for non-zero CS base */
2440         if (items->has_ip)
2441                 sample.ip = items->ip;
2442         else if (items->has_rip)
2443                 sample.ip = items->rip;
2444         else
2445                 sample.ip = ptq->state->from_ip;
2446
2447         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2448
2449         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2450
2451         sample.cpumode = cpumode;
2452
2453         if (sample_type & PERF_SAMPLE_TIME) {
2454                 u64 timestamp = 0;
2455
2456                 if (items->has_timestamp)
2457                         timestamp = items->timestamp;
2458                 else if (!pt->timeless_decoding)
2459                         timestamp = ptq->timestamp;
2460                 if (timestamp)
2461                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2462         }
2463
2464         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2465             pt->synth_opts.callchain) {
2466                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2467                                      pt->synth_opts.callchain_sz, sample.ip,
2468                                      pt->kernel_start);
2469                 sample.callchain = ptq->chain;
2470         }
2471
2472         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2473             (items->mask[INTEL_PT_GP_REGS_POS] ||
2474              items->mask[INTEL_PT_XMM_POS])) {
2475                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2476                 u64 *pos;
2477                 struct regs_dump *intr_regs = perf_sample__intr_regs(&sample);
2478
2479                 intr_regs->abi = items->is_32_bit ?
2480                                        PERF_SAMPLE_REGS_ABI_32 :
2481                                        PERF_SAMPLE_REGS_ABI_64;
2482                 intr_regs->regs = regs;
2483
2484                 pos = intel_pt_add_gp_regs(intr_regs, regs, items, regs_mask);
2485
2486                 intel_pt_add_xmm(intr_regs, pos, items, regs_mask);
2487         }
2488
2489         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2490                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2491                     items->mask[INTEL_PT_LBR_1_POS] ||
2492                     items->mask[INTEL_PT_LBR_2_POS]) {
2493                         intel_pt_add_lbrs(ptq->last_branch, items);
2494                 } else if (pt->synth_opts.last_branch) {
2495                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2496                                                 ptq->last_branch,
2497                                                 pt->br_stack_sz);
2498                 } else {
2499                         ptq->last_branch->nr = 0;
2500                 }
2501                 sample.branch_stack = ptq->last_branch;
2502         }
2503
2504         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2505                 sample.addr = items->mem_access_address;
2506
2507         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2508                 /*
2509                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2510                  * intel_hsw_weight().
2511                  */
2512                 if (items->has_mem_access_latency) {
2513                         u64 weight = items->mem_access_latency >> 32;
2514
2515                         /*
2516                          * Starts from SPR, the mem access latency field
2517                          * contains both cache latency [47:32] and instruction
2518                          * latency [15:0]. The cache latency is the same as the
2519                          * mem access latency on previous platforms.
2520                          *
2521                          * In practice, no memory access could last than 4G
2522                          * cycles. Use latency >> 32 to distinguish the
2523                          * different format of the mem access latency field.
2524                          */
2525                         if (weight > 0) {
2526                                 sample.weight = weight & 0xffff;
2527                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2528                         } else
2529                                 sample.weight = items->mem_access_latency;
2530                 }
2531                 if (!sample.weight && items->has_tsx_aux_info) {
2532                         /* Cycles last block */
2533                         sample.weight = (u32)items->tsx_aux_info;
2534                 }
2535         }
2536
2537         if (sample_type & PERF_SAMPLE_DATA_SRC) {
2538                 if (items->has_mem_aux_info && data_src_fmt) {
2539                         if (data_src_fmt < 0) {
2540                                 pr_err("Intel PT missing data_src info\n");
2541                                 return -1;
2542                         }
2543                         sample.data_src = intel_pt_get_data_src(items->mem_aux_info, data_src_fmt);
2544                 } else {
2545                         sample.data_src = PERF_MEM_NA;
2546                 }
2547         }
2548
2549         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2550                 u64 ax = items->has_rax ? items->rax : 0;
2551                 /* Refer kernel's intel_hsw_transaction() */
2552                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2553
2554                 /* For RTM XABORTs also log the abort code from AX */
2555                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2556                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2557                 sample.transaction = txn;
2558         }
2559
2560         ret = intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2561         perf_sample__exit(&sample);
2562         return ret;
2563 }
2564
2565 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2566 {
2567         struct intel_pt *pt = ptq->pt;
2568         struct evsel *evsel = pt->pebs_evsel;
2569         int data_src_fmt = pt->pebs_data_src_fmt;
2570         u64 id = evsel->core.id[0];
2571
2572         return intel_pt_do_synth_pebs_sample(ptq, evsel, id, data_src_fmt);
2573 }
2574
2575 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2576 {
2577         const struct intel_pt_blk_items *items = &ptq->state->items;
2578         struct intel_pt_pebs_event *pe;
2579         struct intel_pt *pt = ptq->pt;
2580         int err = -EINVAL;
2581         int hw_id;
2582
2583         if (!items->has_applicable_counters || !items->applicable_counters) {
2584                 if (!pt->single_pebs)
2585                         pr_err("PEBS-via-PT record with no applicable_counters\n");
2586                 return intel_pt_synth_single_pebs_sample(ptq);
2587         }
2588
2589         for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2590                 pe = &ptq->pebs[hw_id];
2591                 if (!pe->evsel) {
2592                         if (!pt->single_pebs)
2593                                 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2594                                        hw_id);
2595                         return intel_pt_synth_single_pebs_sample(ptq);
2596                 }
2597                 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id, pe->data_src_fmt);
2598                 if (err)
2599                         return err;
2600         }
2601
2602         return err;
2603 }
2604
2605 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2606 {
2607         struct intel_pt *pt = ptq->pt;
2608         union perf_event *event = ptq->event_buf;
2609         struct perf_sample sample;
2610         struct {
2611                 struct perf_synth_intel_evt cfe;
2612                 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2613         } raw;
2614         int i, ret;
2615
2616         if (intel_pt_skip_event(pt))
2617                 return 0;
2618
2619         perf_sample__init(&sample, /*all=*/true);
2620         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2621
2622         sample.id        = ptq->pt->evt_id;
2623         sample.stream_id = ptq->pt->evt_id;
2624
2625         raw.cfe.type     = ptq->state->cfe_type;
2626         raw.cfe.reserved = 0;
2627         raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2628         raw.cfe.vector   = ptq->state->cfe_vector;
2629         raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2630
2631         for (i = 0; i < ptq->state->evd_cnt; i++) {
2632                 raw.evd[i].et       = 0;
2633                 raw.evd[i].evd_type = ptq->state->evd[i].type;
2634                 raw.evd[i].payload  = ptq->state->evd[i].payload;
2635         }
2636
2637         sample.raw_size = perf_synth__raw_size(raw) +
2638                           ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2639         sample.raw_data = perf_synth__raw_data(&raw);
2640
2641         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2642                                            pt->evt_sample_type);
2643         perf_sample__exit(&sample);
2644         return ret;
2645 }
2646
2647 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2648 {
2649         struct intel_pt *pt = ptq->pt;
2650         union perf_event *event = ptq->event_buf;
2651         struct perf_sample sample;
2652         struct perf_synth_intel_iflag_chg raw;
2653         int ret;
2654
2655         if (intel_pt_skip_event(pt))
2656                 return 0;
2657
2658         perf_sample__init(&sample, /*all=*/true);
2659         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2660
2661         sample.id = ptq->pt->iflag_chg_id;
2662         sample.stream_id = ptq->pt->iflag_chg_id;
2663
2664         raw.flags = 0;
2665         raw.iflag = ptq->state->to_iflag;
2666
2667         if (ptq->state->type & INTEL_PT_BRANCH) {
2668                 raw.via_branch = 1;
2669                 raw.branch_ip = ptq->state->to_ip;
2670         } else {
2671                 sample.addr = 0;
2672         }
2673         sample.flags = ptq->flags;
2674
2675         sample.raw_size = perf_synth__raw_size(raw);
2676         sample.raw_data = perf_synth__raw_data(&raw);
2677
2678         ret = intel_pt_deliver_synth_event(pt, event, &sample,
2679                                            pt->iflag_chg_sample_type);
2680         perf_sample__exit(&sample);
2681         return ret;
2682 }
2683
2684 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2685                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2686                                 pid_t machine_pid, int vcpu)
2687 {
2688         bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2689         bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2690         union perf_event event;
2691         char msg[MAX_AUXTRACE_ERROR_MSG];
2692         int err;
2693
2694         if (pt->synth_opts.error_minus_flags) {
2695                 if (code == INTEL_PT_ERR_OVR &&
2696                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2697                         return 0;
2698                 if (code == INTEL_PT_ERR_LOST &&
2699                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2700                         return 0;
2701         }
2702
2703         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2704
2705         auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2706                                    code, cpu, pid, tid, ip, msg, timestamp,
2707                                    machine_pid, vcpu);
2708
2709         if (intel_pt_enable_logging && !log_on_stdout) {
2710                 FILE *fp = intel_pt_log_fp();
2711
2712                 if (fp)
2713                         perf_event__fprintf_auxtrace_error(&event, fp);
2714         }
2715
2716         if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2717                 intel_pt_log_dump_buf();
2718
2719         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2720         if (err)
2721                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2722                        err);
2723
2724         return err;
2725 }
2726
2727 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2728                                  const struct intel_pt_state *state)
2729 {
2730         struct intel_pt *pt = ptq->pt;
2731         u64 tm = ptq->timestamp;
2732         pid_t machine_pid = 0;
2733         pid_t pid = ptq->pid;
2734         pid_t tid = ptq->tid;
2735         int vcpu = -1;
2736
2737         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2738
2739         if (pt->have_guest_sideband && state->from_nr) {
2740                 machine_pid = ptq->guest_machine_pid;
2741                 vcpu = ptq->vcpu;
2742                 pid = ptq->guest_pid;
2743                 tid = ptq->guest_tid;
2744         }
2745
2746         return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2747                                     state->from_ip, tm, machine_pid, vcpu);
2748 }
2749
2750 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2751 {
2752         struct auxtrace_queue *queue;
2753         pid_t tid = ptq->next_tid;
2754         int err;
2755
2756         if (tid == -1)
2757                 return 0;
2758
2759         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2760
2761         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2762
2763         queue = &pt->queues.queue_array[ptq->queue_nr];
2764         intel_pt_set_pid_tid_cpu(pt, queue);
2765
2766         ptq->next_tid = -1;
2767
2768         return err;
2769 }
2770
2771 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2772 {
2773         struct intel_pt *pt = ptq->pt;
2774
2775         return ip == pt->switch_ip &&
2776                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2777                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2778                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2779 }
2780
2781 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2782                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2783
2784 static int intel_pt_sample(struct intel_pt_queue *ptq)
2785 {
2786         const struct intel_pt_state *state = ptq->state;
2787         struct intel_pt *pt = ptq->pt;
2788         int err;
2789
2790         if (!ptq->have_sample)
2791                 return 0;
2792
2793         ptq->have_sample = false;
2794
2795         if (pt->synth_opts.approx_ipc) {
2796                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2797                 ptq->ipc_cyc_cnt = ptq->state->cycles;
2798                 ptq->sample_ipc = true;
2799         } else {
2800                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2801                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2802                 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2803         }
2804
2805         /* Ensure guest code maps are set up */
2806         if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2807                 intel_pt_get_guest(ptq);
2808
2809         /*
2810          * Do PEBS first to allow for the possibility that the PEBS timestamp
2811          * precedes the current timestamp.
2812          */
2813         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2814                 err = intel_pt_synth_pebs_sample(ptq);
2815                 if (err)
2816                         return err;
2817         }
2818
2819         if (pt->synth_opts.intr_events) {
2820                 if (state->type & INTEL_PT_EVT) {
2821                         err = intel_pt_synth_events_sample(ptq);
2822                         if (err)
2823                                 return err;
2824                 }
2825                 if (state->type & INTEL_PT_IFLAG_CHG) {
2826                         err = intel_pt_synth_iflag_chg_sample(ptq);
2827                         if (err)
2828                                 return err;
2829                 }
2830         }
2831
2832         if (pt->sample_pwr_events) {
2833                 if (state->type & INTEL_PT_PSB_EVT) {
2834                         err = intel_pt_synth_psb_sample(ptq);
2835                         if (err)
2836                                 return err;
2837                 }
2838                 if (ptq->state->cbr != ptq->cbr_seen) {
2839                         err = intel_pt_synth_cbr_sample(ptq);
2840                         if (err)
2841                                 return err;
2842                 }
2843                 if (state->type & INTEL_PT_PWR_EVT) {
2844                         if (state->type & INTEL_PT_MWAIT_OP) {
2845                                 err = intel_pt_synth_mwait_sample(ptq);
2846                                 if (err)
2847                                         return err;
2848                         }
2849                         if (state->type & INTEL_PT_PWR_ENTRY) {
2850                                 err = intel_pt_synth_pwre_sample(ptq);
2851                                 if (err)
2852                                         return err;
2853                         }
2854                         if (state->type & INTEL_PT_EX_STOP) {
2855                                 err = intel_pt_synth_exstop_sample(ptq);
2856                                 if (err)
2857                                         return err;
2858                         }
2859                         if (state->type & INTEL_PT_PWR_EXIT) {
2860                                 err = intel_pt_synth_pwrx_sample(ptq);
2861                                 if (err)
2862                                         return err;
2863                         }
2864                 }
2865         }
2866
2867         if (state->type & INTEL_PT_INSTRUCTION) {
2868                 if (pt->sample_instructions) {
2869                         err = intel_pt_synth_instruction_sample(ptq);
2870                         if (err)
2871                                 return err;
2872                 }
2873                 if (pt->sample_cycles) {
2874                         err = intel_pt_synth_cycle_sample(ptq);
2875                         if (err)
2876                                 return err;
2877                 }
2878         }
2879
2880         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2881                 err = intel_pt_synth_transaction_sample(ptq);
2882                 if (err)
2883                         return err;
2884         }
2885
2886         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2887                 err = intel_pt_synth_ptwrite_sample(ptq);
2888                 if (err)
2889                         return err;
2890         }
2891
2892         if (!(state->type & INTEL_PT_BRANCH))
2893                 return 0;
2894
2895         if (pt->use_thread_stack) {
2896                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2897                                     state->from_ip, state->to_ip, ptq->insn_len,
2898                                     state->trace_nr, pt->callstack,
2899                                     pt->br_stack_sz_plus,
2900                                     pt->mispred_all);
2901         } else {
2902                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2903         }
2904
2905         if (pt->sample_branches) {
2906                 if (state->from_nr != state->to_nr &&
2907                     state->from_ip && state->to_ip) {
2908                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2909                         u64 to_ip = st->to_ip;
2910                         u64 from_ip = st->from_ip;
2911
2912                         /*
2913                          * perf cannot handle having different machines for ip
2914                          * and addr, so create 2 branches.
2915                          */
2916                         st->to_ip = 0;
2917                         err = intel_pt_synth_branch_sample(ptq);
2918                         if (err)
2919                                 return err;
2920                         st->from_ip = 0;
2921                         st->to_ip = to_ip;
2922                         err = intel_pt_synth_branch_sample(ptq);
2923                         st->from_ip = from_ip;
2924                 } else {
2925                         err = intel_pt_synth_branch_sample(ptq);
2926                 }
2927                 if (err)
2928                         return err;
2929         }
2930
2931         if (!ptq->sync_switch)
2932                 return 0;
2933
2934         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2935                 switch (ptq->switch_state) {
2936                 case INTEL_PT_SS_NOT_TRACING:
2937                 case INTEL_PT_SS_UNKNOWN:
2938                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2939                         err = intel_pt_next_tid(pt, ptq);
2940                         if (err)
2941                                 return err;
2942                         ptq->switch_state = INTEL_PT_SS_TRACING;
2943                         break;
2944                 default:
2945                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2946                         return 1;
2947                 }
2948         } else if (!state->to_ip) {
2949                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2950         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2951                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2952         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2953                    state->to_ip == pt->ptss_ip &&
2954                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2955                 ptq->switch_state = INTEL_PT_SS_TRACING;
2956         }
2957
2958         return 0;
2959 }
2960
2961 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2962 {
2963         struct machine *machine = pt->machine;
2964         struct map *map;
2965         struct symbol *sym, *start;
2966         u64 ip, switch_ip = 0;
2967         const char *ptss;
2968
2969         if (ptss_ip)
2970                 *ptss_ip = 0;
2971
2972         map = machine__kernel_map(machine);
2973         if (!map)
2974                 return 0;
2975
2976         if (map__load(map))
2977                 return 0;
2978
2979         start = dso__first_symbol(map__dso(map));
2980
2981         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2982                 if (sym->binding == STB_GLOBAL &&
2983                     !strcmp(sym->name, "__switch_to")) {
2984                         ip = map__unmap_ip(map, sym->start);
2985                         if (ip >= map__start(map) && ip < map__end(map)) {
2986                                 switch_ip = ip;
2987                                 break;
2988                         }
2989                 }
2990         }
2991
2992         if (!switch_ip || !ptss_ip)
2993                 return 0;
2994
2995         if (pt->have_sched_switch == 1)
2996                 ptss = "perf_trace_sched_switch";
2997         else
2998                 ptss = "__perf_event_task_sched_out";
2999
3000         for (sym = start; sym; sym = dso__next_symbol(sym)) {
3001                 if (!strcmp(sym->name, ptss)) {
3002                         ip = map__unmap_ip(map, sym->start);
3003                         if (ip >= map__start(map) && ip < map__end(map)) {
3004                                 *ptss_ip = ip;
3005                                 break;
3006                         }
3007                 }
3008         }
3009
3010         return switch_ip;
3011 }
3012
3013 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
3014 {
3015         unsigned int i;
3016
3017         if (pt->sync_switch_not_supported)
3018                 return;
3019
3020         pt->sync_switch = true;
3021
3022         for (i = 0; i < pt->queues.nr_queues; i++) {
3023                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3024                 struct intel_pt_queue *ptq = queue->priv;
3025
3026                 if (ptq)
3027                         ptq->sync_switch = true;
3028         }
3029 }
3030
3031 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
3032 {
3033         unsigned int i;
3034
3035         pt->sync_switch = false;
3036
3037         for (i = 0; i < pt->queues.nr_queues; i++) {
3038                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3039                 struct intel_pt_queue *ptq = queue->priv;
3040
3041                 if (ptq) {
3042                         ptq->sync_switch = false;
3043                         intel_pt_next_tid(pt, ptq);
3044                 }
3045         }
3046 }
3047
3048 /*
3049  * To filter against time ranges, it is only necessary to look at the next start
3050  * or end time.
3051  */
3052 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
3053 {
3054         struct intel_pt *pt = ptq->pt;
3055
3056         if (ptq->sel_start) {
3057                 /* Next time is an end time */
3058                 ptq->sel_start = false;
3059                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
3060                 return true;
3061         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
3062                 /* Next time is a start time */
3063                 ptq->sel_start = true;
3064                 ptq->sel_idx += 1;
3065                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
3066                 return true;
3067         }
3068
3069         /* No next time */
3070         return false;
3071 }
3072
3073 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
3074 {
3075         int err;
3076
3077         while (1) {
3078                 if (ptq->sel_start) {
3079                         if (ptq->timestamp >= ptq->sel_timestamp) {
3080                                 /* After start time, so consider next time */
3081                                 intel_pt_next_time(ptq);
3082                                 if (!ptq->sel_timestamp) {
3083                                         /* No end time */
3084                                         return 0;
3085                                 }
3086                                 /* Check against end time */
3087                                 continue;
3088                         }
3089                         /* Before start time, so fast forward */
3090                         ptq->have_sample = false;
3091                         if (ptq->sel_timestamp > *ff_timestamp) {
3092                                 if (ptq->sync_switch) {
3093                                         intel_pt_next_tid(ptq->pt, ptq);
3094                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
3095                                 }
3096                                 *ff_timestamp = ptq->sel_timestamp;
3097                                 err = intel_pt_fast_forward(ptq->decoder,
3098                                                             ptq->sel_timestamp);
3099                                 if (err)
3100                                         return err;
3101                         }
3102                         return 0;
3103                 } else if (ptq->timestamp > ptq->sel_timestamp) {
3104                         /* After end time, so consider next time */
3105                         if (!intel_pt_next_time(ptq)) {
3106                                 /* No next time range, so stop decoding */
3107                                 ptq->have_sample = false;
3108                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
3109                                 return 1;
3110                         }
3111                         /* Check against next start time */
3112                         continue;
3113                 } else {
3114                         /* Before end time */
3115                         return 0;
3116                 }
3117         }
3118 }
3119
3120 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
3121 {
3122         const struct intel_pt_state *state = ptq->state;
3123         struct intel_pt *pt = ptq->pt;
3124         u64 ff_timestamp = 0;
3125         int err;
3126
3127         if (!pt->kernel_start) {
3128                 pt->kernel_start = machine__kernel_start(pt->machine);
3129                 if (pt->per_cpu_mmaps &&
3130                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
3131                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
3132                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
3133                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
3134                         if (pt->switch_ip) {
3135                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
3136                                              pt->switch_ip, pt->ptss_ip);
3137                                 intel_pt_enable_sync_switch(pt);
3138                         }
3139                 }
3140         }
3141
3142         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
3143                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3144         while (1) {
3145                 err = intel_pt_sample(ptq);
3146                 if (err)
3147                         return err;
3148
3149                 state = intel_pt_decode(ptq->decoder);
3150                 if (state->err) {
3151                         if (state->err == INTEL_PT_ERR_NODATA)
3152                                 return 1;
3153                         if (ptq->sync_switch &&
3154                             state->from_ip >= pt->kernel_start) {
3155                                 ptq->sync_switch = false;
3156                                 intel_pt_next_tid(pt, ptq);
3157                         }
3158                         ptq->timestamp = state->est_timestamp;
3159                         if (pt->synth_opts.errors) {
3160                                 err = intel_ptq_synth_error(ptq, state);
3161                                 if (err)
3162                                         return err;
3163                         }
3164                         continue;
3165                 }
3166
3167                 ptq->state = state;
3168                 ptq->have_sample = true;
3169                 intel_pt_sample_flags(ptq);
3170
3171                 /* Use estimated TSC upon return to user space */
3172                 if (pt->est_tsc &&
3173                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
3174                     state->to_ip && state->to_ip < pt->kernel_start) {
3175                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3176                                      state->timestamp, state->est_timestamp);
3177                         ptq->timestamp = state->est_timestamp;
3178                 /* Use estimated TSC in unknown switch state */
3179                 } else if (ptq->sync_switch &&
3180                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
3181                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
3182                            ptq->next_tid == -1) {
3183                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3184                                      state->timestamp, state->est_timestamp);
3185                         ptq->timestamp = state->est_timestamp;
3186                 } else if (state->timestamp > ptq->timestamp) {
3187                         ptq->timestamp = state->timestamp;
3188                 }
3189
3190                 if (ptq->sel_timestamp) {
3191                         err = intel_pt_time_filter(ptq, &ff_timestamp);
3192                         if (err)
3193                                 return err;
3194                 }
3195
3196                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
3197                         *timestamp = ptq->timestamp;
3198                         return 0;
3199                 }
3200         }
3201         return 0;
3202 }
3203
3204 static inline int intel_pt_update_queues(struct intel_pt *pt)
3205 {
3206         if (pt->queues.new_data) {
3207                 pt->queues.new_data = false;
3208                 return intel_pt_setup_queues(pt);
3209         }
3210         return 0;
3211 }
3212
3213 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3214 {
3215         unsigned int queue_nr;
3216         u64 ts;
3217         int ret;
3218
3219         while (1) {
3220                 struct auxtrace_queue *queue;
3221                 struct intel_pt_queue *ptq;
3222
3223                 if (!pt->heap.heap_cnt)
3224                         return 0;
3225
3226                 if (pt->heap.heap_array[0].ordinal >= timestamp)
3227                         return 0;
3228
3229                 queue_nr = pt->heap.heap_array[0].queue_nr;
3230                 queue = &pt->queues.queue_array[queue_nr];
3231                 ptq = queue->priv;
3232
3233                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3234                              queue_nr, pt->heap.heap_array[0].ordinal,
3235                              timestamp);
3236
3237                 auxtrace_heap__pop(&pt->heap);
3238
3239                 if (pt->heap.heap_cnt) {
3240                         ts = pt->heap.heap_array[0].ordinal + 1;
3241                         if (ts > timestamp)
3242                                 ts = timestamp;
3243                 } else {
3244                         ts = timestamp;
3245                 }
3246
3247                 intel_pt_set_pid_tid_cpu(pt, queue);
3248
3249                 ret = intel_pt_run_decoder(ptq, &ts);
3250
3251                 if (ret < 0) {
3252                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
3253                         return ret;
3254                 }
3255
3256                 if (!ret) {
3257                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3258                         if (ret < 0)
3259                                 return ret;
3260                 } else {
3261                         ptq->on_heap = false;
3262                 }
3263         }
3264
3265         return 0;
3266 }
3267
3268 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3269                                             u64 time_)
3270 {
3271         struct auxtrace_queues *queues = &pt->queues;
3272         unsigned int i;
3273         u64 ts = 0;
3274
3275         for (i = 0; i < queues->nr_queues; i++) {
3276                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3277                 struct intel_pt_queue *ptq = queue->priv;
3278
3279                 if (ptq && (tid == -1 || ptq->tid == tid)) {
3280                         ptq->time = time_;
3281                         intel_pt_set_pid_tid_cpu(pt, queue);
3282                         intel_pt_run_decoder(ptq, &ts);
3283                 }
3284         }
3285         return 0;
3286 }
3287
3288 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3289                                             struct auxtrace_queue *queue,
3290                                             struct perf_sample *sample)
3291 {
3292         struct machine *m = ptq->pt->machine;
3293
3294         ptq->pid = sample->pid;
3295         ptq->tid = sample->tid;
3296         ptq->cpu = queue->cpu;
3297
3298         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3299                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3300
3301         thread__zput(ptq->thread);
3302
3303         if (ptq->tid == -1)
3304                 return;
3305
3306         if (ptq->pid == -1) {
3307                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3308                 if (ptq->thread)
3309                         ptq->pid = thread__pid(ptq->thread);
3310                 return;
3311         }
3312
3313         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3314 }
3315
3316 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3317                                             struct perf_sample *sample)
3318 {
3319         struct auxtrace_queue *queue;
3320         struct intel_pt_queue *ptq;
3321         u64 ts = 0;
3322
3323         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3324         if (!queue)
3325                 return -EINVAL;
3326
3327         ptq = queue->priv;
3328         if (!ptq)
3329                 return 0;
3330
3331         ptq->stop = false;
3332         ptq->time = sample->time;
3333         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3334         intel_pt_run_decoder(ptq, &ts);
3335         return 0;
3336 }
3337
3338 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3339 {
3340         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3341                                     sample->pid, sample->tid, 0, sample->time,
3342                                     sample->machine_pid, sample->vcpu);
3343 }
3344
3345 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3346 {
3347         unsigned i, j;
3348
3349         if (cpu < 0 || !pt->queues.nr_queues)
3350                 return NULL;
3351
3352         if ((unsigned)cpu >= pt->queues.nr_queues)
3353                 i = pt->queues.nr_queues - 1;
3354         else
3355                 i = cpu;
3356
3357         if (pt->queues.queue_array[i].cpu == cpu)
3358                 return pt->queues.queue_array[i].priv;
3359
3360         for (j = 0; i > 0; j++) {
3361                 if (pt->queues.queue_array[--i].cpu == cpu)
3362                         return pt->queues.queue_array[i].priv;
3363         }
3364
3365         for (; j < pt->queues.nr_queues; j++) {
3366                 if (pt->queues.queue_array[j].cpu == cpu)
3367                         return pt->queues.queue_array[j].priv;
3368         }
3369
3370         return NULL;
3371 }
3372
3373 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3374                                 u64 timestamp)
3375 {
3376         struct intel_pt_queue *ptq;
3377         int err;
3378
3379         if (!pt->sync_switch)
3380                 return 1;
3381
3382         ptq = intel_pt_cpu_to_ptq(pt, cpu);
3383         if (!ptq || !ptq->sync_switch)
3384                 return 1;
3385
3386         switch (ptq->switch_state) {
3387         case INTEL_PT_SS_NOT_TRACING:
3388                 break;
3389         case INTEL_PT_SS_UNKNOWN:
3390         case INTEL_PT_SS_TRACING:
3391                 ptq->next_tid = tid;
3392                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3393                 return 0;
3394         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3395                 if (!ptq->on_heap) {
3396                         ptq->timestamp = perf_time_to_tsc(timestamp,
3397                                                           &pt->tc);
3398                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3399                                                  ptq->timestamp);
3400                         if (err)
3401                                 return err;
3402                         ptq->on_heap = true;
3403                 }
3404                 ptq->switch_state = INTEL_PT_SS_TRACING;
3405                 break;
3406         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3407                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3408                 break;
3409         default:
3410                 break;
3411         }
3412
3413         ptq->next_tid = -1;
3414
3415         return 1;
3416 }
3417
3418 #ifdef HAVE_LIBTRACEEVENT
3419 static int intel_pt_process_switch(struct intel_pt *pt,
3420                                    struct perf_sample *sample)
3421 {
3422         pid_t tid;
3423         int cpu, ret;
3424         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3425
3426         if (evsel != pt->switch_evsel)
3427                 return 0;
3428
3429         tid = evsel__intval(evsel, sample, "next_pid");
3430         cpu = sample->cpu;
3431
3432         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3433                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3434                      &pt->tc));
3435
3436         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3437         if (ret <= 0)
3438                 return ret;
3439
3440         return machine__set_current_tid(pt->machine, cpu, -1, tid);
3441 }
3442 #endif /* HAVE_LIBTRACEEVENT */
3443
3444 static int intel_pt_context_switch_in(struct intel_pt *pt,
3445                                       struct perf_sample *sample)
3446 {
3447         pid_t pid = sample->pid;
3448         pid_t tid = sample->tid;
3449         int cpu = sample->cpu;
3450
3451         if (pt->sync_switch) {
3452                 struct intel_pt_queue *ptq;
3453
3454                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3455                 if (ptq && ptq->sync_switch) {
3456                         ptq->next_tid = -1;
3457                         switch (ptq->switch_state) {
3458                         case INTEL_PT_SS_NOT_TRACING:
3459                         case INTEL_PT_SS_UNKNOWN:
3460                         case INTEL_PT_SS_TRACING:
3461                                 break;
3462                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3463                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3464                                 ptq->switch_state = INTEL_PT_SS_TRACING;
3465                                 break;
3466                         default:
3467                                 break;
3468                         }
3469                 }
3470         }
3471
3472         /*
3473          * If the current tid has not been updated yet, ensure it is now that
3474          * a "switch in" event has occurred.
3475          */
3476         if (machine__get_current_tid(pt->machine, cpu) == tid)
3477                 return 0;
3478
3479         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3480 }
3481
3482 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3483                                          union perf_event *event,
3484                                          struct perf_sample *sample)
3485 {
3486         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3487         struct machines *machines = &pt->session->machines;
3488         struct machine *machine = machines__find(machines, sample->machine_pid);
3489
3490         pt->have_guest_sideband = true;
3491
3492         /*
3493          * sync_switch cannot handle guest machines at present, so just disable
3494          * it.
3495          */
3496         pt->sync_switch_not_supported = true;
3497         if (pt->sync_switch)
3498                 intel_pt_disable_sync_switch(pt);
3499
3500         if (out)
3501                 return 0;
3502
3503         if (!machine)
3504                 return -EINVAL;
3505
3506         return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3507 }
3508
3509 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3510                                    struct perf_sample *sample)
3511 {
3512         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3513         pid_t pid, tid;
3514         int cpu, ret;
3515
3516         if (perf_event__is_guest(event))
3517                 return intel_pt_guest_context_switch(pt, event, sample);
3518
3519         cpu = sample->cpu;
3520
3521         if (pt->have_sched_switch == 3) {
3522                 if (!out)
3523                         return intel_pt_context_switch_in(pt, sample);
3524                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3525                         pr_err("Expecting CPU-wide context switch event\n");
3526                         return -EINVAL;
3527                 }
3528                 pid = event->context_switch.next_prev_pid;
3529                 tid = event->context_switch.next_prev_tid;
3530         } else {
3531                 if (out)
3532                         return 0;
3533                 pid = sample->pid;
3534                 tid = sample->tid;
3535         }
3536
3537         if (tid == -1)
3538                 intel_pt_log("context_switch event has no tid\n");
3539
3540         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3541         if (ret <= 0)
3542                 return ret;
3543
3544         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3545 }
3546
3547 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3548                                          union perf_event *event,
3549                                          struct perf_sample *sample)
3550 {
3551         if (!pt->per_cpu_mmaps)
3552                 return 0;
3553
3554         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3555                      sample->cpu, event->itrace_start.pid,
3556                      event->itrace_start.tid, sample->time,
3557                      perf_time_to_tsc(sample->time, &pt->tc));
3558
3559         return machine__set_current_tid(pt->machine, sample->cpu,
3560                                         event->itrace_start.pid,
3561                                         event->itrace_start.tid);
3562 }
3563
3564 /*
3565  * Events with data_src are identified by L1_Hit_Indication
3566  * refer https://github.com/intel/perfmon
3567  */
3568 static int intel_pt_data_src_fmt(struct intel_pt *pt, struct evsel *evsel)
3569 {
3570         struct perf_env *env = pt->machine->env;
3571         int fmt = DATA_SRC_FORMAT_NA;
3572
3573         if (!env->cpuid)
3574                 return DATA_SRC_FORMAT_ERR;
3575
3576         /*
3577          * PEBS-via-PT is only supported on E-core non-hybrid. Of those only
3578          * Gracemont and Crestmont have data_src. Check for:
3579          *      Alderlake N   (Gracemont)
3580          *      Sierra Forest (Crestmont)
3581          *      Grand Ridge   (Crestmont)
3582          */
3583
3584         if (!strncmp(env->cpuid, "GenuineIntel,6,190,", 19))
3585                 fmt = DATA_SRC_FORMAT_GRT;
3586
3587         if (!strncmp(env->cpuid, "GenuineIntel,6,175,", 19) ||
3588             !strncmp(env->cpuid, "GenuineIntel,6,182,", 19))
3589                 fmt = DATA_SRC_FORMAT_CMT;
3590
3591         if (fmt == DATA_SRC_FORMAT_NA)
3592                 return fmt;
3593
3594         /*
3595          * Only data_src events are:
3596          *      mem-loads       event=0xd0,umask=0x5
3597          *      mem-stores      event=0xd0,umask=0x6
3598          */
3599         if (evsel->core.attr.type == PERF_TYPE_RAW &&
3600             ((evsel->core.attr.config & 0xffff) == 0x5d0 ||
3601              (evsel->core.attr.config & 0xffff) == 0x6d0))
3602                 return fmt;
3603
3604         return DATA_SRC_FORMAT_NA;
3605 }
3606
3607 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3608                                              union perf_event *event,
3609                                              struct perf_sample *sample)
3610 {
3611         u64 hw_id = event->aux_output_hw_id.hw_id;
3612         struct auxtrace_queue *queue;
3613         struct intel_pt_queue *ptq;
3614         struct evsel *evsel;
3615
3616         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3617         evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3618         if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3619                 pr_err("Bad AUX output hardware ID\n");
3620                 return -EINVAL;
3621         }
3622
3623         ptq = queue->priv;
3624
3625         ptq->pebs[hw_id].evsel = evsel;
3626         ptq->pebs[hw_id].id = sample->id;
3627         ptq->pebs[hw_id].data_src_fmt = intel_pt_data_src_fmt(pt, evsel);
3628
3629         return 0;
3630 }
3631
3632 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3633                              struct addr_location *al)
3634 {
3635         if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3636                 if (!thread__find_map(thread, cpumode, addr, al))
3637                         return -1;
3638         }
3639
3640         return 0;
3641 }
3642
3643 /* Invalidate all instruction cache entries that overlap the text poke */
3644 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3645 {
3646         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3647         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3648         /* Assume text poke begins in a basic block no more than 4096 bytes */
3649         int cnt = 4096 + event->text_poke.new_len;
3650         struct thread *thread = pt->unknown_thread;
3651         struct addr_location al;
3652         struct machine *machine = pt->machine;
3653         struct intel_pt_cache_entry *e;
3654         u64 offset;
3655         int ret = 0;
3656
3657         addr_location__init(&al);
3658         if (!event->text_poke.new_len)
3659                 goto out;
3660
3661         for (; cnt; cnt--, addr--) {
3662                 struct dso *dso;
3663
3664                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3665                         if (addr < event->text_poke.addr)
3666                                 goto out;
3667                         continue;
3668                 }
3669
3670                 dso = map__dso(al.map);
3671                 if (!dso || !dso__auxtrace_cache(dso))
3672                         continue;
3673
3674                 offset = map__map_ip(al.map, addr);
3675
3676                 e = intel_pt_cache_lookup(dso, machine, offset);
3677                 if (!e)
3678                         continue;
3679
3680                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3681                         /*
3682                          * No overlap. Working backwards there cannot be another
3683                          * basic block that overlaps the text poke if there is a
3684                          * branch instruction before the text poke address.
3685                          */
3686                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
3687                                 goto out;
3688                 } else {
3689                         intel_pt_cache_invalidate(dso, machine, offset);
3690                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3691                                      dso__long_name(dso), addr);
3692                 }
3693         }
3694 out:
3695         addr_location__exit(&al);
3696         return ret;
3697 }
3698
3699 static int intel_pt_process_event(struct perf_session *session,
3700                                   union perf_event *event,
3701                                   struct perf_sample *sample,
3702                                   const struct perf_tool *tool)
3703 {
3704         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3705                                            auxtrace);
3706         u64 timestamp;
3707         int err = 0;
3708
3709         if (dump_trace)
3710                 return 0;
3711
3712         if (!tool->ordered_events) {
3713                 pr_err("Intel Processor Trace requires ordered events\n");
3714                 return -EINVAL;
3715         }
3716
3717         if (sample->time && sample->time != (u64)-1)
3718                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3719         else
3720                 timestamp = 0;
3721
3722         if (timestamp || pt->timeless_decoding) {
3723                 err = intel_pt_update_queues(pt);
3724                 if (err)
3725                         return err;
3726         }
3727
3728         if (pt->timeless_decoding) {
3729                 if (pt->sampling_mode) {
3730                         if (sample->aux_sample.size)
3731                                 err = intel_pt_process_timeless_sample(pt,
3732                                                                        sample);
3733                 } else if (event->header.type == PERF_RECORD_EXIT) {
3734                         err = intel_pt_process_timeless_queues(pt,
3735                                                                event->fork.tid,
3736                                                                sample->time);
3737                 }
3738         } else if (timestamp) {
3739                 if (!pt->first_timestamp)
3740                         intel_pt_first_timestamp(pt, timestamp);
3741                 err = intel_pt_process_queues(pt, timestamp);
3742         }
3743         if (err)
3744                 return err;
3745
3746         if (event->header.type == PERF_RECORD_SAMPLE) {
3747                 if (pt->synth_opts.add_callchain && !sample->callchain)
3748                         intel_pt_add_callchain(pt, sample);
3749                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3750                         intel_pt_add_br_stack(pt, sample);
3751         }
3752
3753         if (event->header.type == PERF_RECORD_AUX &&
3754             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3755             pt->synth_opts.errors) {
3756                 err = intel_pt_lost(pt, sample);
3757                 if (err)
3758                         return err;
3759         }
3760
3761 #ifdef HAVE_LIBTRACEEVENT
3762         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3763                 err = intel_pt_process_switch(pt, sample);
3764         else
3765 #endif
3766         if (event->header.type == PERF_RECORD_ITRACE_START)
3767                 err = intel_pt_process_itrace_start(pt, event, sample);
3768         else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3769                 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3770         else if (event->header.type == PERF_RECORD_SWITCH ||
3771                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3772                 err = intel_pt_context_switch(pt, event, sample);
3773
3774         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3775                 err = intel_pt_text_poke(pt, event);
3776
3777         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3778                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3779                              event->header.type, sample->cpu, sample->time, timestamp);
3780                 intel_pt_log_event(event);
3781         }
3782
3783         return err;
3784 }
3785
3786 static int intel_pt_flush(struct perf_session *session, const struct perf_tool *tool)
3787 {
3788         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3789                                            auxtrace);
3790         int ret;
3791
3792         if (dump_trace)
3793                 return 0;
3794
3795         if (!tool->ordered_events)
3796                 return -EINVAL;
3797
3798         ret = intel_pt_update_queues(pt);
3799         if (ret < 0)
3800                 return ret;
3801
3802         if (pt->timeless_decoding)
3803                 return intel_pt_process_timeless_queues(pt, -1,
3804                                                         MAX_TIMESTAMP - 1);
3805
3806         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3807 }
3808
3809 static void intel_pt_free_events(struct perf_session *session)
3810 {
3811         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3812                                            auxtrace);
3813         struct auxtrace_queues *queues = &pt->queues;
3814         unsigned int i;
3815
3816         for (i = 0; i < queues->nr_queues; i++) {
3817                 intel_pt_free_queue(queues->queue_array[i].priv);
3818                 queues->queue_array[i].priv = NULL;
3819         }
3820         intel_pt_log_disable();
3821         auxtrace_queues__free(queues);
3822 }
3823
3824 static void intel_pt_free(struct perf_session *session)
3825 {
3826         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3827                                            auxtrace);
3828
3829         auxtrace_heap__free(&pt->heap);
3830         intel_pt_free_events(session);
3831         session->auxtrace = NULL;
3832         intel_pt_free_vmcs_info(pt);
3833         thread__put(pt->unknown_thread);
3834         addr_filters__exit(&pt->filts);
3835         zfree(&pt->chain);
3836         zfree(&pt->filter);
3837         zfree(&pt->time_ranges);
3838         zfree(&pt->br_stack);
3839         free(pt);
3840 }
3841
3842 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3843                                        struct evsel *evsel)
3844 {
3845         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3846                                            auxtrace);
3847
3848         return evsel->core.attr.type == pt->pmu_type;
3849 }
3850
3851 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3852                                            union perf_event *event,
3853                                            const struct perf_tool *tool __maybe_unused)
3854 {
3855         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3856                                            auxtrace);
3857
3858         if (!pt->data_queued) {
3859                 struct auxtrace_buffer *buffer;
3860                 off_t data_offset;
3861                 int fd = perf_data__fd(session->data);
3862                 int err;
3863
3864                 if (perf_data__is_pipe(session->data)) {
3865                         data_offset = 0;
3866                 } else {
3867                         data_offset = lseek(fd, 0, SEEK_CUR);
3868                         if (data_offset == -1)
3869                                 return -errno;
3870                 }
3871
3872                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3873                                                  data_offset, &buffer);
3874                 if (err)
3875                         return err;
3876
3877                 /* Dump here now we have copied a piped trace out of the pipe */
3878                 if (dump_trace) {
3879                         if (auxtrace_buffer__get_data(buffer, fd)) {
3880                                 intel_pt_dump_event(pt, buffer->data,
3881                                                     buffer->size);
3882                                 auxtrace_buffer__put_data(buffer);
3883                         }
3884                 }
3885         }
3886
3887         return 0;
3888 }
3889
3890 static int intel_pt_queue_data(struct perf_session *session,
3891                                struct perf_sample *sample,
3892                                union perf_event *event, u64 data_offset)
3893 {
3894         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3895                                            auxtrace);
3896         u64 timestamp;
3897
3898         if (event) {
3899                 return auxtrace_queues__add_event(&pt->queues, session, event,
3900                                                   data_offset, NULL);
3901         }
3902
3903         if (sample->time && sample->time != (u64)-1)
3904                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3905         else
3906                 timestamp = 0;
3907
3908         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3909                                            data_offset, timestamp);
3910 }
3911
3912 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3913                                 struct perf_event_attr *attr, u64 id)
3914 {
3915         int err;
3916
3917         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3918                  name, id, (u64)attr->sample_type);
3919
3920         err = perf_session__deliver_synth_attr_event(session, attr, id);
3921         if (err)
3922                 pr_err("%s: failed to synthesize '%s' event type\n",
3923                        __func__, name);
3924
3925         return err;
3926 }
3927
3928 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3929                                     const char *name)
3930 {
3931         struct evsel *evsel;
3932
3933         evlist__for_each_entry(evlist, evsel) {
3934                 if (evsel->core.id && evsel->core.id[0] == id) {
3935                         if (evsel->name)
3936                                 zfree(&evsel->name);
3937                         evsel->name = strdup(name);
3938                         break;
3939                 }
3940         }
3941 }
3942
3943 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3944                                          struct evlist *evlist)
3945 {
3946         struct evsel *evsel;
3947
3948         evlist__for_each_entry(evlist, evsel) {
3949                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3950                         return evsel;
3951         }
3952
3953         return NULL;
3954 }
3955
3956 static int intel_pt_synth_events(struct intel_pt *pt,
3957                                  struct perf_session *session)
3958 {
3959         struct evlist *evlist = session->evlist;
3960         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3961         struct perf_event_attr attr;
3962         u64 id;
3963         int err;
3964
3965         if (!evsel) {
3966                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3967                 return 0;
3968         }
3969
3970         memset(&attr, 0, sizeof(struct perf_event_attr));
3971         attr.size = sizeof(struct perf_event_attr);
3972         attr.type = PERF_TYPE_HARDWARE;
3973         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3974         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3975                             PERF_SAMPLE_PERIOD;
3976         if (pt->timeless_decoding)
3977                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3978         else
3979                 attr.sample_type |= PERF_SAMPLE_TIME;
3980         if (!pt->per_cpu_mmaps)
3981                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3982         attr.exclude_user = evsel->core.attr.exclude_user;
3983         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3984         attr.exclude_hv = evsel->core.attr.exclude_hv;
3985         attr.exclude_host = evsel->core.attr.exclude_host;
3986         attr.exclude_guest = evsel->core.attr.exclude_guest;
3987         attr.sample_id_all = evsel->core.attr.sample_id_all;
3988         attr.read_format = evsel->core.attr.read_format;
3989
3990         id = evsel->core.id[0] + 1000000000;
3991         if (!id)
3992                 id = 1;
3993
3994         if (pt->synth_opts.branches) {
3995                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3996                 attr.sample_period = 1;
3997                 attr.sample_type |= PERF_SAMPLE_ADDR;
3998                 err = intel_pt_synth_event(session, "branches", &attr, id);
3999                 if (err)
4000                         return err;
4001                 pt->sample_branches = true;
4002                 pt->branches_sample_type = attr.sample_type;
4003                 pt->branches_id = id;
4004                 id += 1;
4005                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
4006         }
4007
4008         if (pt->synth_opts.callchain)
4009                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
4010         if (pt->synth_opts.last_branch) {
4011                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
4012                 /*
4013                  * We don't use the hardware index, but the sample generation
4014                  * code uses the new format branch_stack with this field,
4015                  * so the event attributes must indicate that it's present.
4016                  */
4017                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
4018         }
4019
4020         if (pt->synth_opts.instructions) {
4021                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
4022                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
4023                         attr.sample_period =
4024                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
4025                 else
4026                         attr.sample_period = pt->synth_opts.period;
4027                 err = intel_pt_synth_event(session, "instructions", &attr, id);
4028                 if (err)
4029                         return err;
4030                 pt->sample_instructions = true;
4031                 pt->instructions_sample_type = attr.sample_type;
4032                 pt->instructions_id = id;
4033                 id += 1;
4034         }
4035
4036         if (pt->synth_opts.cycles) {
4037                 attr.config = PERF_COUNT_HW_CPU_CYCLES;
4038                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
4039                         attr.sample_period =
4040                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
4041                 else
4042                         attr.sample_period = pt->synth_opts.period;
4043                 err = intel_pt_synth_event(session, "cycles", &attr, id);
4044                 if (err)
4045                         return err;
4046                 pt->sample_cycles = true;
4047                 pt->cycles_sample_type = attr.sample_type;
4048                 pt->cycles_id = id;
4049                 id += 1;
4050         }
4051
4052         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
4053         attr.sample_period = 1;
4054
4055         if (pt->synth_opts.transactions) {
4056                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
4057                 err = intel_pt_synth_event(session, "transactions", &attr, id);
4058                 if (err)
4059                         return err;
4060                 pt->sample_transactions = true;
4061                 pt->transactions_sample_type = attr.sample_type;
4062                 pt->transactions_id = id;
4063                 intel_pt_set_event_name(evlist, id, "transactions");
4064                 id += 1;
4065         }
4066
4067         attr.type = PERF_TYPE_SYNTH;
4068         attr.sample_type |= PERF_SAMPLE_RAW;
4069
4070         if (pt->synth_opts.ptwrites) {
4071                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
4072                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
4073                 if (err)
4074                         return err;
4075                 pt->sample_ptwrites = true;
4076                 pt->ptwrites_sample_type = attr.sample_type;
4077                 pt->ptwrites_id = id;
4078                 intel_pt_set_event_name(evlist, id, "ptwrite");
4079                 id += 1;
4080         }
4081
4082         if (pt->synth_opts.pwr_events) {
4083                 pt->sample_pwr_events = true;
4084                 pt->pwr_events_sample_type = attr.sample_type;
4085
4086                 attr.config = PERF_SYNTH_INTEL_CBR;
4087                 err = intel_pt_synth_event(session, "cbr", &attr, id);
4088                 if (err)
4089                         return err;
4090                 pt->cbr_id = id;
4091                 intel_pt_set_event_name(evlist, id, "cbr");
4092                 id += 1;
4093
4094                 attr.config = PERF_SYNTH_INTEL_PSB;
4095                 err = intel_pt_synth_event(session, "psb", &attr, id);
4096                 if (err)
4097                         return err;
4098                 pt->psb_id = id;
4099                 intel_pt_set_event_name(evlist, id, "psb");
4100                 id += 1;
4101         }
4102
4103         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
4104                 attr.config = PERF_SYNTH_INTEL_MWAIT;
4105                 err = intel_pt_synth_event(session, "mwait", &attr, id);
4106                 if (err)
4107                         return err;
4108                 pt->mwait_id = id;
4109                 intel_pt_set_event_name(evlist, id, "mwait");
4110                 id += 1;
4111
4112                 attr.config = PERF_SYNTH_INTEL_PWRE;
4113                 err = intel_pt_synth_event(session, "pwre", &attr, id);
4114                 if (err)
4115                         return err;
4116                 pt->pwre_id = id;
4117                 intel_pt_set_event_name(evlist, id, "pwre");
4118                 id += 1;
4119
4120                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
4121                 err = intel_pt_synth_event(session, "exstop", &attr, id);
4122                 if (err)
4123                         return err;
4124                 pt->exstop_id = id;
4125                 intel_pt_set_event_name(evlist, id, "exstop");
4126                 id += 1;
4127
4128                 attr.config = PERF_SYNTH_INTEL_PWRX;
4129                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
4130                 if (err)
4131                         return err;
4132                 pt->pwrx_id = id;
4133                 intel_pt_set_event_name(evlist, id, "pwrx");
4134                 id += 1;
4135         }
4136
4137         if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
4138                 attr.config = PERF_SYNTH_INTEL_EVT;
4139                 err = intel_pt_synth_event(session, "evt", &attr, id);
4140                 if (err)
4141                         return err;
4142                 pt->evt_sample_type = attr.sample_type;
4143                 pt->evt_id = id;
4144                 intel_pt_set_event_name(evlist, id, "evt");
4145                 id += 1;
4146         }
4147
4148         if (pt->synth_opts.intr_events && pt->cap_event_trace) {
4149                 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
4150                 err = intel_pt_synth_event(session, "iflag", &attr, id);
4151                 if (err)
4152                         return err;
4153                 pt->iflag_chg_sample_type = attr.sample_type;
4154                 pt->iflag_chg_id = id;
4155                 intel_pt_set_event_name(evlist, id, "iflag");
4156                 id += 1;
4157         }
4158
4159         return 0;
4160 }
4161
4162 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
4163 {
4164         struct evsel *evsel;
4165
4166         if (!pt->synth_opts.other_events)
4167                 return;
4168
4169         evlist__for_each_entry(pt->session->evlist, evsel) {
4170                 if (evsel->core.attr.aux_output && evsel->core.id) {
4171                         if (pt->single_pebs) {
4172                                 pt->single_pebs = false;
4173                                 return;
4174                         }
4175                         pt->single_pebs = true;
4176                         pt->sample_pebs = true;
4177                         pt->pebs_data_src_fmt = intel_pt_data_src_fmt(pt, evsel);
4178                         pt->pebs_evsel = evsel;
4179                 }
4180         }
4181 }
4182
4183 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
4184 {
4185         struct evsel *evsel;
4186
4187         evlist__for_each_entry_reverse(evlist, evsel) {
4188                 const char *name = evsel__name(evsel);
4189
4190                 if (!strcmp(name, "sched:sched_switch"))
4191                         return evsel;
4192         }
4193
4194         return NULL;
4195 }
4196
4197 static bool intel_pt_find_switch(struct evlist *evlist)
4198 {
4199         struct evsel *evsel;
4200
4201         evlist__for_each_entry(evlist, evsel) {
4202                 if (evsel->core.attr.context_switch)
4203                         return true;
4204         }
4205
4206         return false;
4207 }
4208
4209 static int intel_pt_perf_config(const char *var, const char *value, void *data)
4210 {
4211         struct intel_pt *pt = data;
4212
4213         if (!strcmp(var, "intel-pt.mispred-all"))
4214                 pt->mispred_all = perf_config_bool(var, value);
4215
4216         if (!strcmp(var, "intel-pt.max-loops"))
4217                 perf_config_int(&pt->max_loops, var, value);
4218
4219         return 0;
4220 }
4221
4222 /* Find least TSC which converts to ns or later */
4223 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
4224 {
4225         u64 tsc, tm;
4226
4227         tsc = perf_time_to_tsc(ns, &pt->tc);
4228
4229         while (1) {
4230                 tm = tsc_to_perf_time(tsc, &pt->tc);
4231                 if (tm < ns)
4232                         break;
4233                 tsc -= 1;
4234         }
4235
4236         while (tm < ns)
4237                 tm = tsc_to_perf_time(++tsc, &pt->tc);
4238
4239         return tsc;
4240 }
4241
4242 /* Find greatest TSC which converts to ns or earlier */
4243 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4244 {
4245         u64 tsc, tm;
4246
4247         tsc = perf_time_to_tsc(ns, &pt->tc);
4248
4249         while (1) {
4250                 tm = tsc_to_perf_time(tsc, &pt->tc);
4251                 if (tm > ns)
4252                         break;
4253                 tsc += 1;
4254         }
4255
4256         while (tm > ns)
4257                 tm = tsc_to_perf_time(--tsc, &pt->tc);
4258
4259         return tsc;
4260 }
4261
4262 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4263                                       struct itrace_synth_opts *opts)
4264 {
4265         struct perf_time_interval *p = opts->ptime_range;
4266         int n = opts->range_num;
4267         int i;
4268
4269         if (!n || !p || pt->timeless_decoding)
4270                 return 0;
4271
4272         pt->time_ranges = calloc(n, sizeof(struct range));
4273         if (!pt->time_ranges)
4274                 return -ENOMEM;
4275
4276         pt->range_cnt = n;
4277
4278         intel_pt_log("%s: %u range(s)\n", __func__, n);
4279
4280         for (i = 0; i < n; i++) {
4281                 struct range *r = &pt->time_ranges[i];
4282                 u64 ts = p[i].start;
4283                 u64 te = p[i].end;
4284
4285                 /*
4286                  * Take care to ensure the TSC range matches the perf-time range
4287                  * when converted back to perf-time.
4288                  */
4289                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4290                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4291
4292                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4293                              i, ts, te);
4294                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4295                              i, r->start, r->end);
4296         }
4297
4298         return 0;
4299 }
4300
4301 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4302 {
4303         struct intel_pt_vmcs_info *vmcs_info;
4304         u64 tsc_offset, vmcs;
4305         char *p = *args;
4306
4307         errno = 0;
4308
4309         p = skip_spaces(p);
4310         if (!*p)
4311                 return 1;
4312
4313         tsc_offset = strtoull(p, &p, 0);
4314         if (errno)
4315                 return -errno;
4316         p = skip_spaces(p);
4317         if (*p != ':') {
4318                 pt->dflt_tsc_offset = tsc_offset;
4319                 *args = p;
4320                 return 0;
4321         }
4322         p += 1;
4323         while (1) {
4324                 vmcs = strtoull(p, &p, 0);
4325                 if (errno)
4326                         return -errno;
4327                 if (!vmcs)
4328                         return -EINVAL;
4329                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4330                 if (!vmcs_info)
4331                         return -ENOMEM;
4332                 p = skip_spaces(p);
4333                 if (*p != ',')
4334                         break;
4335                 p += 1;
4336         }
4337         *args = p;
4338         return 0;
4339 }
4340
4341 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4342 {
4343         char *args = pt->synth_opts.vm_tm_corr_args;
4344         int ret;
4345
4346         if (!args)
4347                 return 0;
4348
4349         do {
4350                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4351         } while (!ret);
4352
4353         if (ret < 0) {
4354                 pr_err("Failed to parse VM Time Correlation options\n");
4355                 return ret;
4356         }
4357
4358         return 0;
4359 }
4360
4361 static const char * const intel_pt_info_fmts[] = {
4362         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
4363         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
4364         [INTEL_PT_TIME_MULT]            = "  Time Multiplier     %"PRIu64"\n",
4365         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
4366         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
4367         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
4368         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
4369         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
4370         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
4371         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
4372         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
4373         [INTEL_PT_MTC_FREQ_BITS]        = "  MTC freq bits       %#"PRIx64"\n",
4374         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
4375         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
4376         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
4377         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
4378         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
4379 };
4380
4381 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4382 {
4383         int i;
4384
4385         if (!dump_trace)
4386                 return;
4387
4388         for (i = start; i <= finish; i++) {
4389                 const char *fmt = intel_pt_info_fmts[i];
4390
4391                 if (fmt)
4392                         fprintf(stdout, fmt, arr[i]);
4393         }
4394 }
4395
4396 static void intel_pt_print_info_str(const char *name, const char *str)
4397 {
4398         if (!dump_trace)
4399                 return;
4400
4401         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4402 }
4403
4404 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4405 {
4406         return auxtrace_info->header.size >=
4407                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4408 }
4409
4410 int intel_pt_process_auxtrace_info(union perf_event *event,
4411                                    struct perf_session *session)
4412 {
4413         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4414         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4415         struct intel_pt *pt;
4416         void *info_end;
4417         __u64 *info;
4418         int err;
4419
4420         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4421                                         min_sz)
4422                 return -EINVAL;
4423
4424         pt = zalloc(sizeof(struct intel_pt));
4425         if (!pt)
4426                 return -ENOMEM;
4427
4428         pt->vmcs_info = RB_ROOT;
4429
4430         addr_filters__init(&pt->filts);
4431
4432         err = perf_config(intel_pt_perf_config, pt);
4433         if (err)
4434                 goto err_free;
4435
4436         err = auxtrace_queues__init(&pt->queues);
4437         if (err)
4438                 goto err_free;
4439
4440         if (session->itrace_synth_opts->set) {
4441                 pt->synth_opts = *session->itrace_synth_opts;
4442         } else {
4443                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4444
4445                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4446                 if (!opts->default_no_sample && !opts->inject) {
4447                         pt->synth_opts.branches = false;
4448                         pt->synth_opts.callchain = true;
4449                         pt->synth_opts.add_callchain = true;
4450                 }
4451                 pt->synth_opts.thread_stack = opts->thread_stack;
4452         }
4453
4454         if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4455                 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4456
4457         pt->session = session;
4458         pt->machine = &session->machines.host; /* No kvm support */
4459         pt->auxtrace_type = auxtrace_info->type;
4460         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4461         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4462         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4463         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4464         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4465         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4466         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4467         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4468         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4469         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4470         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4471                             INTEL_PT_PER_CPU_MMAPS);
4472
4473         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4474                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4475                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4476                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4477                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4478                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4479                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4480                                     INTEL_PT_CYC_BIT);
4481         }
4482
4483         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4484                 pt->max_non_turbo_ratio =
4485                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4486                 intel_pt_print_info(&auxtrace_info->priv[0],
4487                                     INTEL_PT_MAX_NONTURBO_RATIO,
4488                                     INTEL_PT_MAX_NONTURBO_RATIO);
4489         }
4490
4491         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4492         info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4493
4494         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4495                 size_t len;
4496
4497                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4498                 intel_pt_print_info(&auxtrace_info->priv[0],
4499                                     INTEL_PT_FILTER_STR_LEN,
4500                                     INTEL_PT_FILTER_STR_LEN);
4501                 if (len) {
4502                         const char *filter = (const char *)info;
4503
4504                         len = roundup(len + 1, 8);
4505                         info += len >> 3;
4506                         if ((void *)info > info_end) {
4507                                 pr_err("%s: bad filter string length\n", __func__);
4508                                 err = -EINVAL;
4509                                 goto err_free_queues;
4510                         }
4511                         pt->filter = memdup(filter, len);
4512                         if (!pt->filter) {
4513                                 err = -ENOMEM;
4514                                 goto err_free_queues;
4515                         }
4516                         if (session->header.needs_swap)
4517                                 mem_bswap_64(pt->filter, len);
4518                         if (pt->filter[len - 1]) {
4519                                 pr_err("%s: filter string not null terminated\n", __func__);
4520                                 err = -EINVAL;
4521                                 goto err_free_queues;
4522                         }
4523                         err = addr_filters__parse_bare_filter(&pt->filts,
4524                                                               filter);
4525                         if (err)
4526                                 goto err_free_queues;
4527                 }
4528                 intel_pt_print_info_str("Filter string", pt->filter);
4529         }
4530
4531         if ((void *)info < info_end) {
4532                 pt->cap_event_trace = *info++;
4533                 if (dump_trace)
4534                         fprintf(stdout, "  Cap Event Trace     %d\n",
4535                                 pt->cap_event_trace);
4536         }
4537
4538         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4539         if (pt->timeless_decoding && !pt->tc.time_mult)
4540                 pt->tc.time_mult = 1;
4541         pt->have_tsc = intel_pt_have_tsc(pt);
4542         pt->sampling_mode = intel_pt_sampling_mode(pt);
4543         pt->est_tsc = !pt->timeless_decoding;
4544
4545         if (pt->synth_opts.vm_time_correlation) {
4546                 if (pt->timeless_decoding) {
4547                         pr_err("Intel PT has no time information for VM Time Correlation\n");
4548                         err = -EINVAL;
4549                         goto err_free_queues;
4550                 }
4551                 if (session->itrace_synth_opts->ptime_range) {
4552                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4553                         err = -EINVAL;
4554                         goto err_free_queues;
4555                 }
4556                 /* Currently TSC Offset is calculated using MTC packets */
4557                 if (!intel_pt_have_mtc(pt)) {
4558                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4559                         err = -EINVAL;
4560                         goto err_free_queues;
4561                 }
4562                 err = intel_pt_parse_vm_tm_corr_args(pt);
4563                 if (err)
4564                         goto err_free_queues;
4565         }
4566
4567         pt->unknown_thread = thread__new(999999999, 999999999);
4568         if (!pt->unknown_thread) {
4569                 err = -ENOMEM;
4570                 goto err_free_queues;
4571         }
4572
4573         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4574         if (err)
4575                 goto err_delete_thread;
4576         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4577                 err = -ENOMEM;
4578                 goto err_delete_thread;
4579         }
4580
4581         pt->auxtrace.process_event = intel_pt_process_event;
4582         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4583         pt->auxtrace.queue_data = intel_pt_queue_data;
4584         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4585         pt->auxtrace.flush_events = intel_pt_flush;
4586         pt->auxtrace.free_events = intel_pt_free_events;
4587         pt->auxtrace.free = intel_pt_free;
4588         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4589         session->auxtrace = &pt->auxtrace;
4590
4591         if (dump_trace)
4592                 return 0;
4593
4594         if (pt->have_sched_switch == 1) {
4595                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4596                 if (!pt->switch_evsel) {
4597                         pr_err("%s: missing sched_switch event\n", __func__);
4598                         err = -EINVAL;
4599                         goto err_delete_thread;
4600                 }
4601         } else if (pt->have_sched_switch == 2 &&
4602                    !intel_pt_find_switch(session->evlist)) {
4603                 pr_err("%s: missing context_switch attribute flag\n", __func__);
4604                 err = -EINVAL;
4605                 goto err_delete_thread;
4606         }
4607
4608         if (pt->synth_opts.log) {
4609                 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4610                 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4611
4612                 intel_pt_log_enable(log_on_error, log_on_error_size);
4613         }
4614
4615         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4616         if (pt->tc.time_mult) {
4617                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4618
4619                 if (!pt->max_non_turbo_ratio)
4620                         pt->max_non_turbo_ratio =
4621                                         (tsc_freq + 50000000) / 100000000;
4622                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4623                 intel_pt_log("Maximum non-turbo ratio %u\n",
4624                              pt->max_non_turbo_ratio);
4625                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4626         }
4627
4628         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4629         if (err)
4630                 goto err_delete_thread;
4631
4632         if (pt->synth_opts.calls)
4633                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4634                                        PERF_IP_FLAG_TRACE_END;
4635         if (pt->synth_opts.returns)
4636                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4637                                        PERF_IP_FLAG_TRACE_BEGIN;
4638
4639         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4640             !symbol_conf.use_callchain) {
4641                 symbol_conf.use_callchain = true;
4642                 if (callchain_register_param(&callchain_param) < 0) {
4643                         symbol_conf.use_callchain = false;
4644                         pt->synth_opts.callchain = false;
4645                         pt->synth_opts.add_callchain = false;
4646                 }
4647         }
4648
4649         if (pt->synth_opts.add_callchain) {
4650                 err = intel_pt_callchain_init(pt);
4651                 if (err)
4652                         goto err_delete_thread;
4653         }
4654
4655         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4656                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4657                 pt->br_stack_sz_plus = pt->br_stack_sz;
4658         }
4659
4660         if (pt->synth_opts.add_last_branch) {
4661                 err = intel_pt_br_stack_init(pt);
4662                 if (err)
4663                         goto err_delete_thread;
4664                 /*
4665                  * Additional branch stack size to cater for tracing from the
4666                  * actual sample ip to where the sample time is recorded.
4667                  * Measured at about 200 branches, but generously set to 1024.
4668                  * If kernel space is not being traced, then add just 1 for the
4669                  * branch to kernel space.
4670                  */
4671                 if (intel_pt_tracing_kernel(pt))
4672                         pt->br_stack_sz_plus += 1024;
4673                 else
4674                         pt->br_stack_sz_plus += 1;
4675         }
4676
4677         pt->use_thread_stack = pt->synth_opts.callchain ||
4678                                pt->synth_opts.add_callchain ||
4679                                pt->synth_opts.thread_stack ||
4680                                pt->synth_opts.last_branch ||
4681                                pt->synth_opts.add_last_branch;
4682
4683         pt->callstack = pt->synth_opts.callchain ||
4684                         pt->synth_opts.add_callchain ||
4685                         pt->synth_opts.thread_stack;
4686
4687         err = intel_pt_synth_events(pt, session);
4688         if (err)
4689                 goto err_delete_thread;
4690
4691         intel_pt_setup_pebs_events(pt);
4692
4693         if (perf_data__is_pipe(session->data)) {
4694                 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4695                            "         The output cannot relied upon.  In particular,\n"
4696                            "         timestamps and the order of events may be incorrect.\n");
4697         }
4698
4699         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4700                 err = auxtrace_queue_data(session, true, true);
4701         else
4702                 err = auxtrace_queues__process_index(&pt->queues, session);
4703         if (err)
4704                 goto err_delete_thread;
4705
4706         if (pt->queues.populated)
4707                 pt->data_queued = true;
4708
4709         if (pt->timeless_decoding)
4710                 pr_debug2("Intel PT decoding without timestamps\n");
4711
4712         return 0;
4713
4714 err_delete_thread:
4715         zfree(&pt->chain);
4716         thread__zput(pt->unknown_thread);
4717 err_free_queues:
4718         intel_pt_log_disable();
4719         auxtrace_queues__free(&pt->queues);
4720         session->auxtrace = NULL;
4721 err_free:
4722         addr_filters__exit(&pt->filts);
4723         zfree(&pt->filter);
4724         zfree(&pt->time_ranges);
4725         free(pt);
4726         return err;
4727 }